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FINITE-TIME OUTPUT REGULATION FOR LINEAR
TIME-VARYING HYPERBOLIC BALANCE LAWS*

YUBO BAIt, CHRISTOPHE PRIEUR}, AND ZHIQIANG WANGS#

Abstract. This work is concerned with the output regulation problem for a non-autonomous
infinite dimensional system. Specially, a regulator for boundary controlled time-varying hyperbolic
systems is designed. The disturbances can act within the space domain, and affect both boundaries
and the to-be-controlled output. The to-be-controlled output comprises in-domain pointwise, distrib-
uted and boundary outputs. The output regulation problem is solved in finite time. The regulator
design is based on the solvability of the regulator equations. Due to the time-varying setting of the
system and the generality of the to-be-controlled output, solving regulator equations becomes more
challenging compared to the case of autonomous systems. A novel method is introduced to overcome
this difficulty. By considering the regulator equations as a control system, we examine the dual
system of the regulator equations and transform the solvability of the regulator equations into the
validity of an observability-like inequality. Under the conditions regarding the boundary coupling
term and the to-be-controlled output, we have proven this inequality. Additionally, time-varying
setting also brings an advantage to the problem. Since the regulator equations is time-dependent, its
solvability does not depend on the eigenmodes of the signal model. On the contrary, in the case of
autonomous systems, its solvability depends on the relationship between the plant transfer behavior
and the eigenmodes of the signal model.

Key words. hyperbolic systems, non-autonomous systems, output regulation

MSC codes. 93B52, 93C20, 35L40

1. Introduction. Control of partial differential equations (PDEs) has garnered
significant attention due to its mathematical complexity and its applications in various
other fields such as engineering and physics. One significant class of PDE systems is
hyperbolic systems, which arise in many application scenarios such as open channels,
gas flow pipelines, or road traffic flow models. The boundary stabilization of these
hyperbolic systems has been considered in literature for decades, see, for instance, [5].
Therein, the exponential stability of hyperbolic systems is studied. More recently,
finite-time stabilization of hyperbolic systems has also received much attention. One
can refer to [12, 13] for finite-time stabilization of homogeneous linear and quasilinear
hyperbolic systems and to [10] for finite-time stabilization of linear time-varying hy-
perbolic systems. In [10], a time-dependent backstepping method was used to design
the state feedback control.

In this paper, we investigate the output regulation problem of the hyperbolic
systems. For the output regulation problems, unlike the stabilization problems, the
objective is to design feedback control such that the output of the system tracks a
given reference and rejects the disturbances. There has been a very fruitful literature
on the output regulation of the hyperbolic system. In [1, 2], boundary disturbance
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2 Y. BAI, C. PRIEUR, AND Z. WANG

rejection for linear 2 x 2 hyperbolic systems was considered by using the backstepping
approach. Concerning robust output regulation, [14] used backstepping method to de-
sign a robust state feedback regulator for boundary controlled linear 2 x 2 hyperbolic
systems. Therein, the output to be controlled is assumed to be available for measure-
ment. Therefore, the regulator design is based on the internal model principle. Later
on, [17] generalized this work into general n x n linear heterodirectional hyperbolic
systems, where the so-called p-copy internal model principle has to be fulfilled in order
to achieve the robust output regulation. In addition to the previous references, we
would also like to mention some works on the output regulation of other types of infi-
nite dimensional systems, including [26] for cascaded network of hyperbolic systems,
[21, 22] for heat equation, [3] for Korteweg-de Vries equation, [20] for beam equation,
[23] for thermoelastic system and [27] for infinite-dimensional nonlinear systems.

Concerning the finite-time output regulation of hyperbolic systems, which is the
focus of this article, the first result was obtained in [15]. In this paper, the back-
stepping method was used to design the feedback regulator for boundary controlled
linear 2 x 2 time-invariant hyperbolic systems. Moreover, [16, 18] achieved finite-time
output regulation for general n x n time-invariant hyperbolic systems with different
convergent time. These three works focus on autonomous hyperbolic systems.

This paper is concerned with the finite-time output regulation problem for linear
hyperbolic systems when the coupling coefficients of the system depend on both time
and space variables. Therein, the disturbances can act within the domain, affect-
ing both boundaries and the output to be controlled. The output to be controlled
comprises in-domain pointwise, distributed and boundary outputs. In this work, we
focus on the design of the feedback regulator, assuming that the system states, ref-
erence signal states, and disturbance states are known. Using the results from [10],
we transform the design of the feedback regulator into the solvability of regulator
equations.

Compared to the literature mentioned, in particular [15], this paper considers
non-autonomous hyperbolic systems, which introduces new challenges to the solvabil-
ity of regulator equations. As mentioned in [15], the regulator equations of time-
independent hyperbolic system can be expressed as ordinary differential equations
(ODEs) and can be explicitly solved. The solvability condition can be characterized
as the relationship between the signal model and the transfer behavior of the system.
However, under the time-varying setting, the regulator equations are PDEs rather
than ODEs. Due to the time-varying setting and the generality of the to-be-controlled
output, directly solving the regulator equations becomes difficult. We applied a novel
approach to address this challenge. We consider the regulator equations as a con-
trol system. Similarly to dealing with controllability problems, we examine the dual
system of the regulator equations. Then, the solvability of the regulator equations
is transformed into the validity of an observability-like inequality and Lyapunov-like
functions are used to prove this observability-like inequality. Through this method, we
can only obtain feedback gain function with L? regularity over a finite time domain,
which restricts us to solving the output regulation problem only within a finite time
domain and considering only broad solution (with weak regularity) to the system.

In addition, due to our approach, we need assumptions on the dimensions of
the system and the to-be-controlled output, namely, the number of equations with
negative speeds (i.e., dimension of the input) is not less than the number of equations
with positive speeds, which is not less than the dimension of the to-be-controlled
output. In the meantime, time-varying setting also brings the following advantage: the
solvability of the regulator equations depends no longer on the relationship between
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REGULATION FOR TIME-VARYING BALANCE LAWS 3

the plant transfer behavior and the eigenmodes of the signal model. In other words,
our approach relaxes the assumptions of [15, 16, 18]. Due to the discontinuity in
spatial variables of the dual system of the regulator equations, it is necessary to apply
specific techniques for the well-posedness. Inspired by the proof in [10], this is done
in Appendix A.

The remaining part of this paper is organized as follows. In Section 2, we introduce
the considered output regulation problem. Some preliminaries needed in the paper is
given in Section 3. Then, Section 4 presents the main results of this paper, namely the
design of the finite-time regulator. The well-posedness results for the broad solution
and the C! solution are provided in Appendices A and B, respectively.

Throughout the paper, we use the following notation. For a domain ) in R™,
a Banach space X and any nonnegative integer m, let C7(; X) denote the vec-
tor space consisting of all functions f : € — X which, together with all their
partial derivatives D®f of orders |a| < m, are bounded and uniformly continu-
ous on €). For some constants T > 0 and 0 < tg < T, we define the domain
D(tg) = {(t,z)[to < t < T,0 < x < 1}, and define the function space B(tg) =
C°([to, T); L?(0,1))NC([0,1]; L3(ty, T)). Let I belong to NT and let z;, i = 0,1,...,1,
be some points in [0, 1] satisfying 0 = zop < 1 < -+ < x; = 1. We define the do-
main D;(ty) = {(t,x)|to <t < T, x € Ut_,(x;_1,7;)} and define the function space
Bi(to) = Cto, T); L*(0,1)) N CY(UL_; (zi—1,2:); L*(to,T)). For a vector v and a
matrix A, denote by ||v| the Euclidean norm and by || 4| the matrix norm of A as-
sociated to the Euclidean norm. For symmetric matrices P and Q, P > 0 (P > 0)
means that P is positive (nonnegative) definite, and P > @ (P > @) means P—Q > 0
(P—Q > 0). Denote by Id,, the n xn identity matrix. Denote by diag(A, ..., A,) the
block diagonal matrix with matrices A1, ..., A, on the diagonal, where A; are square
matrices of potentially different sizes, and all off-diagonal blocks are zero matrices of
appropriate dimensions.

2. Problem statement. In this paper, combining the systems from [10, 18], we
consider the following linear time-varying n x n hyperbolic system, for (¢,z) in D(¢),

(2.1a) Ow(t, x) + A(t, 2)0,w(t,x) = A(t,x)w(t, z) + g1(t, z)d(t),
(2.1Db) wy(t,0) = Q(t)w—(t,0) + g2(t)d(2),

(2.1c) w_(t,1) = u(t) + gs(t)d(¢),

(2.1d) w(to, z) = w(z),

(2.1e) y(t) = Celw(t, )] + ga(t)d(t).

In (2.1), w : D(ty) — R™ is the state, w® in L?(0,1)" is the initial data at time ¢,
u(t) in R™ is the control input, d(¢) in R" is the disturbance and y(t) in RY is the
output to be controlled. The matrix A = (a;j)1<i,j<n couples the equations of the
system inside the domain, the matrix ) couples the equations of the system on the
boundary x = 0 and the matrices g;, ¢ = 1,...,4 are disturbance input locations. Let
us make the following assumptions on all coefficients involved in (2.1).

Assumption 2.1. The matrix A is diagonal, namely
A(t,z) = diag(Ai(t, @), ..., An(t 2))

for every (t,z) in [0,00) x [0, 1].

Assumption 2.2. Assume that n > 2. Denote by m in {1,...,n — 1} the number
of equations with negative speeds and by p =n —m in {1,...,n — 1} the number of
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4 Y. BAL C. PRIEUR, AND Z. WANG

equations with positive speeds. We assume that there exists some €9 > 0 such that
for every (t,z) in [0, 00) X [0, 1], we have

(2.2) At z) < < Ap(t,x) < —e9g <0< egg < App1(t,z) < - < A (t, ),

and, for every ¢ in {1,...,n — 1},
(23) /\i+1 (t, x) — /\i(t, a:) > €.
Assumption 2.2 is identical to the assumption in [10], where finite-time stabilization

problem is considered. As stated in [10], (2.2) is expected for finite-time stabilization,
while (2.3) is mainly technical. All along this paper, for a vector (or vector-valued
function) v in R™ and a matrix (or matrix-valued function) B in R"*™ we use the

notation
v_ B__ B_
V= 5 B = + 9
(V+) (B+— B++)
with v_ in R™, v in RP and B__ in R™*™_ B_, in R™*P B, in RP*™ B, in
RP*P,
Assumption 2.3. The following regularities hold for A, A and Q:
A e CH([0,00) x [0,1])™*", A€ CO([0,00) x [0,1])™*",  Q € C°([0,00))P*™,
A, 0, A A e L=((0,00) x (0,1))™",  Q € L*(0,00)P*™.

There exist constants My, M7, Mg > 0 such that
||A||L°°((O,oo)X(O,l))"X" < Mo, ||893AHL°°((0,00)X(O,l))"X" < MO,
[ Al oo ((0,00) % (0,1))xn < M, [|@Q| Los (0,00)rxm < Mg.

The output to be controlled y(¢) in R? is modelled by the formal output operator
C; which satisfies the following assumption.

Assumption 2.4. Given f; = (fi—, fix), 1 =0,1,...,1, and ¢ = (c_, ¢y ) satisfying
i € (CO[0.400) ™ NL=(0,00)™,  fiy € (CO[0,4+00))"% N L (0,00)%"7,
c_ € CY([0,400); L*(0,1))7*™ N L>((0, +00); L*(0,1))9*™,
ey € CO([0,+00); L*(0, 1)) N L¥((0, +00); L*(0,1))7*7,
for any t > 0 and 7 in N\ {0}, the operator C; is defined by
Ce: (COl0, 1)) — Ra*%
(2.4)

]l
bl
P
C*;
S

8
N
+

S—
=

o
—~
\.@F

S
S~—
I
—
oS

o,

8

There exist constants Mg, M, > 0 such that

Jnax [ fill Lo (0,00)axn < Mg, lell Lo ((0,400);L2(0,1))axn < M.

Clearly, for any 0 < to < T, n in N\ {0} and p in B(to)"*", (t = Ci[p(t,-)]) is
in L%(tp, T)9*™. Tt comprises in-domain pointwise, distributed and boundary out-
puts. It encompasses the outputs used in [15, 16, 18, 26]. These output types are
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REGULATION FOR TIME-VARYING BALANCE LAWS 5

widely applied in real-world problems that can be modeled by hyperbolic systems. For
boundary output, one can refer to [5, 6] for the boundary set-point control problem of
the Saint-Venant equations. In [4], heat exchanger with in-domain pointwise output
is considered.

The disturbance d(t) is in R”. The corresponding disturbance input locations
satisfy the following assumption.

Assumption 2.5. Matrix-valued functions g;, i = 1,2, 3,4 are known and have the
following regularities

g1 € CO([O’OO) X [0’ 1])n><h’ g2 € CO([O,OO))th,
g3 € C°([0,00))™ ", g4 € C°([0, 00))*".

The disturbance d(t) and the reference input r(¢) in R? to be tracked by the output
y(t) are the solutions to the following finite-dimensional signal model, for ¢ > ¢,

o(t) = S(t)u(t), wv(te) =2°,
d(t) = pa(t)o(t), r(t) = pr(t)v(D),

where v° is in R™. The coefficients of (2.5) satisfy the following assumption.

(2.5)

Assumption 2.6. Matrix-valued functions S, pg and p, are known. S : [0, +00) —
R™*™v i measurable and bounded on every finite subinterval of time, pg is in
C°([0,00))" v and p, is in C°([0, 00))?*">.

By Assumption 2.6, there exists a unique continuous transition matrix ¥ : [0, +00)? —
R™ X" of S such that the solution of (2.5) is given by v(t) = W(t,t0)v°. One can
refer to [9, p. 5] for the properties of transition matrix ¥. Denote by

(2.6) ey(t) = y(t) —r(t)

the output tracking error. Inspired by [10, 18], let us give the notion of the uniform
finite-time output regulation that we are interested in.

DEFINITION 2.7. The output y of the system (2.1) achieves the uniform finite-
time output regulation within settling time Ty if for any T > Ty, there exists a feedback
requlator u = Kr[w,v], such that for all 0 < tg < T — Tp, w° in L?(0,1)" and v° in
R™ , the output tracking error e, satisfies e, =0 a.e. in (to + 1o, T).

Remark 2.8. 1. Ensuring that the system output tracks a given reference
signal is a classic goal in control theory. The output regulation for linear
finite-dimensional system is well-understood and is well introduced in, for
example, [19, 25].

2. The uniformity means that the output regulation is achieved uniformly to the
initial time tq.

3. The output regulation is considered in any finite interval (¢o9,7") and the
regulator design ICr is relative to T'. This restriction is due to the machinery
of proof. See Subsection 4.2 for details.

3. Preliminaries on characteristics. In this section, let us introduce some
known facts on the characteristics associated with system (2.1) and the entry and
exit times for the interval [z;_1,2;], i = 1,...,l, see [10]. To this end, we use the
extension method introduced in [10] to extend A to a function of R? (still denoted
by A) by keeping Assumptions 2.1 to 2.3. For every j =1,...,n, let x; be the flow

This manuscript is for review purposes only.
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6 Y. BAI, C. PRIEUR, AND Z. WANG

associated with \;, namely for every (¢,z) in R?, the function s — x;(s;¢,z) is the
solution to the ODE, for s in R,

0
(3.1) %Xj(s;t,f) =\i(s,xi(s:t,2)), xj(t:t, ) = 2.

The existence and uniqueness of the solutions to the ODE (3.1) follows the classical
theory. Moreover, since \; is bounded, the solution is global and has the regularity

(3.2) x; € CH(R?),
and, for every (s,t,z) in R?, we have

(3.3)
8th(3; t7 1‘) _ _)\j (t) x)efté O N (T,X; (T;t,fL’))dT7 8$Xj (37 t, 33) _ efts Oz (T, (T;t,I))dT.

Next we introduce the entry and exit times for the interval [x;_1,2;],i=1,...,1.
For j =1,...,n,tin R and z in [0, 1], let s;"*(¢, ) and s?“t’z(t,x) be the entry and

exit times of the flow x;(-;¢,2) inside the interval [x;_1,z;], namely the respective
unique solutions to
Xj(S;n’i(t,x);t,x) = Ty, Xj(s_(])'umi(tvx);tvx) =Ti—1, 1f.7 S {L"'am},

in,? out,?

(3.4) o
Xi(s5 (G a)it o) = mmn, xg(s; C(Ga)ite) =y, i je{m+1,... n}

The existence and uniqueness of sijn’i(t,x) and s‘;“t’i(t,x) are guaranteed by (2.2) in

Assumption 2.2. From (3.2) and by the implicit function theorem, we have

(3.5) s e CHR % [0,1]), i=1,...,1, j=1,...,n.

Especially, we denote the entry and exit times for the interval [0, 1] as

(3.6) s (t,x) = s;-n’l(t,x), s (t, @) = s?ut’l(t,x), if j € {1,...,m},

st(tx) = s (tw), (L a) = s (tLa), ifje{m+1,... n}

Integrating the ODE (3.1) and using (2.2), we have the following bounds for every ¢
in R and z in [0, 1],

. 1 1
(3.7) t—s(te) < —, sM(tx)—t<—, j=1,...,n.
€0

Differentiating (3.4) and using (3.3), we see that for i =1,...,1,

By (57 (t,2);t, )

9,8™ (¢, ) = — J_ , ifjed{1,...,m},
2] ( ) Aj(S;-n’l(t,.’L'),.Ti) J { }
(3.8) oo
o (st )it
auS}n7l(t,I):— HX]i(n]i ( ) )’ 1f]€{m+1,,n},
)‘j(sj ' (tax)vxi—l)

with 9, is 0y or 0.
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REGULATION FOR TIME-VARYING BALANCE LAWS 7

4. Finite-time regulator. In this section, we aim to find a finite-time regulator.
Let T'> 0 and 0 < tg < T. We consider the following time-dependent regulator,

(4.1) u(t) = ky(t)v(t) —I—/O ky(t, z)w(t, x)dz,

with feedback gain functions k, : (0,7) — R™*™ and k, : D(0) — R™*" to be
determined later. By applying (4.1) to the system (2.1) and taking the signal model
(2.5) into account, we have the closed-loop system for (¢,z) in D(¢o),

(4.2a) o(t) = S(t)u(t),  w(to) = v’

(4.2b) Ow(t,x) + A(t, z)0,w(t, x) = A(t, x)w(t, x) + §1(t, x)v(t),
(4.2¢) w4(t,0) = Q)w—(t,0) + ga(t)v(¢),

(4.2d) w_ (1) = ko (Bu(t) + /0 o (t, 2)w(t, 2)dz + G ()0 (1),
(4.2e) w(ty, z) = w’(z),

(4.2f) ey(t) = Ci[w(t, )] = (pr(t) — ga(t))v(?),

where §; = g;pa, @ = 1,2,3,4, and e, is defined in (2.6). Similar to [10], we consider
the broad solutions to (4.2b)—(4.2e). The definition of broad solution and the well-
posedness of (4.2b)—(4.2e) are given in Appendix A. We have the following well-
posedness result for (4.2b)—(4.2e).

THEOREM 4.1. Let ky, be in L°°(D(0))™*" and k, be in L*(0,T)™*". Under
Assumptions 2.1 to 2.3 and 2.5, for every w® in L*(0,1)" and v in C°[ty, T|™, there
exists a unique broad solution w in B(tg)™ to the system (4.2b)—(4.2e).

Theorem 4.1 is a corollary of Theorem A.3 in Appendix A. Let us now state the main
result of this paper.

THEOREM 4.2 (Finite-Time Regulator). Assume that Assumptions 2.1 to 2.6
hold and assume that there exist positive constants eq and ¢ such that for allt > 0,

(4.3) QR > eold,,

and

(4.4) Fee (O (®)7 > 414,

Let the settling time Tynis(A) be defined by

(4.5) Tunie(A) = supls S (s (¢,1),0) — ¢].

Then, the output y achieves the uniform finite-time output regqulation within settling
time Tunit(A). More precisely, for any T > Tynir(A), there exist gain functions ky, in
L (D(0))™ ™ and k, in L*(0,T)™ " such that for all 0 < to < T — Tunit(A), w°
in L?(0,1)™ and v° in R™, the output tracking error e, of closed-loop system (4.2)
satisfies e, = 0 a.e. in (to + Tunie(A), T).

Remark 4.3. 1. It follows from conditions (4.3) and (4.4) that the number
of equations with negative speeds m (the number of the control input), the
number of equations with positive speeds p and the number of outputs to be
controlled g should satisfy m > p > q.

This manuscript is for review purposes only.
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2. When considering the case of a 2 x 2 hyperbolic system with scalar output,

i.e., m = p =g =1, the conditions (4.3) and (4.4) are equivalent to |Q(t)|? >
eg > 0 and |fi+(t)]*> > ef > 0 for all t > 0. If in addition the coefficients of
the system do not depend on time, the result of this paper does not recover
the result of [15], and vice versa. On the one hand, the example in [15,
Section 6] (see also the example in item 5 of this remark) shows that the
finite-time output regulation problem can be solved when condition (4.4) is
not satisfied. On the other hand, Lemma 1 from [15] provides the sufficient
and necessary conditions for the existence of a feedback regulator with time-
invariant feedback gains. The following example illustrates that, although the
conditions of Lemma 1 from [15] are not satisfied, we can still find a feedback
regulator with a time-dependent feedback gain. Consider the following 2 x 2
system: for all (¢,) in (0, +o00) x (0,1),

(4.6a) Opw (t, ) — Opwy (t,x) =0, Jpwa(t, x) + drwa(t,z) =0,
(4.6b) wa(t,0) = wi(t,0), wi(t,1) =u(t), w(0,z)=uw’(x),
(4.6¢) y(t) = wa(t, 1) — wa(t,1/2),

and consider the constant reference signal r(t) = v(t) = v* for some v* in
R\ {0}. Direct calculation shows that the numerator N(s) of the transfer
function of (4.6) from u to y is N(s) = e™® — e~*/2. The conditions of
Lemma 1 from [15] are not satisfied since N(0) = 0 and 0 is the eigenvalue
of signal model. However, conditions (4.3) and (4.4) are satisfied, which
implies that there exists time-dependent feedback regulator w. Indeed, by
the characteristic method, we have that for t > 2, y(t) = u(t —2) —u(t —3/2).
Then u(t) = —2tv* solves the finite-time output regulation problem. Roughly
speaking, the advantage of Theorem 4.2 lies in the fact that the required
conditions (4.3) and (4.4) are independent of the signal model.

. In (4.5), o and s9%, defined in Section 3 are the exit time of the charac-

teristics for the interval [0, 1]. The settling time Tynif (A) has been introduced
in [10]. The main result of [10] is used in the proof of Theorem 4.2 (see The-
orem 4.4 below). Notice that the settling time Tynir(A) is only related to the
propagation speed A of the system. Here is an example of 2 x 2 system to
compute the settling time: for all (¢,z) in (0, +00) x (0, 1),

Orwy (t,z) — (1 +e H)o,wi(t,x) =0,
Oywa(t, ) + (1 + 0.58in(27t)) D wa(t, ) = 0.

Direct calculation shows x1(s;t,z) = —s+e *+t—e '+ and x2(s;t,7) = s—
cos(2ms)/(4m) —t+cos(2wt) /(4w) +x. Tt is clear that s§“*(¢,0) = t+1. Denote
h(t) = s9"(¢,1) —t. We have h(t) solves ®(h(t),t) = 0, where ®(h,t) =
1 —h+e "=t —e~t Taking the derivative of the relation ®(h(t),t) = 0 and
using the fact that 0.5 < h(t) < 1, we have that A/(t) > 0. Thus, h is a
bounded non-decreasing function and, consequently lim;_, o, h(t) exists and
is equal to sup;sq h(f). Letting ¢t — +oo in the relation ®(h(¢),t) = 0, we
obtain that lim;_, o h(t) = 1. Therefore, Tynif(A) = 2.

. Condition (4.3) is expected for the output regulation to be achieved. Here,

we provide an example to illustrate that when condition (4.3) is not satisfied,
the output regulation problem may have no solution. Let us consider the
following system: for all (¢,z) in (0,400) x (0,1),

Ow(t,x) + Adyw(t,z) =0,
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wy(t,0) = Qw_(t,0), w_(t,1) =u(t),
w(0,z) = wO(:L,)’ y(t) = w4 (t,1),

where A = diag(—2,—-1,1,2), w_ = (w,ws)", wy = (w3, wy)" and Q =
1 2

2 4)'

method, for £ > 2, the explicit representation of the output is

y(t) = (Ziéi )) _ (ul(t—3/2) + 2uy(t — 2) )

1

1) 2up(t — 1) + dug(t — 3/2)
We observe that for ¢ > 2, wy(t —1/2,1) = 2ws3(t,1). Then, for the constant
signal 7(t) = (1,0) ", the finite-time output regulation can not be achieved.
The null-controllability results in [11] do not require any assumptions about
the structure of ). This fact, to some extent, reflects the differences between
the null-controllability and the output regulation.

5. Condition (4.4) is mainly technical. This assumption is needed because
fir () fis ()T > 0 is necessary for the matrix P(t) to be positive definite
(see in particular (4.28) below). However, this condition is not necessary for
the output of some systems to achieve output regulation. Indeed, consider
system (4.6a) and (4.6b) again, but with a different output y(t) = wa(t,1/2).
By the characteristic method, we have that for ¢ > 3/2, y(t) = ws(t,1/2) =
u(t—3/2). Then for any given reference signal r, the control u(t) = r(t+3/2)
enables the finite-time output regulation to be achieved.

Clearly, condition (4.3) is not satisfied. By the characteristic

Before providing the proof of Theorem 4.2, let us explain its difficulty and how
we overcome these difficulties. In Theorem 4.1, we consider the broad solution to the
system (4.2b)—(4.2e), which has only weak regularity B(tg)™ = C°([to, T]; L*(0,1)")N
C°([0,1]; L?(to, T)™), and we only consider the system (4.2b)—(4.2e) over finite time
domain (tg,T") rather than infinite time domain (¢g, 00). The reason for these restric-
tions lies in the time-varying nature of the system, which introduces new challenges
in the output regulation problem. In detail, due to the time-varying setting, the reg-
ulator equations (see (4.9) below) are PDEs rather than ODEs as in [15]. In [15],
the hyperbolic system to be considered is time independent, and thus, the solvability
condition for the regulator equations can be characterized as the relationship between
the signal model and the transfer behavior of the system. Furthermore, the solution
to the regulator equations is independent of time, allowing for the design of regulator
over infinite time domain (0, co) and the consideration of system over infinite time do-
main (0, 00) as well. However, when considering time-varying system and accounting
for boundary, pointwise as well as distributed outputs (2.4), directly finding solution
to the regulator equations becomes challenging. To overcome new difficulties, we
examine the dual system of the regulator equations, thereby transforming the issue
of solvability of regulator equations over any finite time domain (0,7) into proving
an observability-like inequality (as given in (4.22) below) regarding the solution to
the dual system. Then we use Lyapunov-like functions (defined in (4.23) and (4.24)
below) to prove observability-like inequality. Through this method, we can only find
gain function k, in L2(0,7)™*"  rather than in more regular function spaces such
as C0[0, T)™*"v. Furthermore, we cannot extend the gain function &, to the infinite
time domain (0, 00). Due to the regularity of gain function k,, we can only consider
system (4.2b)—(4.2e) over finite time domain (tp,T") and consider the broad solution
w in B(tg)™ to the system (4.2b)—(4.2¢).

This manuscript is for review purposes only.
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In Theorem 4.2, we provide sufficient conditions (4.3) and (4.4) for the solvability
of the regulator equations. In detail, (4.3) implies that the boundary coupling coeffi-
cient matrix @ is uniformly row full rank, and (4.4) implies that the to-be-controlled
output should include fiy(t)wy(¢,1) and f is uniformly row full rank. These two
conditions ensure that any g-dimensional reference signal can be tracked. We use
these conditions in proving the observability-like inequality. These conditions are not
required for the output regulation problem in time-independent hyperbolic system, as
mentioned in [15, 16, 18]. They arise from time-varying settings and the machinery
of the proof.

Besides, time-varying setting also brings an advantage to the output regulation
problem. Since the regulator equations are time-dependent, its solvability no longer
relies on the relationship between the signal model and the transfer behavior of the
system. Output regulation problem can be achieved for any signal model (2.5).

We prove Theorem 4.2 in two subsections. In Subsection 4.1, we remove the
dependency of v in (4.2b)—(4.2d) and (4.2f) and provide the feedback gain k,, by
using the result in [10]. In Subsection 4.2, we prove that the regulator equation
admits a solution under the condition (4.4) and therefore, provide the feedback gain
k.

4.1. Removal of the dependency of v. Let tg be in [0, T — Tynit(A)). Inspired
by [15], we introduce a bounded invertible change of coordinates to eliminate the
dependency of v in (4.2b)—(4.2d) and (4.2f),

(4.7) 2(t,2) = w(t, ) — T1(t,2)o(t),

with II = [IL;;] : D(0) — R™*". Then (4.2) takes the form: for (¢, z) in D(ty),

(4.8a) b(t) = St)v(t), v(to) =°,
(4.8b) Oz(t,x) + A(t, )0, 2(t, ) = A(t, x)2(t, z),
(4.8¢) 2+(t,0) = Q(t)=—(,0),
(4.8d) —(t,1) ko (t, @) 2(t, ) da
0
(4.8¢) 2(to, z) = w'(x) — (%o, )0,
(4.8f) ey(t) = Cilz(t, )],

if TT is the solution to the regulator equations, for (¢,z) in D(0),

(4.9a) OII(t, x) + A(t, )0, 11(t, x) = A(t, x)II(¢, x) — II(¢, ) S(¢) + g1 (¢, x),
(49b)  TLL(£,0) = Q(OTL(1,0) + Gal),
(4.9¢) C[II(E, )] = (pr(t) — 9a()),

and
1
(4.10) k() = TL_(£,1) — gs(t) — / o (, 2)T1(, 2)d,
0
where (¢, z) = (IIL,I1]) " (¢, ) with IT_(¢,2) in R™*"> and I, (¢,z) in RPX". The

finite-time stability of z-subsystem (4.8b)—(4.8¢) follows from the following theorem,
which is the main result of [10].

This manuscript is for review purposes only.
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THEOREM 4.4. Under Assumptions 2.1 to 2.3, there exists a gain function k., in
L>(D(0))™ ™ such that for any w® in L?(0,1)", Il(tg,-) in L*(0,1)"*" and v° in
R™, the system (4.8b) and (4.8c) with feedback law (4.8d) is finite-time stable with
settling time Tunit(A) defined by (4.5).

Remark 4.5. In [10], k,, can be defined for infinite time interval (0, 00). Thus, ky
does not depend on T'.

If there exists a solution IT in B(0)"*™ to the regulator equations (4.9), we can
define the feedback gain function k, in L?(0,T)™*™ by (4.10), and Theorem 4.2 is
deduced from Theorem 4.4. The remaining thing is to find a solution to the regulator
equations (4.9). This is the goal of the next subsection.

4.2. Regulator equations. In this section, we prove that under the assump-
tions of Theorem 4.2, the regulator equations (4.9) admit a solution. Postmultiply
(4.9) by ¥(t,0), the transition matrix of S, and denote II(t, z) = II(t, z)¥(t,0). This
yields the following equations, for (¢,z) in D(0),

(4.11a) OI(t, ) + A(t, )0 I1(t, z) = A(t, z)II(t, ) + g1 (L, ),
(4.11b) I (£,0) = Q(t)II_(t,0) + ga(t),
(4.11c) Ce[TI(t, )] = Ga(t),

where g1(t,z) = g1(t,2)¥(t,0), g2(t) = G2(£)¥(£,0) and ga(t) = (pr(t) — ga(£))¥(t,0).
Remark 4.6. The solvability of (4.11) does not depend neither on the signal ma-
trix S nor on the initial condition v°. This property is essentially different from the
time independent case, where an ODE depending on S needs to be solved for II (see
[15]).
The next lemma reduces the solvability of regulator equations (4.11) to the solv-
ability of a homogeneous equation.

LEMMA 4.7. The regulator equations (4.11) have a solution 11 in B(0)"*™ if for
any F in L?(0,T)4, the homogeneous equations, for (t,x) in D(0),

(4.12a) Orp(t,x) + A(t, )0, 0(t,x) = A(t, x)o(t, x),
(4.12b) b4(t,0) = Q(t)p—(t,0),
(4.12¢) Ci[o(t,-)] = F(t).

admit a solution ¢ in B(0)™.

Proof. For i = 1,...,n,, denote by II*(t,z) in R™ the broad solution to the
following equations, for (¢,z) in D(0),

(4.13a) OIT! (t, ) 4+ A(t, 2)0, 1T (t, ) = A(t, )T (t, ) + i (t, x),
(4.13b) I (t,0) = Q)T (t,0) + ga(t),

(4.13c) " (t,1) =0,

(4.13d) (0, x) = 0,

where i and ¢4 are the ith columns of §; and o respectively. Due to the well-
posedness results (see Theorem A.3), there exists a unique broad solution IT* in B(0)"
to the system (4.13). For i = 1,...,n,, denote by ¢’ the solution to (4.12) with
F(t) = §i(t) — C[II'(t,-)], where g} is the ith column of g,. Thus, II = (IT* 4 ¢*, 12 +
@?,..., 1" + ¢™) is the solution to (4.11). d
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Now we prove that under the assumptions of Theorem 4.2, the homogeneous
equations (4.12) admit a solution. By the well-posedness results (see Theorem A.3),
(4.12a) and (4.12b) together with the initial and boundary conditions

(4.14) o-(t,1) =u’(t), $(0,2) = ¢°(a),

have a unique broad solution ¢ in B(0)", where u" belongs to L?(0,T)™ and ¢°
belongs to L?(0,1)". Then define the map Fr as following

Fr: L2(0,1)" x L2(0,T)" —  L*(0,T)¢
(¢°,u?) = (E = Celo(t,)])s

where ¢ in B(0)™ is the broad solution to (4.14), (4.12a), and (4.12b). It follows that
Fr is a linear continuous map from L2(0,1)"™ x L2(0,7)™ into L*(0,T)1.

We get that the homogeneous regulator equations (4.12) have a solution if the
map Fr is onto. In order to decide whether Fr is onto or not, we use the following
classical result of functional analysis (see Theorem 4.13 of [24, p. 100]).

(4.15)

PROPOSITION 4.8. Let Hi and Hs be two Hilbert spaces. Let F be a linear con-
tinuous map from Hy into Hy. Then F is onto if and only if there exists ¢ > 0 such
that

(4.16) IF* (0) oty = clipllan, Vo € Ho,

where F* is the adjoint operator of F.
In order to apply this proposition, we make explicit F7 in the following lemma.

LEMMA 4.9. Let w in L*(0,T)4. Let 0 in B,(0)" be the unique broad solution to
the following equations (see Theorem A.3 for the well-posedness), for (t,z) in D;(0),

(4.17a)
Du0(t, ) + 0. (A(t,x)0(t, ) = —A(t, ) "O(t,x) — c(t,z) Tw(t),
O_(t,x])=0_(t,a;) —A__(t,z) i) Tw(t), i=1,...,1—1,

| 0-(t,0) = —A__(,0)7[Q(t) " Ay (£,0)04.(£,0) + (for (DQ(1) + fo- (1)) "w(?)],

Ou(t,e]) = O:(ta) + A (boxg) " fir () Twl(t), i=1,...,0—1,

(4'18) .7:;«((4}) = (9(07')7flT—w_A——('vl)e—('71))'

Proof. Let us first assume that (A, 4, Q, ¢,w) is in C?(D(0))™*" x C1(D(0))"*" x
CHo,T|P*™ x CL(Dy(0))9*™ x C10,T)4, fi is in C1[0,T]7%"™, i = 0,1,...,l, and the
compatibility conditions

(4.19) w(T) =0, ' (T)=0

This manuscript is for review purposes only.
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REGULATION FOR TIME-VARYING BALANCE LAWS 13
hold. Let ¢" in C1[0,1]" and «° in C[0, T]™ be such that

(4.20) ¢1(0) = Q(0)¢2(0), ¢2(1) =u’(0),
(u?)'(0) = —A__(0,1)(¢2)"(1) + A_4(0,1)¢3 (1) + A—_(0,1)¢% (1),
= A44(0,0)(¢3)(0) + A1+ (0,0)95.(0) + A4 (0,0)¢2 (0)
= Q()[-A-—(0,0)(¢2)'(0) + A_+(0,0)8%.(0) + A__(0,0)¢2 (0)] + Q' (£)¢2 (0).
Let ¢ in C'(D(0))" be the C' solution to (4.14), (4.12a), and (4.12b) (see The-

orem B.2). Considering the boundary condition (4.12b) and the definition of the
output in (2.4), we have that

l

1
(421) Fr(e®u0)(t) = Clo(t, )] = 3 Fi(t)ot, z:) + / e(t, 2)(t, 2)da

1=0
1
= (fo+(Q(t) + fo— (1)) (¢,0) + Zfz B(t, x;) /0 ct, x)¢(t, r)dx.

Let 6 in C}(D;(0))™ be the C' solution to (4.17) (see Theorem B.2). Then from
(4.14), (4.17), (4.12a), and (4.12b), we obtain that, using integrations by parts,

l
_ // 0(t, )T (016 (t, 7) + At ) d(t, 7) — AL, 2)(t, 2)|dudt
=1

l

Z{ / / [0:0(t,2) + 0. (A(t,z)0(t,2)) + A(t,2) T0(t, x)] " ¢(t, z)dzdt

=1

<.

n / m 0(T, 2)T$(T, z) — 0(0,2)T (0, 2)]dz

+/ [0(t, xf) A(t,z)o(t, z;) — 9(15,90Z 1) A(t,xi1)¢>(t,xi1)]dt}

:// o(t, ) (tmdxdt—/&Ox ¢°(z)dz

l
+/O w(t) "’ l(f0+( )Q) + fo-(1))o-(t,0) + D fi(t)e(t, xi)] dt

- / )T w(t) — A (8 D (6, 1) T (1),
0

Consequently, it follows from (4.21) that
[ @ Fr @ )0t = [ wtieoe.
0 0
1 T
= [ o007 e+ [ (5070 - A 100 1) T B,

which, together with Claim B.3 concludes the proof of Lemma 4.9. O

Recall g9, Mo, My, Mg, My, M., eg and €5 defined in Assumptions 2.2 to 2.4
and (4.3) and (4.4). In next lemma, we prove that under the assumptions of Theo-
rem 4.2, the inequality (4.16) holds with respect to operator (4.18).
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LEMMA 4.10. Let the assumptions of Theorem 4.2 hold. Let w belong to L?(0,T)?
and 0 in B;(0)™ be the broad solution to (4.17). Then there exists a constant cp > 0
such that
(4.22)

1 T T
z)||?dz _)Tw(t) = A__ _ 2 cr w(t)||?dt.
/0 16(0, ) *de + / Lo () Tew(t) — A_(t, 1)6_(t, 1)|%dt > / (@)t

Proof. Let us first assume that (A, A, Q, ¢, w) is in C%(D(0))"*" x C*(D(0))"*" x
CU0, TP*™ x Cl(Di(0))7*™ x CY0, T4, f; is in C1[0, 7)™, i = 0,1,...,1, and the
compatibility conditions (4.19) hold. Let 6 in C{;(D;(0))™ be the C! solution to (4.17).

Fori=1,...,land 0 <t < T, let

T
(4.23) Vis(t) =e™" / e 0|0, (¢ )P de,
Ti—1
(4.24) Vie(t) = e / Ao (¢,2) P,
XTj—1
with positive coefficients L, a; and §; to be chosen later. Denote V (t) = Zli:l(Vi )+
Vi—(t)). The proof of (4.22) is based on identity V(0) = — OT 4V (t)dt, and the

main idea is as follows. First, V(0) is equivalent to fol 1600, z)||>dx. Next, we use
integration by parts to express term [y fOT lfic(®) Tw(t) — A__(¢,1)0_(¢,1)||2dt —
OT 4¥ (t)dt as a quadratic form. Finally, by applying conditions (4.3) and (4.4) and
selecting appropriate constants L, a; and (;, we ensure that this quadratic form is
greater than or equal to cp fOT lw(t)]|?dt. The weights of the Lyapunov-like functions
(4.23) and (4.24) are similar to those used in [10, 11, 13]. In [10, 11] the weights are
crucial to establish the well-posedness of the broad solutions.
Let us proceed with the proof. The time derivative of V; () along the C'! solution
0 to (4.17) is

%J;(t) - eiLt/ ey (4,2) (20,604 (1, 7) — LO4 (¢, 2)]da

i—1

N / e (1) T [~ L0, (1 2) — 20, (A (1,2)0, (1))

i—1

— 24, (t,2) "0, (t,x) — 24, (t,2) TO_(t,x) — 2c4 (t,x) T w(t)]dz

- {/ =T (8, ) T [—(LIdy — iy (1) + Ophy 1 (t,7)

+ 2A++(t7 I)T)e-i- (ta Qf) - 2A—+(t7 x)TQ— (tv 33) - 2C-‘r (ta aj‘)TUJ(t)]dZ‘
— e E (a7 T A (2004 (t 7))
+0.(t, $;r_1)TA++(ta9Ui71)9+(t733;r_1)} :

Similarly, the time derivative of Vj2(t) along the C* solution 6 to (4.17) is

dvii—t (1) _ ozt { / g (1 0) T [~ (Lidy + Bid__(t,7) + OuA__(t,2)

+2A__(t,2)")0_(t,x) — 244 _(t,2)04(t,z) — 2c_(t, ) " w(t)]dz
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— O (t ;) T A (t,2:)0(t, 7))
tefi@—aig_ (¢t o VTA__(t,2i_1)0_ (4, xitl)} .

Taking boundary and jump conditions (4.17b)—(4.17e) into account, we conclude that
(4.25)

Ltdv Z/ a7 ToTi- 1)C+(t .23)9+(t l‘) +eB7(z7 :v) (t,x)e_(t,l‘))T(U(t)

—ei@mio0)g (¢t 2) T (LI — oAy o (t, ) + Oy 4 (t,2) + 244, (t,2) )0, (L, )
—Pi@mDg (1 )T (L1d,, 4+ BiA__(t, ) + OxA__(t, ) + 2A__(t, ) )0_(t,z)
=20, (t,2) (e VA ()T + M DAL (12))0- (1, 7)|dx

-1
- Z{(eai(“_“*l) — D01 (@) T A (t2:)04 (8 2])

i=1
+e @20, (¢ 2]

DT fir ()T w(t) + @) T fir (A4 (8 )~ fig (8) T w ()]
— (Pl )0 (t, 27

) At @i)0-(t,z7)
+ i@ (1 a7 fi () Tw(t
+0,(£,0) T A4y (£,0)(™ 1 Q(H) A (¢,
+ 207710, (£,0) T Ay 1. (,0)Q(0)A——(£,0) ™" (fo+ ()Q(D) + fo- (1) Tw(t)

+ M0 () T (for ()Q(E) + fo- (t))A £,0)~" (fo+ ()Q(t) + fo- (1)) Tw(t)

— e D) fip (DA (6 1) 7 fir () Tw(t) = 0- (8, 1) TA-_ (£, 1)0- (8, 1).
Multiply (4.25) by —e~ ! and integrate over (0,T), and add

—w(t)" fis (DA (t,z0) 7 fie () Tw(t)]}
)R T 4+ Ay (£,0)7) Ay (£,0)04 (,0)

O\/

Ao

T
Bo / i () Tw(t) — A _(t, 1)6_ (1, 1)|*dt

to both sides of (4.25) with positive coefficient Sy to be chosen later. Recall 2o = 0
and z; = 1. It follows from (4.17f) that

T
(4.26) V(0) + ,80/0 - () Tw(t) — A__(t,1)0_(t,1)||?dt = Ry + Ry,
where
(4.27) Ry =
T l T;
/ =53 / (=T e, (8, 2)0, () + Do (1, 2)0_ (1, 2)) Tw(?)
0 _ Ti—1

=1
+e¥i@=@iong (¢ )T (LId, — iAo (@) + O Ay () + 244 (t,2)T)04 (¢, 2)
+ePi@=2g (¢, 2)T(LId,, + Bih__(t, ) + O A__(t, ) + 2A__(t,x)")0_(t,x)
+20, (t,z) (e =TI A_ | (t,2)T +P@ DAL (¢, 2))0_(t, x)|dxdt,

and

T
(4.28) RQ:/ e Lte@t)TP()e(t)dt,
0

Thi. iseript s fi CVIEW PUTPOSEX
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with
©_(t) P_(t F_(t)
o) = | 0+(t) 0 t) f+(t)) ;
w(t) F_()" )T Pu(t)
O_(t) = (O_(t,z7)" _tx))T 04 = (04 (tad) L0t )T
P_(t) = diag(Py—(t ) P (1)), 7’+(t) = diag(Po+ (), - - -, Pu—1)+ (1)),
Fo(t)=(F-()",.. ( O Felt) = For®) o Faons (1),
Py (t) = (eai@ﬁ%fl) - 1)A++(t, z;), P (t) = —(efrr@mm) 1A (8, ),
Fip(t) = @) f ()T, Fy (1) = P Gon—ad g (0T, 41, 1—1,
Poy(t) = =Asr (1,007 QA (1,0) ' Q(6) " + Ary (,0) 1) A4 (2, 0),
Foy(t) = =M™ AL (8,0)0Q(6)A - (£,0) " (for ()Q(E) + fo- (1) T,

)
(

fav

() =BoA—_(t,1)* + A__(t,1), F_(t)=—BoA__(t,1)fi_(t)",
+

-1
S [em ) oy OA s (6 i ()]

=1

PG f (A (ta) T (BT | + e T (A (6 1) T i (1)
=M (for (DQ) + fo- (DDA~ (t,0) ™ (for (NQ(E) + fo- (1)) -

Considering the left-hand side of (4.26), we have

P,(t) = Bofi-(t) fi-(t)T

T
(4.29) V(0)+ﬂo/0 1fi-(8) Tw(t) — A—— (¢, 1)O_(t, 1) *dt

_ 1 T T
=M (/0 ||9(0,w)|\2d:c+/0 1f1-(t) W(t)A——(t,l)(’—(t,l)lzdt)a

where

(4.30) M = max{y, 'n%axl{e“i,eﬁi}}.
i=1,...,

Now we deal with the right-hand side of (4.26). Our aim is to choose suitable constants
L, Bo, o, Bi, i =1,...,1, such that Ry + Ry > fOT ge~Lt||w(t)||2dt for some positive
constant . Let us first deal with Ry. For any €* > 0, let fq, i, Bi, ¢ = 1,...,1, large
enough such that

Boco > 1, eﬁﬂl&o&Q > My, o; >0, Biy1>0, i=1,...,1—-1,

M2l ai(Ti—Ti—1) Bit1(Tit1—x4)
al(l—LElfl) Ef > * f e €
¢ My — ¢ €0 Z (

0 evi(zi—zi—1) — 1  @Biti(zit1—xi) — ]

50M2
N 51% 2 2
+5o€0—1+2 M ( +mpMQ)

A rimpMoM3ey ' — eP1®1eq 4+ Moey '
6’81$1€0€Q — M

)

where ¢ is defined in Assumption 2.2, e¢ is defined in (4.3), €y is defined in (4.4),
and My and Mg are defined in Assumption 2.3. Direct calculation shows that for all
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tin [0, 7],

Po(t)>0, i=0,....01—1, P_(t)>0, i=1,...,1,

(4.31) =t !

Pu(t) 2 €71dg + ) Fip () TP () i (8) + Y Fie () TP (8) T Fi- (1),

=0 i=1

Note that (4.3) and (4.4) are necessary for Py; and P, to be positive definite respec-
tively. It follows from (4.31) and the Schur complement lemma (see [7, Appendix 5.5])

that for all ¢ in [0, T], ©(¢) T P(t)O(t) > £*||w(t)||?, and thus Ry > fOT e*e It |w(t)||?dt.
Now let us estimate R;. For L large enough, we have

T l T;
Riz [Ce B3 [ e (L (o DMy — 206 (8. 0)|
0 i=1"%i-1

+ e @m0 (L — (B + 1) My — 2mMMy) |0 (t, )|
— (e i) 4 PN, (m| 0 (1 2) | + pll6- (8 2)]1?)
+2(e a"(x_x“l)@r(t )0, (t, @) + P @D e (¢, 2)0_(t, x)) T w(t)]dedt

/ “Z / — (31 + )Mo AT — 200 N6 (1,2) |2 + 10 (2, 2)]12)

+ Q(ew wH>c+(t, )0 (t,x) + PP e (¢, 2)0_(t, x)) T w(t)]|dedt.

oL (M + 1)MoM — 2nM, M
- Z qnM?

Notice that

2 .
<andd? [ 6. (ko).

i—1

/ ey (ta)f(t, x)dx

It follows that

2

cy(t,2)04 (t, z)dx

2

—2M |lw(t)| |

/ ’L c—(t,z)0_(t,x)dx

gnM?2

— 2M |lw(t)]|

]dt

/ l ey (t,2)04 (¢, z)dx
Ti—1

/ e (t,z)0_(t,x)dx

provided that L > (M 4 1)MyM + 2nM, M. Therefore, we conclude that

T 5*
Rt Rz [ o {2||w<t>|2
0

2
Z ) : :

anE

/ l cy(t,2)04 (¢, z)dx

~ Zq 5*
—2M||w(t)ll‘/ ey ()0 (t, w)dz| + = llw(®)]?
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2

/ 1 c_(t,z)0_(t,x)dz

+ jnw(t)nﬂ } at

provided that L > (M + 1)MoM + 2nM; M. Then we choose that

L= (M 4 1)MoM — 2nM M
gnM?2

—2M ||w ()] /wl c—(t,z)0_(t,x)dx

2 72
L> AlgnMiM

(4.32) + (M + 1)MoM + 2nM, M.

6*

Consequently, we obtain that
T e* e* T
(4.33) Ry + R 2/0 = e M) Pde > EG_LT/O lwo(t)||2d.

Together with Claim B.3, this concludes the proof of Lemma 4.10 with ¢y = %e*LT.D

Appendix A. Broad solutions. We consider the following hyperbolic system,
which includes all the systems of this paper. For (¢, ) in D;(to),

(A.1a) Ow(t,x) + A(t, z)0,w(t, x) = At x)w(t, x) + J(t, x),
(A.1b) wy (t,al) =wy (t,o;)+ o' (t), i=1,...,01—1,
(A.1lc) wy (t,0) = Q(t)w_(t,0) + a"* (1),

(A.1d) w_(t,z]) =w_(t,zf)+ o' (t), i=1,...,1—1,
(A.le) w_(t,1) = /o L(t, )w(t, £)dE + o' (1),

(A.1f) w(te, z) = w'(z),

where w(t, z) in R™ is the state, and w® in L?(0,1)" is the initial data. Functions J
in L2(D(0))*, 0~ := (0'~,...,0'") in L2(0, 7)™ and ot := (¢°F,..., 00" D*) in
L?(0,T)P*! are the non-homogeneous terms. For the coefficients involved in system
(A.1), let us make the following assumptions.

Assumption A.1. Assume that A, A and @ satisfy Assumptions 2.1 to 2.3 and
that L is in L>°(D(0))™*" satistying || L[|z p(oyymx» < My for My defined in As-
sumption 2.3.

Notice that L is defined over time interval (0,7"). The reason lies in the regularity of
the feedback gain functions in this paper.

A.1. Definition of broad solution. Let us now introduce the definition of
broad solution or so-called solution along the characteristics. This definition is similar
to the definition of broad solution in [10]. Recalling the notations in Section 3, we

introduce 5% (to; ¢, ) = max{to, si*(t,z)} for j =1,...,n, and
i(x) =1, ifxe(wii,z), i=1,...,L

Similar to the methods used in [10], integrating the jth equation in (A.la) along
the characteristic x;(s;t, «) and applying appropriate boundary, jump, or initial con-
ditions, we obtain the following system of integral equation. For (¢,z) in D;(to),
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t n

(A2) wj(t,z) =I;(w)(t, ) —|—/ Zajk(s,xj(s;t,z))wk(s,xj(s;t,x))ds

s (tost, @) p—1

t
+[ Ji(s,x;(s;t,x))ds,

_ij"(to;t,z)
where for j =1,...,m,
(A3) Lj(w)(t,z) =

l

1 . .
/0 Lj,:(S}n(t,x)’ﬁ)w(sijn(t, x), £)d€ + Z af_(s}n’k(t,x)), if 57 (t, ) > to,

k=i(x)
i(x; (tost,x))—1 ' ‘
wiltorte) + Y. oh (s ), if s'(t,2) < to,
k=i(x)
and for j=m+1,...,n,
(Ad) I(w)(t,z) =
Qa5 (1 )y (s (t,2), 0) + Y of 5 (5 (1,2)), i s () > to,
k=1
w(x;(tost, x)) + Z UJ(-;n)Jr(s}n’k(t,sc))7 if s (t, ) < to.

k=1+i(x; (tost,x))

This leads to the following definition of the broad solution to the system (A.1) over
(t,z) in Dy(to)-

DEFINITION A.2. Let T >0, 0 <ty < T, w° in L*(0,1)", J in L*(D(0))", o~
in L2(0,T)™*! and oF in L2(0,T)P*! be fized. We say that w is the broad solution
to the system (A.1) over Dy(to) if w is in B(to)™ and if the integral equation (A.2)
is satisfied for j =1,....n, for a.e. to <t <T and a.e. x in (0,1).

A.2. Well-posedness. In this section, the well-posedness result is provided.

THEOREM A.3. Let T > 0. Under Assumption A.1, for every 0 < to < T, w®
in L2(0,1)", J in L2(D(0))", o~ in L*(0,T)™*! and ot in L?(0,T)P*!, there exists
a unique broad solution w in Bi(tg)™ to (A.1) over Di(tg). Moreover, there exists
C = C(T) > 0 such that, for every 0 <ty < T, w® in L?(0,1)", J in L*(D(0))", o~
in L2(0,T)™*! and ot in L%(0,T)P*!, the broad solution w satisfies

(A.5) Hw||Loo((t0,T);L2(0,1)n) + ||wHL<>c((o,1);L2(tO,T)n)
S C(HwOHLQ(O’l)n + ||J||L2('D(O))" + ||O'_ ||L2(O,T)m><l + ||O-+HL2(O,T)PXZ>'
The proof is based on the proof of Theorem A.2 of [10]. We provide only a sketch of

the proof here, highlighting the differences from the proof of Theorem A.2 presented
in [10].

Sketch of the proof of Theorem A.3. The basic idea is the following fixed point
method. A function w : D(ty) — R™ satisfies the integral equations (A.2) for a.e.
tg <t < T and ae. z in (0,1) if and only if it is a fixed point of the map A :
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Bi(to)™ — Bi(to)™ and (A(w)); (¢, z) is given by the expression on the right-hand side
of (A.2). Let us now make B;(tp)™ a Banach space by equipping it with the weighted
norim ”wHBl(to)" = Hw”31 + ||’LUH32, where

wllg, = max e~ S (t—to) wj(t, r)|2e~L22dx,
1 ]

t€fto,T]

|w|p, = max e F(-a) / Z|wj (t,x)|2e~Lr(t=to)dt,
z€[0,1] to io1

where Ly, Lo > 0 are constants independent of T, tg, wg, o and J that will be fixed
below. The similar weight norms are also used in [11, 13]. Our goal is to show that,
for Ly, Ly > 0 large enough,

(A.6) @) = Aw) 5, t)» < 5llw' = w?[lgy o)y V', w? € Bylto)™.

N =

Actually, the proof of (A.6) is the same as in [10]. Indeed, we introduce w := w! —w?,

so that A(w!') — A(w?) is equal to the right-hand side of (A.2) with w® =0, J =0,
ot =0 and o~ = 0. This is a special case in [10]. Therefore, (A.6) is established by
following the proof in [10]. The remaining task is to verify that the estimate (A.5)
holds. Indeed, using (A.6) we obtain that the fixed point w of A satisfies

1
(A7) w0y < MO 120y
and the straightforward computations show that

(A.8) ”wH%OC((tO,T);LQ(O,l)") < eLQQLthw”%p ”wH%OO((O,l);LQ(tmT)") < eL1h||wH%2.

Then, the fixed point of A satisfies the estimate (A.5) if the right-hand side of (A.5)
is the upper bound of ||.A(0)||5, ()2 By using changes of coordinate, (3.3) and (3.8),
we obtain the following estimates

1n t 2 eMo
(A.9) / > / Ji(s,x;(s:t,2))ds| e (0))"
0 j=1 §}“(t0;t,a:)
T n t 2
(A.10) / > / Jj(s, x5 (53¢, 2))ds L2 (D)
to j=1 (t07t z)

(A.11) / Z|I )(t, z)[2e F2oda

< 26M0T(M0||0 ||L2(0,T)m><l + M0||U+H%2(0,T)pxl + ||w0“%2(0,1)n)7

(A.12) / Zu )(t, x)| e Lrtto) gy

to]l

eM _
<2 - (MOHU [ Z20.7ymxt + Mollo™ 1220,y + 1001 720,192

where ¢ is defined in Assumption 2.2. It follows from (A.9) and (A.11) that
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(A1) [LA(0)]I3, < 2e™T <2||w°||Lz 0,.1)" ||J||L2(D(O))"
+2MO||U_||L2(O,T)MXZ + 2MOHJ+||%2(0’T)1>><l) .

Similarly, from (A.10) and (A.12) we obtain that

A.14 ,402<2w202 ijz
(A14) [JA(0)5, < . [|lw HL2(O,1)"+€OH 22D 0))n

+2Mollo 30, rymnt + 2Mollot I3 02901 ) -

Then, the estimate (A.5) for the fixed point of A follows from (A.7), (A.8), (A.13),
and (A.14). |

Appendix B. C! solutions. In this section, we show that the broad solution
is also C! solution if the data of the system are smooth enough. Moreover, the
continuous dependence of the broad solutions on the system data is given. In the
proof of Lemmas 4.9 and 4.10, C' solution is needed. Let us make the following
assumptions for the coefficients involved in system (A.1).

Assumption B.1. Assume that A, A, @Q and L satisfy Assumption A.1, and that
A, A, Q and L are in C?(D(0))"*™, CY(D(0))™>", C*([0,T])P*™ and C*(D(0))™*",
respectively.

The C! solution is given by the following theorem.

THEOREM B.2. Let T > 0. Under Assumption B.1, for every 0 <ty < T, w® in
CHUL_ (zim1,2y))™, J in CH(D(0)", o~ in CL([0,T]))™*" and o in C*([0, T])P*!
satisfying the compatibility conditions

(B1) o™ (to) = wi(e}) —wl(af), i=1,...,01-1
0% (to) = w3 (0) - Qo) (0), o' (to) = / L(to, ©)u°(£)de,
(0F) (to) = —Axt (to, z) (W) (zF) — (W) (=F)) + ii(to,mz)o’ (to)
— Az (to, 2i)0"F (to) + Jx(to, z;7) — Jx(to, aF), i=1,...,1—1,

") (to) = J4(to,0) — Q(to) - (to,0) — A++(toa 0)(w§ )( )
+ Q(to)A——(to, 0)(w2)"(0) + (A4 (to, 0) = Q(to) A4 (to, 0))w} (0)
+ (A4 (t0,0) — Q'(t0) — Q(t0) A—_(t0,0))w’ (0),
(') (t0) = —=A—_(to, D(w?)'(1) + A4 (to, Dwl (1) + A__(to, Dw? (1) + J_(to, 1)

— /0 [L(to, §)(—=A(to, &) (w®)' (&) + A(to, )w’(€) + J(to, )) + 0 L(to, &)w (§)]dE,

there exists a unique solution w in Cl(Dy(to))"™ to (A.1).

The proof follows the method in [11, Lemma 3.2] and [12, Lemma 2.1]. Here, we only
provide a sketch of the proof, explaining how we apply the method from [11, Lemma
3.2] and [12, Lemma 2.1].

Sketch of the proof of Theorem B.2. Set, for u in Cg(Dy(to))",

_ —Lit—Lax,, .
lullo := max  ~—max e ui(t, )],
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22 Y. BAI, C. PRIEUR, AND Z. WANG

and for u in C}(Dy(to))™,
[ully == max{[lullo, [|9¢ullo, [|9zullo},
where L1 and Lo are two large, positive constants determined later. Set
O = {v € CH(Dy(to))"|v(to, ) = w°, By (to,-) = —A(to, ) (w®) +A(to, Jw’+J(to,-)}.
For v in O, let w = A;(v) be defined as follows: for j =1,...,m,

t

(B.2) wj;(t,z) =I;(v)(t,x) +/ Zajk(s,xj(s;t,a:))vk(s,xj(s;t,x))ds

5;'“(750;&18) k=1

t
—|—ﬂ Ji(s,x;(s;t,x))ds,

= (tost,w)
where I;(v)(t, x) is defined in (A.3), and for j =m+1,...,n,

(B.3) wj;(t,z) = I;(w)(t,x) —|—/ Zajk(s,xj(s;t,x))vk(s,Xj(s;t,sc))ds

5in

F(tost,®)

¢
—|—/_ Ji(s,x;(s;t,x))ds,
57 (tost,x)
where I;(w)(t,z) is defined in (A.4). Notice that for j = m+1,...,n, I;(w)(¢, x) is
only involved with w_, which is defined by (B.2). It follows from Assumption B.1 and
the compatibility conditions (B.1) that A;(O) C O. Direct calculation shows that
the fixed point of A; is the C! solution to (A.1). Our aim is to show that, for L; and
Ly large enough,

1
(B4) A (@) = APl < 5ot =P, Vele? € O.

We can directly use the method from [11, Lemma 3.2] and [12, Lemma 2.1] to prove
(B.4), since (A.1) is linear. Indeed, we introduce v := v! —v?, so that w := A; (v!) —
A1 (v?) is equal to the right-hand side of (B.2) and (B.3) with w® =0, J =0, 0" =0
and o~ = 0. This is a special case in [12, Lemma 2.1]. Therefore, (B.4) is established
by following the proof in [12, Lemma 2.1]. d

As for the continuous dependence of the broad solutions on the system data, one
can prove the following claim by using the same method as in [8, Theorem 3.5].

CrLAM B.3. For A, A, Q and L satisfying Assumption A.1, and w° in L?(0,1)",
J in L2(D(0))", o~ in L2(0,T)™*! and oF in L?(0,T)P*!, let w in By(to)™ be the
broad solution to the system (A.1) over Dy(ty). For k> 1, Ak, A* Q% and L* satis-
fying Assumption B.1, and w** in CL(UL_| (zi—1,24))", J* in CL(Di(0))", o=k in
CH([0,T))™*t and o** in CL([0, T))P*! satisfying the compatibility conditions (B.1),
let w* in Cl(Dy(tg))™ be the C* solution to the system (A.1). Assume that

(A%, A% QF LF WOk JF o=F oTk) 5 (A A,Q,L,w°, J,07,07) in
CH(D(0))"™ x C(D(0))"™" x C°([0, T])P*™ x L>(D(0))™*"
x L2(0,1)™ x L2(D(0))"™ x L*(0,T)™*! x L*(0,T)?*! as k — oc.

Then, we have w* — w in Bi(ty)" as k — .
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