
HAL Id: hal-04782284
https://hal.science/hal-04782284v1

Submitted on 14 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Vulnet: Learning Navigation in an Attack Graph
Enzo d’Andréa, Jérôme François, Abdelkader Lahmadi, Olivier Festor

To cite this version:
Enzo d’Andréa, Jérôme François, Abdelkader Lahmadi, Olivier Festor. Vulnet: Learning Navigation
in an Attack Graph. 2024 IEEE 10th International Conference on Network Softwarization (NetSoft),
Jun 2024, Saint Louis, MO, United States. pp.393-398, �10.1109/NetSoft60951.2024.10588918�. �hal-
04782284�

https://hal.science/hal-04782284v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Vulnet: Learning Navigation in an Attack Graph
Enzo d’Andréa
Inria - LORIA
Nancy, France

enzo.d-andrea@inria.fr

Jérôme François
SnT - University of Luxembourg & Inria - LORIA

Luxembourg, Luxembourg
jerome.francois@uni.lu

Abdelkader Lahmadi,Olivier Festor
Université de Lorraine - LORIA

Nancy, France
firstname.lastname@loria.fr

Abstract—Nowadays, new flaws or vulnerabilities are fre-
quently discovered. Analyzing how these vulnerabilities can
be used by attackers to gain access to different parts of a
network allows to provide better protection and defense. Amongst
the diverse analysis techniques, simulations do not necessitate
a full infrastructure deployment and recently benefited from
advances in reinforcement learning to better mimic an attacker’s
behavior. However, such simulations are resource consuming. By
representing the interconnected hosts of a network and their
vulnerabilities as attack graphs and leveraging machine learning,
our method, Vulnet, is capable to generalize knowledge generated
by simulation and gives insight about attacker capabilities. It can
predict instantaneously the overall performance of an attacker
to compromise a system with a mean error of 0.07.

I. INTRODUCTION

Thousands of vulnerabilities are discovered each year1,
leading to dynamic attack surfaces. Vulnerability scanners
such as OpenVAS2 allow to scan remote devices and identify
vulnerabilities along with their intrinsic criticality. However,
evaluating the overall capabilities of an attacker is not a simple
aggregate of all the individual vulnerabilities. As an attack
graph represents the potential paths of an attacker, analysing
them serves to better understand the capabilities of a potential
attackers and indirectly the overall risk [1]. Rather than a static
analysis, the advantage of using dynamic models is to mimic
the behavior of an attacker or a pentester without exposing the
real environment as it is modeled by an attack graph.

With recent progress in Machine Learning (ML), dynamic
models using high level simulations can be achieved using
Reinforcement Learning (RL) [2] where the agents interact
with a specially crafted environment representing vulnerable
hosts. The agent’s objective is to have a maximum reward
expressed in terms of exploited vulnerabilities or compromised
hosts. Recent tools such as CyberBattleSim [3] have been
developed for this purpose.

However, simulations are usually time-consuming since they
rely on an iterative execution of attacker’s actions and conse-
quences, and on multiple runs to have representative results.
On one hand, this is a common characteristic of all simulation-
based methods. On the other hand, static methods based on
graph analysis applied to attack graphs do not consider the
behavior of the attackers. Vulnet lies in between by learning
a model applicable on any attack graph without simulation.

1https://www.cvedetails.com/
2https://www.openvas.org/

In this work, we show that such an existing time-consuming
approach can be approximated with a ML model capable to
infer risk metric instantaneously such as the probability of a
vulnerability to be used by the attacker. Unlike a simulation
approach, our model can be applied to any new environment
(e.g. attack graphs) even if it was not present in the learning
set. Simulation is only used as a pre-requisite to generate
learning data. To summarize, our objective is to capitalize
and generalize over previously executed simulations on attack
graphs. Although Vulnet is independent of the simulation
method, this paper considers RL, especially DRL (Deep
Reinforcement Learning), as demonstrated to be relevant in
CyberBattleSim [3].

The rest of this paper is structured as follows: Section II
presents related work. Section III refines the problem. Section
IV gives details about Vulnet. The results are presented in
Section V. Section VI concludes this paper.

II. RELATED WORK

Vulnerability scoring is used to measure the severity and
criticality of single vulnerabilities such as Common Vulner-
ability Scoring System (CVSS) [4]. In [5], a game theory
approach is used, guided by CVSS scores to rank vulnerabili-
ties. Bullough et al. [6] and Feutrill et al. [7] also used open-
source data and CVSS scores to predict the exploitation of
vulnerabilities. Similarly, we aim at evaluating vulnerabilities
by considering their implications in attack paths.

Indeed, attack graphs represent the relationship between
vulnerabilities or hosts [8]. Sawilla et al. [9] used MulVAL
[10] to generate an attack graph and introduced a ranking
algorithm. Duan et al. [11] used another type of attack
graph where vulnerabilities are modeled as nodes and edges
represent the dependencies between them.

To better enhance the analysis of vulnerabilities and antici-
pate attackers’ behaviors, Machine Learning (ML) techniques
can be employed, such as Reinforcement Learning (RL) [12].
These techniques can also be applied on attack graphs such as
in [13] where Graph Neural Networks (GNN) are used to rank
attack graphs. Yousefi et al. [14] used RL to generate an attack
graph through the help of MulVAL and inferred a transition
graph. Using the CVSS scores as rewards, an agent is trained
with a Q-learning strategy. Our work is complementary to
these works as Vulnet takes as input RL simulation results
to learn a model capable to be applied to another environment
without executing the learned agent.

III. PROBLEM DEFINITION

Our method uses topological information from the attack
graphs to evaluate if and when a vulnerability will be exploited
or a host compromised.

The environment where the attacker (or the agent) evolves
is an attack graph aggregating all possible transitions between
hosts. A transition represents an exploitable vulnerability. As-
suming multiple environments as a set of attack graphs E and a
graph e = (H,V) ∈ E , H is the a set of nodes representing M
hosts H = {h1, h2, . . . , hM} with hm = ⟨interest, breach⟩.
interest is an integer value representing the interest of an
attacker for this host. In practice, it could reflect the critical
value of a host (e.g. hosting confidential files or private keys).
breach is a binary value, true for the host where the attacker
starts from, false for the others.

The set of the L directed edges is denoted V = {v1, v2,
. . . , vL}. An edge of the graph is a vulnerability exploit, later
referred to as exploit for simplicity, on one host (source) to
gain further knowledge (credentials or existence) of any target
host or privileges on the current host, source = target in that
particular case. Otherwise, an attacker can also exploit a non-
critical vulnerability on a host (source = target also). We
also define C = {c1, c2, . . . , cN}, the set of N credentials
that allows an attacker to compromise hosts. vl is represented
as the tuple vl = ⟨source, target, cost, type, outcome⟩ with:

• source ∈ H , target ∈ H ,
• cost, an integer value representing the complexity of the

exploit, i.e. the difficulty for an attacker to exploit the
vulnerability,

• type ∈ {Local, Remote}, denoting whether a vulnera-
bility is exploited locally or remotely,

• outcome is the consequence of the exploit and allows the
attacker to:

– discover target host – Leaked host ID,
– discover target host and its credential from C to

compromise it – Leaked credentials,
– compromise target host – Escalation (only for a

local exploit),
– exploit a non-critical vulnerability (i.e. without take-

over) on target host – Generic exploit.
Because CyberBattleSim is used as the RL-based simulation

tool in this paper, this modeling is inspired by its descriptive
capabilities, in particular the four types of exploits: Leaked
host ID, Leaked credentials, Escalation and Generic exploit.
Our goal is to define L : e ∈ E → {S, PV , TV , PH , TH}:

• S is the sum of the rewards a simulated attacker would
acquire

• PV (v) and TV (v) are the probability and the average
timestamp that an exploit will be used for all v ∈ V

• PH(h) and TH(h) are the probability and the average
timestamp that a host will be compromised for all h ∈ H .

As an example, the ToyCTF attack graph from CyberBat-
tleSim is depicted in Figure 1. Exploits have been named
according to their outcomes, and those having multiple targets
in CyberBattleSim like Cred5 are duplicated for each target.

Fig. 1: Attack Graph for the ToyCTF example [3]

Fig. 2: Overview of the different steps of our method.

IV. VULNET

Vulnet relies on a learning set (in our case given by RL sim-
ulations) and on a Message-Passing Neural Network (MPNN)
to rapidly infer the function L matching an attack graph to the
different attacker metrics S, PV (v), TV (v), PH(h) and TH(h)
described above.

As show in Figure 2, our method is divided into 4 steps:

1) Simulations based on RL are applied to multiple attack
graphs. The agent explores the graphs and the simulation
results (metrics) are stored.

2) The Exploitation metrics step computes the metrics
{S, PV , TV , PH , TH}.

3) Path generation extracts all the possible sequences of
actions of an attacker.

4) MPNN is the core of Vulnet. It is a neural network
architecture designed to learn the function L from the
extracted metrics and computed paths.

Once learned, the function L is directly applied to a new
attack graph for inferring the different metrics.

A. Building training data by simulation

To create the dataset used for learning L, multiple graphs
are randomly generated by creating a set of hosts linked with

vulnerabilities to create attack paths. The exact setup used to
generate hosts and exploits is detailed in Section V-A.

In RL, the decisions of the agent are driven by a policy
which is learned and improved through a sequence of episodes
(its default length is 20). To gather statistical properties about
hosts and exploits, a simulation on a given environment is a
collection of Krun = 50 runs, each one starting from scratch
to learn an independent sequence of episodes.

Assuming a given attack graph and a given run, the agent
can either exploit a vulnerability v or attempt to access a
host using one credential from C obtained earlier. The reward
for each action a in run δ is computed using the default
CyberBattleSim formula:

rewardδ(a) =
∑

hm∈Hcomp(a)

intem +Khost × nhost

+Kcred × ncred +Kvuln × nvuln − cost

(1)

with Hcomp(a) ⊂ H , the set of newly compromised hosts
thanks to a; intem, the interest value of the mth one; nhost, the
number of newly discovered hosts; ncred, the number of newly
discovered credentials; nvuln = 1 for the first exploitation of
the vulnerability, 0 otherwise in order to account positively
only the first time it is exploited (in order to avoid giving
a reward for a vulnerability that has already been exploited)
and cost, the difficulty of the exploit of the vulnerability v.
Khost = 5, Kcred = 3 and Kvuln = 7 are the default
CyberBattleSim coefficient values.

Different strategies are available. Based on the benchmarks
provided in CyberBattleSim, we used Deep Q-learning along
with the following parameters:

• γ = 0.015
• Replay memory size =

10000
• Target update = 10
• Batch size = 512
• Learning rate = 0.01

• ϵ = 0.90
• ϵ exponential decay =

5000
• ϵminimum = 0.10
• Number of episodes =

20

B. Exploitation metrics

The results from the runs of a simulation are aggregated
together to extract the exploitation metrics (or attacker met-
rics), allowing the quantitative characterization of the compro-
mised hosts and the exploitation of vulnerabilities when the
represented environment is the target of an attacker. Several
metrics are computed at three different levels: global-, host-
and vulnerability-level.

The global metric S is a cumulative reward of each action
a in all previous actions taken (defined as A) according
to equation 1. In addition, it is averaged according to the
number of runs Krun defined in Section IV-A and normalised
according to the theoretically maximum value MR. The latter
is reached if all hosts are discovered, all vulnerabilities are
exploited and all credentials are discovered:

S =

∑Krun

δ=1

∑
a∈A rewardδ(a)

MR ×Krun
(2)

Mr =
∑

hm∈|H|

intem+Khost×|H|+Kcred×|C|+Kvuln×|V |

The probability that a host is compromised is computed
according to the number of runs where it happens and the
total number of runs:

PH(h) =

Krun∑
δ=1

kδ(h)

Krun
, h ∈ H

with kδ(h) being 1 if h was compromised during the δth run
of the agent in the simulation, 0 otherwise. PV (v) is computed
similarly for the probability of the exploit of vulnerability v.

For TH(h) and TV (v), the timestamps when the agent
compromises a host or exploits a vulnerability are recorded
and are normalised between 0 and 1:

timenorm =
time

timemax

with timemax, the maximal number of iterations. The nor-
malized timestamps are averaged over the Krun runs to
obtain a single timestamp per host/exploit and per graph.
We use time = timemax when a host/vulnerability is not
compromised/exploited in the run.

C. Attack paths

To model the different sequences of possible attacker’s
actions, we consider all possible sequences of exploits pk ∈ P
that the attacker can exploit. Although a path is defined as a
sequence of exploited vulnerabilities (pk = {pik,∀i, pik ∈ V }),
two sequential vulnerabilities can be exploited from different
parts of the graphs. This allows to mimic an attacker in a
realistic manner such that, at a given time, any vulnerability
from any already compromised host (not only the last one) can
be exploited. For example, an attacker may have compromised
two hosts and alternate trying to continue its progression from
them, i.e. hopping between two parallel paths. In Figure 1,
a path from the host Website to Website Monitor could be
the sequence [HostId2, Cred4]. In this path, Cred4 was used
even though the last host of the path was GithubProject. We
thus need to generate attack paths representing all possible
sequences of potentially used exploits even if two successive
exploits are not chained in the original graph.

The computation of such refined attack paths are done
recursively through a specific depth-first graph traversal but
where new starting points are generated on the fly to explore
multiple paths in parallel.

D. Message-Passing Neural Network

In order to handle various graph sizes of the previously
described extended attack graphs, we opted for a Message-
Passing Neural Network (MPNN) architecture as the core of
our ML model, inspired from [15], [16]. MPNN is a type
of Graph Neural Network that allows the information related
to the nodes, edges and whole-graph to be represented as
fixed-size embeddings. These embeddings are used as input

Fig. 3: MPNN-based architecture of Vulnet

and spread over neighbors through an Update function in
an iterative manner. Intuitively the message passing process
represents an attacker exploiting vulnerabilities in a sequential
manner. We consider a host as on the path if it is the source
or target host of any vulnerability exploit in the path. We
further denote Th ⊂ P as the paths that have host h as target
of their last exploit.

With this formalism, our MPNN architecture is composed
of three hidden states for vulnerability-, path- and host-level
encodings. These states are inter-dependent according to the
following mechanisms:

1) The state of a host h depends on the state of all
attack-paths leading to the host (Th), each intermediate
vulnerability exploit of a path also being the final one
of another path by design.

2) The state of an attack path depends on the states of all
the vulnerabilities exploited in the path.

3) The state of a vulnerability depends on the states of all
attack-paths exploiting this vulnerability.

These are formally expressed by denoting the state of a
vulnerability v by ηvuln(v), the state of path p by ηpath(p)
and the state of host h by ηhost(h), all are unknown hidden
vectors. The above dependencies are expressed as follows:

ηvuln(v) = f(ηpath({pk}), pk ∈ P, v ∈ pk) (3)

ηpath(p) = g(ηvuln({vk}), vk ∈ p) (4)

ηhost(h) = q(ηpath({pk}), pk ∈ Th) (5)

where f , g and q are unknown functions.
Vulnet receives as inputs the initial states:
• η0host(h), containing the value interest, normalized by

dividing by the maximal theoretical value, and breach of
h ∈ H;

• η0vuln(v), containing the value cost, also normalized
using the maximal theoretical value, a binary for the type
and a one-hot encoding of the outcome of v ∈ V

• η0path(p) being 0s for the path p ∈ P
All states are padded with 0s until the state sizes (configurable
hyper-parameter) are achieved. As shown in Figure 3, one
message-passing operation is made of three update functions
that use as inputs the states of hosts, paths and vulnerabilities
from the previous message-passing operations. This operation
is repeated τ times, τ being a configurable hyper-parameter.
This repetitive process allows us to address the circular de-
pendencies of equations (3) (4) and (5).

Each update operation is applied individually to each single
related entity (hosts, vulnerabilities or paths). As shown in
the figure, any state ηi∗(∗) is updated from its previous value,
ηi−1
∗ (∗). Actually, Figure 3 is a general overview whereas,

in practice, all the update functions are duplicated and linked
among them based on the underlying graph structure derived
from P . Given that the order of the paths does not have an
influence on the state of vulnerabilities or hosts, the states of
paths are aggregated. Hence, the state of a host is updated
using a single GRU (Gated Recurrent Unit) cell and the sum
of the states of the paths leading to this host:

ηihost(h) = GRU(ηi−1
host(h),

∑
p∈Th

ηi−1
path(p))

The update of the state of the vulnerability v is defined
similarly:

ηivuln(v) = GRU(ηi−1
vuln(v),

∑
p∈P,∃pi,pi=v

ηi−1
path(p))

However the state of a vulnerability has an impact on the
vulnerabilities further down the paths traversing it. For this
reason, a Recurrent Neural Network (RNN) is leveraged to
aggregate the states of the vulnerabilities in the path p:

ηipath(p) = RNN(ηi−1
path(p), [η

i−i
vuln(v), v ∈ p])

Because a RNN can handle arbitrary input lengths, a unique
RNN can thus be learned and applied to all the different paths
of all the graphs independently from the size of the paths.

3 readout functions consisting of fully connected layers
transform the host states into the timestamps and probabilities
of being compromised for each host and the vulnerability
states into their timestamps and probabilities of exploitation.
As input to the graph readout function, the states are aggre-
gated through a mean pooling layer and then concatenated to
get the overall score S.

V. RESULTS

A. Graph generation

To test our approach, Vulnet needs to be trained on multiple
attack graphs. As our objective is to show how Vulnet can
generalize from and to any graph, we relied on a randomized
graph generation. 3 different sizes are considered: 10, 20 and
30 hosts with the starting point for the simulated attacker
randomly chosen. The interest value of each host is randomly
uniformly set as an integer between 0 and 10, and the cost

of each vulnerability exploit between 0 and 5. Intuitively, the
objective is to create enough heterogeneous data to learn how
the attacker behaves when facing different environments.

As stated in Section IV-A, the hosts are linked to each other
through Local or Remote exploits having different outcomes.
The exploits are created according to a vulnerability probabil-
ity value given in Table I based on the following process:

• Leaked credentials: For each ordered pair of hosts, up
to 4 attempts are made to create a vulnerability exploit
(edge). The value in Table I refers to the probability
of success of each one. Local and Remote exploits are
handled separately, so between 0 and 2 edges are added.

• Leaked host ID: The given probability is the probability
to create a single vulnerability exploit. Local and Remote
exploits are also considered separately, so between 0 and
2 vulnerabilities are created for each ordered pair of hosts.

• Generic exploit: Created for each host as a self-loop, as
source = target, with the given probability. Because
Local and Remote are independent of each other, between
0 and 2 vulnerability exploits are created for each host.

• Escalation: Also created as self-loop. Two exploits can
be created with the same probability and they are only
Local by nature, so up to 2 exploits per host are created.

To be more representative, the density of vulnerability
exploits in a graph has been varied. The generation of high-
density graphs are based on the probabilities of Table I, which
are halved for low-density graphs to create a lower number
of exploits. Our dataset contains 238 graphs: 121 high-density
graphs (35 with 10 hosts, 41 with 20 hosts, 45 with 30 hosts)
and 117 low-density graphs (47 with 10 hosts, 28 with 20
hosts and 42 with 30 hosts)

Based on these probabilities, the number of iterations, or
actions, per episode for the RL agent was tuned to 500 but
the agent stops earlier when all hosts are compromised.

B. Hyper-parameters
The configurable hyper-parameters are the sizes of the hid-

den states of the hosts, vulnerabilities and paths, the number of
iterations τ for the MPNN and the number of fully connected
layers and their size for the readout part. A grid-search was
applied leading to the configuration highlighted in Table II.
The model is trained using the Adam optimizer, an initial
learning rate of 0.001 and 10 epochs.

C. Experimental setup and running time
The dataset is divided in a 60/20/20 ratio for training,

validation and testing. With 2 Intel Xeon Silver 4116 to-
taling 48 logical cores and a Nvidia Geforce GTX 1080Ti,

TABLE I: Probability of creation of vulnerability exploits

Outcome Type Number of hosts
10 20 30

Leaked credentials Local or Remote 0.1 0.025 0.011
Leaked host ID Local or Remote 0.5 0.125 0.055
Generic exploit Local or Remote 0.1 0.05 0.033

Escalation Local 0.2 0.1 0.066

training takes 14 hours 30 minutes for all hyper-parameters
configurations. For comparison, running the RL simulation on
a single graph using the same hardware needs 245 minutes
on average. In other words, taking into account the hyper-
parameters optimization phase, our method is roughly 13 times
faster than simulating all graphs from the testing dataset.

In inference mode, computing the possible paths takes on
average 161ms in addition to the 12ms inference time for the
neural network, totaling 173ms per graph on average, while
CyberBattleSim needs about 914s per graph. Our method is
therefore roughly 5200 times faster than the RL method.

D. Exploitability prediction

In the first experiment, we assess the ability of Vulnet
to predict the metrics PH , TH , PV , TV and S, using the
RL simulations as ground truth. We compute the cumulative
distribution function of the absolute error. We voluntary place
ourselves in the worst case scenario where the DRL agents
are each trained on one specific attack graph.

The global score, S, is predicted within a mean error of
0.07, a global error range of ±0.21, and 80% of the scores
lies within the ±0.15 error range as shown in Figure 4. Vulnet
is thus capable of giving an overall indicator of an attacker
performance. Predicting fine-grained metrics is more difficult,
leading to lower performances. In particular the most difficult
to predict is the probability for a host to be compromised (PH),
with only 65% of the predicted probabilities having an error
lower than 0.4. However, Vulnet is able to predict when a host
will be compromised (TH) with an error lower than 0.3 in 80%
of cases. In general, Vulnet is better at inferring vulnerability
metrics rather than host metrics. Above all, Vulnet is capable
to predict when a vulnerability will be exploited with an error
lower than 0.25, i.e. within the right quarter of the simulation
time, in 80% of cases.

E. Generalization capabilities

For sake of space, we focus here on generalizing over
larger graphs or graphs with a higher density of vulnerabilities
which actually presents more complex graph to learn on or
run simulations on. The model was thus trained with 10-hosts
and 20-hosts graphs and underwent a new hyper-parameters
optimization. The model is then applied to the 30-hosts graphs.

To highlight how much the prediction capabilities differ
from the version trained with all sizes of graphs, we compute
the difference between the cumulative distribution of the errors
from the fully trained model in previous section. As shown in
Figure 5, the difference for the global score S quickly rises to
over 20 points before dropping back to near 0. This indicates
that, even though the score is not as accurately predicted, the

TABLE II: Grid-search on hyper-parameters (bold values are
the selected ones)

State size
τ

Readout
Host Edge Path # of layers Layer size

8/16/32 8/16/32 8/16/32 2/3/4 1/2/3 2/3/4

Fig. 4: Cumulative distribution of the er-
rors independently of the type of graph

Fig. 5: Performance degradation when ex-
cluding 30-hosts graphs from learning

Fig. 6: Performance degradation when ex-
cluding high-density graphs from learning

majority of errors are shifted to a range of 0.1/0.3 compared
to 0.0./0.2 in the original experiment. For the other metrics
(PH , TH , PV , TV), the difference is lower than 0.15 in all
cases, indicating that even though the performances are not as
good, the model is still able to predict the metrics of graphs
with unseen sizes.

We also evaluated the performance of the models with
the same approach as before by only learning the model
low-density graphs and applying it to high-density graphs.
In Figure 6, the global score S is partially shifted to the
range 0.1/0.3 like in the experiment on size-generalization. The
differences in the distributions of the vulnerability metrics PV

and TV remain in the range ±0.04, indicating the model can
generalize these metrics with a good confidence. For the host
metrics PH and TH , the differences in the distributions rise up
to +0.12. The model is therefore also capable of generalizing
for the host metrics but less than the vulnerability metrics.

VI. CONCLUSION

Our main goal was to alleviate the need of time-consuming
simulations to anticipate the potential attackers’s actions and
consequences on targeted hosts. Actually, the attackable envi-
ronments are represented as attack graphs composed of hosts
alongside their vulnerabilities. While (D)RL-based simulations
can be applied to such environments, Vulnet provides a direct
inference of multiple security metrics relying on the graph
structure and the properties of hosts and vulnerabilities. Al-
though we observed an acceptable overall degradation of the
the metrics’ accuracy in comparison with a DRL approach,
with an error never exceeding 0.23 in the case of the global
score, Vulnet is thousands times faster. Our future plan is to
adapt Vulnet to integrate the defensive strategies.

ACKNOWLEDGMENT

This work has been partially supported by the French
National Research Agency under the France 2030 label (Su-
perviz ANR-22-PECY-0008). The views reflected herein do
not necessarily reflect the opinion of the French government.

REFERENCES

[1] N. Poolsappasit, R. Dewri, and I. Ray, “Dynamic security risk manage-
ment using bayesian attack graphs,” IEEE Transactions on Dependable
and Secure Computing, vol. 9, no. 1, pp. 61–74, 2012.

[2] J. Nyberg, P. Johnson, and A. Méhes, “Cyber threat response using
reinforcement learning in graph-based attack simulations,” in IEEE/IFIP
Network Operations and Management Symposium (NOMS), 2022.

[3] M. D. R. Team., “Cyberbattlesim,” https://github.com/microsoft/
cyberbattlesim, 2021, created by Christian Seifert, Michael Betser,
William Blum, James Bono, Kate Farris, Emily Goren, Justin Grana,
Kristian Holsheimer, Brandon Marken, Joshua Neil, Nicole Nichols,
Jugal Parikh, Haoran Wei.

[4] FIRST, “CVSS v3.1 Specification Document.” [Online]. Available:
https://www.first.org/cvss/specification-document

[5] L. Maghrabi, E. Pfluegel, L. Al-Fagih, R. Graf, G. Settanni, and
F. Skopik, “Improved software vulnerability patching techniques using
CVSS and game theory,” in International Conference on Cyber Security
And Protection Of Digital Services (Cyber Security), 2017.

[6] B. L. Bullough, A. K. Yanchenko, C. L. Smith, and J. R. Zipkin,
“Predicting Exploitation of Disclosed Software Vulnerabilities Using
Open-source Data,” in International Workshop on Security And Privacy
Analytics (IWSPA). ACM, 2017.

[7] A. Feutrill, D. Ranathunga, Y. Yarom, and M. Roughan, “The Effect of
Common Vulnerability Scoring System Metrics on Vulnerability Exploit
Delay,” in Sixth International Symposium on Computing and Networking
(CANDAR), 2018.

[8] W. He, H. Li, and J. Li, “Unknown Vulnerability Risk Assessment Based
on Directed Graph Models: A Survey,” IEEE Access, vol. 7, 2019.

[9] R. E. Sawilla and X. Ou, “Identifying Critical Attack Assets in Depen-
dency Attack Graphs,” in Computer Security - ESORICS 2008, S. Jajodia
and J. Lopez, Eds. Springer, 2008.

[10] X. Ou, S. Govindavajhala, and A. W. Appel, “MulVAL: a logic-based
network security analyzer,” in Security Symposium. USENIX, 2005.

[11] C. Duan, Z. Wang, H. Ding, M. Jiang, Y. Ren, and T. Wu, “A Vulner-
ability Assessment Method for Network System Based on Cooperative
Game Theory,” in Algorithms and Architectures for Parallel Processing,
ser. Lecture Notes in Computer Science. Cham: Springer International
Publishing, 2020.

[12] T. Cody, P. Beling, and L. Freeman, “Towards Continuous Cyber Testing
with Reinforcement Learning for Whole Campaign Emulation,” in 2022
IEEE AUTOTESTCON, Aug. 2022, pp. 1–5.

[13] L. Lu, R. Safavi-Naini, M. Hagenbuchner, W. Susilo, J. Horton, S. Yong,
and A. Tsoi, “Ranking Attack Graphs with Graph Neural Networks,” vol.
5451, Apr. 2009, pp. 345–359.

[14] M. Yousefi, N. Mtetwa, Y. Zhang, and H. Tianfield, “A Reinforcement
Learning Approach for Attack Graph Analysis,” in 17th IEEE Interna-
tional Conference On Trust, Security And Privacy In Computing And
Communications/ 12th IEEE International Conference On Big Data
Science And Engineering (TrustCom/BigDataSE), 2018.

[15] K. Rusek, J. Suárez-Varela, P. Almasan, P. Barlet-Ros, and A. Cabellos-
Aparicio, “RouteNet: Leveraging Graph Neural Networks for Network
Modeling and Optimization in SDN,” IEEE Journal on Selected Areas
in Communications, vol. 38, no. 10, Oct. 2020.

[16] Y. Xue, J. Guo, L. Zhang, and H. Song, “Message Passing Graph Neural
Networks for Software Security Vulnerability Detection,” in Interna-
tional Conference on Computer Network, Electronic and Automation
(ICCNEA), 2022.

