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Significance 
Anopheles coluzzii, a major African malaria vector, thrives from humid rainforests to dry sa-
vannahs and coastal areas. This ecological success is linked to its close association with do-
mestic settings, with human playing significant roles in driving the recent urban evolution of 
this mosquito. Our research explores the assumption that these mosquitoes are strictly de-
pendent on human habitats, by conducting whole-genome sequencing on An. coluzzii speci-
mens from urban, rural, and sylvatic sites in Gabon. We found that urban mosquitoes show 
de novo genetic signatures of human-driven vector control, while rural and sylvatic mosqui-
toes exhibit distinctive genetic evidence of local adaptations derived from standing genetic 
variation. Understanding adaptation mechanisms of this mosquito is therefore crucial to pre-
dict evolution of vector control strategies. 

Abstract 
Species distributed across heterogeneous environments often evolve locally adapted 
populations, but understanding how these persist in the presence of homogenizing gene flow 
remains puzzling. In Gabon, Anopheles coluzzii, a major African malaria mosquito is found 
along an ecological gradient, including a sylvatic population, away of any human presence. 
This study identifies into the genomic signatures of local adaptation in populations from 
distinct environments including the urban area of Libreville, and two proximate sites 10km 
apart in the La Lopé National Park (LLP), a village and its sylvatic neighborhood. Whole genome 
re-sequencing of 96 mosquitoes unveiled ∼5.7millions high-quality single nucleotide 
polymorphisms. Coalescent-based demographic analyses suggest an ∼8,000-year-old 
divergence between Libreville and La Lopé populations, followed by a secondary contact 
(∼4,000 ybp) resulting in asymmetric effective gene flow. The urban population displayed 
reduced effective size, evidence of inbreeding, and strong selection pressures for adaptation 
to urban settings, as suggested by the hard selective sweeps associated with genes involved 
in detoxification and insecticide resistance. In contrast, the two geographically proximate LLP 
populations showed larger effective sizes, and distinctive genomic differences in selective 
signals, notably soft-selective sweeps on the standing genetic variation. Although neutral loci 
and chromosomal inversions failed to discriminate between LLP populations, our findings 
support that microgeographic adaptation can swiftly emerge through selection on standing 
genetic variation despite high gene flow. This study contributes to the growing understanding 
of evolution of populations in heterogeneous environments amid ongoing gene flow and how 
major malaria mosquitoes adapt to human. 
 
Keywords: Local adaptation | standing genetic variation | human activities | Anopheles 
coluzzii | malaria vector | gene flow 
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Introduction 
The genetic mechanisms by which natural populations can adapt to heterogeneous 

habitats has been a fundamental question in ecology and evolution. Local adaptation is 

responsible for the acquisition of traits providing a selective advantage under specific 

environmental conditions, regardless of the fitness consequences in other habitats (Kawecki 

and Ebert 2004; Tiffin and Ross-Ibarra 2014). At the molecular level, local adaptation can be 

associated with de novo mutation where advantageous alleles can quickly reach fixation 

through “hard” selective sweeps. However, this process can be relatively slow to evolve. 

Instead, local adaptation can emerge from the recycling of the preexisting standing genetic 

variants (SGV) through “soft” selective sweeps (Louis et al. 2021; Small et al. 2023). Because 

hard selective sweeps of de novo mutations are easier to detect using outlier approaches 

(Smith and Haigh 1974), the vast majority of the empirical work has been centered upon a 

“hard-sweep” model of adaptation. However, a growing literature suggests that soft sweeps 

might be a more frequent mode of adaptation in many natural populations (Hermisson and 

Pennings 2005; Messer and Petrov 2013; Garud et al. 2015; Sheehan and Song 2016; Schrider 

and Kern 2017). More importantly, both selection modes (hard and soft) are fully compatible 

and complementary. Consequently, understanding the relative interplay between new 

mutations and SGV for the adaption process is a key challenge to understand the ability of 

species to evolve into changing environments (Visser 2008). 

 

The African malaria mosquito Anopheles coluzzii exhibits a remarkable ecological 

ability to proliferate in a broad range of habitats as diverse as humid rain-forest, highland and 

dry savannah (Simard et al. 2009; Tene Fossog et al. 2015). The ecological success of An. 

coluzzii is directly rooted by the tremendous genetic and chromosomal polymorphisms and in 

its close association with human settings (Ayala et al. 2014; Fontaine et al. 2015a; Ayala et al. 

2017; Anopheles gambiae 1000 Genomes Consortium et al. 2020). Humans provide blood 

meals, as well as shelters, and breeding sites, to An. coluzzii (White et al. 2011). This degree 

of specialization on humans has drastically impacted the recent evolution of An. coluzzii (Ayala 

and Coluzzi 2005). First, the adaptation to newly modified landscape by the advent of 

agriculture 5,000 - 10,000 years ago (ya) and human density impacted its evolution by greatly 

increasing their population sizes (Ag1000G Consortium 2017; Ag1000G Consortium et al. 

2020). Second, the massive use of insecticides for malaria control in the second half of the last 
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century selected resistant variants within natural populations of this mosquito by genetic 

changes at targeted sites in the genome (i.e., de novo mutations), metabolic, and behavioral 

modifications (i.e. biting rhythm (Sangbakembi-Ngounou et al. 2022). Third, the rapid and 

recent development of large cities in Africa led to strong selection of genetic and physiological 

factors (i.e. osmoregulation (Tene Fossog et al. 2015)) to tolerate urban pollution through 

detoxification (Kamdem et al. 2017). Therefore, humans are key actors on the environmental 

adaptation of this mosquito. 

 

Motivated by the profound implications for human health, malaria research has 

intentionally narrowed its focus to anthropogenic settings, neglecting less anthropized and 

wild areas (Ayala et al. 2009; Kyalo et al. 2017). In the last few years, several studies 

incidentally reported the presence of species within the An. gambiae complex in wild 

conditions away from any kind of permanent human presence in Gabon, South Africa or 

Madagascar (Paupy et al. 2013; Munhenga et al. 2014; Zohdy et al. 2016), but also even in well 

studied areas such as in Burkina-Faso (Tennessen et al. 2021). For example, the discovery of a 

previously unknown species within the An. gambiae complex, An. fontenillei, but present away 

from anthropic settings, underscores our incomplete understanding of biodiversity in 

Anopheles (Barrón et al. 2019). Although unnoticed, these observations challenge the 

assumption that these mosquitoes are strictly bound to anthropogenic habitats. These 

observations also raise questions about the evolutionary processes involved in the local 

adaptation of these mosquitoes in the absence of their main hosts, humans, supporting their 

extraordinary ability to adapt to a large variety of eco-anthropogenic conditions. Therefore, 

wild areas, such as National Parks or protected areas, provide a compelling opportunity to 

investigate the origin and evolution of the main malaria mosquitoes in Africa and possibly also 

about factors underlying their vectorial capacity. 

Here, we report an in-depth characterization of the genetic variation of An. coluzzii 

along an anthropogenic gradient in Gabon, Central Africa. By comparing sylvatic and rural 

populations in the La Lopé National Park (LLP), together with an urban population from 

Libreville (LBV) and also, at a broader scale in Africa, with the data from the An. gambiae 1000 

genome (Ag1000G) project, we investigated the evolutionary processes by which these 

mosquitoes adapted to these contrasted environments. Given the permanent and stable 
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occurrence of An. coluzzii not only in the rural villages of LLP, but also in the proximate 

forested areas (Ayala et al. 2009; Paupy et al. 2013; Barrón et al. 2019), we hypothesized that 

several genetic determinants may be involved in contrasted adaptations to these 

environments (Figure 1A). To address these questions, we sequenced the whole genome of 

96 mosquitoes sampled across the anthropogenic gradient in Gabon. We investigated the 

population genetic variation, its spatial structure, and the interplay between evolutionary 

forces (genetic drift, migration and selection) shaping the population genetic variation along 

this gradient. We identified very contrasted dynamics between the urban LBV population and 

the populations from LLP. On one side, the urban population exhibited clear evidence of 

strong selective pressure marked by hard selective sweeps associated with adaptation to 

polluted waters and insecticide, typical of a highly populated and anthropized environment. 

On the other side, the populations from the LLP exhibited much more diffuse genetic evidence 

of selection on SGV. Despite the close proximity (~10km) of the rural and sylvatic populations, 

we found these two populations shared the same neutral genetic background, yet displaying 

selective evidence of local adaptation to the contrasted selective pressures of each 

environment. Together this study provides a unique opportunity to evaluate the action of local 

adaptation in the face of a strong gene flow on a genomic scale. Our results suggest that the 

exceptional SGV of this species is key to adaptation to sylvatic conditions. 

Results 

Highly shared sanding genetic variation between sylvatic, rural and urban populations in Gabon 

We analyzed the whole genome variation at single-nucleotide polymorphisms (SNPs) by 

resequencing 96 An. coluzzii mosquito samples coming from three locations in Gabon (n=32 

in each) along the anthropogenic gradient: the urban area of Libreville city (LBV) and two 

locations in the La Lopé National Park including a rural village area (LPV) and a sylvatic area 

10km to the South (LPS) (Figure 1A). After read cleaning, mapping, SNP variant calling, and 

individual quality filtering, we retained a total of 87 individuals with an average sequencing 

depth coverage of 53.1 ± 25.01 (see the methods and Supplementary Figure S1, Figure S2, and 

Table S1). Nine additional individuals were removed because they exhibited a missingness rate 

over 10% (after genotype quality filtering) as well as one extra individual due to a high degree 

of relatedness (Supplementary Figure S3 and Table S1). The final dataset thus included 77 

individuals, sequenced at a depth coverage of 57.1 (52.4) ± 23.2 [23.1 – 141.9], including 61 
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females and 16 males (Table S1). A total of 5.9 million high-quality SNPs were obtained after 

data quality check and filtering. The SNP density along the genome included 1 SNP every 25 

bp on average, with most of the SNPs being shared among samples from the three geographic 

sites (Supplementary Figure S2C). This indicates a high level of shared standing genetic 

variation (SGV). 

 

Strong genetic differentiation between mosquitoes from Libreville and La Lopé, contrasting with 

uniform genetic profiles across La Lopé rural and sylvatic 

Next, we investigated the genetic structure of the Gabonese samples alone, and also in the 

context of the continent-wide population structure of An. coluzzii by combining our data set 

with those from An. coluzzii of the phase-2 Ag1000G consortium project (Ag1000G 

Consortium et al. 2020) (Figure 1B). Focusing only on the Gabonese samples, the principal 

component analysis (PCA) showed that only one PC axis was meaningful and revealed that the 

urban mosquitoes from Libreville (LBV) grouped tightly together and apart from those of the 

La Lopé National Park (Supplementary Figure 4B). Considering them with the other An. coluzzii 

populations from the Ag1000G, the PCA showed that the top three PC axes captured a 

disproportionate amount (~9%) of the total variance compared to the remaining PC axes 

(Supplementary Figure 4A). The individual PC scores (Figure 1C) revealed that the Gabonese 

populations were well distinct from those of Angola and from those of North-Western Africa 

(Burkina-Faso, Ghana, Ivory Coast, Guinea) in the plan of the two first PC axes. The third axis 

further split the urban LBV mosquitoes from those of LLP. In contrast, the two proximate LLP 

populations could not be discriminated (Figure 1C), at least based on the neutral unlinked 

SNPs used to study the genetic structure (Supplementary Figure S3B). The genetic ancestry 

analysis of ADMIXTURE revealed a similar genetic structure as the PCA. Three main genetic 

clusters (K=3) were identified as best-fitting solution, which minimized the cross-validation 

error rates (Figure 1D, Supplementary Figure S5). These three genetic clusters were composed 

of An. coluzzii mosquitoes from Gabon, Angola, and NW Africa. However, additional sub-

structure was clearly visible at higher K values and consistent with the PCA and previous 

results from the (Ag1000G Consortium et al. 2020). In fact, up to six distinct genetic groups 

were identified including Angola, LBV, and the two LLP populations identified as a single 

genetic cluster, Burkina-Faso, Ghana, and Ivory Coast and Guinea; the latter two also shared 

the same ancestry. 
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Genetic differentiation expressed as FST values among population pairs were all significantly 

different from zero, but one: the sylvatic and village populations of the LLP National Park 

(p=0.575; Supplementary Figure S6). Globally, FST values recovered similar genetic 

structuration as captured by the PCA and the ADMIXTURE analyses. Aside from the Guinean 

population with a very small sample size (n=5), all populations from NW Africa displayed 

shallow but significant genetic differentiation with FST values ≤ 0.01 (p ≤ 0.05). The highest FST 

values were observed when comparing mosquitoes from Angola and those from NW Africa 

(FST > 0.13; p ≤ 1.25e-17). Comparisons involving the Gabonese populations (LBV and LLP) 

displayed intermediate FST values (0.05) (Supplementary Figure S6).  

 

We explored further the genetic ancestry relationships among the different populations of An. 

coluzzii and determined whether they may descend or not from admixture event(s) using 

AdmixtureBayses (Nielsen et al. 2023). The best-fitting population graph (Figure 1E) collected 

95% of the posterior probability and exhibited no admixture event among populations of An. 

coluzzii. All the nodes on that graph were highly supported with posterior probabilities >98%. 

The graph suggested that the populations from NW African localities (Burkina-Faso, Ivory 

Coast and Ghana) were all closely related to each other, as shown by the low estimates of 

genetic drift values along the branches of the graph and as suggested in the PCA and previous 

studies (Ag1000G Consortium et al. 2020). Populations from Central Africa (Angola and Gabon) 

were also more closely to each other than those from NW Africa, as shown by the strong 

support on the node (node n4). Interestingly, AdmixtureBayses analysis suggested that 

populations from LBV and Angola were more closely related to each other than with the two 

LLP populations (node n1). Nevertheless, both Angola and LBV displayed elevated genetic drift 

values from each other, suggesting important differentiation between them and small 

effective population sizes (Ne). The two LLP localities were very closely related to each other 

with very low drift values from the ancestral node (<0.005, n3). They coalesced deeper in the 

tree with the ancestor of the (Angola , LBV) ancestor on the node n4.  

 

One consistent observation identified by all analyses so far was that samples from the two 

proximate LLP localities (i.e., village and sylvatic) remained nearly undistinguishable at neutral 

unlinked SNPs suggesting they belong to a same genetic pool (Figure 1C, Figure 1D, K=6 in 
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Figure 1D and Supplementary Figure S5). We tested formally this hypothesis at neutral loci by 

comparing the observed joined site-frequency spectrum (jSFS) with a simulated jSFS expected 

under panmixia (obtained by permuting sample labels, see Materials and Methods) using δaδi 

(Gutenkunst et al. 2009). The observed jSFS did not statistically depart from the null 

distribution generated by 1000 permuted jSFS (p-value > 0.45; Supplementary Figure S7), 

confirming the genetic homogeneity observed with the PCA, ADMIXTURE, FST, and 

AdmixtureGraph. A similar analysis performed between populations from Libreville and either 

of the village and sylvatic LLP areas shows highly significant differences (p-value < 10-26 for 

each test; Supplementary Figure S7). Accordingly, average FST values between populations 

from LBV and either the rural or sylvatic areas of LLP were 0.05, one order of magnitude higher 

than between the two localities in La Lopé (FST = 1.7e-4, Supplementary Figure S6).  

Reduced diversity and increased autozygosity in Gabonese mosquito populations typical of Central 

African An. coluzzii 

 We characterized further the genetic diversity of the sampled populations in the three 

Gabonese localities in comparison with those from the Ag1000G using a variety of summary 

statistics (Figure 2). Overall, the summary statistics showed that the samples from the three 

Gabonese localities were very similar to the population from Angola in Central Africa. In 

contrast with populations from NW Africa, An. coluzzii populations from Gabon and Angola 

displayed lower nucleotide diversity, Tajima’s D values closer to 0, slower LD-decay, low 

amounts of rare frequency variants in their SFS’s, larger proportions of individual genomes 

covered by long runs of homozygosity (FROH
 > 100kb), and longer inter-individual identical-by-

descent (IBD) tract lengths (Figure 2). All these distinctive patterns of genetic diversity suggest 

that the population dynamics and history of An. coluzzii are very distinct in Central Africa 

compared to those in NW Africa, with populations of smaller effective population size (Ne), 

with possibly more stable demography with small Ne values or strongly fluctuating Ne size, 

also inducing some level of inbreeding (as suggested by the FROH (100kb) >0.10). Of interest is the 

LBV population which displayed an even higher inbreeding level compared to the sylvatic and 

rural populations of LLP as suggested by the higher FROH values, slightly higher Tajima’s D 

values, slower LD-decay, and smaller nucleotide diversity. This is consistent with smaller and 

possibly more fluctuating population Ne value in LBV than the mosquitoes from LLP.  
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Small and relatively stable demographic history of Gabonese populations  

We estimated the demographic history of each population of An. coluzzii in Gabon, 

comparatively with those from the Ag1000G, first using Stairway plot v2 (Liu and Fu 2020) and 

the unfolded (a.k.a. polarized) SFS of the putatively neutral and recombining portion of 

chromosome 3 (Figure 3A and 3B). The two proximate populations from LLP shared similar 

historical trajectories in Ne variation, with 2 consecutive bottlenecks, one c.40k years ago 

(kya), and another one c.20 kya. Ne values remained relatively stable between the bottlenecks 

and since the past thousands years with however consistent evidence of a very recent decline. 

Noteworthy was the population from LBV, which displayed consistently lower effective sizes 

compared to the rural and sylvatic LLP populations, in line with the genetic diversity estimates 

(Figure 2). The effective population sizes of the three Gabonese populations (Figure 3A) were 

also comparable to those observed in Angola, and were at least one order of magnitude 

smaller than those from NW Africa (Figure 3B), also consistent with genetic diversity estimates 

and previous studies (Ag1000G Consortium et al. 2020). 

Secondary contact and asymmetric gene flow have homogenized Gabonese populations 

To better understand the isolation history between the populations from LBV and 

LLP, we tested which isolation models best fitted the observed unfolded joined SFS (jSFS) 

using δaδi (Gutenkunst et al. 2009). We compared 8 distinct models of population isolation 

differing in terms of Ne variation (constant vs exponentially, -G), and in terms of gene flow 

history contrasting strict isolation without gene-flow (–SI), isolation with continuous migration 

(–IM), ancestral migration (– AM), or secondary contact (– SC). The best fitting model 

displaying the lowest log-likelihood scores and best AIC criterion identified the scenario 

implying a secondary contact with population-size change (SC+G) (Supplementary Figure 8 and 

Supplementary Tables 2). This demographic scenario suggested that the isolation between 

LBV and LLP involved a period of allopatric divergence followed by a secondary contact (SC), 

with a slight asymmetric gene flow predominantly from LBV into LLP, and an exponential 

decline in both populations (Figure 3C). Model parameter estimates considering this SC+G 

model (Figure 3D and Supplementary Table 3) suggest that the populations from Libreville city 

(LBV) and La Lopé (LLP) split c. 7,624 years ago (Ts) from an ancestral population of 142,332 

individuals (Nref) into two populations, each one with distinct Ne values, respectively of 

292,460 and 865,159 individuals for LBV and LLP. The two populations would have remained 
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isolated until c. 4,432 years ago (Tsc), time at which a secondary contact would have restored 

an asymmetric gene flow with five times more effective migrants from LBV into LLP than in 

the reverse direction (Figure 3D and Supplementary Table 2). 

Contrasted regimes of positive selection along the anthropogenic gradient 

We screened the genome for genomic evidence of positive selection that may have 

contributed to local population adaptation across the sylvatic, rural, and urban anthropogenic 

gradient. We first conducted genome scan comparing population pairs based on differences 

in long-range haplotype homozygosity (XP-EHH (Sabeti et al. 2007) and differences in allele 

frequency (FST - based statistics) (Alexander et al. 2009). XP-EHH detects differences in 

extended runs of haplotype homozygosity between populations, reflecting variation in 

haplotype length and LD along the genome (Voight et al. 2006; Sabeti et al. 2007), tailored to 

detect recent selective sweeps, while FST statistics scans can complement haplotype-based 

scans by identifying outliers displaying significant differentiation in allele frequencies between 

populations along their genomes. The comparison between LBV and either rural or sylvatic 

LLP populations revealed a few clear and strong signals of positive selection in the urban group 

at both FST (Supplementary figure S9) and XP-EHH (Figure 4A and Supplementary figure S10) 

statistics. Those selection footprints were found centered mostly around well-known genomic 

regions harboring insecticide resistance genes, jointly detected by XP-EHH and FST statistics 

(VGSC, GABA and GSTE) or based on FST genome scan only (cytochrome P450s cyp6p and 

cyp9k1). Additionally, away from the known resistance genes, a few other genomic regions 

exhibited also significant evidence of strong positive selection in the urban LBV population. 

Among them, one stretch between positions 41,275,000 and 41,500,000 on the chromosome 

3L consistently stood out through the comparisons with both LPV and LPS population (Figure 

4A). The four annotated genes in this region included the gene AGAP012385 encoding for a 

Toll-like receptor signaling pathway known to mediate anti-pathogen defense, including 

against Plasmodium (Clayton et al. 2013). Twenty-six significant SNPs were found in the 5kb 

upstream and downstream regions of that gene. Positive selection was also clearly suggested 

by both XP-EHH and FST statistics in the pericentromeric region of chromosome 2L and 2R. This 

region is also well known for its selection history associated with the Voltage-Gated Sodium 

Channel (VGSC), known as `kdr` owing to their knock-down-resistance phenotype, reduce 
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susceptibility to DDT and pyrethroid in Anopheles (Davies et al. 2007; Ag1000G Consortium 

2017; Lynd et al. 2018). 

 

By contrast, XP-EHH values between the village and sylvatic area of LLP yielded 44 significant 

outlying regions exhibiting positive signatures of selection scattered across the autosomes 

(Figure 4 and Supplementary figure S10). The proportion of significant SNPs in each population 

did not differ significantly between the sylvatic and rural populations of LLP (Supplementary 

Figure S11, χ2 test, p-value > 0.05). Those selective footprints were exclusively detected by 

the XP-EHH statistic, while FST scans revealed almost no differentiation in allelic frequency 

along the entire genome of the sylvatic and rural LLP populations (Supplementary Figure S9). 

This contrast between XP-EHH and FST is consistent with very recent selection signals, most 

likely involving soft selective sweeps on the SGV. The XP-EHH test can detect selective sweeps 

in which the selected allele has risen to high frequency or fixation in one population, but 

remains polymorphic in the human population as a whole (Sabeti et al. 2007). Under this 

circumstance, XP-EHH can detect signals in regions that do not display any outlying FST values. 

FST-based selection scan is meant to detect signals of excessive levels of genetic 

differentiation, which would typically capture hard selective sweeps at known resistance 

genes discriminating the city from the rural area. However, in the case of soft sweep and 

selection on the SGV, differences in allele frequency becomes much more subtle, and the 

power to detect significant outlying FST value drop as well (Voight et al. 2006; Sabeti et al. 

2007). Since the populations from the village and sylvatic area of LLP are derived from a same 

genetic pool and exhibit similar demographic histories and LD-decay, the sensitivity of 

haplotype-based methods is maximized to identify recent processes of positive selection (Ma 

et al. 2015; Klassmann and Gautier 2022).  

Annotating the SNP effect using snpeff (Cingolani 2022), for the significant SNPs identified with 

XP-EHH scans shows that variant sets were significantly different in the nature of their 

annotation (Supplementary Figure S11A, 𝜒2 test =538.562, p-value < 1e-5). Selected variants 

distinguishing the LBV from the rural LLP area were found enriched in synonymous SNPs, while 

variants distinguishing the village from the sylvatic LLP populations were found enriched at 

intergenic regions (Supplementary Figure S11B). Together, our results highlight the contrasted 

nature of the positive selection signal across our pairwise comparison. On one hand, between 

the urban LBV population and the rural LLP populations, a strong selection signal is detected, 
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extremely localized at very few loci. On the other hand, between the village and the sylvatic 

LLP populations, the signal is spread out through the entire genome encompassing few SNPs 

per picks. 

 

We explored further the hypothesis that urban population from LBV and the two proximate 

localities in the LLP National Park exhibit distinct selective regimes: the first one being 

dominated by hard-selective sweeps, and the two others by soft-sweep on the SGV. For that 

purpose, we used the supervised deep learning technique of DiploS/HIC (Kern & Schrider, 

2018). This approach uses coalescent simulations of genomic regions based on the observed 

demographic history for each population as training set. From these simulations, this 

approach uses a deep learning algorithm to classify genomic windows into 5 categories of 

positive selection (neutral, hard, linked-hard, soft, and linked-soft selective sweeps) based on 

patterns of genetic variation surrounding a focal genomic region of 110kb subdivided into 11 

windows of 10kb. High level of convergence was observed for the summary statistics of our 

simulated dataset compared to the empirical data under the different selection categories 

(Supplementary Figure S12). The performance of the Convoluted Neural Network (CNN) 

classifier to discriminate among the five types of selection categories based on these 

simulations was also quite good as shown by the confusion matrix (Supplementary Figure S13). 

In average over the three populations, we estimated respectively a 76% and a 61% accuracy 

to correctly predict hard and soft selective sweeps. Hard and soft sweeps were found to be 

clearly distinguished from neutral windows, with only 3% and 13% of hard or soft selective 

sweep miss-classified as neutral regions. Therefore, these performance analyses to 

discriminate among the different type of selective sweeps show that the method is sensitive 

and accurate under the present study design. The signals of selective sweeps identified in the 

LLP populations from the village and sylvatic area displayed a much higher number of windows 

classified as soft sweep and lower number of windows classified as hard sweep compared to 

the urban LBV population (Figure 4B) (𝜒2 test=153.99, p-value < 1e-5). Such result highlights 

different modes of local adaptation acting on the urban population compared to those from 

the LLP National Park: a few de novo mutations was selected in the LBV city due to the strong 

selection pressure apply by insecticide, while positive selection on SGV is the most frequent 

mode of adaptation across less anthropized population in the La Lopé National Park.  
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Candidate genes involved in local adaptation along the anthropogenic gradient  

We obtained little overlap between the selection scans (both XP-EHH and FST) and DiploS/HIC 

because the latter required large genomic windows of 110kb to apply the CNN classifier. In 

contrast, XP-EHH and FST can be conducted in relatively small genomic windows, or even at 

the site level. Nevertheless, we found that most of the selective sweeps detected by 

haplotype-based, frequency-based, and DiploS/HIC analyses in the LBV urban population were 

also identified as hard- (or linked-hard) selective sweeps. Overlap, the selection signals 

identified in the LBV urban population between the two types of analyses mainly focused on 

the known insecticide resistance and immune-related genes. In contrast, evidence of positive 

selection between in the village and sylvatic LLP populations were primarily soft- (or linked-

soft) selective sweeps scattered along the autosomes (Figure 4). The 44 outlier regions 

identified by the haplotype-based XP-EHH statistic included a total of 118 candidate genes 

(Figure 4, Supplementary Table 4). Although gene ontology (GO) enrichment analysis did not 

show any significant over- or under-represented gene functions, some genes stood out from 

the group. The metal response element-binding Transcription Factor-1 (MTF-1, AGAP007377) 

was found to show clear signal of selection in LLP village, but not in the sylvatic LLP 

populations. This gene encodes for a zinc finger protein involved in the detoxification of non-

essential, toxic heavy metals, such as cadmium, mercury, and silver. In parallel, in the sylvatic 

LLP population, the gene pgant5 (AGAP012256) responsible for post-translational 

modification was found under strong positive selection in both comparisons with the village 

and the city. In Drosophila, this gene is a member of a large gene family known to participate 

in many aspects of development and organogenesis, notably in the upkeeping of a proper 

digestive system acidification (Tran et al. 2012).  
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Discussion 
Understanding the evolutionary mechanisms by which population and species adapt locally 

along heterogeneous habitats is fundamental to the evolution of diversity. Here, we evaluated 

how and by which population genetic processes a highly anthropophilic malaria-vector mos-

quito species, such as An. coluzzii, is able to colonize and adapt along an environmental gradi-

ent of anthropization in Gabon, including a forested area deprived of any permanent settle-

ment in the La Lope National Park. To this end, we used a combination of population genetic 

approaches to analyze 77 whole-genome sequences of An. coluzzii, distributed along an an-

thropogenic gradient (urban, village and sylvatic areas). We investigate the demographic his-

tory of these Gabonese An. coluzzii populations in perspective with others from The Ag1000G 

Consortium (2020) across the species distribution range, as well as the selective forces driving 

local adaptation to the different habitats. 

An. coluzzii from Gabon exhibit singular genetic signatures. 

Consistent with previous studies (Pinto et al. 2013; Anopheles gambiae 1000 Genomes Con-

sortium et al. 2020; Campos et al. 2021), we identified three major genetic groups across An. 

coluzzii’s distribution range: (i) the West African group composed of the mosquitoes from 

Burkina-Faso, Guinea, Ivory Coast, and Ghana; (ii) the Central African group composed of the 

Gabonese populations; and (iii) the South-Western African group with Angola (Figure 1C). 

These clusters coincide with the transitions between the central African rainforest belt and 

the Western northern and southern savannah biomes (Pinto, et al. 2013; Tene Fossog, et al. 

2015). The Congo rainforest block has been suggested to constitute a potent barrier to gene 

flow (Pinto, et al. 2013; Tene Fossog, et al. 2015). Previous works from Campos, et al. (2021) 

showed that the Gabonese specimens clustered with those from the neighboring country, 

Cameroon, supporting a Central African cluster of An. coluzzii distinct from the others. Our 

analyses underlined the distinctiveness of the Gabonese LLP mosquitoes from more southern 

populations in Angola. Nevertheless, population-graph analysis suggested that coastal popu-

lations (i.e Libreville and Angola, Figure 1E) shared together a more recent common ancestor 

than with the West African group, north of the Congo-basin. This result is in agreement with 

previous works that evidence a subdivision between coastal and inland populations of An. 

coluzzii (Slotman et al. 2007; Tene Fossog et al. 2013). Moreover, the genetic characterization 

of the three populations from Gabon revealed higher level of homozygosity with regard to 
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Western populations, consistent with smaller and more isolated populations (Figure 2). This 

result confirms that even at the “local” scale, the transition between coastal to rainforest area 

is associated with strong changes in the genetic make-up of An. coluzzii mosquitoes, as we can 

observe between Libreville and La Lope that are only ~250km away from each other (Figure 

1D) 

Historical rainforest evolution drives human and mosquitoes expansion in Central Africa.  

We estimated the split time between the Gabonese populations between the coastal urban 

area of LBV and LLP (rural/forested area) at ca. 8k ybp, followed by a secondary contact ca. 

4.4kyr (Figure 3D). The initial split coincides with the peak of the African humid period (11 - 

8kyr bp) and the major expansion of the African rainforest toward the tropics (Malhi et al. 

2013). The Central African vegetation zones extended much further north (up to 400 – 500 

km), and the Sahara was crisscrossed by lakes, rivers and inland deltas (Willis et al. 2013). 

These climate changes likely impacted human movements between Central African and other 

human African populations (Patin et al. 2009; Verdu et al. 2009; Batini et al. 2011; Lopez et al. 

2018; Laval et al. 2019; Lopez et al. 2019), s well as the population dynamic of Anopheles mos-

quitoes. Interestingly, the secondary contact that restored gene flow between the coastal LBV 

population with the inland LLP population matches precisely the timing of the large-scale hu-

man expansion of the Bantu speaking people(Patin et al. 2009; Verdu et al. 2009; Batini et al. 

2011; Lopez et al. 2018; Laval et al. 2019; Lopez et al. 2019). Fueled by agriculture, Bantu 

speaking human populations migrated most likely through the Central African tropical rainfor-

est around 4,400 y ago, spreading the Bantu culture toward Central and South Africa (Koile et 

al. 2022). This period corresponds to the probable human specialization of An. gambiae and 

An. coluzzii (White et al. 2011; Ag1000G Consortium et al. 2020). It is thus very likely that large-

scale human movements facilitated secondary contact between isolated mosquito popula-

tions (Figure 3D). The asymmetric gene flow since secondary contact, predominantly from the 

coastal into inland populations area may also reflect the constraints to thrive and develop in 

forested areas for An. coluzzii (Ayala et al. 2009; Tennessen et al. 2021). The post-glacial ex-

pansion (20k years ago) of the Bantu speaking farmers, and their colonization toward Central 

and South Africa (4000 to 5000 yr ago) likely reconnected isolated mosquito populations from 

the coastal and inland areas. In agreement with a scenario, La Lopé National Park has in fact a 

rich history of ancient human trades and migration corridor along the Congo Basin for Pygmy 
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tribes, Bantu, and other people (UNESCO World Heritage Centre 2016), therefore, it could be 

fueled the movement and connection of human specialized mosquitoes.  Also consistent with 

this scenario is the tempo of emergence within the genome of the forest-dueling Pigmy’s 

tribes of Central Africa of the genetic mutation that causes sickle-cell anaemia (also known as 

drepanocytosis) but also provides a strong selective advantage against malaria. This mutation 

emerged at least 20k year ago in Africa primarily in the genome of the Bantu’s farmers, and 

was only introduced ~4000 to 5000 years ago into the rainforest pigmy hunter-gatherers of 

Central Africa, after admixture event between the two (Laval, et al. 2019).  

 

Urbanization exerts strong selection pressures in An. coluzzii. 

In contrast to the previously reported “shallow to moderate” population substructure re-

ported among An. coluzzii populations within the West African group (FST ≤ 0.04, Supplemen-

tary Figure S6) (The Ag1000G Consortium 2017, 2020), we observed moderate to high genetic 

structure within the Central African cluster at short geographic distance (FST ≈ 0.05; Supple-

mentary Figure S6). The urban coastal mosquito population from LBV was genetically highly 

distinct from LLP populations located only 250km inland. These urban mosquitoes displayed a 

population dynamic and demography that contrasted strongly with the population from the 

more natural environment of LPP (Figure 2). The urban LBV population was more inbred, it 

displayed stronger linkage disequilibrium, higher autozygosity, and a three-fold reduced ef-

fective population size compared to those from LLP. Such genetic contrasts likely reflect strong 

selection pressures to the highly anthropized urban environment, possibly induced by pol-

luted larval habitats (Longo-Pendy et al. 2021). Consistent with this hypothesis, we found few 

but strong selection signals identified in the genome of the LBV populations, mostly (if not 

only) composed of hard-selective sweeps at sites well-known for insecticide resistance and 

detoxification processes (Figure 4A, Supplementary Table 4). Among them, we identified the 

knockdown resistance (kdr) mutations in the voltage-gated sodium channel (VGSC) of mosqui-

toes conferring resistance to pyrethroid insecticides (Martinez-Torres, et al. 1998; Ranson, et 

al. 2000; Davies, et al. 2007; Dong, et al. 2014; Clarkson, et al. 2021); the Rdl - GABA-gated 

chloride channel subunit gene, a locus with prior evidence of recent positive selection and/or 

an association with dieldrin insecticide resistance in Anopheles mosquitoes (Du, et al. 2005; 

Grau-Bové, et al. 2020); and the GSTE – Glutathione S-transferase epsilon gene cluster 
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(Mitchell, et al. 2014). The LBV populations also harbored strong selective signal at the toll-

like receptor signaling pathway known to mediate anti-pathogen defense, including against 

Plasmodium (Clayton et al. 2013). The African cities have been spared of Anopheles until re-

cently (Robert et al. 2003). During the last two decades, An. coluzzii has overcome the con-

straints linked to breeding site pollution and it is now the predominant Anopheles species in 

the cities of Central Africa (Tene Fossog et al. 2015; Kamdem et al. 2017; Doumbe-Belisse et 

al. 2021; Longo-Pendy et al. 2021). As we observe in our study, this adaptation is associated 

to detoxication and insecticide resistant genes as previously documented (Antonio-Nkondjio 

et al. 2015; Kamdem et al. 2017). Therefore, urbanization tends to favor mosquito populations 

that are resistant to pollution and insecticides, which become less affected by actual vector 

control measures. Interestingly, the fact that a toll-like immune receptor is also strongly se-

lected raises the question about how urban adaptation and pollution can affect vector com-

petence to Plasmodium, a key aspect to understand and prevent urban malaria (Venkatesan 

2024). 

Given the asymmetric gene flow from LBV into LLP, we might have expected to find insecticide 

resistance alleles in the genomic background of the LLP population. However, no such selec-

tion signal was observed. Previous studies reported that mosquitoes carrying these insecticide 

resistance alleles display increased metabolism, and reduce body size, leading to reduced in-

dividual fitness of the mosquito that are not exposed to insecticide treatments (Oliver and 

Brooke 2016; Ingham, et al. 2017; Ingham, et al. 2021; Lucas, Nagi, Egyir-Yawson, Essandoh, 

Dadzie, Chabi, Djogbénou, et al. 2023; Romero, et al. 2023). For instance, such fitness effect 

led insecticide alleles to disappear in mosquitoes colonies (Ingham, et al. 2021). In La Lope 

village, no vector control strategies are implemented. Therefore, our results may indicate that 

resistant alleles are currently not detected, based on our limited sample size, but resistant 

alleles may be present at low frequency in the genomic background of LLP populations or they 

could swiftly appear as soon as insecticide selection pressure occurs by the gene flow with 

neighboring populations, including LBV. 

Standard genetic variation is key to local adaptation 

 In contrast to the coastal urban population of LBV, An. coluzzii inhabiting the LLP village and 

sylvatic areas displayed higher genetic diversity, slightly lower Tajima’s D, lower autozygosity 

and LD in their genomes. These genetic features suggest that the LLP populations have 
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remained more stable in size for a longer time, and without any major bottleneck in a recent 

past, like those suspected in the LBV population in response to adaptation to polluted urban 

environment (Figure 2). These LLP populations are likely connected to other forested popula-

tions, across villages and unsampled sylvatic places. Despite the differences in hosts or 

breeding sites between both habitats at La Lope, the mosquitoes from the village and the 

sylvatic area were part of a same genetic pool (Figure 1C, Supplementary Figure S4). All anal-

yses conducted to assess population genetic structure and differences in genetic diversity 

failed to discriminate mosquitoes from these two locations at putatively neutral and un-

linked genetic markers (Supplementary Figure S6 and S7). Nevertheless, at this short geo-

graphic scale (~10-15 Km) we expect a common genetic pool based on the potentially high 

dispersion rates in Anopheles (Costantini et al. 1999; Ayala et al. 2013; Smith et al. 2023). In 

fact, strong Isolation by distance (IBD) was previously detected in An. coluzii in other parts of 

Africa such as in the NW African Savanah, and major biogeographic barriers can also restrict 

dispersal of mosquitoes, such as the transition between Savanah and the rainforest biome of 

the Congo Basin (Lehmann et al. 2003; Pinto et al. 2013; Anopheles gambiae 1000 Genomes 

Consortium et al. 2020). Nevertheless, Battey et al (2020) showed that geographic location 

of individual An. coluzzii mosquito could be predicted from genetic data of the Ag1000G pro-

ject with a precision of 5 km in average, with a median distance of 36 km (see also (Smith et 

al. 2023)). Thus, panmixia should be expected at such a small geographic scale like 10km, 

even if IBD may be strong in this species, and unless other processes are at play (e.g. selec-

tion). 

The selection regime between domestic and sylvatic populations at La Lopé was dominated 

by soft- (or linked-soft) selective sweeps on the SGV (Figure 4), in contrast to a selective regime 

dominated by few hard-selective sweeps at LBV. The mode of adaptation of the LLP popula-

tions mostly involved selection on the SGV (or rapidly recurring beneficial mutations appear-

ing on different haplotypes) (Harris, et al. 2018; Stephan 2019; Charlesworth and Jensen 2021; 

Johri, et al. 2022). This mode of adaptation has been shown to dominate also in other species 

like Drosophila, human and other organisms, even if some debates persist (Schrider and Kern 

2017; Harris, et al. 2018; Stephan 2019; Charlesworth and Jensen 2021; Feder, et al. 2021; 

Garud, et al. 2021; Johri, et al. 2022). This predominance of soft (or link-soft) sweeps observed 

between LLP sylvatic and domestic populations was also shown to be relatively common 
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across the genome of An. coluzzii (Xue et al. 2021). By analyzing the data from The Ag1000G 

Consortium (2017), Xue et al. (2021) reported that soft and partial selective sweeps were com-

mon place in the genome of 8 populations of An. gambiae and An. coluzzii across Africa. Nev-

ertheless, mosquitoes from both LLP localities exhibited striking differences in selective signals 

marked by distinctive contrast at extended haplotype homozygosity (XP-EHH) scattered across 

their genomes. Noteworthy, no major differences in FST values were observed at these candi-

date genomic regions identified with elevated XP-EHH values (Figure 4A and Supplementary 

Figures 9 and 10). This discrepancy between XP-EHH and FST results further stress that selec-

tion signals are very likely soft or partial selective sweep involving only subtle changes in allele 

frequencies.  

These selective signals scattered across the genomes did not reveal major genetic enrichment 

signals. As noted by Xue, et al. (2021) for the populations from The Ag1000G Consortium 

(2017), the numerous calls of selective sweep detected may reflect complex selective dynam-

ics at play, for example, polygenic and quantitative trait adaptation (Pritchard, et al. 2010; 

Booker, et al. 2017), balancing selection (Connallon and Clark 2013), and introgression of ben-

eficial alleles from neighboring unsampled populations (The Ag1000G Consortium 2017, 

2020). Local adaptation of the mosquitoes to an un-anthropized habitat such as the sylvatic 

areas, compared to the village of the LLP National Park, likely involved many phenotypic traits 

that require further investigations. Nevertheless, such local adaptation are expected to be 

highly polygenic (Pritchard, et al. 2010) and is unlikely that all alleles involved are newly mu-

tated.  

Our study has evidenced the extraordinary ability of a major malaria vector to adapt to distinct 

ecological settings. In Central Africa, An. coluzzii inhabits from the most anthropogenic and 

polluted habitats to rural and wild protected natural areas such as National Parks. Indeed, this 

study characterized for the first time a population of a major malaria mosquito able to colonize 

and thrive in areas deprived of permanent human settlements, yet in direct vicinity of a village. 

Therefore, our results provide new clues about how mosquitoes adapted to humans while 

relying primarily on selection on their ancestral genetic polymorphism. Urban malaria is con-

sidered a major threat for malaria control and eradication in the coming years (Venkatesan 

2024). However, protected areas have been relegated and little is known about how it can 

affect vector controls strategies, for instance, being a refuge for malaria vectors. Further 
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insights are required on phenotypic changes, ecological and behavioral, of this and others ma-

laria vectors, under this unique ecological scenario. 
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Material and Methods 

Experimental design  

Field mosquitoes were collected at the National Park of La Lopé, the village of La Lopé, and 

the city of Libreville between September 2015 and November 2017 (Figure 1A and 

Supplementary Table 1), according to the research permits required by the Gabonese 

government (AR0015/15/MESRS/CENAREST/CG/CST/CSAR) and the National Parks Agency 

(AE15011/PR/ANPN/SE/CS/AEPN). In the sylvatic and rural habitats of La Lopé National park, 

adult mosquitoes were sampled using Human Landing Catches (with the approval of the 

National Ethical Committee from Gabon PROT N° 0031/2014/SG/CNE) and BG traps (Biogents). 

Samples from Libreville city were collected by larvae dipping. A total of 96 mosquito samples 

were used in this study including 32 mosquitoes for each site (Supplementary Table 1).  

DNA extraction, genomic library preparation, whole genome sequencing 

Total genomic DNA was extracted using DNeasy Blood & Tissue Kit (Qiagen) following the 

manufacturer's instructions. DNA quality and concentration were estimated via PicoGreen 

(Promega). Genome library preparations took place at the Broad Institute using a Nextera 

XT Library Preparation Kit (Illumina). Libraries were sequenced on an Illumina HiSeq X 

instrument using a 300 cycle run format (150bp paired end reads). 

Bioinformatic data processing 

To ensure compatibility of our data with those from the Ag1000G (Ag1000G Consortium 2017; 

Ag1000G Consortium et al. 2020), we followed the same bioinformatics protocols for SNP call-

ing. Briefly, short reads were mapped to the An. gambiae AgamP4 PEST reference assembly 

(Holt et al. 2002; Sharakhova et al. 2007) using bwa-mem version 0.7.17 (Li and Durbin 2009) 

with default parameters. Individuals with an average genome coverage depth lower than 14x 

(n=9) were excluded from downstream analyses (Supplementary Figure 1A and Figure 3A). 

After removing PCR duplicates with Picard tools (Anon 2019) and performing INDEL realign-

ment with GATK's IndelRealigner version 3.7 (McKenna et al. 2010), SNPs were called using 

GATK Unified Genotyper version 3.7. Low-quality SNP calls were filtered by removing variants 

that failed any of the following hard filters: QD<5, FS>60 and ReadPosRankSum < -8. We also 

retained only variants located within 63% of the genome previously classified as accessible in 

the Ag1000G consortium (Ag1000G Consortium 2017; Ag1000G Consortium et al. 2020). 
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Variants were then annotated using snpEFF version 4.3 (Cingolani 2022) with default parame-

ters. Lastly, we generated a final high-quality SNP dataset using vcftools version 0.1.16 

(Danecek et al. 2011) considering only biallelic SNPs, with genotypes with a genotype quality 

(GQ) higher than 20, discarding any variants with a missingness rate over 5% (l-miss<5%) and 

individuals (n=9) with a missingness rate over 10% (i-miss<10%).  

The degree of relatedness among individuals (kinship coefficient) was estimated using plink 

version 1.9 (--genome) (Purcell et al. 2007). Haplotype estimation, also known as statistical 

phasing, was performed using SHAPEIT2 version v2.r904 (Delaneau et al. 2008) with 

information from the reads, the reference haplotype panel of the Ag1000G phase-2 

(ftp://ngs.sanger.ac.uk/production/ag1000g/phase2/AR1/haplotypes/), an effective 

population size (Ne) of 1,000,000, default MCMC parameters and a window size of 2 Mb. 

Estimation of the ancestral versus derived allelic states of the SNPs was determined using an 

outgroup species. Following the Ag1000G consortium (Ag1000G Consortium et al. 2020), we 

polarized the SNP dataset using the consensus alleles defined from 10 An. merus from 

(Fontaine et al. 2015b). Polarized and phased datasets were composed respectively of a total 

of 5,859,776 and 2,982,164 SNPs for the whole genome (Supplementary Figure 3).  

Population genetic structure 

To explore population structure in a larger, continent-wide context, we merged our Gabonese 

SNP dataset with the published phase-2 data from the Ag1000G project, considering only An. 

coluzzii species which include populations from Angola, Ivory Coast, Ghana, Guinea, and 

Burkina-Faso (The Anopheles gambiae 1000 Genomes Consortium 2020). Joint analyses 

between samples from Gabon and An. coluzzii samples from the Ag1000G phase-2 were 

performed by merging both VCF and keeping only SNPs at the intersection of both datasets. 

Following the Ag1000G Consortium (2017) methodologies, we investigated population genetic 

structure considering only the biallelic SNPs of the euchromatic freely recombining regions of 

chromosome 3, avoiding the peri-centromeric regions, and also avoiding well-known 

inversions on chromosome 2, heterochromatic regions, and the sexual X chromosome. From 

the regions 3R: 1-37 and 3L: 15-41 Mb, we removed SNPs in linkage disequilibrium, excluding 

SNPs above an r2 threshold of 0.01 in moving windows of 500 SNPs with a step size of 250 

SNPs via scikit-allel version 1.3.3 (Miles and Harding 2016). A minor allele frequency (MAF) of 

>1% was also applied. We first visualized population genetic structure using a PCA on the 
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1,003,463 unlinked SNPs using scikit-allel, considering genomic data from the Gabonese 

mosquito samples alone and combined with the data from the Ag1000G. Then, we quantified 

individual genetic ancestry proportions using the program ADMIXTURE version 1.3.0, testing 

various numbers of clusters (K) ranging from 2 to 10. ADMIXTURE was run for each K-value a 

100-time, in the form of 10 replicate x 10 datasets, with each dataset composed of a random 

sampling of 100,000 variants from the total number of unlinked SNPs dataset. The most likely 

number of ancestral populations (K) was determined using the CV error rate (Alexander et al. 

2009). Athough, the lowest CV error rate was obtained for ADMIXTURE models with K=3 

ancestral populations, we found that further population sub-division was clearly recovered in 

simulations allowing up to K=6. These had clear support from other analyses (PCA, pairwise 

average FST) and also from the previous study by the Ag1000G consortium (2020). From the 

100 ADMIXTURE runs for each K, we use CLUMPAK version 1.1 with default settings to 

compare solutions and produce major and minor clustering solutions. In parallel, average FST 

values were computed between all pairs of 8 populations, using the Hudson’s FST estimator 

(Bhatia et al. 2013) with standard error for each average computed using a block-jackknife 

procedure in scikit-allel. P-values were estimated from the z-score following The Ag1000G 

consortium (2017; 2020). 

 

To further explore the genetic relationship among populations, we performed an admixture 

graph analysis using AdmixtureBayses (Nielsen et al. 2023). Graphs were estimated using the 

pruned and polarized dataset of which individuals from Guinea were excluded due to their 

small sample size (n=5). We ran three independent MCMC chains each consisting of 

22,500,000 steps (-n 450000), discarding the first 50% as burn-in. All other parameters were 

left as default. Finally, to test whether rural and sylvatic LLP samples formed a single panmictic 

population, we compared the observed versus the permuted jSFS using δaδi version 1.6.3. 

Permuted jSFS was created using δaδi build-in function “scramble_pop_ids” from the 

dadi.Spectrum_mod which generates an average spectrum expected overall permutation of 

the individuals in the dataset.  

 

Genetic diversity 

We quantified the level of genetic diversity in each population by computing several 

descriptive statistics from chromosome arms 3L and 3R excluding the pericentromeric regions 
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with scikit-allel. Nucleotide diversity (π) and Tajima’s D were calculated in 10-kb non-

overlapping windows. Runs of homozygosity (ROH) were defined as contiguous regions of an 

individual’s genome where only homozygous blocks were identified through a HMM function 

implemented in scikit-allel as described in the (Anopheles gambiae 1000 Genomes Consortium 

et al, 2017). Following the AG1000G, all the autosomes were used for this analysis. Tracts of 

identity-by-descent (IBD) between all pairs of individuals within each of the 8 populations 

were inferred by IBDseq version r1206 (Browning and Browning 2013) with default 

parameters. Folded SFS (a.k.a. the minor allele frequency spectrum) was computed using 

allele counts using scikit-allel. To facilitate comparison with theoretical SFS for a population 

with constant size (expected to have the constant scaled frequency for all values of k), we 

scaled each folded SFS by a factor (k * (n – k) / n) where k is the minor allele count and n is the 

number of chromosomes following the Ag1000G (2017). LD decay was computed by 

calculating the genotype correlation coefficient r2 (Rogers & Huff, 2009) for randomly sampled 

pairs of SNPs at distances raging from 10 to 107 bp using scikit-allel. 

Demographic history 

 We estimated the long-term demographic history of each population from Gabon 

using Stairway plot v.2 (Liu and Fu 2020). This approach estimates Ne variation back to the 

time of the most recent common ancestor (TMRCA) based on the unfolded SFS. The full 

unfolded SFS was generated for each population using scikit-allel from the peri-centromeric 

euchromatic regions of chromosome 3 of the polarized SNP dataset (Anopheles gambiae 1000 

Genomes Consortium et al, 2017). To translate Stairway plot estimates of Ne and time into 

natural units (i.e., individuals and years respectively) we assumed a generation time of 11 per 

year and a mutation rate of 3.5 x 10-9 per bp (Keightley et al. 2014) and per generation 

following the Ag1000G (Ag1000G Consortium 2017). 

 We used δaδi (Gutenkunst et al. 2009) to infer the best fitting demographic model of 

population isolation, possibly with migration, between populations from LBV and LLP village 

using the polarized SNPs dataset on chromosome 3, without any LD-pruning nor any MAF 

filtering. We considered a total of eight alternative nested models of historical divergence, 

which were built on four basic population isolation models: (i) a model of Strict Isolation 

without gene flow (SI), (ii) a model of Isolation with continuous Migration (IM), (iii) a model of 

divergence with initial migration or Ancient Migration (AM), and (iv) a model of Secondary 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 21, 2024. ; https://doi.org/10.1101/2024.05.16.594472doi: bioRxiv preprint 

https://doi.org/10.1101/2024.05.16.594472


25 

Contact (SC). These models were extended to integrate temporal variation in effective 

population size (G), enabling exponential growth or contraction.  

 

For each population, the SFS was computed for a number of individuals projected onto the 

smallest population sample size (N=20 diploid samples for LLP village). A joined SFS (jSFS) 

between the pair of populations was generated for the sites in the genome that did not 

contain any missing data. The 8 models were fitted independently using successively a hot and 

a cold simulated annealing procedure followed by “BFGS” optimization (Tine et al. 2014). We 

set the grid points to {n, n + 10, n + 20}, where “n” is the number of haploid chromosomes 

(n=40). Model parameter bounds for Ne scalars were N ∈ (0.01, 100), for the population 

exponential growth parameter b ∈ (0.01, 100), for the time were T ∈ (0, 10), for migration 

were m ∈ (0, 50), and for the genotyping uncertainty O ∈ (0.01, 0.99). We ran 100 independent 

optimizations for each model to check for convergence and retrained the best one. 

Comparisons among models were based on the Akaike information criterion (AIC). We use the 

framework developed by (Rougeux et al. 2017) to address over-parametrization issue and to 

penalize models containing more parameters. We used a conservative threshold to retain 

models with ΔAIC<10. This procedure identified the best-fitted model to our data and involved 

a population isolation with secondary contact and exponential population size change (SCG). 

Model parameters were converted into natural units as follows: ancestral effective population 

size (Ne) was calculated by Ne = θ/(4.µ.l), where θ is the scaled population mutation rate 

(θ=4.Ne.µ.l), µ is the mutation rate per site and per generation (µ = 3.5 x 10-9), and l the length 

of the analyzed sequence (l = 39,359,290). The effective population size of populations 1 and 

2 are given in units of Ne1 = nu1 x Nref and Ne2 = nu2 x Nref, where nu1 and nu2 are the 

population size relative to the size Nref of the ancestral population. Estimation of times in 

units of 2Nref generations (Ts and Tsc) were converted into years assuming a generation time 

of 0.09 years (equal to 11 generation per year). Estimated migration rates (m12 and m21) 

were divided by 2Nref to obtain the proportion of migrants received by each population every 

generation. The number of migrants per generation were obtained by Nref x nu1 x m12 and 

Nref x nu2 x m21. To estimate parameter uncertainty, we used the Godambe information 

matrix method from δaδi. Nonparametric bootstrapping was used to generate 1,000 

bootstrapped data sets to estimate the 95% confidence intervals (CIs) using the standard error 

of maximum likelihood estimates (se) (Supplementary Table 3). 
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Identification of selection signatures 

To identify candidate genes and genomic regions impacted by selection histories that varied 

geographically between sylvatic, rural, and urban areas, we first compared allele frequencies 

and haplotype diversity between the sampling sites. Genome scan plots of between-

population statistics were computed using scikit-allel to report the Hudson’s FST estimator 

statistic and the average nucleotide difference between pairs of populations (Dxy). These 

statistics were computed in blocks of 1000 SNPs along the genome. To detect long stretches 

of homozygosity in a given population relative to another population (Sabeti et al, 2007) we 

estimated the XP-EHH using the R package rehh version 3.2.2 (Gautier et al. 2017) using the 

maxgap=20kb option to limit the extension of a haplotype through a gap of 20kb. P-value 

associated to each SNP was adjusted for the false discovery rate (FDR) with a threshold of 

0.05. Candidate regions were identified using the R function calc_candidate_regions from the 

rehh package with a minimum number of significant SNPs in the region equal to 3 

(min_n_extr_mrk=3) and a windows size of 10kb (window_size=1e4). All genes spanning the 

candidate regions were reported in the Supplementary Table 4. 

Deep learning classification of genomic windows to identify categories of selective sweeps.  
 
We used a deep learning approach based on the convoluted neural network (CNN) 

implemented in diploS/HIC (Kern and Schrider 2018) to classify genomics windows into five 

categories of selective sweep: hard sweep (or linked hard), soft sweep (or linked soft), or 

neutral (as a null hypothesis). Using the coalescent based simulator of discoal (Kern and 

Schrider 2016), we first generated simulations of 110kb genomic regions under the different 

categories of selection tested. These genomic regions were then further split into 11 sub-

regions of 10kb to allow the CNN classifier capture the genomic properties of the windows 

neighboring the central focal window. The training and test data sets were produced using the 

same properties and demographic histories as observed in each of our three Gabonese 

populations under the five different selection scenarios. The demographic history generated 

by Stairway plot2 for each population was used to generate simulated datasets as realistic as 

possible to our populations. A total of 2,000 training genomic regions and 1,000 testing 

regions with a single sweep were generated for each population, using as simulation 

parameters a per-site and per generation mutation rate of 3.5e-9 and 11 generations per year. 
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Once simulated, we first investigated the goodness-of-fit of the simulations to our observed 

data, and the prediction performance and accuracy of each of the model considered. These 

are critical steps to determine whether the model is well-trained and to assess decisions that 

could be made from poorly fitting models (A. Kern, pers. comm.). We assessed the goodness-

of-fit between the simulated and empirical data by visualizing the distribution of the observed 

values for each of the 12 descriptive statistics used by DiploS/HIC compared to the simulated 

distributions obtained for each type of selection (Supplementary Figure S11). For each 

descriptive statistic, a good convergence was observed between simulated and empirical data, 

with the only noticeable exception observed for the nucleotide diversity (π), which displays a 

reduced amount of diversity in our simulated dataset regardless of the population of interest. 

Then, the performance and accuracy of the CNN classifier for each model of selection were 

estimated using the confusion matrix (Supplementary Figure S12). In addition, samples from 

the LPV were found to exhibit a slight but significantly higher accuracy than the population 

from LBV and the LLP sylvatic area, conserved across all sweep types, indicating a better 

classification performance. In order to assess the convergence of the results, we generated 10 

different coalescent simulated datasets for each population and each dataset was used to 

train 10 times the CNN classifier, resulting in a total of 100 runs. In order to compare and 

interpret the convergence between the predictions of each run, we first filtered out selective 

sweep having a low probability of being neutral (p>0.01) and considered only sweep observed 

in at least 50% of our 100 replicated runs.  
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Figures legends 
Figure 1: Geographic sampling and population structure and admixture. (A) Sampling 
locations of the three focal populations in Gabon. A total of 96 An. coluzzii mosquitoes were 
collected in Libreville as larvae, or as adults in the village and sylvatic area of the La Lopé 
National Park (see Supplementary Table S1 for details). The geographic map of the National 
Park of La Lopé highlights the contrasted habitats that coexist in the park, with stable and 
permanent settlement of mosquitos observed in the village and the sylvatic areas. The base 
map was produced by digitizing the Gabonese land use map freely available from the Agence 
Nationale d’Étude et d’Observation Spatiale du Gabon (http://ageos.ga). (B) Geographic 
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locations of the 283 An. coluzzii mosquitoes analyzed for the population structure at the 
scale of West Africa. Colors of regional groups are consistent throughout the study. The size 
of sampling point is proportional to the sample size. (C) Population genetic structure 
captured by the top three principal components of the PCA (see also the scree-plot on 
Supplementary Figure 2A). (D) ADMIXTURE analyses of the An. coluzzii populations. Each bar 
shows the genetic ancestry proportions for each individual to each genetic cluster tested. 
The best fitting model according to the cross-validation error rates (Supplementary Figure 
S5B) was observed at K=3, but finer sub-structuration was clearly visible until K=6. See 
Supplementary Figure 3 for the different solution from K=2 to 9, and the associated cross-
validation (CV) error-rates. (E) Most likely population graph topology recovered with a 
posterior probability of 95.04% using AdmixtureBayes (Nielsen et al. 2023). The population 
graph was rooted using An. merus used as outgroup species. The graph is composed of leaf 
nodes (supported with posterior probabilities higher than 0.98) that are not the product of 
an admixture event (white circles). The numbers on the branch connecting populations 
capture the amount of genetic drift between populations. 
 
Figure 2: Genetic diversity of the African populations of An. coluzzii. Boxplots showing (A) 
the nucleotide diversity (π) and (B) the Tajima's D estimated in 10 kb non-overlapping 
windows. (C) Count and frequency of the runs of homozygosity (ROH) ≥ 100kb observed in 
the individual mosquitoes. Each point represents an individual mosquito. (D) Decay in 
linkage disequilibrium (r2) as a function of the physical distance between SNPs. (E) Minor 
allele frequency spectrum (MAF). (F) Scatterplot of the count versus the sum of runs of 
identity by descent (IBD) between individuals, with each dot representing a pair of 
individuals drawn from the same population. 
 
Figure 3: Demographic histories of the African populations of An. coluzzii estimated from 
genetic data. (A-B) Historical changes in effective population size (Ne) were inferred via 
StairwayPlots 2 (Liu and Fu 2020) for the three Gabonese populations (A) and for 
populations of the Ag1000G consortium (Ag1000G Consortium 2017) from Western Africa 
and Angola provided here as a comparison (B). The Ne values for of each population was 
rescaled using a generation time (g) of 11 years and a mutation rate (μ) of 3.5 × 10−8 per site 
and per year. The main-colored lines show the median estimates and light shade areas 
represent 95% confidence intervals. (C) Results of ∂a∂i (Gutenkunst et al. 2009) 2 population 
analysis. The top panel represents the observed joint site frequency spectrum (jSFS) for 
Libreville versus La Lopé village along with a secondary contact model fit (top right panel) 
and distributions of the residuals (bottom panel). (D) Visual representation of demographic 
model diagram fitting the best model to the jSFS of the populations from Libreville versus La 
Lopé village, together with the parameter estimates of the model. (see Supplementary Table 
S3 for details on parameters estimations) 
 
Figure 4: Signals of positive selection among Gabonese populations. (A) Genome scans of 
the XP-EHH statistic p-values calculated at the SNP level along the genome and plotted for all 
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pairwise populations comparisons. Each dot is colored to denote its significance, with gray 
dots indicating non-significant SNPs and colored dots representing significant value 
(pvalue<1e-4) suggesting positive selection. The color of the dot corresponds to the 
population in which the SNP has been found significant. (B) Proportion of the overall 
genomic windows (N=12,693) classified within the four different class sweeps in the 
DiploS/HIC analysis. Color code of the populations is consistent with Figure 1. 
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Supplement 
Supplementary Figure 1: (A) Workflow of the reads mapping and SNP genotyping 
procedures used. (B) Schematic overview of the different analysis and the input dataset 
used. 
 
Supplementary Figure 2: Sequencing coverage depth and SNP density along the genome. 
(A) Distribution of the mean sequencing depth of the 96 samples. Bars represent individual 
mosquito samples and are color-coded according to their sampling origin: Libreville (yellow); 
La Lopé village (blue); and La Lopé sylvatic (green). The horizontal line represents the 
coverage cut-off at 14x used to exclude samples below that threshold. (B) Coverage ratio of 
the mean sequencing depth for each chromosome over the coverage of the whole genome. 
This allowed to assign the sex of each individual, which was unknown for the larvae from 
Libreville (see Supplementary Table S1). (C) Density of the high-quality SNPs in 200-kb non-
overlapping windows over the genome. 
 
Supplementary Figure 3: Kinship analysis across the Gabonese dataset estimated with pair-
wise IBD estimator (PI_HAT) between samples in PLINK. The threshold 0.1875 represents 
the half-way point between 2nd and 3rd degree relatives and is a common cut-off to use. 
 
Supplementary Figure 4: (A) Scree-plot showing the variance fraction explained by each 
principal component of the PCA for the African An. coluzzii samples (combining the 
Gabonese and AG1000G datasets) represented in Figure 1. (B) PCA of the 77 An. coluzzii 
mosquitoes from Gabon retained for further analysis using biallelic SNPs from the 
euchromatic regions of the chromosome 3. The bar chart shows the percentage of variance 
explained by each principal component. 
 
Supplementary Figure 5: Analysis of population structure and genetic ancestry in An. 
coluzzii considering the Gabonese populations in perspective with those from the 
Ag1000G. (A) Individual ancestry proportions (from K=2 to K=10) were estimated using the 
ADMIXTURE program. Each vertical bar represents an individual mosquito grouped according 
to sampling location and colored according to the proportion of the genome inherited from 
each of the K ancestral clusters tested. (B) Box-plots showing the average (red dots), median, 
and interquartile values of the cross-validation (CV) error rate estimated using the 
ADMIXTURE program for each ancestral cluster tested (with K ranging between 2 and 10). 
Black dots show the CV error rate values for 100 replicated runs at each tested K values. K=3 
was chosen as the best-fitted solution for our SNP dataset, since that value minimizes the CV 
error rate. 
 
Supplementary Figure 6: Pairwise population differentiations (FST) among populations of 
An. coluzzii. Average differentiation in allele frequency estimated using the FST statistics 
between pairs of populations. Upper left portion of the matrix shows average FST values 
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between each population pair. Bottom right portion of the matrix shows the p-value derived 
from the z-score for each FST value estimated via a block-jackknife procedure. 
 
Supplementary Figure 7: Test of departure from random mating expectation (panmixia) 
between pairs of populations performed using δaδi. The left panels represent the observed 
joint site frequency spectrum (jSFS) between populations pairs along with a model fit and 
residuals using δaδi, for a “scramble” model where individuals are permuted across 
population. On the right panel, the null distribution of 𝜒2 values is obtained by measuring 
the deviation between 1000 replicates of permuted individual labels across the population 
pair to the scramble model. Vertical black line and value correspond to the 𝜒2	value 
calculated between the observed jSFS and the scramble jSFSmodel. This test of departure 
from panmictic expectation was performed for all population pairs including: La Lopé village 
versus La Lopé sylvatic (A), Libreville versus La Lopé village (B), and Libreville versus La Lopé 
sylvatic (C). 
 
Supplementary Figure 8: δaδi model selection based on the AIC score obtained for 8 
different models with 100 replicates. The lowest AIC score was observed for the model 
secondary contact with growth (SCG). 
 
Supplementary Figure 9: Genome scan of FST and Dxy statistics. Both statistics were 
calculated in 1000kb non-overlapping windows and plotted for all pairwise comparisons. 
Fine horizontal black lines indicate the heterochromatic regions excluded from the analyses, 
and dotted lines indicate known insecticide resistance genes.  
 
Supplementary Figure 10: Genome scan of XP-EHH scores calculated at the SNP level along 
the genome and plotted for all pairwise population comparisons. For each population 
comparison (e.g., LPV vs LBV), positive scores indicate longer haplotype homozygosity and 
therefore recent selection in the first population (e.g., LLP village), and negative scores 
indicate selection in the second population (e.g., LBV). Each dot has been colored by its 
associated p-value for the XP-EHH score, with shaded red and blue colors gradient 
representing non-significant SNPs, and red and blue representing significant SNPs (p-value < 
1e-4). Gray areas above the x-axis indicate heterochromatic regions excluded from our 
analysis, and dotted lines indicate candidate genes including known insecticide genes. 
 
Supplementary Figure 11: (A) Barplot representing the proportion of SNPs displaying 
significant p-value for the XP-EHH score for each of the 3 pairwise population comparisons. 
Color code represents the population in which the SNP has been found significant (Yellow – 
LBV; Green – LLP sylvatic; Blue – LLP village). (B) Functional annotation of the SNPs identified 
as significant using the XP-EHH scores in each of the three pairwise comparisons. 
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Supplementary Figure 12: Goodness-of-fit between empirical and simulated data under 
the 5 different types of selection scenarios of selective sweep in the diploS/HIC analysis. 
The distributions obtained for each of the 12 summary statistics used in diploS/HIC and for 
each population (LBV, LPV, LPS) are displayed for the simulated (red) and empirical (blue) 
data. 
 
Supplementary Figure 13: Graphical representation of the confusion matrix. Each matrix is 
represented in form of a barplot, with each facet of the figure represent the true label of 
each testing set, the x-axis represents the predicted type of selective sweep and the y-axis 
the proportion of windows assigned to each sweep type. Each barplot consist of the average 
of the 100 replicates with the confidence interval represented as error bar. 
 
Supplementary Table 1: Description of the An. coluzzii sampling from Gabon for which 
whole genome sequencing was performed and sequencing statistics. 
 
Supplementary Table 2: Comparison among the 8 models of population isolation 
estimated with δaδi. For each models the fittest model has been determined based on the 
lowest maximum likelihood (MLE) value. Comparisons among models were based on the 
value of Akaike information criterion (AIC) and the ΔAIC value. The optimized demographic 
parameter values for each of the 8 models tested were converted with the estimate of Theta 
(θ): the ancestral effective population size before population split (Nref); the effective 
population size after split for La Lopé rural (nu1) and Libreville (nu2) populations; the 
exponential growth coefficient for La Lopé rural (b1) and Libreville (b2) populations. The b 
parameter is defined as a ratio of contemporary to ancestral effective population size 
(ancestral meaning after splitting time). Population showing an exponential growth is 
associated with bi>1 and reduction in population effective size with bi<1. Migration 
parameters include migration rates from Libreville population into La Lopé rural population 
(m12) and reciprocally (m21). Time parameters include the duration (in years) of the allopatric 
divergence period (Tsplit), and the duration of the migration period (i.e., TAM for the AM 
models and TSC for the secondary contact models). The parameter (O) is the proportion of 
correct SNP orientation. The estimated value of each parameter was converted so that 
migration rates represent the fraction of a population replaced by migrants every 
generation, and temporal parameters appear in years. 
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Supplementary Table 3: Details of the demographic parameter values estimated by δaδi 
for the best fit model of secondary contact with population size change (SC+G). The 
optimized demographic parameter values were converted with the estimate of Theta (θ): 
the ancestral effective population size before population split (Nref); the effective 
population size after split for La Lopé rural (nu1) and Libreville (nu2) populations; the 
exponential growth coefficient for La Lopé rural (b1) and Libreville (b2) populations. The b 
parameter is defined as a ratio of contemporary to ancestral effective population size 
(ancestral meaning after splitting time). Population showing an exponential growth is 
associated with bi>1 and reduction in population effective size with bi<1. Migration 
parameters include migration rates from Libreville population into La Lopé rural population 
(m12) and reciprocally (m21). Time parameters include the duration (in years) of the allopatric 
divergence period (Tsplit), and the duration of the migration period (i.e., TAM for the AM 
models and TSC for the secondary contact models). The parameter (O) is the proportion of 
correct SNP orientation. The estimated value of each parameter was converted so that 
migration rates represent the fraction of a population replaced by migrants every 
generation, and temporal parameters appear in years. Parameters uncertainties and 95% 
confidence intervals were estimated based on the Godambe Information Matrix, computed 
from 100 bootstrapped data sets (uncert_GIM function of dadi. Godambe module). 
 

# Dadi parameters and biological units   
  parameters biological units ci_low ci_upp 
nu1 6.08       865 159.02  0       6 054 973.88  
nu2 2.05       292 460.51  0       7 667 286.19  
b1 0.10 0.10 0.09 0.11 
b2 0.31 0.31 0.25 0.37 
m12 8.26 0.000029 0 8.26 
m21 4.68 0.000016 0 4.68 
Ts 0.30 7624.43 0       6 586 498.64  
Tsc 0.17 4431.69 0         741 840.30  
O 0.99 0.99 0.98 1.00 
Nref       78 429.51        142 332.55  0      82 941 978.22  

 
 
Supplementary Table 4: Candidate regions and genes identified by the XP-EHH test from 
rehh program, and functional annotation of the significant SNPs included in those regions.  
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