
HAL Id: hal-04782265
https://hal.science/hal-04782265v1

Preprint submitted on 14 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Marmot: Extraction of Fine-Grain Memory Access
Profiles for real-time software

Hector Chabot, Isabelle Puaut, Thomas Carle, Hugues Cassé

To cite this version:
Hector Chabot, Isabelle Puaut, Thomas Carle, Hugues Cassé. Marmot: Extraction of Fine-Grain
Memory Access Profiles for real-time software. 2024. �hal-04782265�

https://hal.science/hal-04782265v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Marmot: Extraction of Fine-Grain Memory Access Profiles for
real-time software

Hector Chabot
Univ Rennes, Inria, CNRS, IRISA

FR
hector.chabot@inria.fr

Isabelle Puaut
Université de Rennes

FR
isabelle.puaut@irisa.fr

Thomas Carle
IRIT - University of Toulouse

FR
thomas.carle@irit.fr

Hugues Cassé
IRIT - University of Toulouse

FR
hugues.casse@irit.fr

Abstract
Enforcing deadlines in real-time systems calls for the computation
of an upper-bound of the Worst-Case Execution Time (WCET) of
tasks. In multi-core systems, shared-resource usage leads to interfer-
ence between tasks running on parallel cores, resulting in additional
delays in the execution time of tasks. Schedulability analysis tech-
niques rely on Interference-Aware WCET of tasks (IA-WCET, WCET
integrating delays resulting from interference) to safely consider
these delays. Calculation of IA-WCET requires knowledge about the
worst-case shared-resource usage of tasks, in the form of a memory
access profile as far as shared memory accesses are concerned.

State-of-the-art memory profiles only provide coarse-grain in-
formation (at the level of an entire task), resulting in pessimism
in IA-WCET computation. More recent solutions propose to refine
the information available in memory profiles, but are still limited:
they lack information about shared-resource usage of code inside
loops and are unable to use contextual information, which leads
to over-approximation. This paper presents Marmot, a technique
that extends recent memory access profile extraction solutions for
real-time software. In Marmot, tasks are split in successive intervals,
with the worst-case resource usage of each interval described as
a distribution instead of a single value. Experimental results show
that IA-WCET computation and schedulability analysis can take
advantage of the fine-grain intervals produced by Marmot to obtain
more precise IA-WCET and therefore higher schedulability than
coarser-grain profiles.

CCS Concepts
• Computer systems organization→ Real-time systems;Mul-
ticore architectures; Embedded systems.

Keywords
Worst-Case Execution Time Estimation, Static Analysis, Multicore,
Interference, Event Arrival Function

This work is licensed under a Creative Commons Attribution International
4.0 License.

RTNS 2024, November 06–08, 2024, Porto, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1724-6/24/11
https://doi.org/10.1145/3696355.3696360

ACM Reference Format:
Hector Chabot, Isabelle Puaut, Thomas Carle, and Hugues Cassé. 2024.
Marmot: Extraction of Fine-Grain Memory Access Profiles for real-time
software. In The 32nd International Conference on Real-Time Networks and
Systems (RTNS 2024), November 06–08, 2024, Porto, Portugal. ACM, New York,
NY, USA, 25 pages. https://doi.org/10.1145/3696355.3696360

1 Introduction
Tasks in real-time systems interact with the external world in a
timely manner. In hard real-time systems, this translates to the need
of meeting a deadline to avoid catastrophic consequences. This has
motivated research in estimation of upper bounds of execution
times (Worst-Case Execution Times, WCET) [26]. Scheduling tech-
niques and associated schedulability tests then use the produced
WCET bounds to ensure that deadlines aremet, even if tasks execute
up to their WCET [4].

Static WCET estimation techniques have been extensively stud-
ied in the literature, and different approaches have been designed for
single-core processors [26]. However, multi-cores have made their
way into these systems as they offer good processing power and low
energy consumption. WCET estimation techniques for single-core
platforms cannot be used unmodified, as some hardware resources
in multi-core architectures (last level caches, interconnect, memory
controllers) can now be shared between the different cores. Shared
resource usage leads to conflicts named interference, which add
delays in a task execution because accesses to shared resources
need to be arbitrated.

Different classes of techniques, surveyed in [17], were designed
to account for interference. They either avoid interference, through
hardware of software-enforced policies (e.g. time-division multi-
ple access bus arbitration, software-enforced memory bandwidth
regulation [27], exploitation of multi-phase models such as PREM
– PRedictable Execution Model – [22] that separate computation
phases and memory phases) or calculate the delay resulting from
interference using knowledge of resource usage for all tasks.

Accounting for interference requires knowledge of the usage of
shared resources by tasks, which led to research on how to obtain
such information. Without loss of generality, we focus in this paper
on accesses to the shared memory. The term memory access profile
will be used to denote any kind of curve, from the most simple
to the most complex, giving information on the memory accesses
performed by tasks.

https://orcid.org/0009-0008-7599-1562
https://orcid.org/0000-0001-9310-9651
https://orcid.org/0000-0002-1411-1030
https://orcid.org/0000-0002-9298-5235
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3696355.3696360
https://doi.org/10.1145/3696355.3696360


RTNS 2024, November 06–08, 2024, Porto, Portugal Hector Chabot, Isabelle Puaut, Thomas Carle, and Hugues Cassé

The simplest technique is coarse-grain and produces as memory
access profile a flat curve, giving the worst-case number of memory
accesses for the entire task. More recent techniques extract phases
from the binary code of tasks, and produce a memory access profile
for each phase. For example, the work introduced in [24] proposes a
static analysis technique that converts a program into a conditional
sequence of PREM phases, each phase either performing shared
memory accesses or no access at all, with the idea of avoiding
contention at run-time. StAMP [7] splits the code of tasks in a
sequence of consecutive intervals, each of them having its own
WCET and worst-case number of memory accesses (WCMA). The
research presented in [20] and [5] calculates the distribution of
memory accesses in the execution window of an entire task.

In this paper, we introduce Marmot (Extraction of Fine-Grain
Memory Access Profiles for real-time software), a static analysis
tool that extracts detailed memory access profiles from the exe-
cutable code of legacy software. Marmot builds upon and improves
existing techniques used to statically analyze binaries in order to
produce memory access profiles. Marmot uses StAMP [7] to split
the code of tasks in a sequence of consecutive intervals. An ex-
tension of Event Arrival Curves (EAC) from [20] is then used to
produce detailed information on the distribution of accesses within
each interval. The contributions of Marmot are twofold:

• Introduction of detailed per-interval WCMA curves, through a
combination of the work of StAMP [7] and EAC [20], which
brings the following benefits:
– Scheduling algorithms and corresponding schedulability
analysis can operate at the interval level, resulting in re-
duced overall cost of interference.

– The introduction of WCMA curves in each interval allows
schedulers to further reduce interference delays.

• Consideration of contextual informationwhen calculating per-
interval WCMA curves. This allows to handle the situations
in which the number of shared memory accesses depends
on the execution context of the code snippet under analysis
(first versus next occurrences of a memory access in a loop
nest, call point of the code snippet).

Experimental results, conducted on the TACLeBenchmark col-
lection [10] demonstrate that: (i) using the execution context of
intervals allows to obtain more precise memory profiles than the
(non-contextual) state-of-the-art EAC technique described in [20];
(ii) the number of memory accesses to be considered when cal-
culating the Interference-Aware WCET (IA-WCET) of a task is sig-
nificantly reduced compared to concurrent techniques; (iii) this
reduced number of memory accesses allows an overall reduction
of interference delays.

The paper mainly concentrates on the extraction of memory
access profiles. It also shows on examples that the IA-WCET of a
task, assuming the concurrent task executing on the other core is
known, is smaller than when using state-of-the-art solutions. We
also illustrate the benefit of using the produced memory access
profiles on off-line time-triggered scheduling. Marmot was clearly
designed with off-line time triggered scheduling in mind. We be-
lieve that this class of scheduling algorithm benefits the most from
our approach, since at any time the set of tasks executing concur-
rently are known. However, the profiles produced by Marmot are

BMemory
Accesses

0 100 200 300 400 500 600 700 800 900 1000
Cycles

Memory
Accesses

0 100 200 300 400 500 600 700 800 900 1000
Cycles

R
25

60

Figure 1: Memory profiles of the task set of the motivating
example. Task 𝑅 has a WCET of 400 cycles and performs 25
memory accesses, while task 𝐵 has a WCET of 800 cycles and
performs 60 memory accesses.

0 100 200 300 400 500 600 700 800 900 1000
Cycles

R

B

Core1
Core2

Figure 2: Possible schedule and resulting interference delays
when calculating interference delays at the task level. The
WCET of tasks is represented in solid colors and the addi-
tional interference delays in stripes.

not restricted to a specific scheduling algorithm. A larger set of
scheduling algorithms (off-line, on-line, dynamic and static priori-
ties) could leverage the newly-gained precision, but we consider the
usage of Marmot profiles by the different classes of schedulability
tests as out of scope.

The rest of this paper is organized as follows. Section 2 first
gives a motivating example. Section 3 then provides background
on recent techniques Marmot builds upon, and compares Marmot
with related work. Section 4 presents the core of Marmot, that
extracts detailed memory access profile curves from executable
code. Section 5 is devoted to an experimental evaluation of Marmot.
Finally, Section 6 concludes this paper.

2 Motivating Example
Let us introduce a simple example of the computation of interfer-
ence delays during schedulability analysis to motivate our research,
using for illustration purposes static off-line scheduling. Let us con-
sider a system with two tasks, 𝑅 and 𝐵, with their task-level WCMA
depicted in Figure 1. 𝑅 has a WCET of 400 cycles (in isolation,
excluding interference delays) and performs 25 memory accesses,
whereas 𝐵 has a WCET of 800 cycles and performs 60 memory ac-
cesses. For the sake of illustration, let us assume that the contention
delays’ upper bound is 10 cycles when a memory access from one
core may interfere with another access from another core, and that
the memory controller follows a Round-Robin policy. Any access
performed by a core can thus suffer from at most one contention
per concurring core.



Marmot: Extraction of Fine-Grain Memory Access Profiles for real-time software RTNS 2024, November 06–08, 2024, Porto, Portugal

B3Memory
Accesses

Cycles
0 100 200 300 400 500 600 700 800 900 1000

R2R1
Memory
Accesses

0 100 200 300 400 500 600 700 800 900 1000

B2B1
5 5

25
30

10
15

Figure 3: Memory profiles of the task set with interval separa-
tion. 𝐵’s second interval’s memory access count is distributed
over time: it first stagnates at 5 memory accesses before ris-
ing to the final value of 25 at the end of the interval.

In the selected example, 𝐵 and 𝑅 are scheduled concurrently on
two cores such that there exists a period of time where both tasks
run concurrently. Note that the tasks share the same starting date
solely for the sake of the example, no assumptions are made about
the scheduling algorithm. Every memory access from 𝑅 must be
considered as suffering from contentions from 𝐵 and vice-versa.
Thus, a maximum of 25 concurrent accesses between the two tasks
has to be considered, with each access suffering from a contention.
The interference delay suffered by both 𝑅 and 𝐵 is thus 250 cycles.
Figure 2 shows the final scheduling on two cores 𝐶1 and 𝐶2 with
the interference delays considered.

In Marmot, tasks are split in multiple consecutive intervals. Fig-
ure 3 shows the new memory profiles with intervals extracted by
Marmot: 𝑅 is split in two consecutive intervals (𝑅1 and 𝑅2) and 𝐵 in
three intervals (𝐵1, 𝐵2 and 𝐵3). The curve inside 𝐵2 will be discussed
later, but for now let us assume that 𝐵2 performs 25 accesses in the
worst case. The WCET and memory access count is split between
the different intervals. By scheduling intervals instead of entire
tasks, calculation of interference delays can rely on the WCMA
count of intervals instead of the overall task’s WCMA. Figure 4
shows a scheduling example on its topmost part. 𝑅1 and 𝐵1 are
scheduled concurrently leading to a maximum of 5 contentions
for each interval in the worst case as 𝐵1 has a WCMA of 5 and 𝑅1
a WCMA of 10. In the same manner, we consider at most 15 con-
tentions between 𝑅2 and 𝐵2. The final interval 𝐵3 has no concurrent
interval and therefore does not suffer from contentions. The final
total interference delay considered for both cores is reduced to 200
cycles each.

Beyond splitting the code into consecutive intervals, Marmot
further provides a distribution of the number of worst-case memory
accesses for each interval instead of a single value, as depicted in
Figure 3 for interval 𝐵2. The curve inside the interval is a step
function that gives for each date in the interval a conservative
approximation of the maximum number of memory accesses that
may have occurred on that date since the start of the interval. As a
result, accesses are not accounted for sooner than they may occur.
The step function naturally reaches the WCMA value before the
end of the interval. This information can be leveraged to further

0 100 200 300 400 500 600 700 800 900 1000
Cycles

100 200 300 400 500 600 700 800 900 1000
Cycles

Core1
Core2

5 25

R1 R2
B2 B3B1

R1 R2
B3B1 B2

Core1
Core2

Figure 4: Possible schedule and resulting interference delays
when calculating interference delays at the level of intervals.
The topmost figure considers a single WCMA value per inter-
val while the bottom-most figure account for the distribution
of WCMA provided by Marmot.

improve the precision of the interference analysis. In our example,
𝐵2 performs at most 5 memory accesses for most of the time of
its execution, before attaining the maximum value of 25 memory
accesses.

Figure 4 shows on its bottom-most part the scheduling of in-
tervals with their interference delays when considering the distri-
bution of worst-case memory accesses. We observe that 𝑅2 only
overlaps with the start of 𝐵2. Marmot’s memory profile ensures that
no more than 5 shared memory accesses can be performed by 𝐵2
in the period where both tasks overlap, thus the method accounts
for a maximum of 5 contentions for each task in the worst case.
The overall contentions count is reduced to 10, with 5 happening
between 𝑅1 and 𝐵1 and 5 between 𝑅2 and 𝐵2 leading to a delay con-
sidered for both tasks of 100 cycles. This offers the earliest finish
time for the task set compared to the previous solutions.

3 Background and Related Work
As stated before, the concept of multi-phase representation of tasks
was introduced with PREM [22], which is often referred to as the
2-phase model, and AER ([9, 23]), also known as the 3-phase model.
These models have since been successfully used in optimizing com-
piler methods (e.g. [11]) to suppress contentions, and in conjunction
with online scheduling algorithms in order to tolerate contentions
and to bound their effect [2]. Recently, a version of the multi-phase
model featuring an arbitrary number of phases has been proposed
simultaneously in [18], using Time Interest Points, and in [7], using
Single-Entry-Single-Exit intervals.

Marmot builds upon and improves existing techniques, which
are presented in this section, used to statically analyze binaries in
order to produce memory access profiles. Section 3.1 first presents
the Implicit Path Enumeration Technique (IPET) [16], originally
used for WCET calculation but also used by EAC [20] to generate a
distribution of memory accesses in the code of a task. Section 3.2
then presents two recent works (StAMP [7] and EAC [20]) used and
improved by Marmot to extract memory access profiles. Details on
the equation system used by EAC and based on IPET are given in
Section 3.3.



RTNS 2024, November 06–08, 2024, Porto, Portugal Hector Chabot, Isabelle Puaut, Thomas Carle, and Hugues Cassé

Figure 5: The CFG of a program containing an if-then-else
construct. Each basic block 𝑖 is annotated with its localWCET
𝑍𝑖 and event contribution 𝐶𝑖 (see Section 3.3).

3.1 WCET calculation using IPET
Most WCET computation techniques rely on the Control-Flow
Graph (CFG) representation of a program to perform their analysis.
A CFG is a directed graph describing the possible flows of execution
of a program. CFG nodes are basic blocks, defined as straight-line
code sequences with no branches in except to the entry and no
branches out except at the exit. Directed edges represent the control
flow between basic blocks.

IPET, as originally introduced in [16], is a WCET computation
technique that relies on the CFG of a program to identify its longest
execution path. IPET translates the WCET calculation problem into
an Integer Linear Programming (ILP) equation system, in which the
integer variables to be calculated represent the execution counts of
nodes and edges along the longest execution path. Linear equations
represent the constraints on the control flows in the CFG, that stem
from the structure of the code (loops, conditional constructs). The
objective function to be maximized in the ILP system to calculate
the WCET is the sum of the timing contributions of all nodes.

As an example, let us consider the CFG displayed in Figure 5,
where each node 𝑖 is annotated with its worst-case timing contribu-
tion in isolation𝑍𝑖 . In the system of equations, variables𝑛𝑖 represent
the execution counts of nodes (e.g.𝑛𝐴 for node𝐴) whereas variables
𝑒𝑖, 𝑗 represent the execution counts of edges between nodes (e.g.
𝑒𝐴,𝐵 for the edge from node 𝐴 to node 𝐵).

The constraint representing the possible paths after node 𝐵 is
shown in Equation (1). The two outgoing edges from node B, 𝑒𝐵𝐶
and 𝑒𝐵𝐷 , are linked to the node’s variable 𝑛𝐵 . The sum operation
works as an OR operator: only one of the two edges can be consid-
ered for every execution of node 𝐵.

𝑒𝐵,𝐶 + 𝑒𝐵,𝐷 = 𝑛𝐵 (1)

In the same manner, other constraints limit the number of itera-
tions of loops and account for function calls that alter the control
flow. The objective function to be maximized on the example is
given in Equation (2).

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 : 12𝑛𝐴 + 22𝑛𝐵 + 14𝑛𝐶 + 37𝑛𝐷 + 5𝑛𝐸 (2)

In our example, only two possible paths can be taken in the CFG:
𝐴−𝐵−𝐶−𝐸 or𝐴−𝐵−𝐷−𝐸. As𝐷 holds a bigger timing contribution
than 𝐶 (37 against 14), the maximal solution corresponds to path
A-B-D-E, for an overall WCET of 73.

3.2 Techniques for memory access profile
extraction

Marmot is based on two recent techniques that extract memory ac-
cess profiles from binary codes: StAMP [7] and EAC (Event Arrival
Curves) [20].

StAMP produces profiles made of consecutive intervals, each of
them having its own WCET and worst-case number of memory
accesses (WCMA). To compute its profiles, StAMP first extracts
Single-Entry Single-Exit (SESE) regions in linear time [15] from the
binary code of the task. SESE regions are defined as sub-graphs of
the CFG that hold a unique entry and exit point where the execution
flow always passes. Intervals are built as the aggregation of one or
more SESE regions. The properties of SESE regions (unique entry
and unique exit) guarantee that the intervals built from the SESE re-
gions are consecutive and non-overlapping. As intervals are defined
as sub-graphs of the CFG, state-of-the-art static WCET estimation
tools can then be used to calculate the WCET and WCMA of each
interval. The modification of WCET estimation tools to calculate
WCET and WCMA are minimal, because the SESE property holds
for intervals. Examples of intervals as extracted by StAMP are the
two intervals of task 𝑅 as depicted in Figure 3.

An Event Arrival Curve (EAC), as defined in [20], is a curve that
gives the worst-case number of events that can occur during the
execution of a task in any time window of a given length. Events,
as defined in [20], are any action that can occur in the code of a
task. The curve is computed using modified IPET equations: (i) the
objective function in the modified IPET formulation maximizes the
number of events instead of the timing as in the original IPET; (ii)
the time window onwhich the number of events has to be evaluated
is a constraint in the ILP formulation. The solving of multiple IPET
equations for different timing windows allows the profile to hold
a distribution of events in the form of a curve instead of a single
value for analyzed tasks. An example of EAC is the curve of the
second interval of task 𝐵 in Figure 3.

Events may be any action that occurs within the code of a task,
such as peripheral accesses or memory accesses. However, the
IPET formulation introduced in [20] is non-contextual: it is assumed
that the event occurs in all execution contexts of the task. When
applied to the estimation of WCMA, the obtained curve is thus
overly pessimistic in architectures with caches, because it assumes
that a memory access occurs all the time. As further detailed in
Section 4 Marmot reduces this pessimism through the introduction
of a contextual IPET formulation which is an original contribution
of the paper.

3.3 Equation system used to produce EACs
This Section details the equation system, inspired from IPET, de-
fined in [20] to calculate Event Arrival Curves (EACs), with a non-
contextual occurrence of events. Table 1 defines the notations used
in these equations and all equations in this paper.

𝐶𝑖 is the event contribution from basic block 𝑖 , whereas 𝑍𝑖 is its
timing contribution. Both values are considered as constants in the
IPET formulation. The total timing and event contributions of a
basic block 𝑖 depend on the number of times a flow enters the basic
block, as expressed in Equations (3) and (4). Expression

∑
𝑗𝜖P𝑖

𝑒 𝑗,𝑖



Marmot: Extraction of Fine-Grain Memory Access Profiles for real-time software RTNS 2024, November 06–08, 2024, Porto, Portugal

Definitions
Sets B Set of basic blocks

P𝑖 Predecessors of basic block 𝑖
𝐶𝑖 Event contribution of basic block 𝑖
𝑍𝑖 Timing contribution of basic block

𝑖

Variables 𝑐𝑖 Event contribution of basic
block 𝑖 in the critical path

𝑧𝑖 Time contribution of basic
block 𝑖 in the critical path

𝑒 𝑗,𝑖 Execution count of edge
from 𝑗 to 𝑖 in the critical path

𝑒𝑛𝑡𝑟𝑦_𝑒𝑑𝑔𝑒𝑙 Execution count of outer edge
leading to 𝑙 ’s loop header

Annotations 𝑓 𝑖𝑟𝑠𝑡 First context of execution
of a loop

𝑛𝑒𝑥𝑡 Next context of execution
of a loop

𝑐𝑐𝑥 Context 𝑥 of execution
of a function

Table 1: Notations used in the equation system. Annotation
can be attached to sets and variables.

in the equation expresses the number of times node 𝑖 is executed,
by accumulating the execution counts of preceding edges.

𝑐𝑖 =
∑︁
𝑗𝜖P𝑖

𝑒 𝑗,𝑖𝐶𝑖 (3)

𝑧𝑖 =
∑︁
𝑗𝜖P𝑖

𝑒 𝑗,𝑖𝑍𝑖 (4)

To find a path with the worst event contribution, the equation
system of EAC implicitly considers all possible sub-paths inside
a CFG, in the sense any node can be a starting or ending node in
the path. Specific constraints ensure that only one of the nodes
is the starting and/or ending node. Other constraints, similar to
the original IPET, express the possible control flows in the CFG,
and specify loop bounds. For space considerations, the reader is
referred to the original publication [20] for the complete list of flow
constraints.

The EAC curve is computed by solving multiple systems of equa-
tions for different sizes of timing windows ranging from 1 cycle to
the WCET of the task. Equation (5) constrains the timing of the pro-
gram to be lower than the window size, by summing the individual
contributions of individual basic blocks.∑︁

𝑖𝜖B
𝑧𝑖 ≤ 𝑤𝑖𝑛𝑑𝑜𝑤_𝑠𝑖𝑧𝑒 (5)

Finally, the objective function aims at maximizing the event
contribution of the final path found.

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 :
∑︁
𝑖𝜖B

𝑐𝑖 (6)

The event contribution 𝐶𝑖 for each basic block 𝑖 is context-
agnostic. Accounting of the results of static cache analysis tech-
niques (e.g. a memory reference in a loop results in a miss at its

first occurrence and in hits at the following occurrences) cannot be
directly integrated in EAC, except if all accesses are considered as
misses, which results in very pessimistic curves. Through Marmot,
we propose a contextual modeling of event counts to obtain precise
profiles.

4 Marmot: Generation of Fine-Grain Memory
Access Profiles

4.1 Architecture model and assumptions
Our work targets multi-core systems with shared memory (DRAM).
Each core may have a local cache hierarchy (local L1 instruction
and/or data caches in the simplest configuration or a more complex
local cache hierarchy).

It is assumed that for every memory reference, to code or data,
a static cache analysis is able to determine if the reference will be
served by the core-local cache hierarchy or may be served by the
shared memory, and thus may suffer from contention. More pre-
cisely, it is assumed that for every instruction, data and instruction
cache analyses are led to provide a Cache Hit Miss Classification
(CHMC)1 with the following Categories [1, 13]:

• Always-Hit (AH): the reference will always result in a cache
hit,

• Always-Miss (AM): the referencewill always result in a cache
miss,

• First-Miss (FM): the reference could neither be classified as
hit or miss the first time it occurs but will result in cache
hits afterwards,

• Not-Classified (NC) in all other cases.

Some data cache analysis methods can also analyze accesses per-
formed by loops over their entire execution span [6, 25]. In this
case, the number of shared memory accesses is provided for a loop
instead of specific instructions inside of it. Integration of these
classes of analyses in Marmot is left for future work. Marmot is
still applicable when no static cache analysis exists for the core-
local cache hierarchy. In such a case, all memory accesses will be
classified as NC, which will inevitably lead to pessimism.

4.2 Overview of Marmot
The outcome of Marmot is a sequence of intervals, each holding a
distribution of shared memory accesses, as explained below:

• Intervals. An interval is a subset of the task’s CFG, with
a single entry-point and a single exit-point. Intervals are
consecutive: the exit-point of each interval is the entry-point
of the next interval in the sequence of intervals. Each interval
is characterized by its WCET (considered in isolation, i.e.
excluding interference delays), and a distribution of shared
memory accesses, as explained just after.

• Distribution of shared memory accesses. For each interval, the
WCMA is defined as a distribution of shared memory ac-
cesses, through a non-decreasing step-function, that for any
time 𝑡 since the start of the interval, counts the worst-case

1On a multi-level cache hierarchy, only the last-level cache misses are considered as
shared memory accesses.



RTNS 2024, November 06–08, 2024, Porto, Portugal Hector Chabot, Isabelle Puaut, Thomas Carle, and Hugues Cassé

i += 1;
Jump if i >= 100;

x = array[i];
j += x;

Store j;
Jump back to main

function;

StAMP profile's
extraction

EAC profile's extraction
at interval-level

As Bs

A

B

10

100

W
or

st
-C

as
e 

M
em

or
y

A
cc

es
se

s 
am

ou
nt

500 4000 4200250
Cycles

10

100

W
or

st
-C

as
e 

M
em

or
y

A
cc

es
se

s 
am

ou
nt

500 4000 4200250
Cycles

Am
Bm

Aeac Beac

Figure 6: Marmot’s steps to compute its memory access profiles from the binary code of a task.

number of memory accesses that may occur since the inter-
val start. The last point in the curve counts the maximum
number of accesses in the entire interval.

Marmot builds memory access profiles by combining StAMP’s
ability to decompose a CFG into intervals, and the equation system
of EAC to derive a distribution of shared memory accesses for
each interval. Figure 6 illustrates Marmot’s workflow on a simple
example, in which the task under analysis is composed of a loop
that loads a new array element at each iteration, followed by a
simple epilogue. Marmot proceeds in two steps:

(1) The first step consists in decomposing the CFG (depicted
on the left, with memory access instructions in bold font)
into intervals. This is achieved using StAMP with no modifi-
cation. In the example, two intervals are found: 𝐴, in light
purple, and 𝐵, in dark purple. The profile of these intervals as
computed by StAMP is then a flat curve with a single WCMA
value per interval (𝐴𝑠 and 𝐵𝑠 in the middle of Figure 6, with
𝑠 standing for StAMP).

(2) The second step refines the StAMP’s profiles to obtain distri-
butions of memory accesses in the intervals. An application
of the original equation system of EAC’s results in the light
(resp. dark) purple interval denoted 𝐴𝑒𝑎𝑐 (resp. 𝐵𝑒𝑎𝑐 ) in the
right-most part of Figure 6. However, simply applying the
equations of EAC that lack of contextual information would
result in pessimistic WCET and WCMA for the intervals,
as each access would be considered as resulting in a cache
miss. This would result in the profile 𝐴𝑒𝑎𝑐 having very large
WCET and WCMA counts. To avoid this pitfall, in Marmot
we extend the equation system with contextual information.
The result of our example is pictured in dots in the right-
most part of Figure 6, with each interval annotated m for
Marmot. Note that 𝐴𝑚 and 𝐵𝑚 both hold the same WCET
and final WCMA value as 𝐴𝑠 and 𝐵𝑠 , but the representation
of theWCMA as a step function that slowly increases is more
precise than a flat integer value over the whole interval.

As opposed to the previously mentioned techniques, the next
two subsections present our own contribution that extends the

EAC’s equation system to account for contextual memory accesses.
Section 4.3 presents the consideration of contexts for loops, while
Section 4.4 presents the consideration of calling contexts. A com-
paratively minor and straightforward modification of EAC was to
constrain the paths under consideration to start at the beginning
of an interval.

4.3 Improved Loop handling in EAC equations
Static cache analysis tools provide a different number of shared
memory accesses and timing contribution for instructions inside
of loops depending on their context of execution (first occurrence
versus next occurrences). A typical situation is the First-Miss (FM)
classification of a Load instruction inside a loop, in which the in-
struction could neither be classified as hit or miss the first time it
occurs but will result in cache hits afterwards.

To accurately take into consideration these contexts, the event
contribution 𝐶𝑖 and timing contribution 𝑍𝑖 of a basic block 𝑖 in the
equation system of the original EAC are not represented as a single
value anymore. For the remainder of this section, we will refer to
the two possible contexts inside loops as the first context and the
next context. To implement these two contexts, we split the edge
variables in two, to express the possible contexts: 𝑒 𝑓 𝑖𝑟𝑠𝑡

𝑗,𝑖
for the first

occurrence and 𝑒𝑛𝑒𝑥𝑡
𝑗,𝑖

for the next.

𝑒 𝑗,𝑖 = 𝑒
𝑓 𝑖𝑟𝑠𝑡

𝑗,𝑖
+ 𝑒𝑛𝑒𝑥𝑡𝑗,𝑖 (i)

The final event and timing contribution of nodes inside a loop
(𝑐𝑖 and 𝑧𝑖 ) are modified in the equation system to refer to the new
edges and results of static cache analysis (values of 𝐶𝑖 and 𝑍𝑖 for
the first and next occurrence). These contributions were defined in
equation (3) and equation (4) in the original EAC equations. Their
modifications are shown in equation (ii) for the event contribution
and equation (iii) for the timing contribution.

𝑐𝑖 = 𝐶
𝑓 𝑖𝑟𝑠𝑡

𝑖

∑︁
𝑗∈𝑃𝑖

𝑒
𝑓 𝑖𝑟𝑠𝑡

𝑗,𝑖
+𝐶𝑛𝑒𝑥𝑡

𝑖

∑︁
𝑗∈𝑃𝑖

𝑒𝑛𝑒𝑥𝑡𝑗,𝑖 (ii)



Marmot: Extraction of Fine-Grain Memory Access Profiles for real-time software RTNS 2024, November 06–08, 2024, Porto, Portugal

𝑧𝑖 = 𝑍
𝑓 𝑖𝑟𝑠𝑡

𝑖

∑︁
𝑗∈𝑃𝑖

𝑒
𝑓 𝑖𝑟𝑠𝑡

𝑗,𝑖
+ 𝑍𝑛𝑒𝑥𝑡

𝑖

∑︁
𝑗∈𝑃𝑖

𝑒𝑛𝑒𝑥𝑡𝑗,𝑖 (iii)

Finally, the first occurrence is constrained by limiting the 𝑒 𝑓 𝑖𝑟𝑠𝑡
edges in equation (iv). In this way, the first context is only consid-
ered once at most. ∑︁

𝑗∈𝑃𝑖
𝑒
𝑓 𝑖𝑟𝑠𝑡

𝑗,𝑖
≤ 1 (iv)

The definition of the first occurrence for instructions in loops
subtly differs among tools, and needs to be carefully accounted for
to avoid under-approximations of the number of shared memory
accesses, leading to unsafe profiles. WCET estimation tools such as
Heptane [12, 13] compute a single first context value for instructions
in nested loops. These tools can use equation (iv) as is. Other static
analysis tools such as Otawa [3] provide multiple first contexts for
instructions in nested loops. The first context of instructions in an
inner loop is considered every time the inner loop is entered from
the outer loop. To correctly use the cache classification of this class
of techniques, we propose equation (v) that limits the number of
first occurrences of instructions in an inner loop 𝑙 to the number of
times its entry edge, i.e. the edge that leads from the outer loop to
𝑙 ’s loop header, is considered.∑︁

𝑗∈𝑃𝑖
𝑒
𝑓 𝑖𝑟𝑠𝑡

𝑗,𝑖
≤ 𝑒𝑛𝑡𝑟𝑦_𝑒𝑑𝑔𝑒𝑙 (v)

4.4 Improved function call handling in EAC
equations

The code of a program is usually composed of several functions,
each having its own CFG.When the same function is called from dif-
ferent points in the program, multiple calling contexts for the called
function become possible, and the number of accesses to shared
memory may depend on the calling context. The original equation
of EAC, that does not consider such contextual information, has to
be modified. The modified equations are based on virtual inlining
of called functions.

For the remainder of this section, we name caller the function
holding the function call instruction and callee the target function
of this call. We name cc the calling context of a function, expressed
with a unique index (𝑐𝑐1, 𝑐𝑐2 for example).

Virtual inlining operates as follows. It inlines the CFG of the
callee inside the CFG of the caller in the equation system. The
inlining is virtual, no actual CFG modification is performed. Virtual
edges with unique context identifiers are added between the basic
block holding the call instruction and the starting block of the
callee, as illustrated in Figure 7. The caller function main holds
two call sites to the callee function foo (𝐴 and 𝐶), that define
the two calling contexts of foo. In the equation system, edges are
added between each of them and the entry node of foo for each
context: 𝐴 leads to 𝐸 in 𝑐𝑐1 and 𝐶 leads to 𝐸 in 𝑐𝑐2. This step is
performed at the start of the equation system’s generation such that
the equations applied to edges of the CFG also consider the virtual
edges. Equations concerning the callee’s CFG are also annotated
with the corresponding index and the exit nodes are linked back to
the caller function. Thus, we have two distinct representations of

A

B

C

E

F

H

G

Main

foo

A

B

C

Ecc1

Fcc1

Hcc1

Gcc1

Ecc2

Fcc2

Hcc2

Gcc2

Source CFGs CFG Representation in
Marmot's equation system

D

D

Figure 7: Virtual unrolling of a called function. The left side
shows the CFG of two functions composing a program. The
green basic blocks hold a call instruction to function foo.
The right side shows the representation of these CFG inside
Marmot equation’s system.

foo’s CFG in the equation system, one per calling context. In the
same manner, functions called inside a callee’s function are also
inlined in the callee’s CFG following a recursive approach until all
call instructions are handled.

Static WCET analysis tools (at least those that consider call-
ing contexts) provide a timing and event contribution (𝐶𝑖 and 𝑍𝑖 )
per calling context. With the implementation of virtual inlining,
we are able to use them in our equation system. Equations (vi)
and (vii) show the implementation of contexts in the timing and
event contribution of basic blocks. Contributions 𝑐𝑖_𝑐𝑐𝑥 and 𝑧𝑖_𝑐𝑐𝑥
are related to the result of the static analysis tools and edges in the
corresponding context 𝑐𝑐𝑥 .

𝑐𝑖_𝑐𝑐𝑥 = 𝐶𝑖_𝑐𝑐𝑥
∑︁
𝑗∈𝑃𝑖

𝑒 𝑗,𝑖_𝑐𝑐𝑥 (vi)

𝑧𝑖_𝑐𝑐𝑥 = 𝑍𝑖_𝑐𝑐𝑥
∑︁
𝑗∈𝑃𝑖

𝑒 𝑗,𝑖_𝑐𝑐𝑥 (vii)

Equation (viii) shows an example of our equation system for
the code of Figure 7, focusing on node A. The first line shows the
addition of the virtual edge in the corresponding context 𝑐𝑐1. All
equations concerning the CFG of the foo function are annotated
with this context. Lines 2 to 5 show this for the event contribution
of nodes. In the same manner, the timing contribution 𝑡 of each
node is expressed but not shown here for size consideration. Finally,



RTNS 2024, November 06–08, 2024, Porto, Portugal Hector Chabot, Isabelle Puaut, Thomas Carle, and Hugues Cassé

the representation of the edge from A to B in the original EAC
equation system is removed and replaced by the addition of a virtual
edge 𝑒𝐻,𝐵 . The last two lines show the addition of this edge in the
corresponding context 𝑐𝑐1 with the definition of flow entering node
𝐵 from the new virtual edge.

𝑒𝐴,𝐸_𝑐𝑐1 = 𝑛𝐴

𝑐𝐸_𝑐𝑐1 = 𝐶𝐸_𝑐𝑐1 𝑒𝐴,𝐸_𝑐𝑐1
𝑐𝐹 _𝑐𝑐1 = 𝐶𝐹 _𝑐𝑐1 𝑒𝐸,𝐹 _𝑐𝑐1
𝑐𝐺_𝑐𝑐1 = 𝐶𝐺_𝑐𝑐1 𝑒𝐸,𝐺_𝑐𝑐1
𝑐𝐻 _𝑐𝑐1 = 𝐶𝐻 _𝑐𝑐1 (𝑒𝐹,𝐻 _𝑐𝑐1 + 𝑒𝐺,𝐻 _𝑐𝑐1)
𝑒𝐻,𝐵 = 𝑛𝐻 _𝑐𝑐1
𝑛𝐵 = 𝑒𝐻,𝐵

(viii)

5 Experimental evaluation
After a short presentation of the experimental setup in Section 5.1,
Section 5.2 demonstrates the interest of considering contexts when
extracting memory access profiles. Section 5.3 shows through an
example how the Marmot profiles can be used to produce schedules
with less total interference delays than related techniques. Finally,
Section 5.4 compares Marmot’s profiles to state-of-the-art profiles
(both coarse grain profiles and single WCMA value per interval
profiles) on benchmarks.

5.1 Experimental setup
We run our experiments on the TACLe benchmarks collection [10],
with loop bound annotations expressed in the annotation format
of the static WCET analysis tool Heptane [13]. Heptane is used for
interval determination and for WCET estimation at the task and
interval levels.

The TACLe benchmarks collection can be divided in two cate-
gories: (i) sequential benchmarks holding more or less complicated
code structure and (ii) more complex use-cases that were developed
for multi-core analysis, namely the Papabench [19], Rosace [21]
and debie1 [14] benchmarks. To qualify our results, we extracted
profiles for all sequential benchmarks and all three use-case afore-
mentioned which amounts to 76 benchmarks2

We targetMIPS codewith a single-layer of caches (one data cache
and one instruction cache). Both caches are 2-way associative LRU
caches with 64-bytes cache lines and 256 cache sets. Load and store
instructions are assumed to take 1 cycle on cache hits and 50 cycles
on cache misses, due to the subsequent shared memory access.
The identification of memory accesses relies on the Heptane static
cache analysis technique that produces a cache classification for
each instruction and data access.

The data address analysis of Heptane, in case the target of a
pointer cannot be determined precisely, considers that the pointing
instruction may access all the memory, leading to combinatorial
timing complexity during analysis. To produce our profiles in rea-
sonable time, we therefore modified the data address analysis to
consider a single unique unknown address marker for instructions

2Due to the presence in the binary code of instructions not handled by Heptane, we
were unable to compute a memory profile for the susan sequential benchmark. Heptane
failed to compute the WCET of sequential benchmarks md5 and mpeg2, preventing us
from computing a memory access profile.

accessing data through a pointer. An unknown address marker is an
address outside of the memory range of the program under analysis.
Because these addresses are outside of the memory range and are
unique, they are always considered as misses in the data cache
analysis, which is the worst possible case.

As benchmarks under analysis can perform up to millions of
shared memory accesses, a choice was made between precision
and time spent solving the equation systems. We re-used the time
granularity parameter presented in the original EAC paper, that
safely limits the number of steps in the step-function. For space
consideration, we do not detail this parameter here and refer the
reader to the original EAC paper. The granularity chosen for the
profiles used in our experiments and shown in the Appendix is of
0.001% times the WCET. For example, a profile with a WCET of
1 millions cycles will hold one new step in its curve every 1000
cycles.

5.2 Comparison of contextual and
non-contextual memory access profiles

The addition of contextual information in Marmot’s equation sys-
tem is motivated by the gain of precision in the resulting profiles.
We emphasize the importance of this original feature by comparing
non-contextual profiles to contextual profiles. Contextual profiles
were obtained by using the original cache classification obtained
with Heptane. On the other hand, non-contextual profiles were
obtained by first modifying the cache classification obtained with
Heptane to modify all FM accesses to NC, thus loosing contextual
information, before applying Marmot’s equation system.

We extracted contextual and non-contextual profiles for all 76
benchmarks considered in the TACLe benchmark suite. For every
benchmark, we compared the cumulativeWCMA andWCET values
held by both profiles. On average, the WCET for non-contextual
profiles is 1.2 times higher than the WCET for contextual profiles
and the WCMA for non-contextual profiles is 4.5 times higher than
the WCMA for contextual profiles.

Integrating contextual information in the analysis can thus sig-
nificantly improve the precision of the profiles, and in turn tighten
the calculation of interference delays.

5.3 Example of use of profiles produced by
Marmot

This section demonstrates the interest of using Marmot’s pro-
files for IA-WCET computation using two TaCLE benchmarks,
complex_updates and statemate. This experiment was performed
through a pen-and-paper direct transposition of the IA-WCET cal-
culation technique of [8]. Moreover, we assume a time-triggered
off-line scheduling algorithm for the experiments. As mentioned
earlier, taking benefit of Marmot’s profiles in other scheduling
algorithms is left for future work.

5.3.1 Scheduling setup. Figure 8 displays the StAMP and Marmot
memory access profiles extracted from complex_updates and statem-
ate. On the left-most part (resp. right-most part), the profile obtained
for complex_updates (resp. statemate) by StAMP is depicted in blue
(resp. red) and the profile obtained by Marmot is depicted in light
blue (resp. light red). To keep our example concise, statemate’s



Marmot: Extraction of Fine-Grain Memory Access Profiles for real-time software RTNS 2024, November 06–08, 2024, Porto, Portugal

Figure 8: StAMP and Marmot’s profiles for the complex_updates (left-most figure) and statemate (right-most figure) benchmark.

B
A

C
Core 1

11026216258 1196127088 26958

Core 2

B
A

C
Core 1

11026216258 1163627088 24858

Core 2

Figure 9: Schedulability analysis results when relying on
StAMP’s (resp. Marmot’s) information for IA-WCET com-
putation on the top-most (resp. bottom-most) part of the
figure. WCET is drawn in solid color and interference delays
in stripes.

memory access profile was simplified by merging intervals preced-
ing the main interval 𝐶 in a single interval 𝐵. The merging was
done through the addition of the WCET and WCMA of all intervals
preceding 𝐶 . For the remainder of this section, the variants of the
profiles obtained with Marmot (resp. StAMP) are labeled with a𝑚
(resp. a 𝑠).

We choose to schedule interval 𝐴 of the complex_updates bench-
mark on a core in parallel with intervals 𝐵 and 𝐶 of the statemate
benchmark on another core. In our schedule, 𝐴 and 𝐵 share the
same starting date. Interval𝐶 , which takes place after 𝐵’s execution
in the flow of execution of statemate, is scheduled to start as soon
as 𝐵’s IA-WCET date is passed. We consider a simple Round-Robin
arbitration policy for the shared memory, meaning every shared
memory access requested by a core can suffer from at most one
contention per parallel core. We consider a 50 cycles delay per
contention that corresponds to the latency of a memory access in
isolation.

5.3.2 Computing IA-WCET using Marmot profiles. Following the
work described in [8], IA-WCET computation using Marmot’s pro-
files is performed iteratively.We present the first step in this process
when computing interference between intervals 𝐴 and 𝐶 .

• The initial end date of𝐴 is computed as its start date (0) plus
itsWCET in isolation (16258 cycles): 16258 cycles. As a result,
𝐴 finishes within the execution span of 𝐶 . To compute the
worst case number of contentions between both tasks, we

Table 2: IA-WCET computation steps by scheduling interval
A alongside interval C.

Step Total
number of

con-
tentions

𝐴𝑚 ’s
IA-WCET

𝐶𝑚 ’s curve
WCMA

Additional
con-

tentions

1 0 16258 103 103
2 103 21408 120 17
3 120 22258 122 2
4 122 22358 122 0

look at the worst-case number of memory accesses held by
the memory access profile 𝐶𝑚 at date 16258, here 103. Since
𝐴𝑚 holds a value of 214 WCMA at 16258 cycles, we keep
the value of 103 as the (temporary) worst-case number of
contentions between both intervals.

• This value is used to update the IA-WCET of𝐴 and𝐶 . Using a
penalty of 50 cycles per contention, the end of𝐴 is postponed
from cycle 16258 to 21408. In the same fashion, the end date
of 𝐶 is postponed by 5150 cycles.

• Now that the end date of 𝐴 has been postponed, we must
consider the effect of accesses that 𝐶 may perform between
the previous and the postponed end date of 𝐴. These po-
tential accesses can also interfere with the accesses of 𝐴,
postponing its end date again. We thus have to repeat the
previous steps until a fixed point is reached.

Table 2 shows all the steps for the computation of the IA-WCET
of 𝐴 in this example. For each step of the fixed point computation,
we display the total amount of contentions accounted for and the
current IA-WCET (ending date) at the start of the step, the WCMA
held by 𝐶𝑚 corresponding to the current end of 𝐴 and the amount
of contentions that must be added to 𝐴’s ending date.

5.3.3 IA-WCET comparison between profiles. Figure 9 displays on
the top-most part (resp. bottom-most part) the schedulability anal-
ysis result obtained using the StAMP’s (resp. Marmot’s) profiles
of intervals. The WCET is shown in solid color and the additional
interference delay cycles in stripes.



RTNS 2024, November 06–08, 2024, Porto, Portugal Hector Chabot, Isabelle Puaut, Thomas Carle, and Hugues Cassé

debie_HandleTelecommand
test_p

pm

check_failsafe

debie_HandleHealthMonitoring

debie_HandleHitTri
gger

debie_InitHealthMonitoring

radio_control

__vector_30

rosace_aircra
ft_d

ynamics

clim
b_control

debie_HandleAcquisiti
on

__vector_5

__vector_12

altitu
de_control

link_fbw_send

debie_InitHitTri
ggerTask

rosace_altitu
de_hold

__vector_17

stabilisa
tion

rosace_az_fil
ter

rosace_Va_filt
er

rosace_h_filt
er

rosace_Vz_fil
ter

rosace_q_filt
er

debie_InitTe
lecommandTask

debie_InitAcquisiti
onTask

rosace_delta_th_c0

rosace_delta_e_c0

rosace_h_c0

rosace_elevator

rosace_Vz_co
ntrol

rosace_Va_control

rosace_engine

rosace_Va_c0

servo_tra
nsmit

Benchmark name

0

20

40

60

80

100
Ar

ea
 g

ai
n 

(%
)

Figure 10: Area gain in percentage for each multi-core use-case benchmarks when comparing Marmot to StAMP (in orange)
and coarse-grain profiles (in blue)

In the first schedule, the IA-WCETwas computed using the single
WCMA value held by the StAMP profile of intervals: 214 for 𝐴𝑠 ,
and 187 for 𝐶𝑠 . We account𝑚𝑖𝑛(214, 187) = 187 contentions for
𝐶 and𝑚𝑖𝑛(214, (187 + 50)) = 214 contentions for 𝐴 following the
interference caused by 𝐵. The finish date of the first core is 26958
cycles and the finish date of the second core is 119612 cycles.

In the second schedule, the IA-WCET of intervals was computed
using the technique presented in Section 5.3.3. Because𝐴 finishes at
a date where 𝐶𝑚 curve is lower than 𝐶𝑠 , the worst-case number of
contentions to consider can be effectively reduced. The finish date
of the first core is 24858 cycles and the finish date of the second core
is 116362, a reduction of 2100 cycles and 3250 cycles respectively.

Schedulability analysis can thus tighten its interference delay
result when relying on Marmot’s curve inside a memory access
profile.

5.4 Comparison of Marmot’s profiles with
state-of-the-art solutions

This section is devoted to a comparison between Marmot’s profiles
and state-of-the art contextual profiles, for all considered TACLe
benchmarks. The state-of-the-art profiles considered are coarse-
grain profiles holding a single WCMA value per task and StAMP
profiles holding multiple intervals per task with each interval hold-
ing a single WCMA value. All analyzed benchmarks can be found
in the Appendix.

To stay independent from the scheduling algorithm, the compar-
ison metric is only based on the difference of shapes of the profiles’
curves. The employed metric relates to the size of the areas under
the profile curves (the lower the better, as illustrated previously by
the light blue and light red curves in Figure 8). More precisely, if

𝑎𝑀𝑎𝑟𝑚𝑜𝑡 represents the area under Marmot’s curve and 𝑎𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒
the area under a baseline solution, the metric we use to express the
gain is the difference of area expressed in percentage:

𝑔𝑎𝑖𝑛 = 1 − 𝑎𝑀𝑎𝑟𝑚𝑜𝑡

𝑎𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

Results for all tasks of the three multi-core use-case benchmarks
(namely Papabench, Rosace and debie1) are shown in Figure 10.
The figure shows the gain for each benchmark, when comparing
Marmot to StAMP in orange and to coarse-grained profiles (i.e.
profiles with a single WCMA for the entire task) in blue. For these
benchmarks, we observe an average gain of 77.9% when comparing
Marmot to the coarse-grain profiles and an average gain of 10.1%
when compared to StAMP.

For the sequential benchmarks, we observe an average gain of
75.8% when comparing Marmot to the coarse-grain profiles and an
average gain of 15.6% when compared to StAMP.

As can be seen in Figure 10, half of the benchmarks analyzed
show little to no difference between theMarmot and StAMP profiles,
with gains in area ranging from 0% to 5%. This lack of gain can
also be found in one out of three sequential benchmarks analyzed.
Following observations on the source code, we have identified two
categories of benchmarks where the code structure hinders the
extraction of a refined curve:

• A first category of benchmarks loads all the required data
from the shared memory once before entering a main loop
where most of the execution time is spent, or data-loading in-
struction in the main loop performs shared memory accesses
only on their first occurrence. Thus, the WCMA rapidly rises
at the start of the profile before stagnating at the highest
WCMA point reachable for the entirety of the profile as no



Marmot: Extraction of Fine-Grain Memory Access Profiles for real-time software RTNS 2024, November 06–08, 2024, Porto, Portugal

new shared memory accesses can be described. This is the
case for the insertsort sequential benchmark, for example.

• A second category of benchmarks holds very small code size
with only one or two basic blocks per interval. As in EAC,
Marmot’s equation system neutralizes the timing contribu-
tion of the starting and ending basic block while keeping
their WCMA contribution to remain safe (see [20]). As the
code is only composed of these two basic blocks, the WCMA
contribution of the entire program is totally accounted for
even for the smallest time window considered. This results in
a profile holding a curve which instantly rises to the highest
WCMA point. This is the case for 12 out of 15 benchmarks
analyses from the Rosace use-case.

We believe Marmot’s potential compared to other techniques
lies in its ability to describe shared memory accesses during the
executions of loops. For tasks where no shared memory accesses
are performed inside of a loop, or where instructions in loops only
perform shared memory accesses on their first occurrence, the
contribution of Marmot is reduced.

6 Conclusion
This paper introduces Marmot, a static memory profile extraction
technique. Compared to state-of-the-art solutions, profiles com-
puted using Marmot are split in intervals, each holding a distri-
bution of WCMA in the interval instead of a single value. We il-
lustrated how the produced profiles can be leveraged to tighten
interference delays during IA-WCET computation and schedulabil-
ity analysis. We believe that further work should be focused on the
use of Marmot’s profiles for different scheduling algorithms. Off-
line schedulers can use the profiles to reduce the interference delays.
On-line schedulers can perform new estimations of interference
delays at run-time by using the interval-to-code correspondence
of our profiles. Future work can also focus on further refining the
information provided by Marmot’s profiles. For now, all memory
accesses performed along a path found by solving the equation
system contribute to the considered WCMA. However, accesses
performed at the start of these paths could be ignored after a certain
point of time when we are sure they have finished.

Acknowledgments
This work was supported by a grant overseen by the French Na-
tional Research Agency (ANR) as part of the CAOTIC ANR-22-
CE25-0011 and JCJC MeSCAliNe ANR-21-CE25-0012 projects

References
[1] Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. 1996.

Cache behavior prediction by abstract interpretation. In Static Analysis: Third
International Symposium, SAS’96 Aachen, Germany, September 24–26, 1996 Pro-
ceedings 3. Springer, 52–66.

[2] Jatin Arora, Cláudio Maia, Syed Aftab Rashid, Geoffrey Nelissen, and Eduardo
Tovar. 2022. Bus-contention aware WCRT analysis for the 3-phase task model
considering a work-conserving bus arbitration scheme. J. Syst. Archit. 122 (2022),
102345. https://doi.org/10.1016/J.SYSARC.2021.102345

[3] Clément Ballabriga, Hugues Cassé, Christine Rochange, and Pascal Sainrat. 2010.
OTAWA: An Open Toolbox for AdaptiveWCETAnalysis. In Software Technologies
for Embedded and Ubiquitous Systems - 8th IFIP WG 10.2 International Workshop,
SEUS 2010, Waidhofen/Ybbs, Austria, October 13-15, 2010. Proceedings (Lecture
Notes in Computer Science, Vol. 6399), Sang Lyul Min, Robert G. Pettit IV, Peter P.
Puschner, and Theo Ungerer (Eds.). Springer, 35–46. https://doi.org/10.1007/978-
3-642-16256-5_6

[4] Giorgio C Buttazzo. 2011. Hard real-time computing systems: predictable scheduling
algorithms and applications. Vol. 24. Springer Science & Business Media.

[5] Thomas Carle and Hugues Cassé. 2021. Static extraction of memory access
profiles for multi-core interference analysis of real-time tasks. In International
Conference on Architecture of Computing Systems. Springer, 19–34.

[6] Siddhartha Chatterjee, Erin Parker, Philip J Hanlon, and Alvin R Lebeck. 2001.
Exact analysis of the cache behavior of nested loops. ACM SIGPLAN Notices 36,
5 (2001), 286–297.

[7] Théo Degioanni and Isabelle Puaut. 2022. StAMP: Static Analysis of Memory
access Profiles for real-time tasks. In WCET 2022-20th International Workshop on
Worst-Case Execution Time Analysis.

[8] Maximilien Dupont de Dinechin, Matheus Schuh, Matthieu Moy, and Claire
Maiza. 2020. Scaling Up the Memory Interference Analysis for Hard Real-Time
Many-Core Systems. In 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). 330–333.

[9] Guy Durrieu, Madeleine Faugère, Sylvain Girbal, Daniel Gracia Pérez, Claire
Pagetti, and Wolfgang Puffitsch. 2014. Predictable flight management system
implementation on a multicore processor. In Embedded Real Time Software
(ERTS’14).

[10] Heiko Falk, Sebastian Altmeyer, Peter Hellinckx, Björn Lisper, Wolfgang Puffitsch,
Christine Rochange, Martin Schoeberl, Rasmus Bo Sørensen, Peter Wägemann,
and Simon Wegener. 2016. TACLeBench: A Benchmark Collection to Support
Worst-Case Execution Time Research. In 16th International Workshop on Worst-
Case Execution Time Analysis (WCET 2016) (OpenAccess Series in Informatics
(OASIcs), Vol. 55), Martin Schoeberl (Ed.). Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, Dagstuhl, Germany, 2:1–2:10.

[11] Björn Forsberg, Marco Solieri, Marko Bertogna, Luca Benini, and Andrea
Marongiu. 2021. The predictable execution model in practice: Compiling real ap-
plications for cots hardware. ACM Transactions on Embedded Computing Systems
(TECS) 20, 5 (2021), 1–25.

[12] Damien Hardy and Isabelle Puaut. 2011. WCET analysis of instruction cache
hierarchies. J. Syst. Archit. 57, 7 (2011), 677–694.

[13] Damien Hardy, Benjamin Rouxel, and Isabelle Puaut. 2017. The heptane static
worst-case execution time estimation tool. In 17th International Workshop on
Worst-Case Execution Time Analysis (WCET 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik.

[14] Niklas Holsti, Thomas Langbacka, and Sami Saarinen. 2000. Using a worst-case
execution time tool for real-time verification of the DEBIE software. EUROPEAN
SPACE AGENCY-PUBLICATIONS-ESA SP 457 (2000), 307–312.

[15] Richard Johnson, David Pearson, and Keshav Pingali. 1994. The program structure
tree: Computing control regions in linear time. In Proceedings of the ACM SIGPLAN
1994 conference on Programming language design and implementation. 171–185.

[16] Yau-Tsun Steven Li and Sharad Malik. 1995. Performance analysis of embedded
software using implicit path enumeration. In Proceedings of the ACM SIGPLAN
1995 workshop on Languages, compilers, & tools for real-time systems. 88–98.

[17] Claire Maiza, Hamza Rihani, Juan M. Rivas, Joël Goossens, Sebastian Altmeyer,
and Robert I. Davis. 2019. A Survey of Timing Verification Techniques for Multi-
Core Real-Time Systems. ACM Comput. Surv. 52, 3 (2019). https://doi.org/10.
1145/3323212

[18] Rémi Meunier, Thomas Carle, and Thierry Monteil. 2022. Correctness and Effi-
ciency Criteria for the Multi-Phase Task Model. In 34th Euromicro Conference on
Real-Time Systems (ECRTS 2022). 16326.

[19] Fadia Nemer, Hugues Cassé, Pascal Sainrat, Jean-Paul Bahsoun, and Marianne
De Michiel. 2006. Papabench: a free real-time benchmark. In 6th International
Workshop on Worst-Case Execution Time Analysis (WCET’06)(2006). Schloss-
Dagstuhl-Leibniz Zentrum für Informatik.

[20] Dominic Oehlert, Selma Saidi, and Heiko Falk. 2018. Compiler-based extraction
of event arrival functions for real-time systems analysis. In 30th Euromicro Con-
ference on Real-Time Systems (ECRTS 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik.

[21] Claire Pagetti, David Saussié, Romain Gratia, Eric Noulard, and Pierre Siron.
2014. The ROSACE case study: From simulink specification to multi/many-core
execution. In 2014 IEEE 19th Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 309–318.

[22] Rodolfo Pellizzoni, Emiliano Betti, Stanley Bak, Gang Yao, John Criswell, Marco
Caccamo, and Russell Kegley. 2011. A predictable execution model for COTS-
based embedded systems. In 2011 17th IEEE Real-Time and Embedded Technology
and Applications Symposium. IEEE, 269–279.

[23] Benjamin Rouxel, Stefanos Skalistis, Steven Derrien, and Isabelle Puaut. 2019.
Hiding communication delays in contention-free execution for spm-based multi-
core architectures. In 31st Euromicro Conference on Real-Time Systems (ECRTS
2019). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

[24] Muhammad R. Soliman and Rodolfo Pellizzoni. 2019. PREM-Based Optimal Task
Segmentation Under Fixed Priority Scheduling. In 31st Euromicro Conference on
Real-Time Systems (ECRTS 2019) (Leibniz International Proceedings in Informatics
(LIPIcs), Vol. 133), Sophie Quinton (Ed.). Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik, Dagstuhl, Germany, 4:1–4:23. https://doi.org/10.4230/LIPIcs.ECRTS.
2019.4

https://doi.org/10.1016/J.SYSARC.2021.102345
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1007/978-3-642-16256-5_6
https://doi.org/10.1145/3323212
https://doi.org/10.1145/3323212
https://doi.org/10.4230/LIPIcs.ECRTS.2019.4
https://doi.org/10.4230/LIPIcs.ECRTS.2019.4


RTNS 2024, November 06–08, 2024, Porto, Portugal Hector Chabot, Isabelle Puaut, Thomas Carle, and Hugues Cassé

[25] Jan Staschulat and Rolf Ernst. 2006. Worst case timing analysis of input depen-
dent data cache behavior. In 18th Euromicro Conference on Real-Time Systems
(ECRTS’06). IEEE, 10–pp.

[26] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan
Thesing, David Whalley, Guillem Bernat, Christian Ferdinand, Reinhold Heck-
mann, Tulika Mitra, et al. 2008. The worst-case execution-time prob-
lem—overview of methods and survey of tools. ACM Transactions on Embedded
Computing Systems (TECS) 7, 3 (2008), 1–53.

[27] Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and Lui Sha. 2013.
Memguard: Memory bandwidth reservation system for efficient performance
isolation in multi-core platforms. In 2013 IEEE 19th Real-Time and Embedded

Technology and Applications Symposium (RTAS). IEEE, 55–64.

A Appendix
Benchmarks are presented as follows: the coarse-grain profile is
drawn with a black solid line, the StAMP profile is drawn with a
purple solid line and Marmot’s profile is drawn with a light-blue
dashed line. Finally, vertical grey lines denote the points of passage
between intervals which are produced in StAMP and Marmot.



Marmot: Extraction of Fine-Grain Memory Access Profiles for real-time software RTNS 2024, November 06–08, 2024, Porto, Portugal



RTNS 2024, November 06–08, 2024, Porto, Portugal Hector Chabot, Isabelle Puaut, Thomas Carle, and Hugues Cassé



Marmot: Extraction of Fine-Grain Memory Access Profiles for real-time software RTNS 2024, November 06–08, 2024, Porto, Portugal



RTNS 2024, November 06–08, 2024, Porto, Portugal Hector Chabot, Isabelle Puaut, Thomas Carle, and Hugues Cassé



Marmot: Extraction of Fine-Grain Memory Access Profiles for real-time software RTNS 2024, November 06–08, 2024, Porto, Portugal



RTNS 2024, November 06–08, 2024, Porto, Portugal Hector Chabot, Isabelle Puaut, Thomas Carle, and Hugues Cassé



Marmot: Extraction of Fine-Grain Memory Access Profiles for real-time software RTNS 2024, November 06–08, 2024, Porto, Portugal



RTNS 2024, November 06–08, 2024, Porto, Portugal Hector Chabot, Isabelle Puaut, Thomas Carle, and Hugues Cassé



Marmot: Extraction of Fine-Grain Memory Access Profiles for real-time software RTNS 2024, November 06–08, 2024, Porto, Portugal



RTNS 2024, November 06–08, 2024, Porto, Portugal Hector Chabot, Isabelle Puaut, Thomas Carle, and Hugues Cassé



Marmot: Extraction of Fine-Grain Memory Access Profiles for real-time software RTNS 2024, November 06–08, 2024, Porto, Portugal



RTNS 2024, November 06–08, 2024, Porto, Portugal Hector Chabot, Isabelle Puaut, Thomas Carle, and Hugues Cassé



Marmot: Extraction of Fine-Grain Memory Access Profiles for real-time software RTNS 2024, November 06–08, 2024, Porto, Portugal


	Abstract
	1 Introduction
	2 Motivating Example
	3 Background and Related Work
	3.1 WCET calculation using IPET
	3.2 Techniques for memory access profile extraction
	3.3 Equation system used to produce EACs

	4 Marmot: Generation of Fine-Grain Memory Access Profiles
	4.1 Architecture model and assumptions
	4.2 Overview of Marmot
	4.3 Improved Loop handling in EAC equations
	4.4 Improved function call handling in EAC equations

	5 Experimental evaluation
	5.1 Experimental setup
	5.2 Comparison of contextual and non-contextual memory access profiles
	5.3 Example of use of profiles produced by Marmot
	5.4 Comparison of Marmot's profiles with state-of-the-art solutions

	6 Conclusion
	Acknowledgments
	References
	A Appendix

