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Abstract: A 1-form symmetry and a 0-form symmetry may combine to form an extension
known as the 2-group symmetry. We find the presence of the latter in a class of Argyres-
Douglas theories, called Dp(USp(2N)), which can be realized by Z2-twisted compactification
of the 6d N = (2, 0) of the D-type on a sphere with an irregular twisted puncture and a
regular twisted full puncture. We propose the 3d mirror theories of general Dp(USp(2N))
theories that serve as an important tool to study their flavor symmetry and Higgs branch.
Yet another important result is presented: we elucidate a technique, dubbed “bootstrap”,
which generates an infinite family of Db

p(G) theories, where for a given arbitrary group G
and a parameter b, each theory in the same family has the same number of mass parameters,
same number of marginal deformations, same 1-form symmetry, and same 2-group structure.
This technique is utilized to establish the presence or absence of the 2-group symmetries in
several classes of Db

p(G) theories. In this regard, we find that the Dp(USp(2N)) theories
constitute a special class of Argyres-Douglas theories that have a 2-group symmetry.
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1 Introduction

Symmetry plays a crucial rôle as an organizing principle in the analysis of quantum field
theory. The concept of symmetry has been evolving in the past several years since the
introduction of the higher-form symmetries [1, 2] that act on higher dimensional operators.
One of the important ideas is that a 0-form global symmetry and a 1-form global symmetry
can be both present in several manners, for example as they can coexist as a direct product,
there may be a mixed ’t Hooft anomaly between them, or they can combine to form a
non-trivial extension, known as a 2-group symmetry [3–7] (see also [8, 9] for a recent review).
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This paper explores the presence of the 2-group symmetry in a broad family of 4d N = 2
superconformal field theories (SCFTs), known as the Argyres-Douglas (AD) theories [10–13],
whose feature is the presence of Coulomb branch (CB) operators with fractional conformal
dimensions.1 It turns out that there is a class of such theories known as the Dp(USp(2N))
theories [17, 18], which have not received much attention in the literature, that possess a
2-group symmetry for an infinite family of values of p and N . Before going into further
details, let us give a brief introduction into general AD theories.

Db
p(G) and Gb[p] theories. A class of theories that we focus on is the Db

p(G) theories [17,
19, 20]. If we consider the case of b = h(G), the Coxeter number of G, then it is conventional
to drop the superscript b and write the corresponding theory as Dp(G). A Db

p(G) theory
can be realized in class S [17, 21–23] as well as from geometric engineering of Type IIB
string theory [24, 25]. The former involves compactification of the 6d N = (2, 0) theory on
a sphere with a regular full puncture and an irregular puncture, where the compactification
may involve an outer-automorphism twists when G is non simply-laced. The latter involves
compactification of Type IIB string theory on a non-compact Calabi-Yau (CY) 3-fold realized
as the zero-locus of a single hypersurface singularity in C3 × C∗. Given a Db

p+b(G) theory,
the regular full puncture may be fully closed, and the resulting theory is conventionally
denoted by Gb[p], which can be realized from Type IIB string theory compactified on a
hypersurface singularity in C4. In particular, if G = An or Dn or En, then Gb[p] is identified
with the well-known (Ap−1, G) theory, written in the notation of [25]. More information
about the Gb[p] theories, with G non simply-laced, can be found in [18, 26, 27].2

1-form symmetries. One of the crucial ingredients that is needed in this paper is the
information about the 1-form symmetries. For the (G,G′) theories, where both G and G′ are
simply-laced, these have been worked out explicitly in [28–32] by means of the defect groups
in Type IIB compactification on an isolated hypersurface singularity. Since this method can
be generalized to general hypersurface singularities, one can compute the 1-form symmetries
for general Gb[p] theories, including non simply-laced G. From the class S perspective,
such a 1-form symmetry can also be realized as the defect group associated with the line
defects trapped at the irregular puncture of the class S realization3 of the corresponding
Gb[p] theory [27].

Given a Gb[p] theory, there are two known ways to deduce the 1-form symmetries of
the Db

p(G) and related theories. The first way is to exploit the following results: the 1-form
symmetries are invariant under the Maruyoshi-Song [34–36] (see also [37–39]) flow [30] and
are invariant under the Higgs branch (HB) flow [40]. For the former, the Db

p(G) theory flows
to the Gb[p] theory, whereas for the latter the Db

p+b(G) theory flows to the Gb[p] theory
upon closing the full puncture; see also [41]. We thus conclude that the Db

p(G), Db
p+b(G)

1See also [14, 15] and [16] for recent review on 4d SCFTs.
2In [27] the C2N [p] theory is referred to as {7, 1}(2, p− 2N + 1, N, 2). This is described by the isolated

hypersurface singularity F (u, x, y, z) = u2 + xp−2N+1 + xyN + yz2 = 0 in C4 with differential Ω = dudxdydz
dF

.
We will use the notation C2N [p] in this paper for compactness.

3We remark that the 1-form symmetries of general class S theories with regular punctures have been
worked out in [33].
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and Gb[p] theories all have the same 1-form symmetry. The other way is to use the powerful
method of [27], which is elucidated in section 2 of this paper: the Db

cGCD(p,b)(G) theory has
the same 1-form symmetry as the Gb[p] and Db

p(G) theories, for any c ≥ 1 such that c is
coprime to b

GCD(p,b) . Since this method involves generating an infinite family of theories from
an elementary theory Db

GCD(p,b)(G), we dub it “bootstrapping”. We point out in section 2
that each theory in the same family not only has the same 1-form family, they also have
the same number of mass parameters, same number of marginal deformations, same global
form of the flavor symmetry associated with G, and same 2-group symmetry.

A global form of the flavor symmetry. Another crucial ingredient is the global form
of the flavor symmetry of a given Db

p(G) theory. This theory has a global symmetry algebra
g×u(1)m, where g is the Lie algebra of the non-abelian group G, and m is the extra number
of mass parameters excluding the G Casimirs. Note that this symmetry may get enhanced
further to a larger Lie algebra ĝ that contains g× u(1)m as a subalgebra, e.g. D2(SO(8))
is known to be identical to the rank-1 E6 theory [20], whose flavor symmetry algebra is
e6. In this paper, we are interested in determining the global form of flavor symmetry
associated with g. Note that for theories of class S associated with a sphere with regular
punctures, this was computed in [42] (see also [43–45] for related discussions). We propose
that such a global form can be determined by the generators of the Higgs branch of the
theory in question.4 In particular, if G̃ is the universal cover of G, C is the center of G̃,
and Z is a subgroup of C such that Z acts trivially on the Higgs branch generators, it
follows that the global form of the flavor symmetry associated with G is given by G̃/Z. As
an example, for the rank-1 E6 theory, the Higgs branch is the reduced one E6 instanton
moduli space, whose only generators are in the adjoint representation of e6. The global
form of the flavor symmetry (not taking into account the R-symmetry) of this theory is,
therefore, E6/Z3, since there is no generator transforming under the Z3 center of E6; this
conclusion is in agreement with [42, (4.41)].5 We can now determine the global form of the
flavor symmetry associated with so(8) in D2(SO(8)). What we need to do is to compute
the branching rule of the adjoint representation of e6 into representations of so(8)× u(1)2.
The result are the adjoint, vector, spinor and cospinor representations of so(8), and so we
conclude that the global form of the flavor symmetry associated with so(8) is Spin(8). In
many cases, it is simple to work out the generators of the Higgs branch of a given 4d theory
from the Coulomb branch of the corresponding 3d mirror theory, since for Db

p(G) theories
with G = SU(N) and SO(2N), the mirror theories admit 3d N = 4 Lagrangian description

4We remark that there are more rigorous ways to analyze the global form of the flavor symmetry, for
example, using the superconformal index or its Schur limit. Although these quantities are available for some
Argyres-Douglas theories [46, 47], it is not available for general Dp(USp(2N)) theories studied in our article.
Of course, this is an interesting problem that is worth a future investigation.

5Note however that, as pointed out in [48, section 3.3], there is a mixing between the center of the E6

flavor symmetry and the U(1)R symmetry of this rank-1 E6 SCFT, and the correct form of the global
symmetry after taking into account the R-symmetry is [E6 ×U(1)R]/Z3. This can be seen also from the fact
that there are BPS states in the fundamental representation 27 of E6 [49] that do not contribute either to
the superconformal index [50] nor the Higgs branch of the theory. We thank Craig Lawrie for pointing this
out to us.
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in terms of quiver gauge theories; see [18, 51, 52]. In this paper, we present also the 3d
mirror theories for general Dp(USp(2N)) theories. These turn out to be very useful for the
study of the Higgs branch of the latter.

2-group symmetries. Another protagonist of this paper is the 2-group symmetry that
involves a non-trivial extension between a discrete 1-form symmetry and a continuous
0-form symmetry. This type of 2-group symmetry has been studied in a wide range of
theories, see e.g. [6, 53–59]. One of the important theories is the 4d N = 2 Spin(4n + 2)
gauge theory with Nf hypermultiplets of vector hypermultiplets. Although the center of
the Spin(4n+ 2) group is Z4, this theory has an electric Z2 1-form symmetry, which is the
group of the gauge Wilson lines after taking into account of the screening. The global form
of the 0-form flavor symmetry is USp(2Nf )/Z2, where the Z2 quotient arises from the fact
that there is no Higgs branch generator charged under the center of the USp(2Nf ) flavor
symmetry. It was shown in [54] (see also [55]) that this theory has a 2-group symmetry that
is a non-trivial extension between the electric Z2 1-form symmetry and the USp(2Nf )/Z2
0-form flavor symmetry. This is characterized by the following short exact sequence that
does not split:

0→ Γ(1) → E → Z → 0 (1.1)

where Γ(1) = Z2 corresponds to the 1-form symmetry; Z = Z2 corresponds to the quotient
in USp(2Nf )/Z2; and E = Z4 in the middle of the exact sequence corresponds to the
maximally trivially acting group on the matter fields, which can be realized as follows. The
vector representation transforms as −1 under the generator eiπ/2 of the Z4 center of the
gauge group Spin(4n+ 2). The hypermultiplets also transform as −1 under the center eiπ
of the Z2 center of the flavor symmetry USp(2Nf ). Therefore, the diagonal combination
ω ≡ (eiπ/2, eiπ) leaves the matter fields invariant. The element ω can indeed be identified
with the generator of E = Z4, which is a non-trivial extension between Γ(1) = Z2 and
Z = Z2. If w2 is the 2nd Stiefel-Whitney class obstructing the USp(2Nf )/Z2 bundles to the
USp(2Nf ) bundles and B2 is the background field associated with the 1-form symmetry, then
δB2 = Bock(w2), where Bock is the Bockstein homomorphism for the exact sequence (1.1).

A generalization of this result to a wider class of 4d N = 2 SCFTs is to consider
the Dp(USp(2N)) ≡ D2N

p (USp(2N)) theories, which is engineered by the hypersurface
singularity in C3 × C∗ and holomorphic differential (see e.g. [18, (2.33)])

F (u, x, y, z) = u2 + xN + xy2 + zp = 0 , Ω = dudxdydz

zdF
, (1.2)

where z is the C∗ variable. These theories can also be realized as twisted-compactification
of the 6d N = (2, 0) of the DN+1-type on a sphere with a twisted irregular puncture and a
twisted regular full puncture, where the latter is labeled by the C-partition [12N ]. In fact,
the D2(USp(8n)) theory corresponds to a Lagrangian theory described by the so(4n+ 2)
gauge theory with 4n hypermultiplets in the vector representation. As described in [53], we
can choose the group of the genuine line defects (modulo screening of the matter fields),
also known as the polarization, in such a way that the class S theory in question becomes
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an absolute theory. There is a choice that corresponds to fixing the gauge group to be
Spin(4n+ 2); in which case the theory has a 2-group symmetry for the reasons described
above.6 Exploiting the result of [27], we propose that this can then be generalized to a
wider class of theories. Specifically, we propose that each of the Dpc(USp(2Mp)) theories,
with p and M even and c coprime to 2M , has a 1-form symmetry Zp/2

2 , and if this is chosen
to be the electric 1-form symmetry then it forms a 2-group structure with the 0-form flavor
symmetry USp(2Mp)/Z2. We also explore certain dynamical consequences of this proposal.

Organization of the paper. The paper is organized as follows. In section 2 we discuss
the “bootstrap” method that generates a family of theories with the same number of mass
parameters, same number of marginal deformations, same 1-form symmetry and same
2-group structure. In section 3 we discuss the Dp(USp(2N)) theories, along with their
1-form symmetries, 2-group structures and 3d mirror theories. We organize the discussion
according to the number of mass parameters of the theory. In appendix A, we consider
other Db

p(G) theories, including the DN+1
p (USp(N)), Db

p(USp′(2N)) and Db
p(SO(2N + 1))

theories. We found that these theories do not have a 2-group symmetry. This indeed makes
Dp(USp(2N)) a special class of Argyres-Douglas theories when it comes to the presence of
the 2-group structure. We end this paper by discussing how the Higgs branch structure of
the Dp(SU(N)) theories changes under bootstrap in appendix B.

Notation and convention. We adopt the following notation and convention.

• Upon discussing the number of mass parameters of the Db
p(G) theories, we exclude the

Casimirs of G for convenience. In particular, it was pointed out in [41, appendix B.6]
that the number of mass parameters of the Jb[p] theory is equal to that of the Db

p(G)
theory, excluding the Casimirs of G.

• Unless stated explicitly otherwise, in the quiver diagram we denote the orthosymplectic
gauge algebras by Bn = so(2n + 1), Cn = usp(2n) and Dn = so(2n), and in these
cases the gauge groups are taken to be their universal covers, namely Spin(2n+ 1),
USp(2n) and Spin(2n), respectively.

2 Bootstrapping Db
p(G) theories

In this section, we present a method of obtaining an infinite family of AD theories starting
from an arbitrary Db

p(G) theory, where the theories in the same family share a number of
interesting properties. The main idea was introduced in [27]. We elucidate it as follows.

6On the other hand, if the gauge group is chosen to be SO(4n + 2), this corresponds to gauging the
1-form symmetry of the Spin(4n+ 2) gauge theory; in which case there is a mixed anomaly [54] between the
new 1-form magnetic symmetry of the SO(4n+ 2) gauge theory and the flavor symmetry USp(2Nf )/Z2,
with Nf = 4n.
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We consider a Db
p(G) theory, such that (G, b) takes one of the following values:

(
SU(N), N

N−1
) (

SO(2N + 1), 2N
2N−1∗

) (
SO(2N), 2N−2

N

) (
USp(2N), 2N

N+1∗
)

(
E6,

12
9
8

)
(E7, 18

14)
(
E8,

30
24
20

)
(
F4,

12
18
8

)
(G2, 6

12)
(
USp′(2N), 2N

2N+1∗
) (2.1)

For each G, there are many values of b listed in the column next to it. The top line in
each column corresponds to b = h(G), the Coxeter number of G; in which case, we drop
the superscript b and write Dp(G) ≡ Dh(G)

p (G).7 Note that for (G, b) = (USp(2N), N + 1),
(USp′(2N), 2N + 1) and (SO(2N + 1), 2N − 1), p is half-odd-integral (see [18, (2.15), (2.23)]
and also appendices A.2 and A.3) and these are emphasized by ∗ in the above list; in the
other cases p is integral. We refer the reader to [27, tables 2 and 3] for more information.8

The spectral equation for the Hitchin field on the Riemann sphere implies that the
monodromy is fully encoded in the quantity

q = b

GCD(p, b) . (2.2)

when p is an integer, whereas

q = 2b
GCD(2p, 2b) . (2.3)

whenever p is half-odd-integral, namely for (G, b) = (USp(2N), N+1), (SO(2N+1), 2N−1)
and (USp′(2N), 2N + 1). We examine these cases in appendices A.2 and A.3. Notice that
for integer p the two definitions of q agree.

Observe that q is invariant under replacing p by GCD(2p,2b)
2 . In fact, q is invariant under

replacing p by c GCD(2p,2b)
2 for any c ≥ 1 such that c is coprime to q.

Utilizing this observation, we start with the Db
GCD(2p,2b)/2(G) theory, and then construct

the following family of theories{
Db
cGCD(2p,2b)/2(G)

∣∣∣∣c is coprime to q ≡ 2b
GCD(2p, 2b)

}
. (2.4)

As described above, the theories belonging to the same family have the same parameter q
controlling the monodromy of the Hitchin field. We will refer to this procedure of constructing
the family of theories as “bootstrap”, where the “smallest” theory in this family is that
with c = 1, namely Db

GCD(2p,2b)/2(G).
From now on we will focus on the case G classical. The advantage is that whenever q is

even, the smallest DGCD(2p,2b)/2(G) theory in the family admits a 4d N = 2 Lagrangian

7Note, however, that D2N+1
p (USp′(2N)) was denoted by Dp(USp′(2N)) in [18]. In order to avoid the

confusion, in this paper we explicitly write it as D2N+1
p (USp′(2N)).

8Note that in [27, table 3], the rows with bt = 4N + 2 (twisted A2N ), bt = 4N − 2 (twisted A2N−1), and
bt = 2N + 2 (twisted DN+1) correspond to D2N+1

p (USp′(2N)), D2N−1
p (SO(2N + 1)), and DN+1

p (USp(2N)),
each with p half-odd-integral, in our notation.
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description [27], whereas this is not the case for q odd (unless G = SU(N)). For c > 1, the
DcGCD(2p,2b)/2(G) theory does not necessarily have a N = 2 Lagrangian description.

It was pointed out in [27] that the theories in the same family has the same 1-form
symmetry. In this paper, we also observe that each theory in a given family has

1. the same number of mass parameters,

2. the same number of marginal deformations,

3. the same global form of the flavor symmetry associated with G, and

4. the same 2-group structure.

For G = SU(N), SO(2N) and E6,7,8 with any allowed values of b listed in (2.1), Observation 1
can be seen explicitly from table 1 in [41, appendix B]. In this paper, we find that this is
also the case for G = USp(2N).

For G = SU(N) and SO(2N) with any allowed values of b listed in (2.1), Observation 2
follows from [18, 40, 51]. As an example, the number x of exactly marginal deformations
for the Dp(SO(2N)) theory is explicitly given by [18, (3.3)]: if (2N − 2) divides Np then
x = GCD(N − 1, p), and if (2N − 2) does not divide Np, then x = GCD(N − 1, p) − 1.
Observe that for a given family (2.4), each theory belongs to the same (one or the other) case,
and that GCD(N −1, cGCD(p, 2N −2)) = GCD(N −1,GCD(p, 2N −2)), independently of
c; therefore, each theory in the family has equal x. In this paper, we find that Observation 2
also holds for G = USp(2N).

We now turn to Observation 3. Let us consider an example of the Dp(SU(N)) theories
with zero mass parameter, excluding the Casimirs of SU(N). A necessary and sufficient
condition for this is GCD(p,N) = 1 [41], and so any theory with this number of mass
parameter can be bootstrapped from the D1(SU(N)) theory, which is a theory of free N
hypermultiplets. The global form of the flavor symmetry su(N) of each theory in this class is
SU(N)/ZN , since the only generators of the Higgs branch are in the adjoint representation
of SU(N) and so there is no operator charged under the ZN center. The latter can be seen
from the 3d mirror theory, whose interacting part is the T [SU(N)] theory [51]; indeed, the
only generators of the Coulomb branch are in the adjoint representation of SU(N). As an
important remark, for some Dp(G) theory with a sufficiently small p, its flavor symmetry
Ĝ may be larger than G and contain G as a subgroup; in which case, upon decomposing
the representations of Ĝ under which the Higgs branch generators transform into those of
G, one can determine the global form of the flavor symmetry G and we observe that the
latter is the same for each theory in the same family. For example, the D2(USp(2)) theory is
known to be identical to the (A1, D4) theory, whose flavor symmetry algebra is su(3). The
Higgs branch is the reduced moduli space of one su(3) instanton, where the only generators
of the Higgs branch are the moment map in the adjoint representation [1, 1] of su(3). The
global form of the su(3) flavor symmetry algebra is, therefore, SU(3)/Z3. Upon decomposing
[1, 1] of su(3) into usp(2)× u(1), we obtain [2]0 + [1]3 + [1]−3 + [0]0, and so the global form
of the usp(2) global symmetry algebra of the D2(USp(2)) theory is actually USp(2) and
not USp(2)/Z2, since the fundamental representation [1] transforms non-trivially under the
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Z2 center. To see that the global form of the flavor symmetry of D2c(USp(2)) ∼= (A1, D4c)
for any integer c ≥ 1 is indeed USp(2) and not USp(2)/Z2, we exploit the Coulomb branch
of the 3d mirror theory of the (A1, D4c) theory, which was studied in [18, (4.17)] and is
depicted in (3.33) of this paper.9 Using the Coulomb branch Hilbert series or the index, it
can be shown that there always exist Coulomb branch generators in the representations
[1]±3 of usp(2)× u(1) symmetry.10 This means that, for any c ≥ 1, the global form of the
usp(2) symmetry algebra for the D2c(USp(2)) theory is USp(2) and not USp(2)/Z2.

Let us now discuss the observation regarding the 2-group structure. Since the 1-form
symmetry and the global form of the flavor symmetry algebra are the same for each theory
in the same family, if the former is trivial or the latter is simply-connected for a theory in
the class, then we can rule out the existence of a 2-group structure for the whole family.
However, if the 1-form symmetry is non-trivial and there is a non-trivial quotient Z in
the global form of the flavor symmetry, we need to determine whether is a non-trivial
extension between the 1-form symmetry and the obstruction class controlling whether
the G/Z bundle lifts to the G bundle. If a theory in a given family (2.4) admits the 4d
N = 2 Lagrangian description, one can be determined whether this theory admits a 2-group
structure using the standard method, such as in [4, 6, 55]. To further conclude that the
other theories in the family have the same 2-group structure, we utilize the result of [27],
whose idea is as follows. For a general theory of class S associated with a (twisted) sphere
with one (twisted) irregular and one (twisted) full puncture, the electric/magnetic 1-form
symmetry was identified with the trapped electric/magnetic part HTP of the defect group
associated with the irregular puncture P, and the extension (i.e. the maximally trivially
acting group) was identified with the electric/magnetic part HP of the defect group of
the irregular puncture P. Reference [27] provided information about the following short
exact sequence

0 → HTP → HP → Z → 0 , (2.6)

which is believed to contain the same information as (1.1). We shall provide a justification
for this in section 3.1.2. Due to the fact that each theory in a given family has the same
monodromy data of the Higgs field, (2.6) holds for every theory in the same family. In
particular, if the above short exact sequence does not split, we conclude that every theory
in the family has a non-trivial 2-group structure. On the other hand, if a Lagrangian theory
in the family does not have a 2-group symmetry, the above exact sequence splits for every
theory in the family. We test these statements by studying the dynamical consequences
in section 3.1.3.

9The Coulomb branch Hilbert series of (3.33) is

H(t;x, u)
∑

m1∈Z

∑
m2∈Z

t|m1|+|m1−m2|+(p−1)|m2|(1− t2)−2x2m1 (u3x−1)m2 , (2.5)

where x is the USp(2) fugacity and u is the U(1) fugacity. For p = 2, the order t2 of this Hilbert series
receives the contribution of the moment map in the adjoint representation of SU(3) written in terms of
USp(2)×U(1): (u3 + u−3)(x+ x−1) + (x2 + 1 + x−2) + 1, as it should be.

10These arise from the magnetic fluxes (m1,m2) = ±(0, 1) and ±(1, 1) for the left and right U(1) gauge
groups, using in the notation of (2.5).
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2.1 Bootstrapping 3d mirror theories of Dp(G)

Let us consider how 3d mirror theories of Dp(G) transform under bootstrapping.

2.1.1 The case of G = SU(N)

Let us consider the Dp(SU(N)) theory with b = h(SU(N)) = N . For simplicity, we focus
on those cases with p ≥ b. Let us call

µ = GCD(p,N) = GCD(p, b) , N = qµ , p = cµ , (2.7)

where c and q are indeed coprime. This theory can therefore be obtained by bootstrapping
the Dµ(SU(qµ)) theory. As discussed in [51, section 4], the 3d mirror of the Dp(SU(N)) =
Dµc(SU(qµ)) theory is given by a complete graph with µ U(1) vertices with equal edge
multiplicity m ≡ q(c − q), where each U(1) is connected to the U(N − 1) node of a
U(N − 1)−U(N − 2)− · · · −U(2)−U(1) tail with edge multiplicity q. Moreover, there are
a number of free hypermultiplets equal to Hfree ≡ 1

2µ(q − 1)(c− q − 1). Decoupling the tail,
we obtain the 3d mirror theory for (Aµ(c−q)−1, Aµq−1), which is a complete graph of µ U(1)
with multiplicities q(c− q) and Hfree free multiplets. We emphasize that the parameter c
enters in two places: the edge multiplicity m of the complete graph, and the number Hfree
of free hypermultiplets. We see that, under bootstrapping, the changes in m and Hfree are

δm = q(c− q)− q(1− q) = q

µ
δp , δHfree = 1

2(q − 1)δp . (2.8)

where

δp = µc− µ = µ(c− 1) . (2.9)

It is instructive to compare these changes with the Maruyoshi-Song flow [34–36, 41]
discussed in [51, section 4.3], where in the latter we have

δp = b = qµ , δm = q2 = q

µ
δp , δHfree = 1

2µq(q − 1) = 1
2(q − 1)δp . (2.10)

It is therefore clear that the shifts of the parameters under the Maruyoshi-Song flow is a
special case of the bootstrap with c = q + 1.

2.1.2 The case of G = SO(2N)

Let us now consider the Dp(SO(2N)) theory with b = h(SO(2N)) = 2N − 2. There are
three cases to be considered according to the number of mass parameter of the theory.11

11We stress again that in the following we exclude the Casimirs of SO(2N) in the counting of the
mass parameters.
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Zero mass parameter. A necessary and sufficient condition for a Dp(SO(2N)) theory
to have zero mass parameter is that GCD(p, b) = GCD(p, 2N − 2) is odd. For convenience,
we define

GCD(p, 2N − 2) = 2µ− 1 , q = 2N − 2
2µ− 1 . (2.11)

As described in [18, section 5], the mirror theory is described by the T [SO(2N)] theory
together with

Hfree = 1
2N(p− 2N + 1) (2.12)

free hypermultiplets. Similarly to the case of Dp(SU(N)), we see that, bootstrapping from
D2µ−1(SO(2N)) to D(2µ−1)c(SO(2N)), such that GCD(c, q) = 1, we see that Hfree gets
shifted by

δHfree = 1
2Nδp , with δp = (c− 1)(2µ− 1) . (2.13)

Under the Maruyoshi-Song flow [34–36, 41] discussed in [18, section 5], we have

δHfree = N(N − 1) = 1
2Nδp , with δp = b = 2N − 2 . (2.14)

We see again that the shifts of the parameters under the Maruyoshi-Song flow is a special
case of the bootstrap with c = q + 1.

One mass parameter. A necessary and sufficient condition for a Dp(SO(2N)) theory
to have one mass parameter is that

GCD(p, b) = GCD(p, 2N − 2) ≡ 2µ (2.15)

is even, and

q ≡ 2N − 2
GCD(p, 2N − 2) = N − 1

µ
(2.16)

is even. As pointed out in [18, (6.7)], the 3d mirror theory of such a Dp(SO(2N)) theory is

Hfree = 1
2 [N(p− 2N + 5)− 2p− 3] (2.17)

together with an interacting part described by a quiver consisting of the tail D1−C1−· · ·−
DN−1 − CN−1 such that the CN−1 node has N − 1 flavors of fundamental hypermultiplets
and is connected with an edge with multiplicity 1 to a D1 node with x ≡ 1

2 [p− (2N − 2)]
hypermultiplets of charge one. We see that bootstrapping from the D2µ(SO(2N)) theory to
D2µc(SO(2N)) such that GCD(c, q) = 1 shifts the parameters as follows:

δp = 2µ(c− 1) , δx = 1
2δp , δHfree = 1

2(N − 2)δp . (2.18)

Under the Maruyoshi-Song flow described in [18, section 6.1.1], δp = b = 2N − 2 = 2µq and
the parameters x and Hfree get shifted in the same way. Therefore, it is a special case of
the bootstrap with c = q + 1.
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More than one mass parameter. Let us now consider the Dp(SO(2N)) theories with
p ≥ b = 2N − 2 and µ + 1 mass parameters such that µ ≥ 1. These correspond to the
case where

GCD(p, b) = GCD(p, 2N − 2) = 2µ (2.19)

is even, and

q = 2N − 2
GCD(p, 2N − 2) = N − 1

µ
(2.20)

is odd. As explained in [18, section 6.1.2], the mirror of such a theory consists of

Hfree = 1
4µ(N − 1− µ)[p− (2N − 2)− 2µ] = 1

4(q − 1)(p− b− 2µ) (2.21)

free hypermultiplets and the interacting part described by a quiver that contains the tail
D1 − C1 − D2 − C2 − · · · − CN−1 connecting with µ D1 nodes of two types: µ nodes of
Type A and 1 node of Type B. Each of the D1 nodes of Type A is connected to the CN−1
node in the tail with equal edge multiplicity q and has F = 1

4µ(q − 1)(p − b) flavors of
hypermultiplets of charge 1. On the other hand, the D1 node of Type B is connected to
the CN−1 node in the tail with multiplicity 1. The nodes of Type A are connected to each
other and form a complete graph with edge multiplicity M = 1

2q(p− b). The node of Type
B is connected to each node of Type A by equal edge multiplicity m = 1

2µ(p− b).
Bootstrapping from the D2µ(SO(2N)) theory to the D2µc(SO(2N)) theory, such that

GCD(c, q) = 1, we see that the parameters are shifted by

δHfree = 1
4(q − 1)δp , δF = 1

4µ(q − 1)δp , δM = 1
2qδp , δm = 1

2µδp , (2.22)

where

δp = 2µ(c− 1) . (2.23)

As before, the Maruyoshi-Song flow discussed in [18, section 6.1.2] corresponds to the special
case with c = q + 1.

3 Dp(USp(2N)) theories: 1-form and 2-group symmetries

In this section, we focus on the Dp(USp(2N)) theories and their features, namely 1-form
and 2-group symmetries. The main results in this section are as follows:

• Every Dp(USp(2N)) theory with zero mass parameter can be bootstrapped from a
Lagrangian theory Dp(USp(2Mp)) with M ≥ 1 and p even. In other words, every
theory with zero mass parameter can be written as Dpc(USp(2Mp)) with c coprime
with q ≡ 2M .
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If M is even (i.e. q is divisible by 4), it follows from the reasoning in [27, 54, 55] that
there is a choice of polarization such that the corresponding theory has a non-trivial
2-group symmetry.12

On the other hand, ifM is odd (i.e. q is even but is not divisible by 4), the corresponding
theory does not have a 2-group structure.

• For the theory with one mass parameters, those that can be bootstrapped from an
interacting Lagrangian theory have a non-trivial 1-form symmetry, whereas those that
cannot have a trivial 1-form symmetry. All theories with two or more mass parameters
have a trivial 1-form symmetry.

• All theories with one and higher mass parameters have a trivial 2-group symmetry.

3.1 Zero mass parameter

We find that the necessary and sufficient condition for a Dp(USp(2N)) theory to have zero
mass parameter is that

p = pc , N = Mp , p even , GCD(c, 2M) = 1 . (3.1)

We will take p to be even throughout this subsection. Note that, when c = 1, the
Dp(USp(2Mp)) theory admits the following Lagrangian description [52, (A.3)]:

[CMp]−DMp−(M−1) − CMp−2M − · · · −D3M+1 − C2M −DM+1 (3.2)

Note that, for c > 1, Dpc(USp(2Mp)) does not admit a N = 2 Lagrangian description.

3.1.1 M even and the 2-group structure

Let us take M to be even and consider theory (3.2). In this case, all the D-type gauge
groups in (3.2) have odd rank. For definiteness, we take each D2m+1 gauge group to be
Spin(4m+ 2).13 Each spin gauge group has a Z4 center and each symplectic gauge group
has a Z2 center, but they are screened to Z2 and a trivial group by matter in the vector
representation and fundamental representation, respectively. The electric 1-form symmetry
of theory (3.2) is, therefore, Γ(1) = Zp/2

2 , where p/2 is the number of the D-type gauge
groups. Since the gauge invariant operators of (3.2) transform under adjoint representation
of CMp, the global form of the flavor symmetry group of this theory is USp(2Mp)/Z2, where

12As an example, for p = 2, the theory in question reduces to D2(USp(4M)), which is the so(2M + 2)
gauge theory with 2M hypermultiplets in the vector representation. If we choose the gauge group to be
Spin(2M + 2), then, as explained in [54], this theory has a 2-group structure for M even.

13We emphasize that this is a choice that gives rise to a non-trivial 2-group symmetry. If one, on the other
hand, takes all D2m+1 gauge group to be SO(4m+ 2), then this is equivalent to gauging the Γ(1) = Zp/2

2
electric 1-form symmetry of the theory in question. As a result, we obtain the new Zp/2

2 magnetic 1-form
symmetry. There is a mixed anomaly between the latter and the 0-form flavor symmetry. As an example,
we can consider the D2(USp(4M)) theory, as discussed in Footnote 12: if we choose the gauge group
corresponding to the so(2M + 2) gauge algebra to be SO(2M + 2), then there is a mixed anomaly between
the Z2 magnetic 1-form symmetry and the flavor symmetry USp(4M)/Z2 [54].
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the Z2 quotient comes from the fact that there are no operators charged under the Z2
center of USp(2Mp). According to [54, 55], theory (3.2) has a non-trivial 2-group structure,
characterized by the following short exact sequence that does not split:

0 → Γ(1) → E → Z → 0 , (3.3)

where the 1-form symmetry Γ(1), the maximally trivially acting group E , and the subgroup
Z of the center symmetry of USp(2Mp) are given by

Γ(1) = Zp/2
2 = Z(p−2)/2

2 × Z2 , E = Z(p−2)/2
2 × Z4 , Z = Z2 . (3.4)

The corresponding Postnikov class is given by Bock(w2), where w2 is the obstruction class
for lifting the USp(2Mp)/Z2 bundle to the USp(2Mp) bundles, and Bock is the Bockstein
homomorphism associated with (3.3).

Let us now consider the Dpc(USp(2Mp)) theory, with p and M even such that
GCD(c, 2M) = 1. These theories can be realized as a theory of class S of twisted D-
type with a regular twisted puncture and an irregular twisted puncture P. Many of their
properties were discussed in [27, section 9]. In particular, for c ≥ 1, the 1-form symmetry
is still given by Γ(1) = Zp/2

2 and the global form of the flavor symmetry is USp(2Mp)/Z2;
both are as in the case of c = 1 discussed above. The former is due to the fact that the
monodromy of the Hitchin field around the irregular puncture for the theories with c > 1
is the same as that for c = 1 [27], whereas the latter can be seen from the mirror theory,
which we will discuss in section 3.1.5. The dictionary between line defects in the class S
theories and the aforementioned quantities was also provided in [27]:

• the trapped electric (or magnetic) part HTP of the defect group of the puncture P is
identified with Γ(1);

• the electric (or magnetic) part HP of the defect group of the puncture P is identified
with E ; and

• the subgroup ZP of surface defects of a 6d N = (2, 0) theory that can end at puncture
P is identified with Z.

Moreover, in [27, (9.16)-(9.17)], it was pointed out that the Dpc(USp(2Mp)) theory bears
the structure described by exact sequence (3.3) which, due to the dictionary above, implies
a non-trivial extension between the 1-form symmetry and the flavor symmetry and hence
the 2-group symmetry for any c such that GCD(c, 2M) = 1.14 Indeed, we will provide a
justification for the identification of the exact sequences (2.6) and (3.3) below. Observe that
the 2-group structure in general Dpc(USp(2Mp)) theory is identical to that of c = 1.

14If we draw the Newton polygon for Dp(USp(2Mp)), we will find that it is bounded by a straight line
such that the points (0, 2Mp), (1, 2Mp− 2M), (2, 2Mp− 4M), . . .,(p− 1, 2M), (p, 0) lie on this straight line.
Since the first coordinate increases by 1 and the second coordinate decreases by 2M . We take q = 2M in the
notation of [27]. We can choose c > 1 which is co-prime to q = 2M and shift the aforementioned points,
except for (0, 2Mp), in the horizontal direction, so that we have (0, 2Mp), (c, 2Mp− 2M), (2c, 2Mp− 4M),
. . ., ((p− 1)c, 2M), (pc, 0).
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3.1.2 Identification of the exact sequences

In order to justify the identification of (2.6) and (3.3), it is convenient to deal with the
Pontryagin dual frame associated with the line defects instead of defect groups or 1-form
symmetries. Specifically, the short exact sequence dual to (2.6) is (see [27, (4.25)])

0 → ẐP → WP → WT
P → 0 , (3.5)

whereWT
P denotes the line defects trapped in the irregular puncture P charged under 1-form

symmetry; and ẐP denotes the surface operators of the 6d theory inserted along a loop
enclosing P. We can instead take this loop and collapse it on top of the regular puncture.
In this case, according to [42], these surface operators give rise to flavor Wilson lines for the
flavor symmetry associated with the regular puncture due to Dirichlet boundary conditions.
Indeed, ẐP can be identified with the group of flavor Wilson lines, modulo screening by the
adjoint representation of flavor symmetry.

For the Dpc(USp(2Mp)) theory in question, the regular puncture is the twisted full
puncture of the D-type theory which gives rise to the usp(2Mp) flavor symmetry algebra.
As will be shown explicitly in section 3.1.5 using the 3d mirror theory,15 there is no local
operator charged under the Z2 center of USp(2Mp) and so the global form of the flavor
symmetry is USp(2Mp)/Z2. In other words, the flavor Wilson lines associated with the
regular puncture are not screened by genuine local operators. According to [53], the absence
of screening implies the absence of the junction local operators which means that the line
operators WP in (3.5) are associated with the non-trivial extension E in (3.3).

3.1.3 Dynamical consequences of the 2-group

We now look at some simple dynamical consequences of the 2-group symmetry, following the
discussion of [54]. We start by considering the Spin(4n+ 2) gauge theory with Nf flavors
of hypermultiplets in the vector representation, which we shall call it T for convenience.
Although Spin(4n + 2) has a Z4 center, T has a Γ(1) = Z2 1-form symmetry due to the
screening effect of the hypermultiplet in the vector representation [54]. Moreover, T has
a 2-group symmetry that is an E = Z4 extension of the Γ(1) = Z2 1-form symmetry and
the quotient Z = Z2 of the flavor group USp(2Nf )/Z2. The fact that E = Z4 can be
seen as follows (see [55, section 2.4]). Let us consider the combined gauge-flavor center of
Spin(4n+ 2) and USp(2Nf ), namely Z4 × Z2. The element ω = (ei2π/4, ei2π/2) = (i,−1) of
Z4×Z2 acts trivially on the fundamental hypermultiplets, due to the fact that each element
in ω acts on the latter as (−1) and so the combined gauge-flavor action is (−1)(−1) = +1,
which is trivial. Since ω2 = (−1, 1) is not an identity but ω4 = (1, 1) is, we see that ω
generates E = Z4.

15See also [42] for the computation of the charge of the local operator under the center of the flavor
symmetry.

– 14 –



J
H
E
P
0
6
(
2
0
2
3
)
1
0
2

Let us now take four copies of T and then gauge the diagonal USp(2Nf ) symmetry.
The resulting star-shaped quiver, which we will refer to as S, is16

USp(2Nf )

Spin(4n+ 2) Spin(4n+ 2)

Spin(4n+ 2)Spin(4n+ 2)

(3.6)

This theory has a Z4×Z3
2 electric 1-form symmetry.17 This can be seen by a similar argument

as above. We consider the element ω = (i, i, i, i,−1) of Z4×Z4×Z4×Z4×Z2, which is the
center of four Spin(6) gauge groups and one USp(8) gauge group. As discussed above, ω acts
trivially on the four bifundamental hypermultiplets and it gives rise to a Z4 factor in the 1-
form symmetry. We can consider σ1 = (−1, 1, 1, 1, 1), σ2 = (1,−1, 1, 1, 1), σ3 = (1, 1,−1, 1, 1)
and σ4 = (1, 1, 1,−1, 1); each acts trivially on the bifundamental hypermultiplets and each
generates a Z2 factor of the 1-form symmetry. However, since ∏4

i=1 σi = ω2, we see that the
Z2 diagonal subgroup of Z4

2 is a subgroup of Z4. We thus have a Z4 × Z3
2 electric 1-form

symmetry, as claimed. Note that if we replaced each of the Spin(4n+ 2) gauge group by
Spin(4n), each copy of T would have no 2-group symmetry and theory S would have a Z5

2
electric 1-form symmetry. The presence of the Z4 factor is therefore a crucial consequence
of the 2-group symmetry of T .

Let us now gauge the whole 1-form symmetry, namely Z4 × Z3
2, of S and denote the

resulting theory as S ′. The gauge group of S ′ is
Spin(4n+ 2)× Spin(4n+ 2)× Spin(4n+ 2)× Spin(4n+ 2)×USp(2Nf )

Z4 × Z3
2

=

= Spin(4n+ 2)/Z2 × Spin(4n+ 2)× Spin(4n+ 2)× Spin(4n+ 2)×USp(2Nf )
Z2 × Z3

2
=

= SO(4n+ 2)× SO(4n+ 2)× SO(4n+ 2)× SO(4n+ 2)×USp(2Nf )
Z2

,

(3.7)
where in the first equality we have used [42, (4.19)]. Theory S ′ can therefore be represented
by the quiver

USp(2Nf ) /Z2

SO(4n+ 2) SO(4n+ 2)

SO(4n+ 2)SO(4n+ 2)

(3.8)

16Note that for a sufficiently large Nf the USp(2Nf ) gauge group may be infrared free in 4d. This does
not affect the subsequent discussion, since we are interested only in the global form of the gauge groups in
the quiver.

17We thank the anonymous referee of the JHEP for pointing this out to us and for providing us with
the argument.

– 15 –



J
H
E
P
0
6
(
2
0
2
3
)
1
0
2

where /Z2 denotes the overall Z2 quotient. If S is regarded as a 4d N = 2 gauge theory,
then theory S ′ has a Z4 × Z3

2 magnetic 1-form symmetry.
It is also instructive to view S as a 3d N = 4 gauge theory. In which case, gauging the

Z4×Z3
2 1-form symmetry of S leads to a Z4×Z3

2 0-form symmetry of S ′. A natural question
is how the latter arises from the perspective from the 3d supersymmetric index [60–65].18

According to [66, section 6.1], each of the four SO(4n + 2) gauge groups gives rise to a

factor ζ
∑2n+1

j=1 m
(i)
j

i , where i = 1, 2, 3, 4; ζi is the fugacity of the Z2 0-form magnetic symmetry
of the i-th SO(4n + 2) gauge group such that ζ2

i = 1; and m
(i)
j are the magnetic fluxes

of the i-th SO(4n + 2) gauge group. Let nl (with l = 1, . . . , Nf ) be magnetic fluxes for
USp(2Nf ). Modding out by an overall Z2 means that all m(i)

j and nl are integers, or all
m

(i)
j and nl are half-odd-integers. We have to sum over all of these magnetic fluxes in the

index. Since each ζi is Z2-valued, in the half-odd-integer case, we have w ≡ ∏4
i=1 ζ

±1/2
i in

the index; this is indeed a manifestation of the Z4 factor in the 0-th form symmetry.19 Note
that w2 = ∏4

i=1 ζi, and so the diagonal Z2 subgroup of Z4
2 that corresponds to the fugacity∏4

i=1 ζi is actually a subgroup of the Z4 symmetry.
Let us demonstrate this explicitly in the special case of n = 0 and Nf = 1. Here T

is the Spin(2) gauge theory with 1 flavor of hypermultiplets in the vector representation,
which is equivalent to the U(1) gauge theory with 2 hypermultiplets of charge 2 (see [67]).
Gauging the Z2 1-form symmetry, we see that the SO(2) gauge theory with 1 flavor of
hypermultiplets in the vector representation is identified with the U(1) gauge theory with 2
hypermultiplets of charge 1, which flows to the T [SU(2)] SCFT [68]. The Z2 0-form magnetic
symmetry of the SO(2) gauge theory should be treated as a subgroup of the SO(3) enhanced
topological symmetry of T [SU(2)]. Theory S ′ is thus the well-known star-shaped mirror
theory of the 3d N = 4 SU(2) gauge theory with 4 hypermultiplets in the fundamental
representation [69]. The index of S ′ is given by (see e.g. [70, 71])

IS′(ζ1,2,3,4;x) = 1
2

1∑
ε=0

∑
n∈Z+ 1

2 ε

∮
dz

2πizZ
USp(2)
vec (z, n)

4∏
i=1
IεT [SU(2)](ζi, pi = 0|z, n;x) , (3.9)

where the USp(2) vector multiplet contribution is

ZUSp(2)
vec (z, n) = x−2|n| ∏

s=±1
(1− (−1)2nx2|n|z2s) , (3.10)

the index of the T [SU(2)] theory, computed from the U(1) gauge theory with 2 hypermulti-
plets of charge 1, is

IεT [SU(2)](ζ, p|z, n;x) =
∑

m∈Z+ 1
2 ε

ζm
∮

dz

2πiz z
p
∏
s=±1

I1/2
χ ((zf)s; s(m+ n);x)×

I1/2
χ ((z−1f)s; s(−m+ n);x)

(3.11)

18Here we follow the convention of [66].
19This should be contrasted with the case of the SO(4n) gauge group which contributes ζ

∑2n

j=1
mj . In

this case, half-odd-integral magnetic fluxes mj lead to an integer power of ζ, not a half-odd-integer power as
for the case of SO(4n+ 2).
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such that for ε = 0, n is integral and for ε = 1, n is half-odd-integral, and the contribution
of the chiral multiplet of R-charge R is

IRχ (z,m;x) =
(
x1−Rz−1

)|m|/2 ∞∏
j=0

1− (−1)mz−1x|m|+2−R+2j

1− (−1)mz x|m|+R+2j . (3.12)

For convenience, let us discuss the result of (3.9) up to order x:

IS′(ζ1,2,3,4;x) = 1 + x

4 +
4∑
i=1

(ζi + ζ−1
i ) +

∑
s1,··· ,s4

=±1

4∏
i=1

ζ
1
2 si

i

+ . . . . (3.13)

The terms at order x indeed correspond to the character of the adjoint representation of
so(8), which is the flavor symmetry algebra of the SU(2) gauge theory with 4 flavors. The
16 terms involving the half-odd-integer powers of ζi arise from ε = 1 which corresponds
to the half-odd-integral magnetic fluxes, whereas the remaining 12 terms arise from the
integral magnetic fluxes.

This argument can be generalized easily to star-shaped quiver theories containing
T = Dpc(USp(2Mp)), with M even, as a building block.

3.1.4 M odd

ForM odd and c = 1, all the D-type gauge groups in (3.2) have even rank, and such a theory
does not have a non-trivial 2-group structure [54, 55]. Nevertheless, it has a non-trivial Zp/2

2
1-form symmetry. Using the argument from section 2, we conclude that all Dpc(USp(2Mp))
theories, with p even, M odd and GCD(c, 2M) = 1, have a Zp/2

2 1-form symmetry but do
not have a 2-group structure.

3.1.5 3d mirror theories

Let us now discuss the 3d mirror theories for the Dpc(USp(2Mp)) and C2N [pc] theories.
Assuming that c ≥ 2M and that c is coprime to 2M , we can close the full puncture

in the Dpc(USp(2Mp)) theory and obtain the C2N [pc] theory. The latter is non-Higgsable
with rank20

r0 ≡
1
2p[c−M + (c− 2M)Mp] , (3.14)

and with a 1-form symmetry Zp/2
2 . This leads to the following conclusions:

• The mirror of the C2Mp[pc] theory, with p even and GCD(c, 2M) = 1, is a theory of
r0 free hypermultiplets, which may be subject to a Zp/2

2 discrete gauging.

• The mirror theory for Dpc(USp(2Mp)), with p even, GCD(c, 2M) = 1 and c ≥ 2M ,
is r0 free hypermultiplets (which may be subject to a Zp/2

2 discrete gauging) plus the
T [SO(2Mp + 1)] theory,21 whose quiver description of the theory is

B0 − C1 −B1 − C2 −B2 − · · ·−CMp − [BMp] (3.15)
20Half of the Milnor number for the C2N [κ] theory is 1

2 [(κ− 2N + 1)N + κ− 2N ]. If this is a non-Higgsable
theory, the rank for such a theory is exactly equal to this quantity.

21We emphasize that the interacting part of the mirror theory does not depend on c; the information
about c is actually contained in the free sector.
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Since the generators of the Coulomb branch of the mirror theory T [SO(2Mp + 1)] of
Dpc(USp(2Mp)) transform in the adjoint representation of USp(2Mp), it follows that the
Coulomb branch symmetry of the T [SO(2Mp+ 1)] theory and hence the flavor symmetry of
Dpc(USp(2Mp)) is USp(2Mp)/Z2, due to the fact that there is no operator charged under
the Z2 center of USp(2Mp).

3.1.6 Partially closing the full puncture

We can obtain several new interesting theories by studying the closure of the regular D-
twisted puncture. Since the 1-form symmetry is invariant under the Higgs branch flow [40],
it follows that the 1-form symmetry before and after (partially) closing the punctures
are the same. We demonstrate this explicitly in each theory discussed below using the
description that involves weakly gauging. We also discuss the presence or absence of the
2-group structure in each theory.

Example 1: D6(USp(8)) with [18] being partially closed to [6, 12] or [6, 2]. Let
us consider for instance the D6(USp(8)) theory. Note that this can be bootstrapped from
the D2(USp(8)) theory, which admits the following Lagrangian description:

D3 − [C4] . (3.16)

Suppose that D3 is chosen to be Spin(6), then this theory has an electric Z2 1-form
symmetry and a 2-group structure between the 1-form symmetry and the USp(8)/Z2 flavor
symmetry.22 By the argument in the previous section, the D6(USp(8)) also has the Z2
1-form symmetry. The Coulomb branch spectrum of D6(USp(8)) consists of operators
of dimension

CB =
{4

3 ,
4
3 ,

5
3 , 2,

8
3 ,

8
3 , 3,

10
3 , 4,

13
3 ,

14
3 ,

16
3 ,

20
3

}
. (3.17)

The easiest way to derive this is to draw the Newton polygon of the D5 twisted theory. This
is obtained by plotting on the plane all the terms appearing in the spectral equation of the
theory, which reads

x5 + xzp + x4P4(z) + x3P3(z) + x2P2(z) + xP1(z) + zP̃ 2(z) = 0. (3.18)

In (3.18), we marked in blue the leading terms of the singularity and in green the term
associated with the Casimir of D5 (the Pfaffian) that is not invariant under the outer-

22If, instead, D3 is chosen to be SO(6), or equivalently the electric Z2 1-form symmetry of the afore-
mentioned Spin(6) theory is gauged, then this theory has a magnetic Z2 1-form symmetry and no 2-group
structure. Instead, there is a mixed anomaly between the USp(8)/Z2 flavor symmetry [54] and this magnetic
1-form symmetry.
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automorphism twist. Plotting these terms on the plane, we find:

x

z

+2

+ 4
3

(3.19)

The dots in the above picture denote CB operators and relevant couplings of the SCFT. The
nodes in green indicate that the corresponding operator is actually the square of a chiral
ring generator, and the nodes in blue denote the leading singular terms and the marginal
coupling (since it lies on the diagonal). The scaling dimension of the various parameters
can be determined as follows: the marginal coupling has indeed dimension zero; as we move
downwards by one step the dimension increases by 2 and moving to the left by one step
increases the dimension by 4

3 . We should halve the dimension when we consider green nodes.
One can easily check that following this procedure, we reproduce the CB spectrum (3.17).
Specifically, the term P4(z) in (3.18) is linear (since terms of the form x4zk with k > 1
are subleading with respect to x5 and xz6) and corresponds to the quadratic casimir of
D5. Besides the mass associated with the USp(8) global symmetry, it also describes a
relevant coupling of dimension 2

3 which corresponds to the black dot with coordinates (1, 4)
in the plane. Analogously, P3(z) stands for the quartic casimir of D5 and its coefficients
correspond to the marginal coupling (the blue dot with coordinates (3, 3)) and CB operators
of dimension 4

3 and 8
3 respectively (the black dots with coordinates (2, 3) and (1, 3)). P2(z)

and P1(z) correspond to the casimir invariants of D5 with degree 6 and 8 respectively. The
pfaffian (the term in green in (3.18)) corresponds instead to

√
zP̃ (z) and changes sign upon

looping around the z-plane, as expected due to the outer-automorphism twist.
If we now close the [18] puncture to [6, 12] we find, following the procedure described

in [18] (see [72] for details about D-twisted punctures), that the IR theory has CB operators
of dimension

CBIR =
{4

3 ,
4
3 , 2,

8
3

}
. (3.20)

This is seen as follows: the pole orders of the full puncture [18] are given by the sequence{
1, 3, 5, 7, 9

2

}
. (3.21)

Those of the puncture [6, 12] are instead{
1, 3, 3, 3, 3

2

}
. (3.22)
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According to the procedure proposed in [18] we should then read off the CB spectrum again
from the Newton polygon we have described before

x

z

(3.23)

but with the red nodes omitted. Since the puncture [6, 12] does not produce any constraints,
this is the final result. The conclusion is different for the puncture [6, 2] since the pole
structure is the same as in (3.22) but there is a constraint of A-type, implying that the
parameter of dimension 8

3 is actually the square of a CB operator, whose dimension is
therefore 4

3 .
We can actually describe this theory in detail, since it coincides with a su(2) vector

multiplet coupled both to the rank-1 H1, which is also known as the (A1, A3) theory, and
the rank-2 H1 theories in the F-theory terminology. The Higgs branch of the rank-2 H1
theory is isomorphic to the reduced moduli space of two SU(2) instantons on C2, whose
isometry is su(2)C2 × su(2)inst, where su(2)C2 is inherited from the isometry of C2 and
su(2)inst is the instanton gauge group itself. On the other hand, the Higgs branch of the
(A1, A3) theory is isomorphic to the reduced moduli space of one SU(2) instanton, namely
C2/Z2, whose isometry is su(2)inst. Gauging the common su(2)inst gauge algebra, we see
that the theory in question can be described pictorially as follows:23

rank-2 H1 (A1, A3)
su(2)instsu(2)C2 (3.24)

where the red line denotes the gauging of the common su(2)inst symmetry algebra of the
two theories, and the semi-infinite blue line on the left denotes the su(2)C2 flavor symmetry
algebra. Using the information from [74, (3.11)] and [75, (3.14)-(3.15)], we compute the
Higgs branch Hilbert series of theory (3.24) and find that the Higgs branch is precisely
isomorphic to C2/Z2.24 The global form of the flavor symmetry, corresponding to the blue

23One can easily check that the beta function for the su(2)inst gauge algebra vanishes exploiting the results
of [73] about the flavor central charge of instanton theories.

24The quaternionic Higgs branch dimension of (3.24) is indeed (2 × 2 − 1) + 1 − 3 = 1. Explicitly, the
Higgs branch Hilbert series is∮

|z|=1

1− z2

2πiz PE
[
−t2χsu(2)

[2]

]
× g̃2,SU(2)(t, x, z)×

(
∞∑

k=0

χ
su(2)
[2k] t

2k

)
= PE

[
χ
su(2)
[2] t2 − t4

]
,

where the function g̃2,SU(2)(t, x, z) is given by [75, (3.14)].
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line, is therefore SO(3)C2 . Let us now determine the 1-form symmetry of theory (3.24).
As described in [75, (3.15)], there are two generators of the two SU(2) instanton moduli
space: one (the moment map) in the [2; 0] + [0; 2] representation and the other in the [1; 2]
representation of su(2)C2 × su(2)inst. The global form of the flavor symmetry of the rank-2
H1 theory is SU(2)C2 × SO(3)inst. On the other hand, the Higgs branch of the (A1, A3)
theory, which is C2/Z2, is generated by a single generator in the adjoint representation of
the su(2)inst and so the global form of the flavor symmetry of (A1, A3) is SO(3)inst. Suppose
that the gauge group corresponding to su(2)inst denoted by the red line in (3.24) is chosen
to be SU(2)inst, then the theory in (3.24) has an electric 1-form Z2 symmetry, arising from
the center of SU(2)inst.25 Note that the presence of the Z2 1-form symmetry is the same as
that of the original D6(USp(8)) theory, which is in agreement with the fact that the 1-form
symmetry is invariant under the Higgs branch flow [40]. It is worth emphasizing that gauging
the SU(2)inst symmetry of the rank-2 H1 theory and coupling it to the (A1, A3) theory
changes the SU(2)C2 global symmetry of the rank-2 H1 theory to the SO(3)C2 symmetry
in (3.24). In other words, the Z2 electric 1-form symmetry, which arises from the center
of the SU(2)inst gauge group, comes hand-in-hand with the 2nd Stiefel-Whitney class w2
that is an obstruction for lifting the SO(3)C2 bundles to the SU(2)C2 bundles in (3.24). It
is therefore expected that there is a 2-group symmetry between such a Z2 electric 1-form
symmetry and the SO(3)C2 flavor symmetry.26

By giving a nilpotent VEV to the corresponding moment map of SU(2)C2 , we further
close the puncture to [6, 2], leading to the spectrum

CBIR =
{4

3 ,
4
3 ,

4
3 , 2

}
. (3.25)

This corresponds to the SU(2) vector multiplet coupled to three copies of the rank-1 H1
theory. The result turns out to be the (A2, D4) theory27 (see [76, figure 1] and [77, (3.2)]).
This is indeed expected, since it is well known that activating a nilpotent VEV for the
SU(2) moment map higgses the two-instanton theory to two copies of the one-instanton
theory [78]. We can easily see that the IR theories we have just described reproduce the
1-form Z2 symmetry of the UV theory, since the matter sectors have trivial charge under
the center of the SU(2) gauge group.

25On the other hand, if su(2)inst is chosen to be SO(3)inst, or equivalently the electric 1-form symmetry of
the aforementioned SU(2)inst theory is gauged, then the theory has a magnetic 1-form Z2 symmetry.

26On the other hand, if this Z2 electric 1-form symmetry is gauged, or equivalently su(2)inst in (3.24) is
chosen to be SO(3)inst, then it is expected that there is a mixed anomaly between the new Z2 magnetic
1-form symmetry and the SO(3)C2 flavor symmetry [4, 54].

27As pointed out in [18, section 5.3], reduction to 3d of this 4d theory gives a star-shaped quiver arising
from gauging the common su(2) symmetry of three copies of the 3d N = 4 U(1) gauge theory with two
hypermultiplets of charge 1. If the gauge group corresponding to this su(2) is chosen to be SU(2)/Z2, then the
mirror theory is the theory of free four hypermultiplets (also known as the T2 theory), whereas if it is chosen
to be SU(2), then the mirror theory is the Z2 discrete quotient of the T2 theory. The two possible choices of
such a gauge group reflects the presence of the Z2 1-form symmetry of the 4d theory in question [18, 40].
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Example 2: D4(USp(8)) with [18] being partially closed to [4, 14] or [4, 2, 12].
Another interesting example is given by the D4(USp(8)) theory, which is Lagrangian and
coincides with the linear quiver

D2 − C2 −D4 − [C4] . (3.26)

Let us take each D2n node to be a Spin(2n) gauge group. This theory has a Z2
2 1-form

symmetry. The global form of the flavor symmetry is USp(8)/Z2, where the generators
of the Higgs branch transform under the adjoint representation of USp(8) and so there is
no operator charged under the Z2 center of USp(8). We expect that there is no 2-group
symmetry, since each gauge group of the D-type has even rank [54, 55].

If we close the full puncture [18] to [4, 14] the theory is higgsed to

USp(4)Spin(4) [2]Λ2 (3.27)

where the wiggly line on the right denotes two hypermultiplets in the antisymmetric
representation of the USp(4) gauge group. The global form of the flavor symmetry of this
theory is USp(4)/Z2, since the generators of the Higgs branch transform in the adjoint
representation of usp(4) flavor algebra and so there are no operators charged under the
Z2 center. Since the 1-form symmetry is invariant under the Higgs branch flow [40], we
expect that this theory also has the same 1-form symmetry as that of (3.26), namely Z2

2.
This can be seen from the Lagrangian description as follows: the Spin(4) group has a Z2

2
center, the USp(4) group has a Z2 center, and the bifundamental hypermultiplet screens
the Wilson line in the (4; 4) representation of Spin(4) × USp(4) and so the Wilson lines
that are not screened are those in the representations (2s; 4) and (2c; 4); and they are those
charged under the aforementioned Z2

2 1-form symmetry. The presence of hypermultiplets in
the antisymmetric representation of USp(4) does not affect such a 1-form symmetry. Since
Spin(4) is a D-type gauge group of an even rank, we do not expect the presence of the
2-group symmetry in this theory.

If we turn on a VEV for one of the antisymmetric hypermultiplets in (3.27) (correspond-
ing to the minimal nilpotent VEV for the moment map of the USp(4) global symmetry),
we further close the puncture to [4, 2, 12] and the corresponding field theory coincides with
the Class S theory of type A1 on a genus-2 surface with one regular puncture:

T2SU(2) SU(2)
T2

SU(2) T2 SU(2) (3.28)

where the triangles in figure (3.28) denote the T2 theories of [21], namely a half-hypermultiplet
in the trifundamental of SU(2)3. Since there are two SU(2) gauge groups in the Lagrangian
description, we see that this theory has a Z2

2 1-form symmetry, which is identical to that
of the aforementioned theories. This is indeed in agreement with the observation that the
1-form symmetry is invariant under the Higgs branch flow [40]. The Higgs branch Hilbert

– 22 –



J
H
E
P
0
6
(
2
0
2
3
)
1
0
2

series of this theory is given by [79, (7.8)], with χ = 3, where it was pointed out that the
Higgs branch has two generators: one (the moment map) in the adjoint representation and
the other in the fundamental representation of the su(2) flavor symmetry algebra. Due to
the presence of the latter, the global form of the flavor symmetry of the theory is SU(2),
and not SU(2)/Z2. As a result, this theory does not have a 2-group symmetry.

3.2 One mass parameter

Every Dp(USp(2N)) theory with one mass parameter, excluding the Casimirs of USp(2N),
must satisfy the following conditions: if N = 1, then p can be any integer greater than 1; if
N is even, then p must be odd; and if N is odd and N ≥ 3, then p must not be divisible by
any x such that x > 2, x is even, and x divides 2N . Such theories can be divided into two
main subclasses as follows:

1. One subclass of the theories with one mass parameter contains the Dp(USp(2Mp))
theory with p odd, which admits the following Lagrangian description28 [52, (A.9)]

[CMp]−DMp−(M−1) − · · · − C3M −D2M+1 − CM − [D1] (3.29)

Using the similar argument as in [29, (3.9)-(3.12)], we see that the 1-form symmetry
of this theory is Z(p−1)/2

2 , where (p− 1)/2 is the number of the D-type gauge groups
(all of their ranks are odd). Moreover, from the quiver, it is clear there are opera-
tors transforming in the representation [2Mp;±1] of the flavor symmetry algebra
usp(2Mp)×u(1). The global form of the flavor symmetry is therefore USp(2Mp)×U(1),
and not USp(2Mp)×U(1)

Z2
. Since the quotient of the flavor symmetry is trivial, there is

no obstruction class analogous to the 2nd Stiefel-Whitney class, and so (3.29) has no
2-group symmetry.

Let us now bootstrap theory (3.29). We obtain a family of the Dpc(USp(2Mp)) theories
with p odd and c coprime to q ≡ 2M . Note that this is in fact equivalent to the family
of the Dp(USp(2N)) theories, with p odd. Since this process preserves the 1-form
symmetry and the global form of the flavor symmetry, we deduce that all of such
theories have a Z(p−1)/2

2 1-form symmetry and trivial 2-group symmetry.

2. The other subclass of the Dp(USp(2N)) theories with one mass parameter does not
contain a theory with a 4d N = 2 Lagrangian description; in other words, it cannot
be bootstrapped from (3.29).29 Using the method of [31], we find that each theory in
this subclass has a trivial 1-form symmetry. The 2-group symmetry is therefore, of
course, trivial.

28Note that, for p = 1, this theory, namely D1(USp(2M)), is just a theory of M free hypermultiplets.
29This subclass is characterized by Dp(USp(2)) with p even and Dc GCD(2N,p)(USp(2N)) with odd N ≥ 3

such that p is even, cGCD(2N, p) is not divisible by any x, where x is an even number strictly greater than
2 and x divides 2N , and c is coprime to 2N

GCD(2N,p) .
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3.2.1 3d mirror theories

We propose that the mirror theory for the C2N [p] theory with 1 mass parameter is described
by the 3d N = 4 U(1) gauge theory with p− 2N + 1 hypermultiplets of charge 1, along with

Hfree = 1
2(p− 2N + 1)(N − 1) (3.30)

free hypermultiplets.
For N = 1, C2[p] is simply the (A1, A2p−3) theory, whose mirror is the U(1) gauge

theory with p− 1 flavors; in agreement with the above statement. For N = 2 (and so p must
be odd), the non-Higgsable SCFT is (A1, Ap−3). For N = 3 and p = 3m, the non-Higgsable
SCFT is C6[2m], whose 1-form symmetry is Z2.

The mirror theory of the Dp(USp(2N)) theory with 1 mass parameter is therefore
described by Hfree free hypermultiplets together with

B0 − C1 −B1 − C2 − · · · −BN−1−CN
N U(1)− [p− 2N + 1]

|
[B0]

(3.31)

where the blue line denotes N copies of the hypermultiplets in the bifundamental repre-
sentation of USp(2N) × U(1). Note that the Higgs branch symmetry SO(2N + 1) of the
T [SO(2N + 1)] theory30 is decomposed into SO(2N)×O(1) ⊃ SU(N)×U(1)×O(1), where
the U(1) factor is gauged and is coupled to p− 2N + 1 hypermultiplets with charge 1. Upon
decoupling the tail B0−C1−B1−· · ·−CN , we obtain the SQED with p− 2N + 1 electrons,
which is the mirror theory for C2N [p] as expected.

Let us consider the case of N = 1, namely Dp(USp(2)). This theory turns out to be
identical to the (A1, D2p) theory. In this special case, (3.31) gives the following mirror theory

B0−C1 −U(1)− [p− 1]
|

[B0]
(3.32)

It is worth comparing this theory with the known mirror theory of (A1, D2p) given
by [18, (4.17)]:

[1]−U(1)−U(1)− [p− 1] (3.33)

where an overall U(1) has been decoupled in [18, (4.17)]. To reconcile (3.32) with (3.33), we
first remark that, in (3.33), we gauge the U(1) Cartan subalgebra of the flavor symmetry
algebra su(2) of the U(1) gauge theory with 2 hypermultiplets of charge 1, which flows to
the T [SU(2)] theory, and couple it to p − 1 hypermultiplets. As pointed out in [68], the
T [SU(2)] theory has another description as the T [SO(3)] theory, whose quiver description
is B0 −C1 − [B1]. Gauging U(1) Cartan subalgebra of the flavor symmetry algebra so(3) of
the latter theory and coupling it to p− 1 hypermultiplets, we obtain (3.32), as required.
This also provides a non-trivial test for the flavor node [B0], which arises as the commutant
of such gauging, in (3.32).

30As discussed below (3.15), the Coulomb branch symmetry of T [SO(2N + 1)] theory is USp(2N)/Z2.
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3.3 Number of mass parameters greater than 1

Let µ ≥ 2 be the number of mass parameters of the Dp(USp(2N)) theories with p > 2N .
We find that p and N have to satisfy the following conditions:

N = µ(2N− 1) , N ∈ Z≥1 , and
p = 2µc , with c coprime to 2N− 1.

(3.34)

Note that GCD(p, 2N) = 2µ and q ≡ 2N
GCD(p,2N) = N

µ = 2N− 1, which is odd. Due to the
latter, this family of theories does not contain one with a 4d N = 2 Lagrangian description.

The non-Higgsable SCFTs of these theories are

(Am−1, A2N−2)⊗µ (3.35)

where

m ≡ p− 2N
GCD(p, 2N) = p− 2N

2µ = c− (2N− 1) . (3.36)

It is worth remarking that the non-Higgsable sector (3.35) is identical to that of the
(A2µm−1, D2µN−µ+1) theory; see [18, (6.17)].

Having been identified the non-Higgsable sector, we can utilize the result of [40], namely
the 1-form symmetry of the Dp(USp(2N)) in question must be the same as that of (3.35).
However, the latter is known to be trivial [28–30], and so we conclude that the Dp(USp(2N))
theories with higher mass parameters have a trivial 1-form symmetry and hence trivial
2-group symmetry.

3.3.1 3d mirror theories

The mirror theory of C2N [p], with µ ≥ 2 mass parameters, is described by a quiver of
µ + 1 U(1) gauge nodes such that µ of them form a complete graph with equal edge
multiplicity 2Nm, and the remaining U(1) node is connected to the others by the edges
with equal multiplicity

F ≡ [µN− (µ− 2)]m + (2N− 1) . (3.37)

Note that this quiver has an overall U(1) that decouples. There are also the following
number of free hypermultiplets:

Hfree = µ(N− 1)(m− 1) , (3.38)

equal to the total rank of the non-Higgsable SCFTs (3.35).31

Upon decoupling the overall U(1), we obtain the aforementioned complete graph such
that each U(1) gauge node has F flavors of hypermultiplet of charge 1. The mirror of

31The Higgs branch dimension of the mirror theory, excluding the free hypermultiplets, is 1
2µ(µ−1)(2Nm)+

µF − µ. It can be checked that this quantity plus Hfree is equal to the rank of the corresponding C2N [p]
theory in question. Moreover, it can be checked that µ plus the total value of 24(c− a) of (3.35) is equal to
24(c− a) of the C2N [p] theory in question. These two tests provide a highly non-trivial test of our proposal.
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the corresponding Dp(USp(2N)) theory is therefore described by the T [SO(2N + 1)] tail,
namely B0 − C1 − B1 − · · · − CN ,32 such that the CN gauge node is connected to each
of the µ U(1) nodes in the aforementioned flavored quiver with equal edge multiplicity
N/µ = q = 2N− 1, and that there is a node [B0] attached to the CN gauge node, giving
rise to a half-hypermultiplet in the latter. There are also Hfree hypermultiplets.

Special case: 2N divides p. Let us consider the Dp(USp(2N)) theories such that 2N
divides p. These theories have GCD(p, 2N)/2 = N mass parameters. Here µ = N , N = 1,
and m = p

2N − 1.
The mirror theory of the C2N [p] theory is described by a quiver with N + 1 U(1) gauge

nodes: N of them form a complete graph such that each of which edge has multiplicity
2m and the other U(1) gauge node is connected to the others by the edges, each with
multiplicity 2m + 1. There is no free hypermultiplets in this case. Decoupling the overall
U(1), we obtain the said complete graph such that each U(1) node has 2m + 1 flavors of
hypermultiplets of charge 1.

The mirror theory of the corresponding Dp(USp(2N)) is the T [SO(2N+1)] tail, namely
B0 −C1 −B1 − · · · −CN , such that the CN node is connected to each of the N U(1) nodes
in the aforementioned flavored quiver with edge multiplicity 1, and that there is a node
[B0] attached to the CN gauge node, giving rise to a half-hypermultiplet in the latter.

3.3.2 Partially closing the full puncture of D2N (USp(2N))

Let us now consider a set of models with multiple mass parameters. We focus on Dp(USp(2N))
theories with p = 2N such that N ≥ 4. This theory has N mass parameters. In the notation
of section 3.3.1, we have N = 1, µ = N , c = 1 and m = 0. This is the smallest value of p for
which the regular puncture can be fully closed, leading to a free theory in the infrared.

We find a more interesting result by considering a partial closure, such as the puncture
[2N − 2, 2]. In this case, the infrared theory turns out to be the following quiver with
SU(2)× SU(3)N−3 gauge group:

SU(2) SU(3)

[1]

. . . SU(3)

(A1, D4)

(A1, D4)

(3.39)

where (A1, D4) denotes the rank-1 AD theory whose Higgs branch coincides with the reduced
one SU(3) instanton moduli space. As in the previous cases, we can replace the two copies
of the (A1, D4) theory with a single copy of a rank-2 theory whose Higgs branch is the
reduced two SU(3) instanton moduli space. The quiver (3.39) with such a rank-2 theory
on the right arises if we close the regular puncture to [2N − 2, 12]. Again, by giving an
expectation value to the SU(2) moment map of the latter theory we recover (3.39) and this
indeed corresponds to closing the puncture back to [2N − 2, 2].

32This tail gives rise to the CB symmetry USp(2N) in the IR.
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This observation allows us to test our proposal in section 3.3.1 for the 3d mirror theory
of Dp(USp(2N)). In fact, the 3d mirror of (3.39) can be determined and turns out to be

B0 C1

[B0] U(1) [1]

U(1) [1]

U(1)
...

[1]
N (3.40)

In order to reconcile this with the proposal in section 3.3.1, we recall that the mirror theory
for D2N (USp(2N)) can be realized as a quiver of N U(1) nodes such that each node has 1
flavor of hypermultiplet of charge 1, and each of the N U(1) node is connected to the CN
node in the following tail

B0 − C1 −B1 − · · ·−CN
|

[B0]
(3.41)

where it should be noted that the theory associated with the C-partition [12N ] is B0−C1−
B1 − · · · − [BN ]. If, on the other hand, one considers the C-partition [2N − 2, 2], the quiver
gets “shortened” to B0 − C1 − [BN ]. Therefore, partially closing the full puncture [12N ] in
the original 4d theory to [2N − 2] amounts to shortening the above tail to

B0−C1

|
[B0]

(3.42)

Attaching the C1 node to the aforementioned N U(1) nodes, one obtains (3.40) as required.
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A Absence of the 2-group structure for other Dp(G) theories

In this appendix, we discuss the absence of 2-group structure for other Db
p(G) theories than

Dp(USp(2N)). For example, the Db
p(SU(N)) theories do not have a 2-group structure, since
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they have a trivial 1-form symmetry [30]. One might wonder if this holds in other Dp(G)
theories, for which there is a non-trivial 1-form symmetry. The purpose of this appendix is to
show that there is no 2-group structure for Dp(SO(2N)), DN+1

p (USp(2N)), Db
p(USp′(2N))

and Db
p(SO(2N + 1)). We thus see that Dp(USp(2N)) is special among the Dp(G) theories

when it comes to the presence of the 2-group structure.

A.1 Dp(SO(2N)) theories

Using the results of [29, 30, 41], it can be deduced that any Dp(SO(2N)) theory with a
non-trivial 1-form symmetry must have either zero mass parameter or one mass parameter.33

However, it should be emphasized that not all theories with zero or one mass parameter
have a non-trivial 1-form symmetry. Since any theory with a non-trivial 2-group structure
must have a non-trivial 1-form symmetry, we will analyze these two classes of theories in
the following.

One mass parameter. We consider the theories with one mass parameter. Let us start
from a Lagrangian theory, namely the Dp(SO(2Mp + 2)) theory, with p even (see [20,
appendix C.2] and [18, (8.32)]):

[DMp+1]− CMp−M −DMp−2M+1 − CMp−3M −DMp−4M+1 − · · · −D2M+1 − CM − [D1] (A.1)

Suppose that we take each Dn gauge group to be Spin(2n). Then, this theory has an electric
Zp/2−1

2 1-form symmetry. Moreover, this theory has the operators that transform under the
representation [2Mp + 1;±1] of so(2Mp+ 2)× u(1), and so the global form of the flavor
symmetry is SO(2Mp+ 2)×U(1), and not SO(2Mp+2)×U(1)

Z2
. Since the quotient of the flavor

symmetry is trivial, there is no obstruction class analogous to the 2nd Stiefel-Whitney class,
and so there is no 2-group structure.

The other theories with one mass parameters can be obtained from the Dp(SO(2Mp+2))
theory by bootstrapping, namely by considering Dpc(SO(2Mp+ 2)) theories with c coprime
to q ≡ 2Mp

GCD(p,2Mp) = 2M . Since this process preserves the 1-form symmetry and the global
form of the flavor symmetry, we conclude that every Dp(SO(2N)) with one mass parameter
has a trivial 2-group symmetry.

Zero mass parameter. As before, let us start with the theories with a Lagrangian
description, namely Dp(SO(2Mp+ 2)), with p odd (see [20, appendix C.2] and [18, (8.32)]):

[DMp+1]− CMp−M −DMp−2M+1 − CMp−3M −DMp−4M+1 − · · · − C2M −DM+1 (A.2)

Suppose that we take each Dn gauge group to be Spin(2n). This theory then has an electric
Z(p−1)/2

2 1-form symmetry. The Higgs branch is generated by the moment map operator in
the adjoint representation of so(2Mp+ 2) flavor symmetry algebra, and so the global form
of the flavor symmetry is SO(2Mp+ 2)/Z2. If M is odd, Mp is odd, and so all the D-type
gauge groups are of even rank; in which case, there is no two-group structure [54]. If M is
even, Mp is even, all D-type gauge groups are of odd rank, and the global form of the flavor

33As mentioned earlier, we do not count the mass parameters associated with the SO(2N) flavor symmetry.
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symmetry can be written as SO(2Mp+ 2)/Z2 = Spin(2Mp+ 2)/Z4. We propose that there
is also no 2-group structure in this case. This can be seen, for example, by taking p = 3
and M = 2, where the quiver becomes [Spin(7)/Z4]−USp(8)− Spin(6), and observing that
there is no non-trivial extension between the Z2 1-form symmetry and the Z4 quotient in
the flavor symmetry (e.g. the maximal trivially acting group is not Z8). In fact, as shown
in [27, (8.40)], for general even M and odd p, the corresponding short exact sequence in
0→ Z(p−1)/2

2 → Z(p−1)/2
2 × Z4 → Z4 → 0 splits, and so there is no 2-group structure.

The other theories with zero mass parameter can be obtained by bootstrapping the
Dp(SO(2Mp+2)) theory with p odd. In other words, they are of the form Dpc(SO(2Mp+2))
with c coprime to q ≡ 2Mp

GCD(2Mp,p) = 2M . As discussed in [27], each theory has a Z(p−1)/2
2

1-form symmetry, as for the case of c = 1. Moreover, using the mirror theory described
by [18, (5.4)], we see that the global form of the symmetry is SO(2Mp+ 2)/Z2, precisely as
for the case of c = 1. The relevant exact sequence for these theories is still given by [27,
(8.40)], and so there is no 2-group structure for c ≥ 1.

Finally, let us comment on the case of [27, (8.42)-(8.43)], where it is claimed that there
is a non-trivial extension between the 1-form symmetry (denoted by HT

P ) and the center of
the flavor symmetry (denoted by ZP), and so it is possible that the theories discussed there
possess a 2-group symmetry. Since the center of the flavor symmetry is ZP = Z2 × Z2, its
symmetry algebra is of the D-type with even rank. Suppose that one of the theories in this
class admits a quiver description, where every gauge group has zero-beta function. Then,
either all the D-type groups in the quiver (including the flavor node) have odd rank or
either all of them have even rank. Since we knew that the flavor symmetry is of the D-type
of even rank, all gauge groups of the D-type must have even rank as well. Therefore, if we
assume that the quiver theory in question is conformal, it cannot have a 2-group structure
and no non-trivial extension between the 1-form symmetry and the quotient of the flavor
symmetry. We thus conclude that the conformal quiver does not belong to the case of [27,
(8.42)-(8.43)]. In other words, for the Lagrangian theories, the case of [27, (8.42)-(8.43)]
corresponds to asymptotically free theories but not conformal theories.

A.2 DN+1
p (USp(2N)) theories

We recall from [18, (2.15)], that there is a second series of Dp(USp) models dubbed
DN+1
p (USp(2N)) which is described by the C3 × C∗ hypersurface in Type IIB

u2 + xN + xy2 + yzp + defs. = 0 (A.3)

where p is half-odd-integer and z is the C∗ variable. We claim that, unlike the Dp(USp(2N))
series, which we have discussed in the main body of the paper, this class of models does not
exhibit any non-trivial 2-group structure.

We can start by observing that DN+1
p (USp(2N)) do not exhibit any mass parameter

apart from those related to the USp(2N) global symmetry. Another key fact which drastically
simplifies the analysis is that via the bootstrapping procedure, we can always restrict the
analysis to the Lagrangian subclass.
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The easiest way to proceed is to notice that from (A.3) we can conclude that the
spectral equation for the Hitchin field Φ of DN+1

p (USp(2N)) theories reads (see e.g. [41])

Φ2N+2 + z2p + defs. = 0 (A.4)

and therefore the monodromy of the Hitchin field is fully encoded in the quantity

q = 2N + 2
GCD(2p, 2N + 2) , (A.5)

which does not change if we replace 2p with GCD(2p, 2N + 2). In the latter case, the
corresponding SCFT is the linear quiver

USp(q − 2)− Spin(2q)−USp(3q − 2)− · · · − Spin(2N + 2− q)− [USp(2N)] (A.6)

Notice that the quantity q is always an even integer and therefore all the D-type groups in
the linear quiver have even rank and therefore their center is Z2

2 and not Z4. We conclude
that the short exact sequence in this case always splits, and the 2-group structure is
trivial [54, 55].

A.3 Dp(G) theories of the twisted A-type

Theories in this class are defined by compactifying the 6d theory of type An−1 on a sphere
with two twisted punctures, one regular and one irregular. The relevant hypersurface
singularities in C3 × C∗ are of the form

u2 + x2 + yn + zp + defs. = 0 , (A.7)

or
u2 + x2 + yn + yzp + defs. = 0. (A.8)

Since the punctures are twisted, the Casimir invariants of odd degree (included inside
defs. in the equations above) are proportional to a polynomial in z times

√
z, whereas the

Casimirs of even degree are just polynomials in z. All the deformations of this type describe
VEV of CB operators, mass parameters, relevant and marginal couplings. Clearly, the only
difference between the theories described by the hypersurfaces

u2 + x2 + yn + zp + defs. = 0 , (A.9)

and
u2 + x2 + yn+1 + yzp + defs. = 0, (A.10)

lies in the fact that the latter includes all the parameters of the former plus the Casimir of
degree n + 1. Since we are interested in determining the 2-group structure, it suffices to
identify Lagrangian theories and for this purpose (A.9) and (A.10) can be analyzed together.
We therefore have to discuss separately two cases: (A.9) with n even and with n odd. The
parity of n leads, upon twisting, to SCFTs with different global symmetry: SO(n+ 1) when
n = 2m, and USp(n− 1) when n = 2m+ 1, for m ∈ Z≥1. In [18], these models were dubbed
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Dp(SO(n + 1)) = Dp(SO(2m + 1)) and Dp(USp′(n − 1)) = Dp(USp′(2m)) respectively.
However, for consistency of notation and clarity, here, we call them Dn

p (SO(n + 1)) =
D2m
p (SO(2m + 1)) and Dn

p (USp′(n − 1)) = D2m+1
p (USp′(2m)).34 The result is that the

2-group structure is trivial for all these models and the Lagrangian subclass is given by
a linear quiver with alternating gauge groups (all with vanishing beta function) of B
and C types, with a flavor node only at one end of the quiver [54, 55]. Explicitly, the
Lagrangian D2m

p (USp′(2m)) theories (with zero mass parameter) can be obtained by taking
m = 2pm−

(
p+ 1

2

)
,35 with m ∈ Z≥1:

B0 − Cm−1 −B2m−1 − C3m−2 −B4m−2 − C5m−3 − · · ·

· · · − C(2p−2)m−(p− 1
2) −B(2p−1)m−(p− 1

2) −
[
C2pm−(p+ 1

2)
] (A.11)

whereas the Lagrangian D2m
p (SO(2m + 1)) theories (with zero mass parameter) can be

obtained by taking m = 2pm− p, with m ∈ Z≥1:

B0 − Cm−1 −B2m−1 − C3m−2 −B4m−2 − C5m−3 − · · ·
· · · −B(2p−1)m−(p−1) − C(2p−1)m−p − [B2pm−p] .

(A.12)

B A comment on the Higgs branch of bootstrapped theories

Theories in the same bootstrap family have very similar properties. One then can ask if also
their Higgs branches have a common structure. In this appendix, we observe that for every
two Dp(SU(N)) = Dµc(SU(qµ)) theories with p ≥ N , e.g. T1 and T2, linked by bootstrap
as explained in sections 2 and 2.1 the following holds:

1. The dimension of the Higgs branch of T1 is equal to that of T2. This fact is clear from the
magnetic quivers, as all the magnetic quivers of the same family of bootstrap theories
have the same rank, and just differ by the number of bifundamental hypermultiplets,
or of the free hypermultiplets, as in (2.8).

2. The Hasse diagram [80], encoding the foliation structure of symplectic leaves and
transverse slices, has the same shape both for T1 and T2. Here with same shape we
mean that we consider the two Hasse diagrams just as unoriented graphs, disregarding
the labels attached to the various lines. When such labels are disregarded, then the
two unoriented graphs coincide.

3. Suppose now that the bootstrap shift parameter for T2 is larger than the one for
T1, then each of the transverse slices of the Higgs branch of T2 belongs to the same
family of singularities of the corresponding slice of the Higgs branch of T1, but of a
higher rank.36

34On the other hand, (A.10), upon twisting, leads to SO(n + 2) when n = 2m − 1, and USp(n) when
n = 2m, with m ∈ Z≥1. Thus, it describes D2m−1

p (SO(2m+ 1)) and D2m
p (USp′(2m)), for n = 2m− 1 and

n = 2m, respectively.
35Recall that p is half-odd-integer.
36Here we use the word rank of a singularity to denote the number of exceptional P1s needed to perform

a completely smooth small resolution of the singularities. For instance, we would say that the Kleinian
singularity C2/Z2 has rank 1, while C2/Z10 has rank 9.
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µ = 2 µ = 3 µ = 4

1

0

Ac−2

2

1

0

Ac−2

A2c−3

3

2

1

0

Ac−2 A2c−3

Ac−2

A3c−4A4c−5

Table 1. Hasse diagrams taken and adapted from [80, table 10] for the 3d mirror of (Aµ(c−1)−1, Aµ−1)
with µ = 2, 3, 4 and c > 2. The case for c = 2 is in [80, table 9].

We observe that this phenomenon is preserved also after closing the full puncture, such that
the Dp(SU(N)) theory flows to the (Ap−N−1, AN−1) theory. To illustrate this observation,
we decided to consider the Hasse diagrams for the AD theories (An, Am) discussed in [80].
In particular, let us consider the case in which p is multiple of N , such that we can discuss
the Hasse diagrams of the 3d mirror theories of (Aµ(c−1)−1, Aµ−1) in table 1. For any fixed
complete graph with µ U(1) nodes, the Hasse diagram will look the same, but with different
transverse slices whose associated singularities change with the bootstrap parameter c.

We conjecture that such observation is true for any Dp(G) for p ≥ h(G). It would be
interesting to check if this is true also for theories whose magnetic quivers involve both
unitary and orthosymplectic nodes.
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