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Abstract
Instrumental variable methods, which handle unmeasured confounding by tar-
geting the part of the exposure explained by an exogenous variable not subject
to confounding, have gainedmuch interest in observational studies. We consider
the very frequent setting of estimating the unconfounded effect of an exposure
measured at baseline on the subsequent trajectory of an outcome repeatedly
measured over time. We didactically explain how to apply the instrumental vari-
able method in such setting by adapting the two-stage classical methodology
with (1) the prediction of the exposure according to the instrumental variable,
(2) its inclusion into a mixed model to quantify the exposure association with
the subsequent outcome trajectory, and (3) the computation of the estimated
total variance. A simulation study illustrates the consequences of unmeasured
confounding in classical analyses and the usefulness of the instrumental vari-
able approach. The methodology is then applied to 6224 participants of the 3C
cohort to estimate the association of type-2 diabetes with subsequent cogni-
tive trajectory, using 42 genetic polymorphisms as instrumental variables. This
contribution shows how to handle endogeneity when interested in repeated
outcomes, along with a R implementation. However, it should still be used
with caution as it relies on instrumental variable assumptions hardly testable
in practice.
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1 INTRODUCTION

Observational studies are widely used in epidemiology to assess the relation between an exposure X and an outcome Y,
with the perspective to identify the causal effect of X on Y. Statistical techniques (Ertefaie et al., 2017; Hernan & Robins,
2020) have been used to derive causal interpretations in the presence of confounding. However, they rely on the assump-
tion that all the sources of confounding have been observed and controlled for. Yet, in many contexts, the assumption
that all the confounders are observed is unrealistic, and statistical analyses are likely to provide biased estimates of causal
associations (Fewell et al., 2007). For instance, when studying the relation between cardiometabolic factors on cognitive
aging, somany confoundersmay intervene (Rawlings et al., 2014) that residual unobserved confounding is very likely. The
issue of unmeasured confounding relates to the more general problem of endogeneity that occurs when the covariate is
partly explained by the system under study. Beyond confounding, endogeneity also encompasses reverse causation that
occurs when the outcome or its underlying process may cause a change in the exposure (Wagner, 2018).
To handle endogeneity, instrumental variable (IV) analysis, first developed in Economics (Wright, 1928), was applied

in Public Health from the early 2000s (Greenland, 2000). This method consists in using an exogenous variable, the “IV”,
which is not subject to unmeasured confounding and recreates the randomization framework. The principle of the IV
methodology can be illustrated in the cross-sectional framework (Figure 1A). Let us denote Z the IV, X the endogenous
exposure variable, Y the outcome, and U the unobserved confounders. To be considered as valid, the IV needs to satisfy
three assumptions (Greenland, 2000): (1) Z is strongly associatedwithX; (2) Z is associatedwithY only throughX; and (3) Z
is independent of U conditionally on X. Under these assumptions, Z can be used to retrieve the causal association between
X and Y. In epidemiology, genetic data have been considered as promising IV because genes are determined from birth,
thus not subject to confounding; in this context, IV methodology is called Mendelian randomization (MR) (Davies et al.,
2018). Finally, to be interpreted as causal effects, IV analyses require a fourth assumption of homogeneity for the average
causal effect or monotonicity for the local average causal effect (Hernán & Robins, 2006; Swanson & Hernán, 2018).
The most widely used estimation technique in IV methodology is the two-stage approach, called two-stage least square

(2SLS) method (Burgess et al., 2017): (1) the endogenous exposure is regressed on the IV and (2) the derived prediction,
which is independent of the unmeasured confounders due to the assumptions of Z, substitutes the exposure in the regres-
sion of the outcome to quantify the causal relation between X and Y. First proposed in the cross-sectional framework
where X and Y were continuous variables measured at a single time point (Burgess et al., 2017), it was adapted to handle
binary exposures and/or binary outcomes (Li et al., 2022; Terza et al., 2008), and to treat grouped data (Li et al., 2015, 2020).
Recently, themethodologywas extended to handle longitudinal data. Two settingswere explored: (i) an exposure repeat-

edly measured over time and its effect on the concomitant level of a repeatedly measured outcome (Hogan & Lancaster,
2004; O’Malley, 2012) and (ii) a time-fixed exposure and its effect on the subsequent risk of an event (Li et al., 2015;
Martínez-Camblor et al., 2019; Tchetgen Tchetgen et al., 2015). Yet, another frequent setting encountered in longitudi-
nal studies concerns a time-fixed exposure and its effect on the subsequent trajectory of an outcome repeatedly measured
over time.
In the present contribution, we aim to didactically explain how the IVmethodology can be used in observational cohort

studies to assess the association between an exposure collected at baseline and the trajectory of an outcome repeatedly
measured over follow-up in the presence of potential unmeasured confounding. Our solution consists in considering

F IGURE 1 Directed acyclic graph for the IV methodology with a cross-sectional outcome Y (Panel A) or a longitudinal continuous
outcome Y (Panel B). X is the exposure, Z the instrumental variable (with 1, 2, 3 the corresponding IV assumptions), and U the (partially)
unobserved confounders. Int and slope represent the underlying latent level of Y at baseline and the latent slope of Y over time, respectively.
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a mixed model for the repeated marker in the second step of the two-stage IV approach. We show how this can solve
situations of unmeasured confounding and endogeneity, and we illustrate it in a simulation study considering both a
binary and a continuous exposure, and a continuous outcome. We finally apply the methodology to assess the association
between type-2 diabetes and cognitive aging in the French cohort “Three city” (3C) (Alperovitch, 2003), by using genetic
polymorphisms as the exogenous variable.

2 METHODS

2.1 Framework

Let us consider a classical longitudinal framework (Figure 1B) where 𝑋 is the time-fixed exposure, 𝐔 is a r-vector of
confounders, and 𝐙 is a p-vector of exogenous (instrumental) variables, all defined and measured at entry in the cohort
while the continuous outcome Y is repeatedly measured over time t after baseline. Without loss of generality, we assume
𝔼(𝐔) = 0.
To ease the problem description, we first consider the case of a continuous exposure, and we assume that Y evolves

linearly over time and can be summarized by its latent level at baseline and its latent slope over time, on which the other
variables can have an effect. The generalization to a nonlinear trajectory over time is straightforward by considering a
more flexible basis of time functions instead of only intercept and slope.
Let us assume that the true relations schematized in Figure 1(B) translate for each subject i (𝑖 = 1, … ,𝑁) of a sample

and each occasion j (𝑗 = 1,…𝑛𝑖) in a linear regression for the continuous exposure (1) and a linear mixed model for the
outcome (2):

𝑋𝑖 = 𝛼∗
0
+ 𝐙⊤

𝐢
𝛂∗
𝐙
+ 𝐔⊤

𝐢
𝛂∗
𝐔
+ 𝜖𝑋∗

𝑖
, (1)

𝑌𝑖𝑗 = 𝛽∗
0
+ 𝑋𝑖𝛽

∗
𝑒 + 𝐔⊤

𝐢
𝛃∗
𝐔
+ 𝑏∗

0𝑖
⏟⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⏟

𝐼𝑛𝑡𝑖

+
(
𝛽∗𝑡 + 𝑋𝑖𝛽

∗
𝑡𝑒 + 𝐔⊤

𝐢
𝛃∗
𝐭𝐔

+ 𝑏∗
1𝑖

)
⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⏟

𝑆𝑙𝑜𝑝𝑒𝑖

𝑡𝑖𝑗 + 𝜖𝑌∗
𝑖𝑗
.

(2)

For the sake of readability, conditioning on covariates and random effects, although systematic, is not made explicit in
any of the linear regressions throughout the manuscript.
Following classical definitions of the linear mixed model (Commenges & Jacqmin-Gadda, 2015; Laird & Ware, 1982),

𝐛∗
𝐢
= (𝑏∗

0𝑖
, 𝑏∗

1𝑖
)⊤ ∼  (0, 𝐁∗) is the vector of individual random effects that accounts for the intraindividual correlation

within the repeated Ymeasures. The measurement error in the exposure regression 𝜖𝑋∗
𝑖

is independent of 𝑍𝑖 and 𝐔𝐢 and
the measurement error at time 𝑡𝑖𝑗 in the outcome regression 𝜖𝑌∗𝑖𝑗 ∼  (0, 𝜎𝑌) is independent of all the other measurement
errors at different times 𝜖𝑌∗

𝑖𝑗′
with 𝑗′ ≠ 𝑗, and of 𝑋𝑖 , 𝐔𝐢, and 𝐛∗𝐢 . The random effects 𝐛∗

𝐢
are also independent of 𝑋𝑖 and 𝐔𝐢.

In Equations (1) and (2), superscript * refers to the parameters and latent variables under the true model.
The parameters of interest are 𝛽∗𝑒 and 𝛽∗𝑡𝑒 corresponding to the effect of X on the level of Y at inclusion and the effect of

X on the subsequent change of Y over time, respectively. Since all confounders are included through U in model (2), we
can interpret these parameters in a causal way. The fundamental problem is that this model and these parameters cannot
be directly estimated when some of the confounders𝐔 are not observed. Let us split𝐔 = (𝐔𝐨,𝐔𝐦) with𝐔𝐨 the observed
confounders and𝐔𝐦 the unobserved confounders.

2.2 Naive approach neglecting unobserved confounding

In the presence of unobserved confounding, a naive solution consists in estimating the association between X and the
trajectory of Y by considering the model that includes𝐔𝐨 but omits𝐔𝐦:

𝑌𝑖𝑗 =𝛽
𝑁
0
+ 𝛽𝑁𝑒 𝑋𝑖 + 𝑏𝑁

0𝑖
+ 𝐔𝐨

𝐢
⊤𝛃𝐍

𝐔𝐨

+ (𝛽𝑁𝑡 + 𝛽𝑁𝑡𝑒𝑋𝑖 + 𝐔𝐨
𝐢
⊤𝛃𝐍

𝐭𝐔𝐨
+ 𝑏𝑁

1𝑖
)𝑡𝑖𝑗 + 𝜖𝑁𝑌

𝑖𝑗
.

(3)
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4 of 13 LE BOURDONNEC et al.

The estimation of this model relies on the same distributions and independence assumptions as defined for model
(2). Yet, those are not satisfied anymore in the presence of unobserved confounding: the neglected confounders 𝐔𝐦 are
absorbed by the individual random effects: 𝑏𝑁

0𝑖
= 𝑏∗

0𝑖
+ 𝐔𝐦

𝐢
⊤𝛃∗

𝐔𝐦
and 𝑏𝑁

1𝑖
= 𝑏∗

1𝑖
+ 𝐔𝐦

𝐢
⊤𝛃∗

𝐭𝐔𝐦
, so that 𝐛𝐍

𝐢
= (𝑏𝑁

0𝑖
, 𝑏𝑁

1𝑖
)⊤ is not

independent of 𝑋𝑖 anymore, and is not homoscedastic anymore. Of note, 𝐔𝐦
𝐢
induces a correlation between 𝑏𝑁

0𝑖
and 𝑏𝑁

1𝑖

even when 𝑏∗
0𝑖
and 𝑏∗

1𝑖
were initially independent.

When 𝐔𝐦 is not a confounder, (𝛽𝑁𝑒 , 𝛽𝑁𝑡𝑒 ) is an unbiased estimate of (𝛽∗𝑒 , 𝛽𝑡𝑒∗) from Equation (2), and under the
assumption that 𝔼(𝐔𝐦) = 0, 𝐸(𝑌𝑖𝑗|𝑋𝑖, 𝐙𝐢,𝐔𝐢, 𝑡𝑖𝑗) = 𝐸(𝑌𝑖𝑗|𝑋𝑖, 𝐙𝐢,𝐔

𝐨
𝐢
, 𝑡𝑖𝑗). However, when 𝐔𝐦 includes confounders,

𝐸(𝑌𝑖𝑗|𝑋𝑖, 𝐙𝐢,𝐔𝐢, 𝑡𝑖𝑗)≠ 𝐸(𝑌𝑖𝑗|𝑋𝑖, 𝐙𝐢,𝐔
𝐨
𝐢
, 𝑡𝑖𝑗) since 𝐸(𝑏𝑁0𝑖 |𝑋𝑖, 𝐙𝐢,𝐔

𝐨
𝐢
, 𝑡𝑖𝑗)≠ 0 and 𝐸(𝑏𝑁

1𝑖
|𝑋𝑖, 𝐙𝐢,𝐔

𝐨
𝐢
, 𝑡𝑖𝑗) ≠ 0, and (𝛽𝑁𝑒 , 𝛽𝑁𝑡𝑒 ) is not

an unbiased estimator of (𝛽∗𝑒 , 𝛽∗𝑡𝑒) anymore.

2.3 Instrumental variable approach

The two-stage IV methodology aims at correcting the bias due to residual unmeasured confounding. We show here how
it can be adapted to the longitudinal framework described above by replacing the second-stage least-square regression by
a second-stage linear mixed model.
For clarity, we distinguish below the case of a continuous endogenous exposure from the case of a binary endogenous

exposure. The method relies on the independence between the regressors (𝐙, 𝐔𝐨) and the unobserved variables 𝐔𝐦. As
this assumption may likely be violated between 𝐔𝐦 and 𝐔𝐨, we consider below the total vector 𝐔 = (𝐔𝐦,𝐔𝐨) as being
unobserved to ensure independence.

2.3.1 X continuous

With a continuous endogenous exposure, the two-stage methodology is defined as follows:

𝑋𝑖 = 𝛼0 + 𝐙⊤
𝐢
𝛂𝐙 + 𝑒𝑋

𝑖
, (4)

𝑌ij = 𝛽0 + 𝐸(𝑋𝑖|𝐙𝐢)𝛽𝑒 + 𝑏0𝑖

+ (𝛽𝑡 + 𝐸(𝑋𝑖|𝐙𝐢)𝛽te + 𝑏1𝑖)𝑡ij + 𝜀𝑌ij . (5)

This model relies on the same distributions and independence assumptions as model (2).
From the IV conditional independence assumption (3), the conditional expectation𝐸(𝑋𝑖|𝐙𝐢) = �̃�𝑖 = 𝛼∗

0
+ 𝐙⊤

𝐢
𝛂∗
𝐙
and the

residual 𝑋𝑖 − 𝔼(𝑋𝑖|𝐙𝐢) = 𝐔⊤
𝐢
𝛂∗
𝐔
+ 𝜖𝑋∗

𝑖
.

When rewriting Equation (2) according to 𝔼(𝑋𝑖|𝐙𝐢), one obtains:
𝑌𝑖𝑗 = 𝛽∗

0
+ 𝑋𝑖𝛽

∗
𝑒 + 𝐔⊤

𝐢
𝛃∗
𝐔
+ 𝑏∗

0𝑖

+
(
𝛽∗𝑡 + 𝑋𝑖𝛽

∗
𝑡𝑒 + 𝐔⊤

𝐢
𝛃∗
𝐭𝐔

+ 𝑏∗
1𝑖

)
𝑡𝑖𝑗 + 𝜖𝑌∗

𝑖𝑗

= 𝛽∗
0
+ 𝔼(𝑋𝑖|𝐙𝐢)𝛽∗𝑒 + (𝑋𝑖 − 𝔼(𝑋𝑖|𝐙𝐢))𝛽∗𝑒 + 𝐔⊤

𝐢
𝛃∗
𝐔
+ 𝑏∗

0𝑖

+
(
𝛽∗𝑡 + 𝔼(𝑋𝑖|𝐙𝐢)𝛽∗𝑡𝑒 + (𝑋𝑖 − 𝔼(𝑋𝑖|𝐙𝐢))𝛽∗𝑡𝑒 + 𝐔⊤

𝐢
𝛃∗
𝐭𝐔

+ 𝑏∗
1𝑖

)
𝑡𝑖𝑗 + 𝜖𝑌∗

𝑖𝑗
. (6)

And using that 𝑋𝑖 − 𝔼(𝑋𝑖|𝐙𝐢) = 𝐔⊤
𝐢
𝛂∗
𝐔
+ 𝜖𝑋∗

𝑖
from model (1),

𝑌𝑖𝑗 = 𝛽∗
0
+ 𝔼(𝑋𝑖|𝐙𝐢)𝛽∗𝑒 + (𝐔⊤

𝐢
𝛂∗
𝐔
+ 𝜖𝑋∗

𝑖
)𝛽∗𝑒 + 𝐔⊤

𝐢
𝛃∗
𝐔
+ 𝑏∗

0𝑖

+
(
𝛽∗𝑡 + 𝔼(𝑋𝑖|𝐙𝐢)𝛽∗𝑡𝑒 + (𝐔⊤

𝐢
𝛂∗
𝐔
+ 𝜖𝑋∗

𝑖
)𝛽∗𝑡𝑒 + 𝐔⊤

𝐢
𝛃∗
𝐭𝐔

+ 𝑏∗
1𝑖

)
𝑡𝑖𝑗 + 𝜖𝑌∗

𝑖𝑗
, (7)

which reduces to:

𝑌𝑖𝑗 = 𝛽∗
0
+ 𝔼(𝑋𝑖|𝐙𝐢)𝛽∗𝑒 + 𝑏0𝑖 +

(
𝛽∗𝑡 + 𝔼(𝑋𝑖|𝐙𝐢)𝛽∗𝑡𝑒 + 𝑏1𝑖

)
𝑡𝑖𝑗 + 𝜖𝑌∗

𝑖𝑗
(8)
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with 𝑏0𝑖 = 𝐔⊤
𝐢
(𝛂∗

𝐔
𝛃∗𝐞 + 𝛃∗

𝐔
) + 𝜖𝑋∗

𝑖
𝛽∗𝑒 + 𝑏∗

0𝑖
and 𝑏1𝑖 = 𝐔⊤

𝐢
(𝛂∗

𝐔
𝛃∗𝐭𝐞 + 𝛃∗

𝐭𝐔
) + 𝜖𝑋∗

𝑖
𝛽∗𝑒 + 𝑏∗

1𝑖
. By definition, 𝔼(𝑋𝑖|𝐙𝐢) and 𝐔𝐢 are

independent, so 𝐛𝐢 = (𝑏0𝑖, 𝑏1𝑖)
⊤ is independent of the covariates in the model, as required in a linear mixed model. The

model defined in Equation (5) is thus equivalent to the targetmodel in Equation (2), except that the variance of the random
effects is not homoskedastic anymore.
Maximum likelihood estimates of the fixed effects in amixedmodel being unbiased evenwhen the covariance structure

is misspecified (following the same principle as with generalized estimating equations, Liang & Zeger, 1986), 𝛽𝑒 and 𝛽𝑡𝑒
are unbiased estimators of 𝛽∗𝑒 and 𝛽∗𝑡𝑒; they may be used to quantify the causal relation between X and Y. However, their
variance needs to be corrected for the heteroskedasticity and the use of an IV. By applying the same principle of robust
variances (Royall, 1986; White, 1980) as in IV methods for cross-sectional studies (e.g., in ivtools R package, Sjolander &
Martinussen, 2019), we define the following sandwich estimator:

𝑉2-S
(
𝜷
)
=

(
𝑁∑
𝑖=1

�̂�𝐓
𝐢
�̂�−𝟏
𝐢
�̂�𝐢

)−1(
𝑁∑
𝑖=1

�̂�𝐓
𝐢
�̂�−𝟏
𝐢
𝐕𝐢�̂�

−𝟏
𝐢
�̂�𝐢

)(
𝑁∑
𝑖=1

�̂�𝐓
𝐢
�̂�−𝟏
𝐢
�̂�𝐢

)−1

, (9)

where �̂�𝐢 is the matrix of variables associated with the vector of fixed effects 𝜷 (in our example in Equation (5), �̂�𝐢 is a
𝑛𝑖 × 4-matrix with intercept, time, 𝔼(𝑋𝑖|𝐙𝐢) and its interaction with time, and 𝛃 = (𝛽0, 𝛽𝑡, 𝛽𝑒, 𝛽𝑡𝑒)

⊤), �̂�𝐢 = 𝑀𝑖�̂�𝑀
𝑇
𝑖
+ �̂�2𝑦𝐼𝑛𝑖

with 𝑀𝑖 the matrix of variables related to the random effects (in our example, an 𝑛𝑖 × 2 with intercept and time), 𝐼𝑛𝑖
is the identity matrix, and �̂�, �̂�, �̂� are the estimates obtained in the second-stage model (5). Finally, 𝐕𝐢 is the empirical
covariance matrix of 𝑌, that is, 𝐕𝐢 = Cov(𝐘𝐢 −𝐖⊤

𝐢
�̂�, 𝐘𝐢 −𝐖⊤

𝐢
�̂�) where𝐖𝐢 is the 𝑛𝑖 × 4 matrix with intercept, time, 𝑋𝑖 ,

and its interaction with time.
The robust variance𝑉2-S(𝛽) quantifies the second-stage variability in the estimates, but it neglects the first-stage uncer-

tainty. To compute the total variance that accounts for the variability in the two stages, we use a parametric bootstrap
(Efron & Tibshirani, 1993): instead of running the second-stage analysis once from the maximum likelihood estimates �̂�,
the second stage is replicated 𝑀 times from first-stage parameters 𝛼𝑚 (𝑚 = 1, ..,𝑀) randomly drawn from their asymp-
totic normal distribution with mean �̂� and variance 𝑉(�̂�). The total variance estimate of 𝜷 can then be derived with the
Rubin’s rule (Little & Rubin, 2019) from the𝑀 second-stage estimates 𝜷𝑚 as:

𝑉tot(𝜷) =
1

𝑀

𝑀∑
𝑚=1

ˆ
𝑉2-S(𝜷𝑚) +

(𝑀 + 1)

𝑀(𝑀 − 1)

𝑀∑
𝑚=1

(
𝜷𝑚 − 𝜷𝑚

)(
𝜷𝑚 − 𝜷𝑚

)⊤

.

2.3.2 X binary

The absence of bias demonstrated for the continuous exposure comes from the use of additive models in both stages.
Although not frequent, a linear model could also be considered for a binary exposure. Called linear probability model (Li
et al., 2022), it translates into the exact same inference technique as described for the continuous exposure with 𝐸(𝑋𝑖|𝑍𝑖)
derived froma linearmodel for𝑋 and included into the second-stage linearmixedmodel, and the same variance estimator.
Alternatively, the more classical logistic model can also be considered:

logit(𝔼(𝑋𝑖|𝐙𝐢)) = 𝛼0 + 𝐙⊤
𝐢
𝛂𝐙 (10)

with the derived 𝐸(𝑋𝑖|𝑍𝑖) included in the second-stage linear mixed model in (5), and the same total variance estimator
used. However, due to the nonlinear nature of the logistic regression, 𝐸(𝑋𝑖|𝑍𝑖, 𝑈𝑖) does no longer equal 𝐸(𝑋𝑖|𝑍𝑖), and
the convergence of the estimates of 𝛽𝑒 and 𝛽𝑡𝑒 to 𝛽∗𝑒 and 𝛽∗𝑡𝑒 in (2) is not ensured anymore. To further account for the
residual effect of the unmeasured confounders, some authors recommended to replace the substitution of 𝑋 by 𝐸(𝑋𝑖|𝑍𝑖)
by the combination of𝑋 and the residual𝑋 − 𝐸(𝑋𝑖|𝑍𝑖) in the second stage.We call these three options linear/substitution,
logistic/substitution, and logistic/residual inclusion, respectively.
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6 of 13 LE BOURDONNEC et al.

2.4 Software

The IV estimation technique for a binary or continuous time-fixed exposure and a continuous repeatedly measured out-
come is implemented in the R package IVmm available at url of the package —blinded version. It relies on the hlme
function of lcmm R package for the linear mixed model estimation (Proust-Lima et al., 2017).

3 SIMULATION STUDY

We ran a simulation study to illustrate the behavior of the naive approach and of the IV methods in the presence of
unmeasured confounding.

3.1 Simulation design

The simulation setting followed the DAG of Figure 1(B). The procedure of data generation including parameters values
considered is fully summarized in Table S1. For each individual 𝑖 in a sample of size 𝑁, we first generated an exogenous
IV 𝑍𝑖 and an unobserved confounder 𝑈𝑖 according to standard Gaussian distributions, and random visit times 𝑡𝑖𝑗 = 𝑗 +

𝑢𝑖𝑗 around theoretical annual visits 𝑗 (with 𝑗 = 1, .., 6) with 𝑢𝑖𝑗 a visit-and-subject-specific random Gaussian departure
( (0, 0.05)). We then generated the endogenous continuous exposure 𝑋𝑖 according to model (4) (for a binary, a logistic
version of (4) was considered) and the repeated measures of the outcome 𝑌𝑖 according to model (2).
We considered scenarios with different sample sizes (N=2000, 6000, or 20,000) and different strengths of association

between the IV and the exposure 𝛼𝑧 resulting in different strengths of the IV. As common in the IV literature, the strength
of association between the IV and the exposure was quantified with the F-statistic (ratio of the explained variance and the
residual variance) (Andrews et al., 2019) and the Nagelkerke 𝑅2 for a continuous and binary exposure, respectively. For
each scenario, 500 datasets were simulated.

3.2 Simulation results

The results of the naive and the IV approaches are reported in Tables 1 and 2; they are also displayed in Figure 2 for the
slope with time (and in Figure S1 for the initial level).
As expected, whatever the sample size and the strength of the IV association with the exposure, the naive method

showed very large bias and null coverage rate for the association between the exposure and the change over time in all
cases. In contrast, the two-stage IV methods retrieved the true causal association without any bias for the continuous

TABLE 1 Simulation results for continuous exposure (over 500 replicates) for the association between the exposure and the trajectory of
Y (summarized by the effect on the baseline level and the slope over time) according to the sample size, and strength of the instrumental
variable (𝛼𝑍).

𝜶𝒁 = 𝟎.𝟓 𝜶𝒁 = 𝟏

Baseline Slope Baseline Slope
Level Over time Level Over time

N Methods Strengtha RB CR RB CR Strength* RB CR RB CR
2000 Naive – 44.3 0.0 44.3 0.0 – 33.3 0.0 33.2 0.0

IV 251 −0.1 93.6 0.3 95.6 1003 0.1 96.8 0.1 95.6
6000 Naive – 44.5 0.0 44.5 0.0 – 33.4 0.0 33.3 0.0

IV 757 0.9 95.4 0.4 95.0 3003 −0.1 96.8 −0.1 96.2
20,000 Naive – 44.4 0.0 44.5 0.0 – 33.3 0.0 33.3 0.0

IV 2503 0.08 96.2 −0.0 94.6 10,009 −0.0 95.2 0.0 93.4
aStrength of association is assessed with the F-statistic for continuous X.
Abbreviations: CR, coverage rate of the 95% confidence interval; N, sample size; RB, relative bias (defined as the average percentage of difference between the
estimate and the true parameter value).
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LE BOURDONNEC et al. 7 of 13

TABLE 2 Simulation results for binary exposure with naive method, linear/substitution, and logistic/substitution IV methods (over 500
replicates) for the association between the exposure and the trajectory of Y (summarized by the effect on the baseline level and the slope over
time) according to the type of exposure, the sample size, and strength of the instrumental variable (𝛼𝑍).

𝜶𝒁 = 𝟐 𝜶𝒁 = 𝟑 𝜶𝒁 = 𝟒

Baseline Slope Baseline Slope Baseline Slope
level over time level over time level over time

N Methods Stra RB CR RB CR Stra RB CR RB CR Stra RB CR RB CR
2000 Naive - 135.9 0.0 135.5 0.0 - 106.9 0.0 106.7 0.0 - 67.6 0.0 67.7 0.0

Log/Res 14.3 100.3 0.0 100.2 0.0 35.0 82.7 0.0 82.5 0.0 58.6 67.9 0.0 67.7 0.0
Log/Sub 14.3 −1.6 94.6 −2.0 95.2 35.0 −0.8 94.8 −1.4 95.4 58.6 −0.4 94.6 −1.0 95
Lin/Sub 10.3 −1.0 95.4 −1.4 95.4 25.1 −0.1 96.0 −0.1 93.8 41.6 0.0 94.0 0.2 94.0

(229) (676) (1406)
6000 Naive – 135.9 0.0 135.5 0.0 – 106.7 0.0 106.3 0.0 – 68.0 0.0 67.8 0.0

Log/Res 14.3 100.4 0.0 100.2 0.0 35.0 82.4 0.0 81.8 0.0 58.6 −21.6 0.0 16.2 0.0
Log/Sub 14.3 −1.3 94.6 −1.2 93.8 35.4 −1.0 94.6 −0.9 94.0 58.6 −0.7 94.0 −0.7 94.4
Lin/Sub 10.3 −1.0 94.8 −0.1 95.4 25.1 −0.6 96.8 −0.4 96.4 41.6 −0.1 93.0 0.2 96.0

(692) (2025) (4218)
20,000 Naive - 135.7 0. 135.7 0.0 – 106.7 0.0 106.8 0.0 – 67.9 0.0 67.9 0.0

Log/Res 14.3 100.4 0.0 100.4 0.0 35.0 82.2 0.0 82.3 0.0 58.6 67.4 0.0 67.4 0.0
Log/Sub 14.3 −0.3 93.8 0.0 95.6 35.4 −0.6 93.8 −0.3 95.6 58.6 −0.5 94.0 −0.4 95.4
Lin/Sub 10.3 −0.6 94.0 −0.2 95.0 25.1 0.2 93.8 0.2 94.6 41.6 −0.2 94.6 −0.1 94.6

(2301) (6763) (14,037)
aStrength of association is assessed with the 𝑅2 expressed in % (and F-statistic) for the linear regression, and the 𝑅2 of Nagelkerke for the logistic regression also
expressed in %.
Abbreviations: CR, coverage rate expressed in % of the 95% confidence interval;Log/Sub, logistic/substitution method; Lin/Sub = linear/substitution method; N,
sample size; RB, relative bias expressed in % (defined as the average percentage of difference between the estimate and the true parameter value); Str, strength.

exposure, and for the binary exposure when using the linear/substitution and logistic/substitution methods, even for
the scenarios with a weak instrument. In contrast, the logistic/residual methodology for a binary exposure showed large
bias and null coverage rate. In the following, we thus did not investigate this method further. The simulation study also
validated the proposed estimate of variance with reported coverage rate of the 95% confidence interval very close the
nominal value in both the continuous and binary cases. However, although correct, the two-stage IV method showed
substantial variability in the estimates when the IV was weaker.

4 APPLICATION

We aimed to assess the relation between type-2 diabetes measured at baseline and subsequent cognitive trajectory in the
elderly population. Indeed, biological mechanisms suggest an implication of type-2 diabetes on cognitive aging (Frison,
2019), but unmeasured confounders can interfere with this process. To handle this, we used a genetic IV defined by the 42
single nucleotide polymorphisms (SNPs) (listed in the Supporting Information) that were previously identified in genome-
wide association studies of type-2 diabetes (Morris et al., 2012; Tchetgen Tchetgen et al., 2015).

4.1 The Three-city study

The 3C study is a population-based prospective cohort that aimed at assessing the relation between vascular diseases and
dementia in the elderly (Alperovitch, 2003). Participants, aged 65 years and older, were randomly selected in 1999 from
the electoral lists of three French cities. In total, 9294 participants underwent an in-depth examination of their health
and risk factors at baseline, and were then followed every 2–3 years for up to 20 years with an extensive interview and
a neuropsychological battery. Among them, 6948 participants have been typed on genome-wide genotyping arrays and
further imputed from Haplotype Reference Consortium panel (Lambert et al., 2009). Genotype data that were retained
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8 of 13 LE BOURDONNEC et al.

F IGURE 2 Association estimates (over 500 replicates) of the continuous exposure or the binary exposure with the change of the
outcome over time using the naive or the IV approaches (logistic/residual, linear/substitution, and logistic/substitution in the binary case) for
different sample sizes (N) and different intensities of association (through the regression coefficient 𝛼). In the binary case only, the
Nagelkerke R2 is also reported to further illustrate the strength of the IV in comparison with the application setting.

in the study are those with an imputation quality greater than 0.70. Type-2 diabetes were determined from blood glucose
level (fasting glucose level≥ 7.0 mmol/L) or the use of antidiabetic treatment at baseline. We studied the cognitive tra-
jectory through the Isaacs set test (IST), which measures verbal fluency and has been shown to differentiate early in the
pathological process toward dementia (Amieva et al., 2014). The score is the total number of words given in four semantic
categories in 15 s.
The final sample size included 6224 participants whose type-2 diabetes were ascertained at baseline, who were geno-

typed, and had at least one IST measure during the follow-up. Participants were 74 years old at baseline on average, 61 %
were women, and 38% had an educational level higher than secondary school (Table 3). Among them, 598 (9.6 %) were
ascertained with diabetes at baseline; those with diabetes were more often male, more likely to have a low educational
level. Participants were followed up for 8 years on average with a mean of four repeated measures of IST.

4.2 The IV analysis

We primarily used the logistic/substitution method. The R2 of 4.8% showed a weak association between type-2 diabetes
and genetic polymorphisms. The linear mixed model for the IST trajectory included a basis of four natural cubic splines
on the time from baseline to account for the nonlinear trajectories over time. Diabetic status (in the naive model) or its
expectation based on the 42 polymorphisms (in the IV model) was included in interaction with each spline function. For
the naive model, we considered both no adjustment or adjustment onmeasured potential confounders (educational level,
age at baseline). Parameter estimates are given in Table S2. Predicted trajectories of IST according to diabetic status are
displayed in Figure 3(A) (corresponding differences over time between groups in Figure 3B).
The naive method, whether it was adjusted or not for potential confounders, highlighted a difference at inclusion

according to the type-2 diabetes but no differential change over time. At any time, the mean IST score was lower for
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LE BOURDONNEC et al. 9 of 13

TABLE 3 Characteristics of the 6224 participants of 3C sample according to their type-2 diabetes and overall.

Characteristics Diabetics (N = 598) No diabetics (N = 5626) Overall (N = 6224)
Number (%) Mean (SD) Number (%) Mean (SD) Number (%) Mean (SD)

Sex
female 285 (47.7) 3498 (62.2) 3783 (60.8)
male 313 (52.3) 2128 (37.8) 2441 (39.2)
Education level
no education 78 (13.0) 458 (8.1) 536 (8.6)
primary school 112 (18.7) 924 (16.4) 1036 (16.7)
secondary school 218 (36.5) 2086 (37.1) 2304 (37.0)
high school 99 (16.6) 1138 (20.2) 1237 (19.9)
university 91 (15.2) 1020 (18.1) 1111 (17.9)
Age at entry 74.44 (5.4) 74.29 (5.5) 74.31 (5.5)
IST score at baseline 30.48 (6.8) 32.24 (7.0) 32.08 (7.0)
Number of IST 4.06 (1.8) 4.47 (1.9) 4.42 (1.9)
measures/subject
Years of follow-up 7.08 (4.6) 8.12 (4.8) 8.02 (4.7)

IST, Isaacs set test; N, sample size; SD, standard deviation.

F IGURE 3 (A) Predicted trajectories of IST score according to type-2 diabetes at baseline and associated 95% confidence interval. (B)
Estimated difference in IST score over time for diabetic compared to nondiabetic using the naive method (not adjusted or adjusted on gender,
educational level, and age) and the logistic/substitution instrumental variable method.
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10 of 13 LE BOURDONNEC et al.

participants with type-2 diabetes than for those without type-2 diabetes (mean difference in the adjusted model of −1.20
[−1.77;-0.64],−1.36 [−1.94;−0.79],−1.31 [−1.84;−0.78] points at 0, 5, and 10 years). In contrast, the logistic/substitution IV
method did not show evidence of substantial difference in cognitive trajectory according to the type-2 diabetes although
the point estimates suggested a higher level at baseline for participants with type-2 diabetes (mean difference of 1.26
[−2.66;5.18] points at baseline) and a steeper cognitive decline in the first years for participants with type-2 diabetes (mean
difference of−1.20 [−5.50;3.10],−0.48 [−5.51;4.55] points at 5 and 10 years, respectively). Results were similar when using
the linear/substitution IV model (see Figure S3).

5 DISCUSSION

The IVmethod has gained interest in observational studies to address unmeasured confounding. Yet, although the frame-
work is very common in observational longitudinal studies, an IV solution for the assessment of an exposure collected at
baseline on the subsequent trajectory of a repeated outcome had not been previously described in the medical statistics
literature. We showed in this work how the two-stage approach frequently used in IV methodology for cross-sectional or
survival outcomes (Burgess et al., 2017; Tchetgen Tchetgen et al., 2015) could be adapted to study the association between
a time-fixed exposure and the subsequent trajectory of an outcome using the mixed model theory. Previous contributions
dealing with repeated data over time had systematically focused on time-dependent exposures (rather than time-fixed)
and associations with either the level of a time-fixed outcome (Sánchez et al., 2017) or the level of a repeated outcome at a
given time using distributed lag models (Hogan & Lancaster, 2004; O’Malley, 2012). To our knowledge, the use of a mixed
model with an IV approach in epidemiology was limited to the analysis of a complex clinical trial to treat noncompliance
over time (Bond et al., 2007), the issue of measurement error of time-dependent exposures with regression calibration
(Strand et al., 2014), and the issue of between/within unmeasured confounding in cross-sectional grouped data (Li et al.,
2015).
The conducted simulation study emphasized the highly biased estimations obtained when ignoring unmeasured con-

founding. They also showed the correct inference that our IV solution could provide for assessing the causal association
between a time-fixed continuous or binary exposure and a continuous longitudinal outcome in the presence of endogene-
ity. However, we noticed a very high variance formoderate sample sizes (a few thousand subjects) when the IVwasweakly
associated with the exposure. For simplicity of result reporting, we focused in the methodology and in the simulations on
scenarios with a linear trajectory for the outcome. However, the methodology applies equivalently to any scenario with a
nonlinear trajectory, provided that the mixed model remains linear in the fixed and random effects, and random effects
are included for each time function. This is what was done in the application considering natural splines to approximate
the nonlinear cognitive trajectory.
The IV methodology highly relies on additive model properties to eliminate the association with the unmeasured

confounders. The use of nonlinear models may prevent from a total elimination of this association and induce biased
estimates. When considering a binary exposure, we explored linear and nonlinear regressions. Our simulations showed
that the causal association could be correctly retrieved when using the linear probability model for the binary exposure
but also when using the nonlinear logistic model combined with a substitution method in the second stage. In the appli-
cation, both methods also gave the same results. In contrast, the logistic regression combined with the residual inclusion
in the second stage (Terza et al., 2008) showed large bias in our simulation setting with a linear mixedmodel in the second
stage and was not further investigated. Regarding the outcome, we restricted our framework to continuous longitudinal
outcomes with linear mixed models and leave extensions to other types of outcomes to future research.
Our motivating application aimed at evaluating the causal association between type-2 diabetes and cognitive decline

by using 42 genetic polymorphisms associated with type-2 diabetes as IV. While the classical (naive) regression ignoring
unmeasured confounders highlighted a lower cognitive level for type-2 diabetics at all times, the IV methodology that
handles unobserved confounding suggested a different and time-varying association. However, the analysis by IV does
not allow to reach a conclusion as the confidence intervals were excessively large because of the limited sample size for an
IV application with a binary exposure (N = 6224), and the weakness of the association between genetic polymorphisms
and type-2 diabetes (𝑅2 = 4.8%). These results were similar when considering logistic and linear models in first step.
MR studies had already been conducted to assess the causal association between type-2 diabetes and cerebral aging.

Cross-sectional studies had focused on cognitive level (Ware et al., 2021) and dementia risk (Østergaard et al., 2015; Walter
et al., 2016), and one longitudinal survival study had investigated the association with dementia risk (Tchetgen Tchetgen
et al., 2015). None had identified a causal association between genetically predicted type-2 diabetes and cerebral aging.
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Our work goes one step further by considering the association with prospective cognitive decline. Although in accordance
with the literature, the highly variable results call for a replication in a much larger sample to overcome a potential lack
of power. Additional simulations based on a similar instrument as in our application (Figure S2) showed the substantial
gain in accuracy when considering, for instance, 20,000 subjects rather than 6000 subjects.
The method we proposed relies on assumptions coming from both the IV theory and the mixed model theory. First,

the method is based on the fundamental assumptions that define valid instruments: (1) Z is strongly associated with X;
(2) Z is associated with Y only through X; and (3) Z is independent of U conditionally on X (Figure 1). In our application
as in many MR analyses, the genetic IV explains only a small part of the exposure (assumption (1)) leading to a weak
instrument, high variances, and need for very large sample sizes. The simulation study did not reveal any issue of bias or
coverage rate with weak instruments. However, it showed a huge variability that can make the IV method inconclusive,
except when carried out on very large samples (20,000 subjects, e.g., in our case). To better address assumption (1) and
not rely on a predetermined set of IVs, Fan and Zhong (2018) proposed an adaptive lasso technique that simultaneously
selects the IV variables from a high-dimensional set of candidates. Developed for cross-sectional data, an extension to
longitudinal outcome data using our mixed modeling strategy could be possible.
As fixed at birth, the genetic IV cannot be affected by the confounders (Assumption 3). However, to guarantee assump-

tions (2) and (3), we further need to assume that the SNPs associated with type-2 diabetes are not associated with other
diseases (pleiotropy).Moreover, the use of genetic variants as an IV for a later in life study relies on the implicit assumption
that the genetic variants are not associated with the probability to be alive at the timing of eligibility definition, exposure,
and outcome collection (Swanson, 2019; Vansteelandt at al., 2018). Our application was performed under the assumption
that genetic polymorphisms and type-2 diabetes were not associated with mortality prior to cohort entry. Finally, causal
interpretation of the IV analysis requires a fourth assumption, either the homogeneity for the average causal effect or
monotonicity for the local average causal effect (Hernán & Robins, 2006; Swanson & Hernán, 2018).
Note that with binary exposures, the interpretation of IV analyses may not be straightforward, especially when the

binary exposure reflects an underlying continuous process that should be considered instead (Burgess & Labrecque, 2018).
This is, however, unlikely the case with diabetes. In particular, its definition differs from blood glucose because a diabetic
person under treatment may be controlled for hyperglycemia.
Our methodology also relies on classical assumptions of longitudinal analyses. We considered the linear mixed model

theory rather than marginal models as they better handle selection over time for etiological studies (Rouanet et al., 2022).
Our methodology is robust to missing data under the missing at randommechanism (i.e., missingness can be fully deter-
mined by the observations) (Little & Rubin, 1987) for both the intermittent missing outcome and study dropout. In case
of informative dropout linked to the outcome process, the methodology can be easily extended by jointly modeling the
risk of dropout according to the trajectory of the outcome (Rizopoulos, 2012). In the application, we performed such a
sensitivity analysis where death and dropout from the study were modeled along with the cognitive decline (Table S3); it
showed concordant results.
To conclude, we provided a full methodology and associated software solution to apply the IV technique to the frequent

framework of an exposure measured at baseline and the subsequent trajectory of a continuous marker. It must be used
with caution due to the strong and hardly controllable assumptions IV methods must satisfy. However, as illustrated with
the causal association between type-2 diabetes and cognitive decline, it constitutes a useful statistical tool to take into
account unobserved confounders in prospective cohort studies.
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