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Abstract We describe laboratory experiments in a 2D wave tank that aim at building up and monitor
2D shallow water soliton gas. The water surface elevation is obtained over a large (∼ 100m2) domain,
with centimetre-resolution, by stereoscopic vision using two cameras. Floating particles are seeded to get
surface texture and determine the wave field by image correlation. With this set-up, soliton propagation
and multiple interactions can be measured with a previously unreachable level of detail. The propagation
of an oblique soliton is analysed, the amplitude decay and local incidence are compared to analytical
predictions. We further present two cases of 2D soliton gas, emerging from multiple line solitons with
random incidence (|θ| < 30◦) and from irregular random waves forced with a jonswap spectrum (|θ| <
45◦). To our knowledge, those are the first observations of random 2D soliton gas for gravity waves. In
both cases Mach reflections and Mach expansions result in solitons that mainly propagate in directions
perpendicular to the wave-makers.

Graphical abstract
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1 Introduction

Zabusky and Kruskal (1965) used for the first time the word “soliton” to characterize pulses that reap-
pear virtually unaffected in shape and size after interaction. Solitons are solutions of integrable nonlinear
dispersive equations, such as the Korteweg-de Vries (KdV), nonlinear Schrödinger, Benjamin-Ono, and
many other equations. These equations find applications in different fields of physics, such as nonlinear
optics, water surface waves, plasma waves, condensed matter (Dauxois and Peyrard, 2006). The statis-
tical properties of ensemble of solitons, randomly distributed in amplitude and position, were studied
theoretically since then (Zakharov, 1971; El and Kamchatnov, 2005; Congy et al., 2021, e.g.) and led to
numerous fundamental studies (Bonnemain et al., 2022; El and Tovbis, 2020; Gelash et al., 2019, e.g.).
Zakharov (1971) named such an ensemble of solitons, “soliton gas”, by analogy with particles colliding
in a gas.

Kadomtsev and Petviashvili (1970) derived a two-dimensional extension of the KdV equation to
study soliton propagation with weak angular spreading. The Kadomtsev–Petviashvili (KP) equation
is an integrable equation and admits exact solutions, including localized solitons along distinct lines
in the horizontal plane (“line solitons”), and interactions between multiple line solitons that form two-
dimensional patterns (Kodama and Yeh, 2016). Most interesting features arise for small incidence angles.
The interaction with a vertical wall with an acute angle (< 30◦) is known to produce Mach reflection as
described theoretically by Miles (1977a) and confirmed experimentally (Melville, 1980; Li et al., 2011).
On theoretical grounds obtuse incidence (> 90◦) leads to soliton diffraction or Mach expansion also a
feature of the evolution of a finite soliton crest (Ryskamp et al., 2021) but not confirmed experimentally
so far.

To produce soliton gases experimentally, several issues have to be faced. The main one is wave energy
dissipation as in any experimental set-up. A stationary regime can only be reached by injecting energy
with a forcing device. These two features, dissipation and forcing, are at odds with the soliton gas
framework. Only recently (Redor et al., 2019, 2020, 2021) showed evidence of soliton gas forming in a
shallow water wave flume (1D) experiment. In their set-up, dissipation is acting on a much larger time
scale compared to that of dispersion and non-linearity: solitons emerge from monochromatic forcing
and their dynamics can be considered adiabatic. Unidirectional propagating soliton gases have been
generated in optic fibers (Marcucci et al., 2019; Suret et al., 2023), or in deep water (Suret et al., 2020).
In these studies initial conditions, computed in the framework of the non-linear Schrödinger equation,
experimentally evolve into envelop solitons giving rise to localized dense soliton gases.

In this article, we describe a large scale experiment that is designed to build up and monitor 2D
shallow water soliton gas in a (30 × 27m2) laboratory wave tank. The size of the investigation area
and the time resolution are chosen for studying the dynamics of pure gravity waves (capillarity being
negligible at these scales) in all horizontal directions and covering large ranges of wave numbers and
frequencies. For that purpose, the free surface elevation is video recorded over a large (∼ 100m2) domain,
at high-rate (25Hz) during long times (several tens of minutes). Among all the techniques that were
developed to measure the water free surface displacements (for a review see Gomit et al., 2022), we
apply a stereoscopic vision method developed by Aubourg et al. (2019). Two calibrated cameras record
the same area. Image correlation is used to reconstruct the 3D wave field. Image correlation requires
surface texture, for instance Benetazzo (2006), Mironov et al. (2012) and Bergamasco et al. (2017)
used the natural texture of the ocean made of short wind waves, capillary ripples and foam. For long
non-breaking waves such as solitons, the water surface is very smooth. To circumvent this feature the
tank was seeded with floating particles, following many other studies (see e.g. Douxchamps et al., 2005;
Chatellier et al., 2013; Ferreira et al., 2017; Aubourg et al., 2019).

The experimental set-up is described in the following section, along with the validation of the stereo-
scopic system against wave gauge measurements. In section 3, the case of a truncated oblique soliton is
analysed, the amplitude decay is compared to the Mach expansion analytical solution of Ryskamp et al.
(2021). We further present two cases of 2D soliton gas, emerging from a multiple line soliton generation
and from irregular random waves forced with a jonswap spectrum.
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(a) (b)

Fig. 1 a View of the wave tank. The wave-makers are located on the left side of the picture. The water surface is
covered with buoyant plastic particles to generate patterns for image correlation. b Top view sketch of the wave tank.
The wall at x = 0 is made of 60 independent piston-type wave-makers. The water surface elevation is measured using 23
wave gauges (blue points), 6 of them are numbered for reference in the text (their coordinates are given in Table 1). The
elevation is also measured by a stereoscopic surface mapping technique over an area roughly 100 m2 shown in the figure.
This measurement is done using two cameras which positions are sketched by the two red rectangles. The cameras are
4.5 m above the tank bottom.

2 Experimental setup

2.1 Wave tank

The experiments were performed in the LHF wave tank located in Pont-de-Claix (France) which is
operated by the ARTELIA company (Fig. 1). The tank is 30 m wide and 27 m long (between the mean
position of the pistons and the vertical end wall). The water depth is set to h = 35 cm for the experiments
presented herein. The bottom is horizontal with a standard deviation of 4mm over the entire surface.
Three sides (y = 0, x = 27m and y = 30m) of the tank are vertical walls so that the reflection coefficient
of the waves is 1. The wall at x = 0 consists in sixty 50 cm-wide pistons, with a maximum stroke of
0.6m. The pistons are controllable in position independently of each other. Arbitrary multidimensional
waves can be generated such as a single oblique soliton, multiple oblique solitons, oblique sine waves or
multi-directional random forcing. This paper will focus on two types of wave forcing: solitons (single or
multiple) and random waves using a jonswap forcing (Hasselmann et al., 1973).

2.2 Wave generation

2.2.1 Solitons

In the case of a 1D soliton, Guizien and Barthélemy (2002) provide the law of motion of a piston
wave-maker for a Rayleigh type soliton also solution of the Serre-Green-Naghdi equations (Serre, 1953).
It describes a fully non-linear solitary wave that is recognized to shed less dispersive waves during
propagation. An oblique Rayleigh soliton with an angle of propagation θ with respect to the y axis has
the following expression:
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G1 G2 G3 G4 G5 G6
x [m] 9.92 12.46 15.01 16.36 9.95 12.49
y [m] 14.99 14.95 15.01 15.00 22.00 22.01

Table 1 Coordinates of wave gauges G1 to G6 sketched in Fig. 1b.

η(x, y, t) = a0 sech
2 (β(x cos θ + y sin θ − ct)) (1)

β =

√
3 a0

4h2(a0 + h)
(2)

c =
√
g (h+ a0) (3)

where a0 is the amplitude of the soliton, β the shape factor and c is the phase speed. Following the same
method as in Guizien and Barthélemy (2002), the displacement X(t) of each piston located at y = yi is
computed with

dX

dt
(yi, t) = c

η (X(yi, t), yi, t)

h+ η (X(yi, t), yi, t)
cos θ . (4)

This differential equation is integrated numerically to obtain the piston displacement.
The generation of a single soliton requires a net forward push of the wave-makers. Multiple soliton

generation is obtained by sequentially emitting single solitons while the wave-makers continuously recede
slowly at all times. Preliminary tests carried out in a 1D wave flume show that the receding velocity
of the piston is an important parameter (Leduque, 2021). It tunes the density of solitons (understood
as the number of solitons emitted per unit time), the amount of spurious waves, and potential soliton
amplification (when a new push matches the arrival time of a reflected soliton) which can cause wave
breaking. We typically use a receding velocity between 1 and 2 cm/s. Above 2 cm/s, soliton amplification
leads to excessive wave breaking. The instant of emission during the receding phase, the angle θ and/or
the amplitude a0 can be changed from one soliton to another in order to introduce some variability in
the forcing.

2.2.2 Random forcing

The awasys software that drives the wave-maker has a builtin generation of multi-directional random
waves complying with a jonswap spectrum with angular spreading. The jonswap spectrum has been
developed to model the sea state in deep water (see Hasselmann et al., 1973). We use a common cos2s

angular spreading distribution (see Goda, 1999). In the shallow water case, the relevance of the jonswap
spectrum is disputable but it is a convenient tool to generate multi-directional random waves. The
jonswap spectrum model and parameters are described in Appendix. The forcing spectrum is strongly
peaked at a frequency fp and is relatively narrow (with a 1/f5 decay at high frequency). The directivity
of the spectrum can be tuned from unidirectional to ±45◦. Table 2 summarizes the parameters of
the jonswap experiments A and B that are presented here (the forcing spectra will be compared to
those obtain from the measurements in the next section). Experiments A and B are selected amongst
31 different sets of tested jonswap conditions because they resulted in random soliton gases most
appropriate to validate the experimental procedures. A broader study of the different statistical regimes
is planned in a forthcoming experimental campaign.

An example of the prescribed free surface elevations at the wavemaker is shown in Fig. 2. This
space-time free surface elevation field would be the one generated in deep water in absence of any
reflected waves. This theoretical field is the sum of many sinusoidal components, therefore the distribution
of elevations is exactly a normal distribution. This example illustrates in particular the forcing for
experiment B with a 5 s peak period and a large directional spreading. The actual observed field in the
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Experiment fp Hm0 γ σθ

[Hz] [cm] [◦]
A 0.2 5.2 3.3 ±14
B 0.2 3.5 10 ±25

Table 2 Parameters of jonswap experiments: fp is the peak frequency of the spectrum of the forced waves, Hm0 the
significant wave height of the forcing spectrum, γ is a peak enhancement parameter and σθ is the standard deviation of
the angular spreading around θ = 0 (Meinert et al., 2017).

Fig. 2 Example of a portion of the surface elevation field η(t, y) at the wavemakers (x = 0) of the jonswap forcing for
experiment B.

tank is different due to the continuous forcing of the wave makers, reflections on the walls and non-linear
interactions and will be discussed later in section 2.4.1.

2.3 Water elevation measurements

Water surface displacements are recorded at fixed points by wave gauges and over an extended surface
by stereoscopic surface reconstruction.

2.3.1 Wave gauges

Up to 23 capacitive wave gauges are used (see blue points in Fig. 1b). They are easily deployed and
provide an excellent accuracy of better than 1 mm. Their calibration is very stable in time, the precision
after several days of experiments remains better than 2%. The positions of gauges numbered from G1
to G6 are given in table 1.

Fig. 3a illustrates the propagation of a single soliton produced by all pistons moving in phase. This
configuration is similar to the case of 1D propagation in a narrow wave flume as the wave crest is parallel
to the wave-maker wall. The water surface displacements are shown at four locations (gauges G1, G2,
G3 and G4). The soliton propagates back and forth with reflection on the x = 27m wall and on the
wave-maker. Energy dissipation by viscous friction on side walls and bottom is the main mechanism
of amplitude attenuation at long times (Keulegan, 1948). In such a large tank, the friction on the side
walls during propagation is negligible. Additional attenuation occurs as large solitons interacting with
the end-walls produce small dispersive waves, similarly to head-on collision of two solitons (see e.g. Chen
and Yeh, 2014). The amplitude a empirically decreases according to an exponential law (Redor, 2019)

a(t) = a0 exp

(
− t− t0

τ

)
, (5)
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(a)

(b)

Fig. 3 Propagation of a soliton of dimensionless amplitude a0/h = 0.4 with θ = 0. a Water surface elevations recorded
with four wave gauges (see Fig. 1b): G1 in blue, G2 in red, G3 in orange, G4 in green. The insert is a focus on the
beginning of the run before the first reflection at x = 27m. The dotted black line is the exponential fit of the soliton
decay by relation (5) with τ = 167 s. b Water surface elevations recorded with 15 wave gauges, all located at x = 16.3m.
The black dashed line is the Rayleigh soliton of amplitude a = 6.3 cm.

with a0 the soliton amplitude at time t0 and τ the dissipation time scale. The best fit for this viscous
dissipation time scale is τt = 167 s. The equivalent viscous dissipation length scale is

√
ghτ = 310m.

Before being undetectable due to its decay, the soliton propagates over 34 tank lengths. At each passage,
the soliton crest elevation varies by less than a few percents at a same transverse location, see Fig.3b
(all along the line of gauges at x = 16.34m sketched in Fig. 1). These fluctuations originate most likely
from the slight tank bottom unevenness that may trigger weak transverse amplitude modulations. This
shows nonetheless the global stability of such a single line soliton.

2.3.2 Stereo-video

Stereoscopic reconstruction of the water surface elevation is based on image cross-correlation between
the simultaneous video frames of two calibrated cameras. We use two synchronized scmos cameras
(pco.edge 5.5) running at 25 frames per second with 5.5Mpixels images. Various constraints arise for
such a spatial measurement: wave amplitudes range from few millimetres high linear waves up to 25 cm
for nearly breaking waves, horizontal length scales range from 10 cm for linear waves (∼ 1m for a soliton)
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(a)

(b)

Fig. 4 a Probability density function of the free surface elevation measured by 13 wave gauges and b Fourier power
density spectra for jonswap experiment A, carried out with or without particles (blue and red curves, respectively).
The dashed black line in a is the probability density function of the surface elevation forced by the wavemaker at x = 0.
The dotted black line in b is the spectrum of the motion of the wave-maker.

to tank-scale waves. This calls for a large measurement area with a spatial horizontal resolution of at least
10 cm and an elevation resolution better than 1 cm. To meet such requirements 14mm camera lens were
chosen. The calibration is an important step to correct the significant distortion induced by the short
focal length lenses and the large distances. The calibration is done using the Matlab Toolbox described
in Zhang (2000). It results in 12 parameters (for one camera). Among them 6 intrinsic parameters are
used for the optical system that is approximated by the ideal pinhole camera model with fourth order
radial distortion. For each cameras these parameters are obtained with ten images of a grid test pattern
made of 700 points. The other 6 parameters are extrinsic. They express the three translations and the
three angles of the rotation matrix of the cameras with respect to the wave tank coordinate system. The
extrinsic parameters are determined using 35 points with known coordinates distributed in the common
field of view of the two cameras.

The principle of stereo reconstruction relies on the recognition of a same surface pattern viewed from
two lines of sight, by image correlation. Even in the presence of waves the water surface in the experiments
is not rough enough at small scale to make image correlation work. To obtain good correlation level
(following Douxchamps et al., 2005; Chatellier et al., 2013; Ferreira et al., 2017, e.g.), we seed the water
surface with buoyant particles (the white spots in Fig. 1a). We use peld nearly spherical particles with
diameter 3mm and density 0.935 kg/m3. Preliminary agitation with short waves was used at the start
of the experiments, in order to disrupt large holes and clusters, so to ensure the particles dispersion
over the whole tank. The surface is illuminated with 15 high-power spot-lights (70 kW in total) installed
behind the cameras to avoid specular reflection issues.

In order to check if the dynamics of the surface motions are not altered by the particles, experiment
A (with jonswap forcing) is run twice: with and without particles. In Fig. 4, we show the probability
density function (pdf) and Fourier power spectral density of the surface displacements. The pdf curves
are very close in the range of elevations between −7 cm and 7 cm. Large wave crests seem to be slightly
damped by the presence of the particles. Concerning the spectra, both curves closely match up to f = 1
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Hz. The particles do not modify the dynamics at low frequency f < 1Hz but energy at higher frequencies
is reduced as it would be with surfactants (Campagne et al., 2018). This is consistent with the amplitude
attenuation described for the pdf plots. With particles, the spectrum saturates at noise level for f ∼ 7
Hz. Noteworthy is the power spectral density spanning 6 orders of magnitude. We thus conclude from
this test that the addition of particles has marginal effects on the dynamics of the wave motions we
intend to measure.

The PDF distribution displayed in Fig. 4a is strongly skewed and the spectrum decay at high fre-
quency in Fig. 4b is close to exponential. These two features are similar to that of shallow water 1D
soliton gas (Redor et al., 2021). 2D soliton gas characteristics will be further discussed in section 3 based
on the video data.

The stereoscopic surface mapping is undertaken using an in-house Matlab toolbox called uvmat
described in Aubourg et al. (2019) and in more detail in Aubourg (2016). The first step is the rectification
of the images that is the projection on the z = 0 plane: examples are shown in Fig. 5. After rectification
the images of the two cameras are identical if there is no vertical displacement. The purpose of this step
is to correct image differences due to camera distortion and orientation (see Appendix 5 of Aubourg
et al., 2019). In the rectified images (Figs. 5c-d), the pixel size is 7 mm. A multigrid iterative processing
(Scarano and Riethmuller, 1999) is then performed. Each rectified image is split into 84 cm square
windows in which 31 cm square boxes are searched for best correlation. The resulting virtual horizontal
displacements constitute the input for a new interrogation based on a finer grid, where the search window
and the correlation box are refined to 35 cm and 21 cm, respectively. The size of the last correlation
box defines the smallest detectable wavelength, i.e. 42 cm. The virtual horizontal displacements are
then transformed into the elevation field (see Eqs. 5-6 in Aubourg et al., 2019). Locations where the
correlation is poor are discarded. Poor correlation is the result of unclear patterns, that can be due to
too dense or too low particle concentration locally, as a result of wave breaking for instance. We have to
emphasize that the wave conditions were chosen to minimize wave breaking occurrence. The validated
elevations are interpolated over a regular grid with a mesh size of 5 × 5 cm2 using thin-plate spline
functions. A mask is applied in order to restrict the measurement region because parts of the periphery
of the reconstruction area are altered by reflections of light or by the presence of cables or gauges (see
for example the top left and right part of Fig. 5c,d).

The following section focuses on the validation of this measurement technique by comparison with
the wave gauge measurements.

2.4 Validation of the stereoscopic surface reconstruction

2.4.1 Case of random forcing

An example of a portion of the wave field measured during experiment B is shown in fig. 6. This wave
field is qualitatively very different from that of the forcing in Fig. 2. Large and peaky waves that resemble
solitons are detected. This feature will be discussed in section 3.3. In the present section we primarily
intend to validate the accuracy of the stereo-video measurement. For a random case, visual observation
indicates that the wave field is rather homogeneous a few metres away from the walls. It is thus reasonable
to compare the spectral and statistical properties of the 3D reconstruction to that given by wave gauges
that are located out of the field of view of the cameras. The pdf and the Fourier power spectral density
of the water elevation for the jonswap experiment B are displayed in Fig. 7. The pdf is computed with
a record duration of 14 minutes and averaged either on the wave gauges (blue curves) or over the entire
stereoscopic reconstruction area (orange curves). pdf estimates are shown in Fig. 7a. As one point of the
stereoscopic reconstruction provides the same amount of data than one gauge, the amount of data for the
stereoscopic measurement is far larger than that of gauges. The pdf from the stereoscopic reconstruction
therefore appears to be far more converged compared to that of the wave gauges. There is an overlapping
range of elevations for which the two curves are very close.
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Fig. 5 a-b: Pair of simultaneous camera images. c-d: images a-b rectified: projected on the plane z = 0. The inserts
show enlargements of the 35× 35 cm2 areas bounded by the white squares.

Fig. 6 A portion of the surface elevation field η(t, y) at x = 13m measured during experiment B.
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(a)

(b)

Fig. 7 a Probability density function of the free surface displacements and b Fourier power density spectrum of the
free surface displacements for jonswap experiment B, from the stereoscopic system (orange curves) and wave gauges
(blue curves). The dashed black line in a is the normal distribution of the surface elevation forced by the wave-maker
at x = 0 (see Fig.2). The dotted black line in b is the spectrum of the wave-maker displacement.

The corresponding power spectra are shown in Fig. 7b. For f < 1.5 Hz, the two curves are very
close. The spectra exhibit modal behaviour with low frequency peaks. The lowest is at f ≃ 0.033Hz,
which corresponds to the first seiching mode of the tank. The other peaks below 0.02 Hz are higher order
seiching modes. The two estimates match very well for the short wave frequencies (0.02 < f < 1.5 Hz).
For 1.5 < f < 2 Hz, the spectrum from the cameras decays slightly faster than that of the gauges
showing low pass filtering. The noise level is reached around f = 2 Hz for the stereoscopic measurement,
slightly higher than that of the wave gauges (reached at f ≃ 3 Hz). Of note, this cut-off at 2 Hz is linked
to the spatial resolution through the wave phase velocity given by the Airy relation. A dynamical range
of 5 orders of magnitude in power density is achieved nonetheless.

This comparison indicates that the statistical and spectral estimates of a random wave field are
perfectly captured by the stereoscopic surface mapping.

2.4.2 Single oblique soliton experiment

We aim at comparing stereoscopic mapping and wave gauge measurements for a single oblique soliton.
Since there is no wave gauge in the stereoscopic measurement area (in order to clear the view of the
cameras), a direct comparison of the two measurement systems is not possible. To overcome this issue we
compare the measurements of two symmetrical runs, one with a single soliton inclined at θ = +30◦ and
the other one inclined at θ = −30◦. In both runs, the soliton has the same reduced amplitude a0/h = 0.35.
Consequently, the time evolution of the first run in the half tank 0 < y < 15m is symmetric to that of
the second run for the other half tank 15 < y < 30m. Taking advantage of this symmetry, water surface
elevations from the two systems are compared in Fig. 8a. Both types of measurements are very similar.
The difference ∆η between the elevations measured at x = 10m is plotted in Fig. 8b. Slight phase shifts
in the wave records cause the main peaks in ∆η. The root mean square (rms) difference between the two
types of measurements is computed over 60 seconds. A rms value of 3 mm is found that gives the order
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(a)

(b)

Fig. 8 a Time series of water surface displacements for an oblique soliton, a0/h = 0.35 and θ = ±30◦. Wave gauges
(blue and purple) at y = 22m (run with θ = +30◦) and virtual gauges from stereoscopic reconstruction (orange and
green) at y = 8m (run with θ = −30◦), at x = 10m (blue and orange) and x = 12.4m (purple and green). b Difference
between stereoscopic and wave gauge measurements at x = 10m.

(a) (b) (c) (d) (e) (f) (g)

Fig. 9 Stereoscopic measurements of free surface displacements at different times during the propagation of a soliton
generated with a0/h = 0.35 and θ = 30◦. a t = 7.3 s, b t = 11.7 s, c t = 24.5 s, d t = 35.1 s, d t = 49.3 s, d t = 60.6 s, d
t = 77.7 s.

of magnitude of the vertical resolution of the video system. The rms difference between the elevations
measured at two wave gauges located symmetrically at x = 16.34m for the two symmetric runs is of the
same order of magnitude. It is not solely the estimation of measurement accuracy. It also encompasses
the differences in symmetric paddle motions, inaccuracy in gauges location, and non-uniformity of the
tank bottom. The latter induces slight variations in wave speeds (up to 2% locally say, for a maximum
bed variation of 1 cm). All these uncertainties contribute to the slight differences in soliton arrival time
on symmetric locations.

The comparison of the performance of the two measurement techniques shows that the stereoscopic
reconstruction performs very well with a slight decay of the dynamical range due to higher noise level and
a slight low pass filtering of the highest frequencies. The obvious advantage of the video measurement is
to combine high resolution in both time and space. The added value of the spatial resolution is illustrated
on three examples in the next section.

3 Stereoscopic wave field data analysis

3.1 Single oblique soliton

Fig. 9 shows 7 snapshots of the water surface elevation during the propagation of a single oblique soliton
with amplitude a0/h = 0.35. As explained in the validation section, we take advantage of a symmetry and
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(a) (b)

Fig. 10 a Schematic diagram of the generation and wall interaction of a soliton (sketch of the crest at two different
times). The wave maker generates a soliton of finite width so that a diffracted wave appears next to the y = 0 wall. The
interaction with the y = 30m wall produces a stem and a reflected wave. b Successive positions (with a 0.8 s time-lapse)
of the soliton crest extracted from the stereoscopic measurements (a0/h = 0.35, θ = 30◦).

the repeatability of experiments to assemble two symmetric experiments and increase the measurement
area. In the first experiment, a soliton with θ = 30◦ is generated for which the stereoscopic mapping
(y < 15m) is shown in Fig. 9a. In the second experiment a soliton of same amplitude but with θ = −30◦

is generated. The symmetry of the latter with respect to y = 15m provides the top region of Fig. 9a.
Finally by assembling the two, we obtain the water surface elevation maps over almost the entire width
of the tank (from 1.8m to 28.2m).

At t = 0 the first piston located at y = 0m generates the first soliton and the last piston located
at y = 30m generates its share of the soliton at t = 6.8 s. All the other paddles move at intermediate
instants according to the law (4). Fig. 10a illustrates the generation and propagation processes. Due
to the finite extension of the wave-maker the crest of an oblique soliton is finite as well and can not
extend to the wall located at y = 0. ‘Mach expansion’ (or diffraction) takes place at this edge of the crest
generating a trailing curved crest with decaying amplitude. This Mach expansion is observable in Fig. 9a
at t = 7.3 s when the soliton show up in the video measurement region. The soliton crest is straight with
constant amplitude from y ≃ 14m to 21m, but it is curved and with varying amplitude for y < 14m.

Another process at work is the reflection of the soliton on the y = 30m wall. This interaction,
sketched in Fig. 10a, is defined as ‘Mach reflection’ by Wiegel (1964) and studied in more details by
Miles (1977a) and Li et al. (2011). It generates a Y shape wave which combines the incident wave, a
reflected wave (see Fig. 9b) and a stem (Fig. 9c). The stem is orthogonal to the wall and it connects the
reflected and incident waves. Theoretically the stem amplitude is larger than twice the incidence wave
amplitude. The associated motion is unsteady in the frame of reference moving with the stem with the
reflected wave building up during propagation. The amplitude and angles of the incident and reflected
waves are also in constant evolution. At t = 11.7 s, the stem is not visible because it lies out of the field
of view of the cameras. However as the wave propagates the lateral extension of the stem grows (e.g.
Li et al., 2011) and during the travel back after the reflection on the end wall (at x = 27m) it can be
recorded by the cameras (Fig. 9c). This type of interaction was analyzed in many studies (Miles, 1977b;
Melville, 1980; Li et al., 2011) but never video recorded at such a large scale. Subsequent passages of the
main wave are shown in Fig. 9d-g. The overall trend is to produce a soliton-like wave that propagates
in a direction perpendicular to the wave-makers with an amplitude much smaller than the initial wave.
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Fig. 11 Crest amplitude of the diffracted soliton (a0/h = 0.35, θ = 30◦) as a function of y at different times. The
different curves correspond to the crests shown in Fig. 10b (same color code as in Fig. 10).

(a) (b)

Fig. 12 Soliton diffraction, experiment (a0/h = 0.35, θ = 30◦) and KP theory: wave crest a amplitude and b local
angle, as a function of y/t, measured by video stereo imaging (blue dots) and by the wave gauges (black squares). Solid
lines: analytical predictions from Eqs. (4.17) in Ryskamp et al. (2021).

This illustrates the complex wave dynamics that can emerge in a closed domain from a simple
localized line soliton. In other words, an oblique line soliton propagating in a square domain does not
remain localized, in contrast with the case of a 1D line soliton (i.e θ = 0). For the 30◦ incidence truncated
line soliton shown in Fig. 9, the growing stems propagating along the side walls tend to cover the whole
tank (see Fig. 9g). promoting a trend for waves to ultimately propagate in the x direction. This will be
important for the interpretation of the random cases presented in the two next subsections.

Ryskamp et al. (2021) studied analytically and numerically the evolution of truncated solitons (with
initial finite lateral extension) in the KP framework. The diffraction mechanism described above also
takes place in the form of a curved crest with a decreasing amplitude. They show that this diffraction
process is self-similar in time: the evolution of the amplitude and curvature only depends on y/t. Fig. 10b
shows a few successive crest lines of the same wave before the first reflection at the wall occurs. On this
one tank travel length the viscous damping can be considered as negligible (see Fig 3a). These lines
are used to compute the local amplitude and the local angle along the diffracted crest. Fig. 11 gives
the amplitude evolution along the diffracted wave crest as a function of y and time t. The gap between
curves around the y = 15m location is the gap in the video footprint (see Fig. 9). At large values of
y, the crest amplitude is that of the generated soliton. The amplitude along the crest decreases with
decreasing y.

In order to check the self-similar behaviour, the crest amplitude and angle are shown as a function
of y/c0t in Fig. 12. The collapse of all data on the same curve confirms that the crest amplitude evolu-
tion is indeed self-similar. The scatter in the video data comes from the uncertainties in crest locations
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detection. The wave gauge crest amplitude measurements are within the scatter interval of the stereo-
scopic measurements, confirming that the stereoscopic reconstruction is adapted for such large scale
coherent wave motion. The piece-wise theoretical “expansion wave” prediction of Ryskamp et al. (2021)
does not exactly fit the data but follows the right trend. The expansion wave solution is based on an
approximation of the KP equation postulating slowly evolving wave characteristics in time and space.
Obviously this approximation is not valid at short times. Therefore this explains why the measurements
of the wave gauges located further away from the video recorded zone are closer to the expansion wave
solution. Note that the theoretical prediction in Ryskamp et al. (2021) show a moderate agreement with
their numerical results which are qualitatively very similar to our experimental results.

The local angle with respect to the y axis along the crest is plotted in Fig. 12b. At large y the
crest angle is −30°, that of the generated soliton. The time evolution is also self-similar even though the
scatter is higher than that of the amplitude. As for the amplitude the theoretical prediction of the local
angle is consistent with our observations.

3.2 Multi-soliton forcing

In this section we analyze an experiment in which solitons are repeatedly generated with a given reduced
amplitude a0/h = 0.2 and with angles chosen randomly with uniform probability between −30◦ and
30◦. Between the forward paddle strokes that generate the solitons, the wave-maker paddles move slowly
backwards at constant speed 1.75 cm/s in order to allow for the next soliton generation. Short sequences
of the forcing wave field and measured wave field are shown in Fig. 13. Due to the technical constraints
of the wave-maker excursion, the gas at the generation is very diluted (Fig. 13a). One soliton is emitted
every 21.6 s on average, which corresponds to a ’density’ of 1/40 m−1. The generated solitons are
then free to interact with the walls and the other waves before they eventually get damped by viscous
dissipation. The wave field resulting from this continuous random (in phase and direction, a0/h = 0.2)
soliton forcing is likely denser in solitons (Fig. 13b). Considering that a soliton bounces back on the
generation wall typically 10 times before being damped (see Fig.3a), the density is 1/4 m−1, typically 10
times higher than the forcing density. These waves have different amplitudes and speeds, depending on
their propagation time since generation, on the multiple interactions with each other, on the interaction
with the wave-maker and with the walls.

This random wave field is analysed using a time and space Fourier transform. The multidimensional
power spectral density (PSD) E(kx, ky, ω) is defined as:

E(kx, ky, ω) =
1

2πLxLyT

〈∣∣∣∣∫∫∫ η(x, y, t)Han(x, y, t) ei(kxx+kyy−ωt) dxdydt

∣∣∣∣2
〉

(6)

where ⟨·⟩ stands for the ensemble average of PSD estimates on successive time windows of duration T .
Lx and Ly are the sizes of the measured domain and η is the water surface elevation. Han is a space and
time window with Hanning profiles along x or y and that fits the shape of the reconstruction domain.
In space domain, Han is zero at the boundaries of the domain of stereoscopic reconstruction. Han has
also a Hanning profile in time of duration T . Such a window is required to avoid spurious effects of the
finite extension of the space domain and time interval.

The two dispersion relations for both linear gravity waves and shallow water waves are illustrated in
Fig. 14. The red surface is the dispersion relation for water surface linear gravity waves or Airy relation
given by

ω =
√

g k tanh kh , (7)

where ω is the angular frequency, g the gravity acceleration, k the norm of the wave number vector k of
components (kx, ky) and h the water depth at rest. The dispersion relation associated to solitons reads

ω = c k , (8)
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(a)

(b)

Fig. 13 a Example of a short time series of the forcing sequence of the multi-soliton case. b Portion of the surface
elevation field η(t, y) at x = 13m measured during the multi-soliton experiment.

Fig. 14 Dispersion relation in the 3D Fourier space. Red surface: linear wave dispersion relation (7). Blue surface:
dispersion relation for long waves (9). For ω given, in the Fourier space (kx, ky), these dispersion relations are represented
by a solid black line for dispersive waves and a dashed black line for long waves.
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(a) (b) (c)

Fig. 15 3D Fourier spectrum E cross-sections at ky = 0 (a), kx = 0 (b) and f = 1.5 Hz (c). Multi-soliton experiment
(a0/h = 0.2 solitons continuously generated, with random incidence between −30◦ and 30◦). The solid black lines are
the traces of the linear wave dispersion relation (7) and the black dashed lines are the traces of the dispersion relation
for long waves (9).

with c =
√
gh(1 + a

h ). As a single line soliton propagates in infinite space without altering its shape,
all its Fourier modes propagate at the same speed. Thus the dispersion relation of a given soliton is
a corresponding line in the (k, ω) space with a slope given by (8). For a collection of independently
generated identical line solitons, the power spectrum should be localized on a cone in Fig. 14. Since
solitons propagate at phase speeds c > c0 with c0 =

√
g h their dispersion relation lies inside the cone

bounded by

ω = c0k , with c0 =
√
gh . (9)

The dispersion relation (9) is shown as the blue surface in Fig. 14. Small amplitude solitons have a
signature in the E(kx, ky, ω) space close to the cone (9) but slightly closer to the ω axis.

In Fig. 15, we show three cross-sections of the (kx, ky, ω) spectrum. The 3D Fourier transform is
averaged over 21 overlapping windows (50% overlap) of duration T = 20 s starting 9.5 min after the
beginning of the experiment. Fig. 15a shows the cross-section taken in the plane ky = 0. Only waves that
propagate perpendicularly to the wave-maker (in the x direction) leave a signature in this cross-section.
The generated solitons travel faster than c0 (dashed black line) evidenced by the high energy straight
ridges. Dispersive waves following the Airy relation (7) are also generated with a curved dispersion
relation (black continuous line). These dispersive waves arise from the diffraction and reflection of the
solitons as described in the previous section and from the backward motion of the paddles. Fig. 15b
shows the cross-section taken in the plane kx = 0. This provides information on waves that propagate
along the wave-makers (in the y direction). The wave energy is distributed along the Airy dispersive
relation (black line) and there is no signature of soliton propagation in that direction.

Fig. 15c displays a cross-section of the 3D spectra taken at the constant frequency plane f = 1.5
Hz. This cross-section gives information on the wave propagation incidence. The inner circle and the
outer circle are respectively the trace of the dispersion relation for solitons and the dispersion relation
for the linear dispersive waves. Energy of the solitons is located close to the kx axis therefore solitons
propagation direction is essentially perpendicular to the wave-maker. Even though solitons are generated
with directional spreading, the final state is essentially made of non-linear waves propagating in the x
direction. As described in section 3.1, oblique solitons are not stable, they produce stems when interacting
with the side walls. The stems build up and tend to force soliton propagation in the x direction. The
region kx < 0 (respectively kx > 0) corresponds to waves that propagate away from the wave-maker
(respectively towards the wave-maker). The non-linear waves that propagate away (left red patch on the
inner circle) from the wave-maker are more energetic than those propagating towards the wave-maker
(right red patch on the inner circle). The reasons are twofold: (i) newly generated solitons propagating
away from the wave-maker have experienced less dissipation by bottom friction than those reflected
on the x = 27m wall, (ii) the stem generation is associated to the generation of reflected waves that
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(a) (b) (c)

Fig. 16 3D Fourier spectrum E cross-sections at ky = 0 (a), kx = 0 (b), f = 1.5 Hz (c). jonswap experiment B. The
solid black lines are the traces of the linear wave dispersion relation (7), dashed black lines are traces of the dispersion
relation for long waves (9).

also extract energy to the incident solitons. The uniformly distributed energy on the outer circle of this
cross-section shows that dispersive waves are isotropic in contrast with the solitons.

3.3 Random forcing

As mentioned in section 2.2.2, a jonswap forcing is a convenient way to produce a wave random state
in the tank. For jonswap experiment B, a 14 min recording is used, starting 8 min after the beginning
of the wave generation. We apply space and time Fourier transforms (6) on 81 overlapping windows
(with 50% overlap) of duration 20 s. Three cross-sections of the full spectra are shown in Fig. 16. The
first cross-section (Fig. 16a) is the plane ky = 0 to detect waves propagating in the x direction (wave
crests parallel to the wave-maker). This cross-section is somewhat similar to the previous case of direct
forcing of solitons. Solitons emerge spontaneously as can be seen from the concentration of energy on the
straight line, although the forcing was not designed to specifically generate solitons. A large part of the
waves are linear dispersive waves following the Airy dispersion relation (7). The second cross-section of
the spectrum shown in Fig. 16b is taken at kx = 0 to detect waves progagating in the y direction. In this
direction of propagation, only dispersive waves are evidenced as for the previous case of multi-soliton
generation. The last cross-section, shown in Fig. 16c is the plane f = 1.5 Hz. This plot is consistent
with the two previous cross-sections and evidence the presence of solitons propagating mainly in the x
direction. Dispersive waves propagate in all directions, still presenting some anisotropy resulting from
the ±45◦ directivity of the forcing.

The global picture in the case of random forcing is rather similar to that of multiple soliton forcing.
The wave field is made of a mixture of solitons and dispersive waves in both cases. The solitons propagate
with small directionnal spreading around the x direction because of the instability of oblique solitons,
promoted by Mach reflection in such a finite domain. Dispersive waves are much more isotropic.

4 Conclusions

Water surface wave motions mapping (maximum vertical elevation ∼ 25 cm, with a typical 5mm accu-
racy) was achieved in a (27m×30m×0.35m) wave tank over about 100m2 by stereo-video, with a time
resolution of 25Hz, over times of several tens of minutes. The stereo-video system is based on the cross-
correlation of images from two cameras for which patterns produced by floating particles are necessary.
It was observed that wave breaking strongly redistributes the particles into dense patches and leaving
holes in the surface coverage. This precludes accurate measurements in wave breaking situations.



18 T. Leduque et al.

For the propagation of a single oblique (θ = 30◦) line soliton Mach reflection and Mach expansion are
evidenced. On the one hand, Mach reflection produces a stem wave perpendicular to the side wall facing
the soliton. On the other hand the crest of the diffracted wave resulting from Mach expansion tends
to attach perpendicularly to the side walls as theoretically predicted. The measured wave amplitude
decay and local crest angles for the Mach expansion confirm the theoretical predictions of Ryskamp
et al. (2021). A close inspection of soliton interaction, including stem stability, that might challenge the
validity of the assumptions underlying the K-P equations, is still under progress.

For the first time to our best knowledge, random 2D soliton gas is generated in a laboratory wave
tank. This is illustrated with two different cases. One gas is forced by repeatedly producing line solitons
with random incidence (−30◦ < θ < 30◦). Both Mach reflections and Mach expansions take place and the
solitons tend to propagate in a direction perpendicular to the wave-makers (wave crests perpendicular
to the side walls). The other gas is produced by random waves resulting from wave-maker motions
complying with a jonswap spectrum with random incidence (−45◦ < θ < 45◦). Waves travelling faster
than Airy waves are identified as solitons, naturally emerging from interactions between wave frequency
components and with the walls. This emergence of soliton gas is also attested by the highly skewed pdf
of the surface elevation which spontaneously emerges from the Gaussian forcing. In this case also, most
solitons propagate preferentially perpendicularly to the wave-makers.

Further investigations are required in order to estimate the amount of solitons (i.e. density) in the
various gases. Since the spectral signature of solitons overlaps that of dispersive waves, the Fourier anal-
ysis is probably not the relevant tool for that purpose. The most efficient tool for soliton quantification
in mono-directional propagation is the Scattering Transform (e.g. Redor et al., 2021). Extension of this
method to 2D flows is still to be done.
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Fig. 17 a Fourier power density spectra (10) with the same peak frequency fp = 0.33 Hz and various Hm0 and γ given
in the insert. b Angular distribution at fp for four values of smax given in the insert, to which correspond different
values of the angle standard deviation (15): σθ = 14.7◦ (red), σθ = 17.9◦ (green), σθ = 25◦ (orange), σθ = 47.4◦ (blue).

Appendix

Hasselmann et al. (1973), through the analysis of the data collected during the JOint North Sea WAve
Observation Project (jonswap), found a typical wave spectrum that can match approximately many sea
states. It reads:

S(f) = αH2
m0

f4
p

f5
e
− 5

4

(
fp
f

)4

γβ (10)

with

β = exp

(
− (f − fp)

2

2σ2f2
p

)
, α =

0.064

0.23 + 0.0336γ − 0.185
1.9+γ

, (11)

σ =

{
0.07 for f ≤ fp
0.09 for f > fp

, (12)

where Hm0 is a significant wave height equal to four times the standard deviation of the surface elevation,
fp is the peak frequency and γ is the peak enhancement factor. Examples are shown in Fig. 17a.
Nowadays, the jonswap spectrum is a common tool for modeling the sea state in deep water. Here we
use it as a standard random wave generation procedure.

The angular spreading distribution is (e.g Goda, 1999)

D(f, θ) =
Γ(s+ 1)

2
√
πΓ(s+ 1/2)

cos2s
(
θ − θ0

2

)
(13)

with

s =

{
smax(f/fp)

5 for f ≤ fp
smax(f/fp)

−5/2 for f > fp
, (14)

σ2
θ =

∫ π/2

−π/2

θ2D(fp, θ)dθ , (15)

where θ0 is the principal angle and the angular range is set by smax. Examples are shown in Fig. 13b.
In our case, the angular spreading distribution is truncated at θ = ±45◦.

The resulting spectrum E(f, θ) = S(f)D(f, θ) is discretized into 105 components with random phases.
The surface elevation at the wave-maker is computed through the inverse Fourier transform, setting linear
wave components with amplitudes ai. The paddle stroke Xi of each component is computed as (Hughes,
1993)

Xi = ai
sinh(2kih) + 2kih

4 sinh2(kih)
(16)

where each wave number (ki) fulfils the dispersion relation (7).
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