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Abstract

Two-way fluid-structure interaction (FSI) problems, in the sense that a flow induces the motion of a solid,
which in turn modifies the flow boundary conditions, have been approached with very different strategies,
the most common of which is probably the finite element method (FEM). In the case of elastoacoustics, the
flow consists of an acoustic field interacting with a vibrating structure. When the problem is discretized
with the FEM, an algebraic block matrix system is obtained and the coupling between the acoustic field
and the structure takes place through a coupling matrix with off-diagonal terms. Usually the structure is
characterized by its displacement field, while for the acoustics several options are available, ranging from
pressure to acoustic displacement or velocity/displacement acoustic potentials. Depending on the formu-
lation, symmetric or asymmetric systems are obtained and different types of numerical stability problems
have to be faced. In this work, a monolithic strategy based on the Rayleigh-Ritz method is proposed. The
displacement is used as the primary variable for both the structure and the acoustic field and is expanded
in terms of Gaussians as basis functions. This provides an algebraic block matrix system for the global
uncoupled problem. However, instead of resorting to a coupling matrix, the essential continuity conditions
at the acoustic-structure interface are imposed by the nullspace method (NSM). That is, the solution of the
uncoupled system is expanded in terms of a basis of the nullspace generated by the essential conditions of
the problem, including the displacement continuity constraints at the interface, thus giving the solution of
the coupled problem. As for natural conditions, they are imposed in a weak sense. For ease of explanation,
a one-dimensional (1D) case is first introduced, followed by the coupling of a 2D acoustic cavity with a beam
and a 3D one with a plate. The proposed method is validated with FEM simulations on fine meshes and
the advantage of using Gaussian basis functions over trigonometric ones is also demonstrated.

Keywords: Fluid-structure interaction, Vibroacoustics, Elastoacoustics, Displacement continuity,
Nullspace method

1. Introduction

Fluid-structure interaction in vibroacoustics involves the interaction of an acoustic field with a vibrating
structure. In the two-way problem, the acoustic waves induce vibrations in the structure, which in turn
modify the acoustic field. In the one-way problem, a vibrating structure radiates acoustic waves with
negligible feedback from them. In this paper we consider the two-way elastoacoustic problem, where an
elastic body interacts with the acoustic field in a cavity, in the low-mid frequency domain, where deterministic
models are applied. Therefore, statistical methods for the high frequency range, such as statistical energy
analysis [1] and related methods, are not considered.
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The two-way elastoacoustic problem at low and medium frequencies has important applications in indus-
try and has been studied for decades using several analytical and numerical methods, like the finite element
method (FEM) or the boundary element method (BEM) (see e.g., [2–6] for initial works and [7, 8] for more
recent reviews). Because of its versatility, FEM is probably the most widely spread approach, but it is
not free of numerical difficulties. While displacement is the natural variable to characterize the structure,
there are different options for the fluid, namely the acoustic pressure [9, 10], the velocity potential [11, 12],
the displacement potential [13, 14] or the acoustic particle displacement [15–17]. The latter option has the
advantage over the pressure and displacement potential formulations that it leads to symmetric discrete
systems and facilitates the imposition of boundary conditions at the interface. However, it was soon realized
that the displacement/acoustic displacement approach had some problems, as spurious circulation modes
without physical meaning appear for the standard Galerkin FEM. These spurious modes could be partially
eliminated by imposing an irrotationality constraint using a penalty method [2, 16, 17] and are associated
with the fact that the problem admits a zero eigenvalue whose corresponding eigenspace is that of pure
rotational modes. When the problem is discretized with the FEM, the zero eigenvalue is split into sev-
eral non-zero eigenvalues, thus polluting the spectrum, since non-zero eigenvalues correspond to irrotational
modes [18]. To remedy this issue, it was proposed in [18, 19] to use different FEM spaces for the structure
and the fluid. In particular, standard triangles/tetrahedra were used for the structural displacement and
Raviart-Thomas elements for the fluid displacement. The interface requires special treatment to match the
meshes and an additional pressure variable is used to impose the continuity conditions in a weak sense [20].
Subsequently, it was shown in [21] that the displacement/velocity potential formulation was equivalent to
the displacement/acoustic displacement approach in [20], thus inheriting its numerical performance. More
recently, significant progress has been achieved using non-conformal FEM spaces in the framework of the
discontinuous Galerkin method [22–24].

As for the Rayleigh-Ritz method, it has recently been used for the two-way problem using veloc-
ity/pressure formulations and trigonometric basis functions [25–27], and has been widely exploited for the
one-way problem of calculating sound waves generated by vibrating surfaces using different sets of test func-
tions. For instance, polynomials were used for the radiation of unbaffled plates and beams in [28–30] as well
as trigonometric functions for baffled [31–34] and unbaffled plates in [35]. More recently, Daubechies wavelet
functions have also been applied for the one-way problem of plate radiation with embedded acoustic black
holes [36–38] and in [39–43] Gaussian functions were used instead for different types of acoustic black hole
plates and metaplates.

In this work, it is proposed to solve the two-way elastoacoustic problem using a displacement/acoustic
displacement formulation and Gaussians as basis functions in the framework of the Rayleigh-Ritz method.
From the Euler-Lagrange equations we derive the uncoupled equations of motion of the system in the form of
an algebraic block matrix system without cross matrices. While in the above-mentioned FEM and Rayleigh-
Ritz works coupling takes place through off-diagonal terms in the mass and stiffness block matrices of the
discrete system, which could be combined into a coupling matrix, we propose to prescribe the continuity
conditions at the interface in a very different way. In particular, while traction continuity is imposed in a
weak sense, we will resort to the nullspace method (NSM) [44] to strongly impose displacement continuity.
The NSM has proven very efficient in characterizing structure/structure [45], and fluid/fluid interactions [46]
(see also [47, 48]). The key idea of the NSM is to expand the solution of the uncoupled problem in terms of
the basis of the nullspace generated by the displacement continuity conditions at the structure-fluid interface
and other essential boundary conditions of the problem. In this way, the solution of the coupled problem can
be obtained. For ease of explanation, the proposed approach is first presented for a one-dimensional (1D)
problem consisting of acoustic waves driven by a piston resonator. Then, the cases of two enclosed cavities
separated by a structural element are considered in 2D and 3D. The validity of the method is assessed by
comparison with FEM simulations on fine meshes.

Finally, it is worth mentioning that the two-way elastoacoustic problem addressed in this work can be
treated without assuming great simplifications due to its relatively small dimensions. However, in industry it
is common to face vibroacoustic problems in very large structures. In such situations it becomes mandatory
to resort to substructuring approaches and to assume simplified conditions at the fluid-structure interface. In
this sense, the essentials of the component mode synthesis (CMS) were set in the classical papers [49–53] and
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have been well developed for numerical methods involving some type of mesh [54–57]. Only very recently the
CMS was extended in the Rayleigh-Ritz context [58]. Alternatively, the dual modal formulation for linking
components with very different impedance mismatch, such as those in weak fluid-structure interactions,
was established in [59–61]; see also its extension to higher frequencies [62–64] and to multiple connected
subsystems with strong [65] and low [66] impedance mismatch. Another widely used method for large
vibroacoustic problems is the patch transfer function method [67].

The paper is structured as follows. For simplicity, we start by formulating the 1D problem in Section 2
and derive the equations of motion for the uncoupled and coupled cases using the NSM. A validation
with the FEM is included. In Section 3, we consider a 2D problem consisting of two closed acoustic cavities
separated by a beam and show how the proposed methodology can be applied in this more complex scenario.
An extension to 3D cavities separated by a plate follows in Section 4. The coupled and uncoupled modes
of the system are presented. Special emphasis is placed on showing how the irrotational nature of the flow
is preserved and how the acoustic pressure field can be recovered from the displacement field. Conclusions
close the paper in Section 5.

2. One-dimensional (1D) problem: plane waves in a duct coupled to a resonator

2.1. 1D problem description

To better illustrate the proposed method, we first consider a 1D model in harmonic regime, consisting
of acoustic plane waves propagating in a rigid duct that is coupled with a resonator (piston) at its right
end, see Fig. 1. The duct has length L = 0.8 m and diameter h = 0.01 m, and is filled with air of density
ρ0 = 1.21 kg/m3 and speed of sound c0 = 343 m/s, or water with ρ0 = 1000 kg/m3 and c0 = 1500 m/s.
The piston at the right end has mass m = 0.01 kg, and is connected to the ground by a spring of stiffness
k = mω2

r , where ωr = 2πfr and fr = 50 Hz is the eigenfrequency of the resonator.

2.2. Lagrangian of the 1D system

Let us begin by presenting the Lagrangian of the fluid inside the duct, which is obtained by subtracting
the potential energy, Ua, from the kinetic energy, Ta, of the acoustic field, and adding the work done by

the resonator (piston) on the fluid, Wra. The kinetic energy is given by Ta = (1/2)
∫ L

0
ρ0hv

2dx, where v is

the acoustic particle velocity, while the potential energy is given by Ua = (1/2ρ0c
2
0)h
∫ L

0
p2dx, p being the

acoustic pressure. We want to express all these quantities in terms of the acoustic particle displacement, u.
For Ta this is straightforward as v = iωu and for Ua we know from the continuity equation that p = −ρ0c

2
0∂xu.

The Lagrangian for the fluid is then given by,

La = Ta − Ua +Wra =
1

2
ω2

∫ L

0

ρ0hu
2dx− 1

2

∫ L

0

ρ0c
2
0h (∂xu)

2
dx+ u(L)

fr
h
, (1)

where fr/h is the force per unit length done by the resonator on the fluid. Note that we could also have
directly obtained Ua from the integral of the product of the strain ∂xu and the stress ρ0c

2
0∂xu.

The Lagrangian of the resonator is given by subtracting the potential energy, Ur, from the kinetic one,
Tr, and adding the work done by the acoustic pressure on the resonator, War,

Lr = Tr − Ur +War =
1

2
ω2mw2

r −
1

2
kw2

r − wrhp(L), (2)

k

L

h
ρ
0u(x)

c
0

m

w

Figure 1: Schematic of the 1D problem consisting of acoustic plane waves in a duct coupled to a resonator.
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where wr is the resonator displacement.
From Eqs. (1) and (2), we can compute the Lagrangian of the total system as,

L = La + Lr = Ta + Tr − Ua − Ur +Wra +War = Ta + Tr − Ua − Ur

=
1

2
ω2

∫ L

0

ρ0hu
2dx+

1

2
ω2mw2

r −
1

2

∫ L

0

ρ0c
2
0h (∂xu)

2
dx− 1

2
kw2

r , (3)

since Wra = −War, that is, the work done by the resonator on the fluid must be the negative of that done by
the acoustic pressure on the resonator. Considering that the transmission conditions at the fluid-structure
interface involve the continuity of displacements and tractions, i.e, u(L) = wr and fr/h = hp(L), if the
former is satisfied then the compensation of internal work implies wr [fr/h− hp(L)] = 0. In other words,
continuity of traction is automatically fulfilled in the Lagrangian (in a weak sense), while the continuity of
displacements must be imposed in a strong sense when deriving the problem solution. This will be made
clearer in the following and when addressing the 2D and 3D cases.

2.3. Discretization of the 1D system using the Rayleigh-Ritz method with Gaussian functions

Let us next proceed to find the discrete equation of motion of the problem using the Rayleigh-Ritz
method. We expand the acoustic particle displacement u(x) as a combination of basis functions ∂xφi(x)
with coefficients Ai, such that

u(x) =

n∑
i=1

∂xφi(x)Ai =: ∂xφ
⊤(x)A. (4)

Here, ∂xφi(x) are first-order derivatives of Gaussian functions φi(x) = exp
[
−(2rx− si)

2/2
]
, where r repre-

sents the scaling parameter and si the i-th translation one (see the works on the Gaussian expansion method
(GEM) in [68–70] for details). The reason for choosing the derivatives of Gaussian functions instead of the
Gaussians themselves is explained in Remark 1 below.

Substituting Eq. (4) into Eq. (3) we get the approximated Lagrangian,

L ≃ 1

2
ω2A⊤

(∫ L

0

ρ0h∂xφ∂xφ
⊤dx

)
A+

1

2
ω2mw2

r −
1

2
A⊤

(∫ L

0

ρ0c
2
0h∂

2
xxφ∂

2
xxφ

⊤dx

)
A− 1

2
kw2

r

=:
1

2
ω2A⊤MaA+

1

2
ω2mw2

r −
1

2
A⊤KaA− 1

2
kw2

r ,

=:
1

2
ω2C⊤MC − 1

2
C⊤KC, (5)

where in the second line we have introduced the mass and stiffness matrices Ma and Ka, respectively, and
in the third one we have defined C = [A⊤, wr]

⊤, M = diag(Ma,m) and K = diag(Ka, k).
From the Euler-Lagrange equation, −∂C⊤L = 0, we obtain the eigenvalue system(

K − ω2M
)
C = 0. (6)

Note at this point that, according to the definitions of M and K above, the acoustic displacement and
the resonator displacement remain uncoupled in Eq. (6), even though the continuity of the traction at the
interface is guaranteed by the way the matrices have been constructed.

To properly formulate the problem and obtain the fully coupled motion of the system, we must next
impose the essential boundary conditions, namely the rigid condition at the left end of the duct and the
continuity of displacements at the interface, i.e.,

u(0) = ∂xφ
⊤(0)A = 0, (7)

u(L) = ∂xφ
⊤(L)A = wr, (8)
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Figure 2: (a)-(d) The first 4 modal shapes for the uncoupled acoustic field. (e)-(h) The first 4 modal shapes of the acoustic
field coupled to the resonator with the proposed method (NSM), together with the comparison with the FEM results. Here,
both the acoustic pressure p and particle displacement u have been normalized with respect to their maximum values.

which can be rewritten as, [
∂xφ

⊤(0) 0
∂xφ

⊤(L) −1

] [
A
wr

]
=: Φ⊤C = 0. (9)

In the last equality we have introduced the constraint matrix Φ⊤. Following [44] we find a basis, say Z,
for the nullspace N (Φ⊤), and expand C as a linear combination of this basis, i.e., C = Zε, where ε is the
coefficient column vector. Substituting this expression into Eq. (6) and pre-multiplying with Z⊤ we get,(

K − ω2M
)
ε = 0, (10)

where K = Z⊤KZ and M = Z⊤MZ are the new mass and stiffness matrices.
In Eq. (10), traction continuity is satisfied in a weak sense at the interface by the way in which the

mass and stiffness matrices, M and K, have been constructed, while displacement continuity is satisfied by
the way the mass and stiffness matrices, M and K, have been built, using the nullspace method. At this
stage, the acoustic field in the duct and the resonator motion are perfectly coupled. Solving the eigenvalue
problem in Eq. (10) we can obtain the eigenpairs (ωn, εn) of the coupled system. The n-th modal shape of
the duct is given by un(x) = ∂xφ

⊤(x)Zεn.

Remark 1. The choice of first-order derivatives of Gaussians as admissible functions to expand the acoustic
displacement in Eq. (4) may seem odd at first glance. One could have used the Gaussians themselves directly
for the displacement or for the velocity potential, ϕ, so that u = −(i/ω)∂xϕ. But these options lead to
complicate eigenvalue problems in which the mass or stiffness matrices or the continuity conditions at the
interface depend on the angular frequency ω. The expansion in terms of Gaussian derivatives in Eq. (4)
ensures that this is not the case and yields the standard generalized eigenvalue problems in Eqs. (6) and (10).

Remark 2. The mass and stiffness matrices of the eigenproblem in Eq. (10), are symmetric, a property
not shared by many elastoacoustic formulations, as mentioned in the Introduction. Symmetry reduces the
computational memory requirements and can be exploited to speed up the computations.
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Figure 3: Comparison of the modal frequencies computed with NSM and FEM. (a) The fluid is air with density ρ0 = 1.21 kg/m3

and speed of sound c0 = 343 m/s. (b) The fluid is water with ρ0 = 1000 kg/m3 and c0 = 1500 m/s. The color and size of the
stars indicate the relative percentage error between the NSM and FEM eigenfrequencies (see right axis and color bar).

2.4. Computation of the acoustic pressure field for the 1D system

While the above procedure allows us to obtain the acoustic particle displacement in the duct, in most
problems the final variable of interest is the acoustic pressure. This can be calculated from the momentum
conservation equation,

∂xp(x) = ρ0ω
2u(x), (11)

so that

p(x) = ρ0ω
2

∫
u(x)dx+ C = ρ0ω

2φ⊤(x)A+ C, (12)

where C represents an unknown constant. The constant can be obtained by the strong imposition of the
traction continuity at the interface, namely,

[
fr/h

2 − p(L)
]
= 0. Since p(x) = ρ0ω

2φ⊤(x)A + C and
fr = −(k − ω2m)wr, we get C = (k − ω2m)wr/h

2 + ρ0ω
2φ⊤(L)A.

Remark 3. Alternatively, the acoustic pressure could be calculated from the mass conservation equation as
p = −ρ0c

2
0∂xu = −ρ0c

2
0∂

2
xxφ

⊤(x)A. However, this procedure involves the second derivative of Gaussians
and produces less accurate results than Eq. (12), which deals directly with the Gaussians themselves.

2.5. Numerical simulations for the 1D system

Let us first present the results for the acoustic modes in the duct computed with Eq. (6), before the full
coupling in Eq. (10). These are displayed in Figs. 2a-2d, where we show the normalized first 4 modal shapes
for the acoustic particle displacement (blue lines) and the acoustic pressure (red lines). It is observed that
u(0) = 0, indicating that the rigid condition is correctly imposed there. On the other hand, u(L) reaches the
maximum value and has zero slope at x = L, i.e., ∂xu(L) = 0, showing that the strain is zero and therefore
p(L) = 0, which corresponds to an open boundary. Therefore, the modes simply correspond to those of a

rigid-open duct, which have analytical expressions un(x) = sin
[
πx(2n−1)

2L

]
(n = 1, 2, 3, ...).

When we consider the full coupling between the duct and the piston using Eq. (10), the first 4 modal
shapes present significant differences compared to the uncoupled ones, as observed in Figs. 2e-2h, where the
results of a reference FEM model (built with the commercial software Comsol Multiphysics 6.2) have also
been included for validation (gray lines). It is clear that for the first 3 modes u(L) and p(L) are strongly
coupled to the resonator (compare Figs. 2e-2g with Figs. 2a-2c), while for the fourth mode ∂xp(L) ∼ 0 (see
Fig. 2h), indicating that the piston essentially behaves as a rigid wall for the acoustic pressure. From the
figure, it is noteworthy that the results of the proposed Rayleigh-Ritz approach using the NSM are fully
consistent with those of the FEM (blue and red dashed lines versus gray ones), confirming its accuracy.
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Table 1: Comparison of modal frequencies obtained using Gaussians as basis functions, different sets of sines and the FEM.

Order FEM 102 Gaussians 100 Sines 200 Sines 300 Sines 500 Sines 1000 Sines
1 72.1 72.1 72.1 72.1 72.1 72.1 72.1
2 234.0 234.0 234.4 234.2 234.1 234.1 234.0
3 439.1 439.1 439.9 439.5 439.4 439.2 439.2
4 650.1 650.1 651.4 650.7 650.5 650.3 650.2
5 862.7 862.7 864.5 863.6 863.3 863.1 862.9
6 1076.1 1076.1 1078.2 1077.1 1076.8 1076.5 1076.3
7 1289.7 1289.7 1292.3 1291.0 1290.6 1290.3 1290.0
8 1503.6 1503.6 1506.7 1505.1 1504.6 1504.2 1503.9
9 1717.6 1717.6 1721.1 1719.4 1718.8 1718.3 1718.0
10 1931.7 1931.7 1935.6 1933.7 1933.0 1932.5 1932.1
11 2145.9 2145.9 2150.2 2148.0 2147.3 2146.7 2146.3
12 2360.0 2360.0 2364.8 2362.4 2361.6 2361.0 2360.5
13 2574.3 2574.3 2579.5 2576.9 2576.0 2575.3 2574.8
14 2788.5 2788.5 2794.2 2791.3 2790.4 2789.6 2789.1
15 3002.8 3002.8 3008.9 3005.8 3004.8 3004.0 3003.4
16 3217.0 3217.0 3223.6 3220.3 3219.2 3218.3 3217.7
17 3431.3 3431.3 3438.3 3434.8 3433.6 3432.7 3432.0
18 3645.6 3645.6 3653.0 3649.3 3648.1 3647.1 3646.3
19 3859.9 3859.9 3867.8 3863.8 3862.5 3861.5 3860.7
20 4074.2 4074.2 4082.5 4078.4 4077.0 4075.9 4075.1
21 4288.6 4288.6 4297.3 4292.9 4291.4 4290.3 4289.4
22 4502.9 4502.9 4512.1 4507.4 4505.9 4504.7 4503.8
23 4717.2 4717.2 4726.9 4722.0 4720.4 4719.1 4718.2
24 4931.5 4931.5 4941.6 4936.5 4934.9 4933.5 4932.5
25 5145.9 5145.9 5156.4 5151.1 5149.4 5148.0 5146.9
26 5360.2 5360.2 5371.2 5365.7 5363.8 5362.4 5361.3
27 5574.6 5574.6 5586.0 5580.2 5578.3 5576.8 5575.7
28 5788.9 5788.9 5800.8 5794.8 5792.8 5791.3 5790.1
29 6003.3 6003.3 6015.6 6009.4 6007.3 6005.7 6004.5
30 6217.6 6217.6 6230.4 6223.9 6221.8 6220.1 6218.9

To further validate the suggested methodology, we have calculated the modal frequencies and compared

them with FEM results in Fig. 3a, for the first 30 mode orders. The relative error, ϵ = |ωFEM−ωNSM|
ωFEM

× 100%,
is also included in the figure and represented by colored stars whose size and color indicate its value (see the
right axis in red). It can be seen that ϵ < 0.01% for the first 30 modal orders, demonstrating the precision
of the Rayleigh-Ritz plus NSM method. The results in Fig. 3a correspond to the coupled system with the
duct filled with air, as presented at the beginning of section 2. One may also wonder about how the method
would perform for a heavy fluid like water, with ρ0 = 1000 kg/m3 and c0 = 1500 m/s. As illustrated in
Fig. 3b, the results again agree very well with the FEM ones, the relative error not exceedeing 0.01%.

Finally, and as mentioned above, the modal shapes for the acoustic field before coupling to the piston

are sinusoids of the type, un(x) = sin
[
πx(2n−1)

2L

]
(n = 1, 2, 3, ...). One could consider using them directly in

Eq. (4) and Eq. (12) instead of Gaussians. In Table 1, we have listed the results of such a choice. In particular,
the first 30 modal frequencies of the coupled system calculated respectively with the FEM, Rayleigh-Ritz
plus NSM and 102 Gaussians, and Rayleigh-Ritz plus NSM using a number of sinusoids ranging from 100
to 1000 are presented. As can be seen, with the sole use of 102 Gaussians we can recover almost perfectly
the modal frequencies of the FEM (note that in Table 1 we have only considered one decimal place so
the first two columns look almost identical). In contrast, there are significant differences for the sinusoids.
Although the results converge to the FEM and Gaussian ones as the number of sinusoids increases, they
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are still unsatisfactory even for 1000 sinusoids. This demonstrates the advantage of using Gaussians as trial
functions instead of sinusoids.

3. Two-dimensional (2D) problem

3.1. 2D problem description

In this section, we will see how the methodology for the 1D case can be generalized to 2D problems as an
intermediate step before tackling a full 3D case. For this purpose, we consider a 2D rectangular cavity with
rigid walls except for a flexible beam at the upper boundary, see Fig. 4. The cavity has length Lx = 0.8 m,
width Ly = 0.6 m and it is filled with air of density ρ0 = 343 kg/m3 and sound speed c0 = 343 m/s. The
variables u(x, y) and v(x, y) now represent the particle displacements in the x and y directions, respectively,
so that u = [u, v]⊤. As for the beam, it has thickness h = 0.005 m and it is made of steel, with Young
modulus E = 210 GPa and density ρ = 7800 kg/m3. Since it is very thin, only the bending motion, wb(x),
is considered.

3.2. Lagrangian of the 2D system

The Lagrangian of the acoustic field inside the cavity is given by the difference between its acoustic
kinetic energy, Ta, and the potential one, Ua, plus the work done by the beam on the fluid, Wba, namely,

La = Ta − Ua +Wba =
1

2
ω2

∫ Ly

0

∫ Lx

0

ρ0(u
2 + v2)dxdy − 1

2

∫ Ly

0

∫ Lx

0

ρ0c
2
0 (∂xu+ ∂yv)

2
dxdy

+
1

L2
x

∫ Lx

0

vfb dx, (13)

where fb is the force exerted by the beam on the fluid. The Lagrangian of the beam is

Lb = Tb − Ub +Wab =
1

2
ω2

∫ Lx

0

ρhw2
bdx− 1

2

∫ Lx

0

EI
(
∂2
xxwb

)2
dx+

∫ Lx

0

wbpdx, (14)

with p the pressure exerted by the fluid on the beam. E and I = h3/12 are the Young modulus and
the moment of inertia, respectively. Since there is no additional term in the Lagrangian due to natural
boundary conditions at the endpoints, this means that we consider ∂2

xxwb(0) = ∂2
xxwb(Lx) = 0, i.e., the

bending momentum there is zero. On the other hand, and as for the 1D case, the internal work must
compensate, Wab = −Wba, which guarantees traction continuity across the interface boundary in a weak
sense. The Lagrangian of the entire 2D system is therefore given by,

L
x

L
y

h

u(x,y)

v(x,y)

w(x)

ρ
0

c
0

Figure 4: Schematic of the 2D system consisting of a cavity coupled to a flexible beam at its upper boundary.
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L = La + Lb = Ta + Tb − Ua − Ub =
1

2
ω2

∫ Ly

0

∫ Lx

0

ρ0(u
2 + v2)dxdy +

1

2
ω2

∫ Lx

0

ρhw2
bdx

− 1

2

∫ Ly

0

∫ Lx

0

ρ0c
2
0 (∂xu+ ∂yv)

2
dxdy − 1

2

∫ Lx

0

EI
(
∂2
xxwb

)2
dx. (15)

3.3. Discretization of the 2D system using the Rayleigh-Ritz method with Gaussian functions

To discretize the 2D problem, we now expand each component of the acoustic displacement field in terms
of first-order derivatives of 2D Gaussian functions,

u(x, y) = ∂xφ
⊤(x, y)A, v(x, y) = ∂yφ

⊤(x, y)A, (16)

where φ(x, y) = α(x) ⊗ β(y), with α(x) and β(y) standing for 1D Gaussians in the x and y directions,
respectively, and ⊗ represents Kronecker’s product. This option guarantees irrotational flow, see Remark 4
below.

As for the beam displacement, wb(x), we directly express it in terms of 1D Gaussians, χ(x) (see [68]),

wb(x) = χ⊤(x)B, (17)

with B being the vector of coefficients.
Introducing Eq. (16) and Eq. (17) into Eq. (15) results in the approximated Lagrangian,

L ≃ 1

2
ω2A⊤

[∫ Ly

0

∫ Lx

0

ρ0
(
∂xφ∂xφ

⊤ + ∂yφ∂yφ
⊤) dxdy]A+

1

2
ω2B⊤

[∫ Lx

0

ρhχχ⊤dx

]
B

− 1

2
A⊤

[∫ Ly

0

∫ Lx

0

ρ0c
2
0

(
∂2
xxφ∂

2
xxφ

⊤ + ∂2
xxφ∂

2
yyφ

⊤ + ∂2
yyφ∂

2
xxφ

⊤ + ∂2
yyφ∂

2
yyφ

⊤)dxdy]A
− 1

2
B⊤

[∫ Lx

0

EI∂2
xxχ∂

2
xxχ

⊤dx

]
B

=:
1

2
ω2A⊤MaA+

1

2
ω2B⊤MbB − 1

2
A⊤KaA− 1

2
B⊤KbB, (18)

where in the last line we have introduced the fluid and beam mass matrices, Ma and Mb, and the stiffness
ones, Ka and Kb. Applying the Euler-Lagrange equations to Eq. (18) yields the eigenvalue problem

([
Ka 0
0 Kb

]
− ω2

[
Ma 0
0 Mb

])[
A
B

]
= 0, (19)

which can be written compactly as (
K − ω2M

)
C = 0, (20)

with C = [A⊤,B⊤]⊤, K = diag(Ka,Kb) and M = diag(Ma,Mb).
Next, we must supplement Eq. (19) with the essential conditions at the boundaries and at the coupling

interface. On the one hand, the left, right and bottom walls of the fluid cavity are rigid so that u(0, y) =
u(Lx, y) = v(x, 0) = 0. Moreover, the beam is simply supported on the cavity so that wb(0) = wb(Lx) = 0.
On the other hand, displacement continuity at the interface implies v(x, Ly) = wb, ∀x ∈ [0, Lx].

The discretization of all these conditions according to Eq. (16) and Eq. (17) can be written in matrix
form as,

9




∂xφ

⊤(0, y) 0
∂xφ

⊤(Lx, y) 0
∂yφ

⊤(x, 0) 0
0 χ⊤(0)
0 χ⊤(Lx)

∂yφ
⊤(x, Ly) −χ⊤(x)


[
A
B

]
=: Φ⊤C = 0. (21)

The first three rows of the matrix in Eq. (21) correspond to the rigid boundaries of the cavity, the fourth
and fifth to the no displacement condition at the end points of the beam, and the sixth row to the fluid
and beam displacement continuity at the interface. In this case, however, instead of directly finding the
nullspace of Φ⊤, we will work with a modification of it to avoid numerical instabilities. Let us denote the
rows of Φ⊤ by Φi with i = 1 . . . 6 and build the new matrix Ψ as,

Ψ :=

∫ Ly

0

Φ⊤
1 Φ1dy +

∫ Ly

0

Φ⊤
2 Φ2dy +

∫ Lx

0

Φ⊤
3 Φ3dx+Φ⊤

4 Φ4 +Φ⊤
5 Φ5 +

∫ Lx

0

Φ⊤
6 Φ6dx, (22)

which by construction also satisfies ΨC = 0. Next, we find a basis for the nullspace of Ψ, say Z, such that
N (Ψ) = span{Zi}, with Zi being the columns of Z, and then express C in Eq. (20) in terms of this basis,
i.e., C = Zε. This gives the following eigenvalue problem that satisfies the natural, essential and coupling
boundary conditions for the 2D system, (

K − ω2M
)
ε = 0, (23)

with K = Z⊤KZ and M = Z⊤MZ.

Remark 4. Expanding u and v in terms of the derivatives of 2D Gaussian functions in Eq. (16) now has
even more advantages than for the 1D case. Not only can we derive a standard generalized eigenvalue
problem for the system, but also the irrotational flow condition is automatically satisfied by construction.
That is, from Eq. (16) we observe that the displacement vector, u, is nothing but the gradient of the scalar
function φ⊤(x, y)A, i.e., u = (u, v) = ∇[φ⊤(x, y)A]. Given that the rotational of a gradient is always zero,
we have ∇ × u = ∇ × ∇[φ⊤(x, y)A] = 0, so the flow is irrotational. This also applies to the 3D case
analyzed in section 4. While natural in the current formulation, as mentioned in the Introduction this is
a difficult problem for some displacement FEM implementations, where, for example, penalty methods are
needed to impose the constraint of irrotational flow.

3.4. Computation of the acoustic pressure field for the 2D system

Having computed the acoustic displacement field inside the cavity, u(x, y), for the coupled problem, we
can also calculate the acoustic pressure field p(x, y). To do so we resort to the displacement potential ϕ,
such that u = ∇ϕ. The equation of momentum conservation and the constitutive equation for the acoustic
field can be written in terms of ϕ as (see [14]),

∇p = ρ0ω
2∇ϕ, (24a)

p = −ρ0c
2
0∇2ϕ, (24b)

while the displacement at the boundary in terms of ϕ is given by,

∂yϕ(x, Ly) = v(x, Ly). (25)
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Integrating Eq. (24b) over the acoustic domain we obtain,∫ Ly

0

∫ Lx

0

pdxdy = −ρ0c
2
0

∫ Lx

0

v(x, Ly) dx, (26)

where we have applied the divergence theorem considering that ∂xϕ(0, y) = ∂xϕ(Lx, y) = ∂yϕ(x, 0) = 0 and
make use of Eq. (25). On the other hand, it follows from Eq. (24a) that

p = ρ0ω
2ϕ+ C, (27)

with C being a constant. We can find its value by substituting Eq. (27) into Eq. (26), which yields,

C = − ρ0ω
2

LxLy

∫ Ly

0

∫ Lx

0

ϕ dxdy − ρ0c
2
0

LxLy

∫ Lx

0

v(x, Ly) dx. (28)

The last term represents the static pressure, i.e., the variation of pressure following a static deformation of
the interface of amplitude v. It corresponds to the pressure at zero frequency (ω = 0). From Eq. (27), the
acoustic pressure is finally given by,

p = ρ0ω
2

(
ϕ− 1

LxLy

∫ Ly

0

∫ Lx

0

ϕ dxdy

)
− ρ0c

2
0

LxLy

∫ Lx

0

v(x, Ly) dx, (29)

It should be noted that the discrete counterpart of this expression is particularly easy to compute from
Eq. (16), given that u = (u, v) = (∂xφ

⊤A, ∂yφ
⊤A) = (∂xϕ, ∂yϕ) with ϕ = φ⊤A. We get,

p = ρ0ω
2

(
φ⊤ − 1

LxLy

∫ Ly

0

∫ Lx

0

φ⊤dxdy

)
A− ρ0c

2
0

LxLy

(∫ Lx

0

∂yφ
⊤(x, Ly)dx

)
A. (30)

Remark 5. As an alternative to Eq. (30), it would also be possible to find a new set of basis functions,

say ξ, and force them to satisfy the constraint
(∫ Ly

0

∫ Lx

0
ξ⊤dxdy

)
A = 0, which will contribute to Eq. (22).

With such basis functions the second summand in the first parenthesis of Eq. (30) will disappear.

3.5. Numerical simulations for the 2D system

Let us first focus on the particle displacement field within the cavity when coupled to the beam. In
Fig. 5, we show the results for the the second, fourth, tenth and thirtieth modal orders. The colormap
stands for the normalized displacement amplitude,

√
u2 + v2, while the green arrows indicate the direction

and amplitude of the particle motion. As observed, for the second and fourth orders (see Figs. 5a and 5b),
the motion takes place mainly in the upper half of the cavity, especially near the coupling interface at
y = Ly = 0.6 m. The bottom of the cavity remains almost still. This means that the coupling between the
two subsystems is weak and that most of the vibration is localized in the beam. In contrast, for the tenth
modal order in Fig. 5c, significant displacement variations within the cavity and at the interface with the
beam are observed, corresponding to strong coupling. As for the thirtieth modal order in Fig. 5d, it presents
a very regular pattern inside the cavity and it is in fact a blocked mode in which the beam behaves like a
rigid wall. Therefore, the coupling is again very weak in this case.

In Fig. 6, we present the acoustic pressure distributions corresponding to the modal orders in Fig. 5.
Contour lines have been included for a better inspection of the patterns. It can be seen in Figs. 6a and 6b
that the pressure levels at the bottom part of the cavity are relevant there as opposed to the particle
displacement. In Fig. 6c, corresponding to the strongly coupled tenth modal order, the maxima and minima
are distributed within the cavity, while for the thirtieth modal order in Fig. 6d the regular pattern of a
blocked mode, in which the interface boundary seems to be as rigid as the others, is observed.

Since one of the contributions of this paper concerns the way in which displacement continuity is imposed
at the interface using the nullspace method, we next examine this issue in some detail. In Fig. 7 we have
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Figure 5: Magnitude
√
u2 + v2 (normalized) and directions of the acoustic displacement in the 2D cavity coupled to the beam

for the second (a), fourth (b), tenth (c) and thirtieth (d) modes.
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Figure 7: Comparison of the normal displacement of the cavity, v(x, Ly), and of the beam, wb(x), at the interface for the first
(a), second (b), fourth (c), tenth (d), thirtieth (e) and fortieth mode orders.

plotted the acoustic displacement v(x, Ly) and the bending displacement of the beam wb(x) for different
modal orders. It can be seen that both displacements are almost identical, showing that the imposition of
displacement continuity by Eq. (22) yields very accurate results.

4. 3D problem description

Finally, to complete the work, we will present a 3D example consisting of a 3D cavity with rigid walls
except for the upper one, where we have a flexible plate. A drawing of the system is shown in Fig. 8. The
cavity has length Lx = 0.8 m, width Ly = 0.6 m and height Lz = 0.5 m. The particle displacements in the
x, y, and z directions are respectively denoted as u(x, y, z), v(x, y, z) and w(x, y, z). Again, the cavity is
filled with air of density ρ0=1.21 kg/m3 and speed of sound c0 = 343 m/s. As regards the plate, it has a
thickness of h = 0.005 m and is placed at z = Lz. It is made of steel and, as in the 2D case, we will only
consider the transverse displacement wp(x, y). Likewise, we assume that the plate is simply supported at
its boundaries.

4.1. Lagrangian of the 3D system

Since the 3D case is very similar to the 2D case, and basically only the contribution of the z-component
in the equations for the cavity and the y-component for the plate need to be added, we will not present all
the mathematical developments as they are analogous to those in the previous sections (see also [69, 70] for
further details).

The Lagrangian of the total 3D system, L, is obtained as the summation of the cavity and plate La-
grangians, La and Lp, and it is given by,

L = La + Lp =
1

2
ω2

∫ Lz

0

∫ Ly

0

∫ Lx

0

ρ0(u
2 + v2 + w2)dxdydz +

1

2
ω2

∫ Ly

0

∫ Lx

0

ρhw2
pdxdy

− 1

2

∫ Lz

0

∫ Ly

0

∫ Lx

0

ρ0c
2
0 (∂xu+ ∂yv + ∂zw)

2
dxdydz

− 1

2

∫ Lx

0

∫ Lx

0

D
[(
∂2
xxwp

)2
+ 2ν∂2

xxwp∂
2
yywp +

(
∂2
yywp

)2
+ 2(1− ν)

(
∂2
xywp

)2]
dxdy, (31)

where the bending stiffness is D = Eh3/12 and the Poisson ratio is ν = 0.3. As for the 2D case, the
internal work done by the fluid on the plate and viceversa compensate each other and do not appear in the
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Figure 8: Schematic of the 3D system consisting of a volume cavity coupled to a flexible plate at its upper boundary.

Lagrangian, leading to the weak fulfillment of the continuity of traction at the interface. Also, no terms
involving natural conditions appear in Lp, which means that zero bending moment is assumed at the plate
edges.

4.2. Discretization of the 3D system using the Rayleigh-Ritz method with Gaussian functions

The components of the acoustic displacement field are now discretized as,

u(x, y, z) = ∂xφ
⊤(x, y, z)A, v(x, y, z) = ∂yφ

⊤(x, y, z)A, w(x, y, z) = ∂zφ
⊤(x, y, z)A, (32)

where φ(x, y, z) = α(x) ⊗ β(y) ⊗ γ(z) are 3D Gaussian functions and is A the coefficient vector. For the
transverse displacement of the plate we take,

wp(x, y) = χ⊤(x, y)B, (33)

with χ(x, y) = α(x) ⊗ β(y) being 2D Gaussian functions and B the corresponding vector of coefficients.
Substituting Eqs. (32) and (33) into Eq. (31) results in the approximated Lagrangian,

L ≃ 1

2
ω2A⊤

[∫ Lz

0

∫ Ly

0

∫ Lx

0

ρ0
(
∂xφ∂xφ

⊤ + ∂yφ∂yφ
⊤ + ∂zφ∂zφ

⊤) dxdydz]A
+

1

2
ω2B⊤

[∫ Ly

0

∫ Lx

0

ρhχχ⊤dxdy

]
B

− 1

2
A⊤

[∫ Lz

0

∫ Ly

0

∫ Lx

0

ρ0c
2
0

(
∂2
xxφ∂

2
xxφ

⊤ + ∂2
yyφ∂

2
yy + ∂2

zzφ∂
2
zz + ∂2

xxφ∂
2
yyφ

⊤ + ∂2
yyφ∂

2
xxφ

⊤

+ ∂2
xxφ∂

2
zzφ

⊤ + ∂2
zzφ∂

2
xxφ

⊤ + ∂2
yyφ∂

2
zzφ

⊤ + ∂2
zzφ∂

2
yyφ

⊤)dxdydz]A
− 1

2
B⊤

[∫ Ly

0

∫ Lx

0

D
(
∂2
xxχ∂

2
xxχ

⊤ + ν∂2
xxχ∂

2
yyχ

⊤ + ν∂2
yyχ∂

2
xxχ

⊤ + ∂2
yyχ∂

2
yyχ

⊤

+ 2(1− ν)∂2
xyχ∂

2
xyχ

⊤)dxdy]B
=:

1

2
ω2A⊤MaA+

1

2
ω2B⊤MpB − 1

2
A⊤KaA− 1

2
B⊤KpB, (34)
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where the mass, Ma and Mp, and stiffness, Ka and Kp, matrices for the fluid and plate have been defined
in the last line. The Euler-Lagrange equations lead to the eigenvalue problem,([

Ka 0
0 Kp

]
− ω2

[
Ma 0
0 Mp

])[
A
B

]
= 0, (35)

which is expressed in compact form as, (
K − ω2M

)
C = 0, (36)

with C = [A⊤,B⊤]⊤, K = diag(Ka,Kp), and M = diag(Ma,Mp).
Next we need to consider the essential boundary conditions of the problem. The walls of the cavity

are rigid so that u(0, y, z) = u(Lx, y, z) = v(x, 0, z) = v(x, Ly, z) = w(x, y, 0) = 0. Given that the plate is
simply supported we also have wp(x, 0) = wp(x, Ly) = wp(0, y) = wp(Lx, y) = 0. Moreover, displacement
continuity at the interface implies w(x, y, Lz) = wp(x, y). Discretizing these conditions and writing them in
matrix form, we obtain 

∂xφ
⊤(0, y, z) 0

∂xφ
⊤(Lx, y, z) 0

∂yφ
⊤(x, 0, z) 0

∂yφ
⊤(x, Ly, z) 0

∂zφ
⊤(x, y, 0) 0
0 χ⊤(x, 0)
0 χ⊤(x, Ly)
0 χ⊤(0, y)
0 χ⊤(Lx, y)

∂zφ
⊤(x, y, Lz) −χ⊤(x, y)



[
A
B

]
=: Φ⊤C = 0. (37)

The first five rows of the matrix Φ⊤ correspond to the cavity rigid walls condition, while rows six to nine
represent the zero displacement condition for the simply supported plate. The tenth row expresses the
continuity of displacement at the interface. Following what was done in Eq. (22), we denote the rows of Φ⊤

by Φi, with i = 1 . . . 10, and introduce the new matrix Ψ,

Ψ :=

∫ Lz

0

∫ Ly

0

Φ⊤
1 Φ1dydz +

∫ Lz

0

∫ Ly

0

Φ⊤
2 Φ2dydz +

∫ Lz

0

∫ Lx

0

Φ⊤
2 Φ2dxdz +

∫ Lz

0

∫ Lx

0

Φ⊤
4 Φ4dxdz

+

∫ Ly

0

∫ Lx

0

Φ⊤
5 Φ5dxdy +

∫ Ly

0

Φ⊤
6 Φ6dy +

∫ Ly

0

Φ⊤
7 Φ7dy +

∫ Lx

0

Φ⊤
8 Φ8dx+

∫ Lx

0

Φ⊤
9 Φ9dx

+

∫ Ly

0

∫ Lx

0

Φ⊤
10Φ10dxdy, (38)

which satisfies ΨC = 0. As for the 2D case, we next find a basis, Z, for the nullspace of Ψ, and span C
in Eq. (36) in this basis, i.e., C = Zε. This yields the following eigenvalue problem satisfying all boundary
conditions of the 3D system, (

K − ω2M
)
ε = 0, (39)

with K = Z⊤KZ and M = Z⊤MZ.

4.3. Computation of the acoustic pressure field for the 3D system

To compute the acoustic pressure within the 3D cavity we proceed identically to what was done in
Section 3.4 for the 2D case, and resort to the displacement potential ϕ. The equivalent of Eq. (29) for the
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Figure 9: Sound pressure distribution in the 3D cavity for the first (a), second (b), fourth (c) and sixteenth (d) modal orders
in the case of an pressure release upper boundary, i.e., p(x, y, Lz) = 0. In this and subsequent figures, the red frame represents
the edges of the top surface of the cavity.

3D case is given by,

p = ρ0ω
2

(
ϕ− 1

LxLyLz

∫ Lz

0

∫ Ly

0

∫ Lx

0

ϕ dxdydz

)
− ρ0c

2
0

LxLyLz

∫ Ly

0

∫ Lx

0

w(x, y, Lz) dxdy, (40)

and its discrete counterpart (corresponding to Eq. (41) in the 2D case) reads,

p = ρ0ω
2

(
φ⊤ − 1

LxLyLz

∫ Lz

0

∫ Ly

0

∫ Lx

0

φ⊤dxdy

)
A− ρ0c

2
0

LxLyLz

(∫ Ly

0

∫ Lx

0

∂zφ
⊤(x, y, Lz)dxdy

)
A, (41)

where we note again that the displacement potential is very easy to compute with the proposed formulation
because u = (u, v, w) = (∂xφ

⊤A, ∂yφ
⊤A, ∂zφ

⊤A) = (∂xϕ, ∂yϕ, ∂zϕ) with ϕ = φ⊤A.

4.4. Numerical simulations for the 3D system

4.4.1. Cavity modes for open and rigid upper boundaries

Before presenting the results for the coupled cavity-plate problem, and to show the versatility of the pro-
posed method in the 3D case, we first provide the acoustic cavity modes for different boundary conditions on
the top surface. We start by assuming a pressure release boundary condition at z = Lz, i.e., p(x, y, Lz) = 0.
To that goal, we modify Eq. (37) accordingly and compute the modes following the procedure in Section 4.2.

The pressure distribution for some modal orders is illustrated in Fig. 9. The first mode is longitudinal
in the z direction, see Fig. 9a, while the second one is a transverse mode in the x− z plane (Fig. 9b). The
fourth and sixteenth modes are oblique and are presented in Figs. 9c and 9d, respectively. In all cases, the
open condition on the upper boundary is satisfied, demonstrating the effectiveness of the NSM approach for
this purpose.
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Figure 10: Sound pressure distribution in the 3D cavity for the first (a), fourth (b), seventh (c) and eight (d) modal orders in
the case of a rigid upper boundary, i.e., wp(x, y, Lz) = 0.

The method also works perfectly correctly if we impose a rigid boundary condition on the upper surface,
i.e., w(x, y, Lz) = 0, as shown in Fig. 10 for various cavity modes. The first mode (see Fig. 10a) is a
longitudinal mode in the x-direction, while in Figs. 10b and 10c, the fourth and seventh modes correspond
to transverse modes in the x− z and y − z planes, respectively. In Fig. 10d, it can be seen that the eighth
mode is an oblique one.

4.4.2. Coupled modes of the cavity-plate system

With regard to the coupling between the plate and the cavity, two different situations can be distin-
guished.

In the first one the plate dominates the vibration of the coupled system. Some modal orders for which this
occurs are shown in Fig. 11. The acoustic displacement field is represented in the subfigures by cone-headed
arrows whose color and length indicate the magnitude of the field. As can be seen, in all cases the largest
displacements are near the top surface, with the motion at the bottom of the cavity being much smaller. In
particular, the first, second, seventh and seventeenth modes are respectively shown in Figs. 11a, b, c and d.
If we plot the corresponding plate displacement (see Figs. 12a, b, c and d) a clear pattern match is observed.
For completeness, the modal pressure distribution within the cavity at these modes is plotted in Fig. 13,
showing again that the strong variations occur mainly in the upper region of the cavity, driven by the plate
motion.

In the second situation, the plate essentially acts as a rigid wall and the vibration field is dominated
by the cavity. In Fig. 14, we have plotted the acoustic displacement field for the third, sixth, eleventh and
nineteenth modes, again using cone-headed arrows to indicate the direction and magnitude of the point
displacement. On the upper surface, all arrows are in the x − y plane with negligible z component, as if
the plate were rigid. The corresponding acoustic pressure distributions have been plotted Fig. 15. They
correspond to classical blocked modes.
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Figure 11: Acoustic displacement field in the 3D cavity coupled with the thin plate for the first (a), second (b), seventh (c)
and seventeenth (d) modal orders. The direction of the arrows indicates those of the displacement field, while their color and
length are proportional to their magnitude. The red frame at z = 0.5 m is the boundary of the plate.
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Figure 12: Modal vibration shapes of the plate coupled to the 3D cavity for the first (a), second (b), seventh (c) and seventeenth
(d) modal orders.

5. Conclusions

In this paper we have proposed a displacement/acoustic displacement formulation to solve the two-way
elastoacoustic problem. The formulation is established in the framework of the Rayleigh-Ritz method using
Gaussians as basis functions. Compared to other approaches, it has some specificities in that it leads to
a symmetric system without coupling matrices, the essential conditions being imposed on the boundaries,
including the interface, by means of the nullspace method (NSM). Moreover, the irrotational nature of the
acoustic field is implicitly guaranteed, since we expand the displacement components in terms of derivatives
of Gaussians rather than Gaussians themselves, thus avoiding the appearance of spurious modes.

18



(a) 

(c) (d) 

(b) 

0
0.6 0.8

0.25

0.60.4

0.5

0.4
x [m]

y [m]

z 
[m

]

0.2
0.2

0

0
0.6 0.8

0.25

0.60.4

0.5

0.4
x [m]

y [m]

z 
[m

]

0.2
0.2

0

0
0.6 0.8

0.25

0.60.4

0.5

0.4
x [m]

y [m]

z 
[m

]

0.2
0.2

0

0
0.6 0.8

0.25

0.60.4

0.5

0.4
x [m]

y [m]

z 
[m

]

0.2
0.2

0

1st m
ode

2nd mode

7th mode

17th mode

0.60.4
0.4
x [m]

y [m] 0.2
0.2

1st m
ode

0.60.4
0.4
x [m]

y [m] 0.2
0.2

2nd mode

0

0.60.4
0.4
x [m]

y [m] 0.2
0.2

7th mode
0

0.60.4
0.4
x [m]

y [m] 0.2
0.2

17th mode

Figure 13: Sound pressure distribution in the 3D cavity coupled with the thin plate for the first (a), second (b), seventh (c)
and seventeenth (d) modal orders.

(a) 

(c) (d) 

(b) 

0
0.6 0.8

0.25

0.60.4

0.5

0.4
x [m]

y [m]

z 
[m

]

0.2
0.2

0

0
0.6 0.8

0.25

0.60.4

0.5

0.4
x [m]

y [m]

z 
[m

]

0.2
0.2

0

0
0.6 0.8

0.25

0.60.4

0.5

0.4
x [m]

y [m]

z 
[m

]

0.2
0.2

0

0
0.6 0.8

0.25

0.60.4

0.5

0.4
x [m]

y [m]

z 
[m

]

0.2
0.2

0

3rd mode

6th mode

11th mode

19th mode

0.60.4
0.4
x [m]

y [m] 0.2
0.2

3rd mode

0.60.4
0.4
x [m]

y [m] 0.2
0.2

6th mode

0

0.60.4
0.4
x [m]

y [m] 0.2
0.2

11th mode
0

0.60.4
0.4
x [m]

y [m] 0.2
0.2

19th mode

Figure 14: Acoustic displacement field in the 3D cavity coupled with the thin plate for the third (a), sixth (b), eleventh (c)
and nineteenth (d) modal orders. The direction of the arrows indicates those of the displacement field, while their color and
length are proportional to their magnitude. The red frame at z = 0.5 m is the boundary of the plate.
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Figure 15: Sound pressure distribution in the 3D cavity coupled with the thin plate for the third (a), sixth (b), eleventh (c)
and nineteenth (d) modal orders. In this case the plate behaves like a rigid wall and the modes can be identified as blocked
modes.

To demonstrate the performance of the approach, we have first addressed a 1D problem consisting of
sound waves propagating in a duct coupled to a resonator. The accuracy of the solution has been validated
against finite element simulations by checking the modal shapes and frequencies. The maximum error is less
than 0.01%, even for heavy fluids (water) instead of air. We have also demonstrated the advantage of using
Gaussian rather than trigonometric basis functions in terms of the speed of convergence to the analytical
solution. Next, the problem of the acoustic field in a 2D cavity coupled to a beam at its upper boundary has
been considered. As said, the proposed approach guarantees the irrotationality of the flow for the 2D case
and the NSM perfectly ensures the continuity of displacement at the interface (the continuity of traction
is satisfied in a weak sense). Finally, we have extended the method to a 3D cavity coupled to a plate at
its top boundary. It has been shown how the method can accurately deal with different types of boundary
conditions and that for the coupled system one can distinguish between modes essentially driven by the
motion of the plate and blocked modes in which the plate acts as if it were rigid. On the other hand, it
is worth noting that when solving for structural and acoustic displacements, the variable of interest in the
case of the cavity is usually the acoustic pressure. We have seen how this can be recovered once we have
calculated the acoustic displacement using the displacement potential. Since we have expanded the acoustic
displacement in terms of derivatives of Gaussians, the displacement potential is obtained directly in terms
of Gaussians and is very easily incorporated into the proposed formulation. This allows us to obtain the
acoustic pressure in a simple way.

Future work will consist of extending the approach to determine, for example, the acoustic transmission
loss between cavities separated by a flexible plate. Also, the design of reduced order models (e.g., based on
component mode synthesis) to recover the behavior of the coupled system in terms of the modal behaviour
of its components (beam/plate plus cavity) will be addressed. Interestingly, the dissipation at the coupling
interface could be somehow accounted for.
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