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Giffard-Roisin

Abstract—Optical satellite imagery is widely used for esti-
mating ground movement from satellite imagery in natural
disasters such as earthquakes. It allows for detailed analysis
of the factors and mechanisms behind these events. By using
sub-pixel correlation algorithms, it provides precise displacement
measurements (in the meter-to-centimeter range) and high spatial
resolution (decimeter-to-centimeter level) by comparing images
taken before and after the event.

In this study, we present a deep convolutional neural net-
work approach, trained on our realistic dataset FaultDeform,
to retrieve full-scale seismic ground motion displacement fields
from optical satellite images with sub-pixel precision. This
dataset represents the first satellite synthetic dataset tailored
for ground motion estimation. We introduce the GeoFlowNet
pipeline, utilizing a U-net architecture to solve the displacement
estimation problem, delivering high-speed performance through
GPU implementation, and outperforming current correlators in
speed and precision. Comprehensive comparisons with state-of-
the-art methods such as COSI-Corr, MicMac and CNN-DIS,
and validation on real-world earthquake data from the 2019
Ridgecrest and 2013 Balochistan events showcases the robustness
of our method.

Index Terms—Convolutional Neural Network, Deep Learning,
Sub-Pixel Optical Image Correlation, Geodesy, U-Net, Dataset

I. INTRODUCTION

Precise and accurate measurement of ground displacement
at regional scales is fundamental for the study of natural haz-
ards, such as earthquakes [1]–[3], volcanoes [4]–[7], [7], land-
slides [8]–[10], as well as monitoring of glaciers [11]–[14].
For earthquakes, precise and unbiased ground deformation
measurement is essential for resolving the location, geometry,
spatial distribution (e.g. on- vs off-fault), and down-dip slip
distribution of seismogenic faults. Accurate characterization
of the near-field displacement around surface ruptures, in turn,
provides valuable constraints needed to understand the physics
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of earthquake slip [15], and ultimately to anticipate the seismic
hazard posed to neighboring populations and infrastructure
[16].

Optical Image correlation (OIC) is an imaging technique
used to estimate displacements between two optical satellite
images acquired over the same area at different times (sepa-
rated by hours up to years). It has been widely applied to the
study of surface rupturing earthquakes, where displacements
are generally small relative to the pixel size, and sub-pixel
precision is required to accurately resolve the displacement
field. Moreover, close to earthquake surface ruptures, the
deformation may become complex (e.g. sharp discontinuities,
distributed off-fault deformation, secondary faulting, along-
strike slip variability).

Optical flow is a broader domain of computer vision, that
aims to estimate the flow, i.e. the full displacement field,
between images of the same scene acquired at different times,
and where objects have moved or deformed. Few methods
using the optical flow problem formulation to retrieve ground
or glacier displacement maps have been proposed [17], [18],
showing their ability to monitor slow to rapid horizontal
motion. Yet, they are only using high-resolution Sentinel-2
data, with nominal precision decreasing exponentially with
the temporal baseline between two acquisitions (reaching >2
pixels uncertainties [17]).

Recent preliminary studies employing deep learning tech-
niques managed to retrieve clear coseismic displacement [19]
or to detect slow earthquakes [20], [21], both in noisy Interfer-
ometric Synthetic Aperture Radar (InSAR) timeseries, but all
relying on multiple acquisitions to remove noise components
specific to InSAR. InSAR uses radar signals emitted and
received by satellites or aircraft, measuring changes in the
phase of these signals between acquisitions. This technique
is effective in detecting both vertical and horizontal ground
displacements at millimeter-scale precision over large areas.
However, InSAR data is sensitive to noise from atmospheric
variations, signal decorrelation, and topographic effects, which
often necessitates multiple acquisitions to filter out noise
and isolate significant displacement data. In contrast, optical
imagery relies on visible light to capture high-resolution
images for analysis, tracking changes in surface features over
time. This method is well-suited for mapping distinct surface
displacements, such as fault movements, and is generally less
affected by atmospheric noise than InSAR. However, optical
methods are constrained in their ability to detect subtle shifts
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and can be affected by lighting, shadows, and occlusions.
Montagnon et al. [22] presented a first deep learning method
using a local approach for resolving the displacement field
with a convolutional neural networks using optical imagery.
This method assumes a uniform shift within localized seg-
ments (uniform-by-part, breaking down the assumption made
by traditional methods), trying to mitigate the bias near fault.
However, the assumption remains simplistic with respect to
the noise sources, the range of displacements it can accurately
capture is constrained to +/-5 pixels, and the local sliding
window method (i.e. computing one displacement vector at
a time) remains computationally expensive.

Satellite images often suffer from noise, data corruption, and
temporal decorrelation, causing bias and artifacts in displace-
ment maps. Illumination changes between acquisitions (often
separated by weeks or months), vegetation, anthropogenic
factors, and sensor artifacts further degrade results [1], [10],
[23], [24]. Pre-processing by data providers can introduce
periodic artifacts and aliasing from resampling [23], [25].
Finally, processing large regions in remote sensing is com-
putationally intensive [26]. While large optical images cover
vast areas, they involve significant computation time and often
require tiling to manage memory. Different sensors, like high-
resolution WorldView-3 or Pléiades (0.3-0.5 m resolution) and
mid-resolution Sentinel-2 or Landsat 8 (10-15 m resolution)
[27], [28], add complexity, each sensor capturing imagery
with different spatial resolutions and noise characteristics,
resulting in varying levels of detail and potential displace-
ment (with displacements varying from sub-pixel to multiple
pixels). This variability demands extensive parameter tuning
[1], [2], requiring expert intervention, making reproducibility
and generalizability difficult, and preventing a one-size-fits-all
solution.

In this paper, we introduce a method based on a deep
convolutional neural network, trained on our newly generated
synthetic displacement dataset FaultDeform, for retrieving
earthquake-induced ground displacements with sub-pixel pre-
cision and high accuracy. Our GeoFlowNet pipeline, illus-
trated in Figure 1, utilizes a U-net architecture to solve the
full-scale displacement estimation problem, offering signifi-
cant speed improvements through GPU implementation. This
approach overcomes the typical limitation of uniform local
shifts in state-of-the-art methods by estimating comprehensive
displacement fields and leveraging a multi-scale architecture
to capture features at various scales.

This paper is structured as follows: Section II reviews how
CNNs have been applied in the literature to solve similar
problems, i.e. optical flow estimation. Since no existing dataset
meets the needs of this study, Section III describes the creation
of a custom dataset with realistic earthquake displacement
fields, followed by training details in Section IV. In Section
V, we assess our trained models on both synthetic test data
and real-world cases, comparing them with state-of-the-art
methods. Lastly, Section VI presents a sensitivity analysis.

II. RELATED WORKS

A. Optical Image Correlation for Displacement Estimation

Over the past few decades, sub-pixel OIC-based methods
utilizing satellite and aerial imagery have evolved into two
primary approaches: spatial [29], [30] and frequency (Fourier)
[1], [2], [25] domain techniques. In both cases, traditional
methods [2], [29], [31], [32] usually make use of normalized
cross correlation (NCC) or its equivalent in the frequency do-
main, involving estimating ground deformation by comparing
a source s and a template t using a sliding window approach,
assuming a uniform translation between them.

In the spatial domain, MicMac [29] estimates displacements
using normalized cross-correlation (NCC), refining precision
iteratively with a smaller search space and applying spatial
regularization (isotropic and non-isotropic) to reduce noise.
This regularization penalizes high-frequency components or
unrealistic shifts based on surface regularity [33]. MicMac
makes use of a non-linear cost [29] in order to limit the impact
of the noisy signal on the whole measurement:

Cost =
(
1−

(
max(Cor, Cmin)− Cmin

1− Cmin

)γ)
· (1− Cmin)

(1)
Here, Cor represents the correlation score, and Cost is the

resulting value of the cost function. Cmin is the correlation
threshold parameter; when the correlation score is below this
threshold it has no influence. The parameter γ, controls the
influence of correlation scores: the higher the value of γ, the
higher the influence of correlation scores close to 1 [29].
While methods using NCC are robust to noise and large
spatial differences [29], they are computationally expensive,
especially with high-resolution data and large displacements
requiring larger search spaces. Additionally, correlation can
fail or be biased by noise (e.g., atmospheric changes, sensor
artifacts, or geometric distortions) and struggles in uniform
or low-contrast areas like snowfields or deserts, leading to
poor estimations. The assumption of uniform local translation
also breaks near discontinuities, such as faults, causing biased
estimations in rupture zones.

One of the most used spectral OIC method is COSI-Corr
[23]. It estimates displacement purely in the frequency domain,
minimizing residuals in the normalized cross-power spectrum
through gradient descent, with an initial pixel-wise displace-
ment estimation followed by a sub-pixel refinement step
(typically made with a smaller correlation window). Iterative
adaptive frequency masking reduces noisy high frequencies
[2], and frequency masking is applied to only select parts of
the cross-power spectrum where the phase information is valid,
to reduce aliasing or optical aberrations [2]. Larger correlation
windows improve robustness but reduce spatial detail [23],
[29], with a common trade-off being a 32 × 32 window for
accuracy and noise control. However, without regularization,
the method can produce outliers and non-physical solutions,
making IPC more sensitive to noise than spatial-domain
methods. Both spatial and frequency assume homogenous
translation within the sliding window, leading to bias near
discontinuities or in areas with complex displacements.
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B. Deep Learning for Optical Flow Estimation

FlowNet [34] paved the way for the utilization of CNN-
based methods to solve optical flow problems, by introducing
two models FlowNetS and FlowNetC, based on the U-Net
architecture [35]. FlowNetS takes as input the two acquired
frames stacked together and feed them through the network in
order to estimate the optical flow, while FlowNetC process
these two images separately before merging feature maps
with a correlation layer. FlowNet 2.0 [36] extended FlowNet
notably by stacking multiple networks in order to refine the
displacement estimation, but also to tackle small displacements
and correct artifacts in the estimated displacement fields. One
of the blocks of the FlowNet 2.0 architecture, called FlowNet2-
SD, is specifically designed to address noise in sub-pixel
displacement field.

Subsequent models, such as SpyNet [37], PWC-Net [38],
and LiteFlowNet [39], introduced further enhancements, in-
cluding iterative refinement through a coarse-to-fine pyramid,
with a focus on large motion estimation. However, their
performance on sub-pixel accuracy remains limited, as these
methods prioritize handling larger displacements and fast-
moving objects. RAFT [40] and IRR [41] improved refinement
using recurrent units, but they still struggle with sub-pixel
accuracy in noisy environments.

Recent advances in optical flow estimation have seen the
introduction of Transformer-based deep learning architectures
[42]. Perceiver IO [43] learns optical flow regression with a
transformer-based architecture. GMFlow [44] make used of a
customized Transformer for feature enhancement. FlowFormer
[45] adopts an encoder-decoder architecture for cost volume
encoding and decoding. These new transformer-based algo-
rithm use global feature matching, to overcome the challenge
of accurately measuring large displacements, meaning sub-
pixel precision is often compromised.

CNN- and Transformer-based models are usually evaluated
on different benchmark datasets of natural RGB images, such
as MPI Sintel [46], KITTI [47] and FlyingThings3D [48]. The
MPI-Sintel dataset contains large motions and complex effects
like motion blur, with over 17.5% of its pixels having displace-
ments greater than 20 pixels. The KITTI dataset consists of
real-world driving scenes, featuring with varied lighting, and
over 16% of pixels showing motion beyond 20 pixels. The
Middlebury dataset [49] containing complex motions with less
than 3% of the pixels having a displacement over 20 pixels,
is considered containing the smallest displacements by the
community. The results attained on this latter dataset is the
only one where the aforementioned state-of-the-art methods
reaches sub-pixel precision (i.e. where the error is below the
pixel size), and give hope in adapting such models in other
fields and reaching sub-pixel accuracy. However, these datasets
and models are trained with natural images, and focus on
rigid-body motions, which differs drastically from our case
of using satellite images, and detecting ground deformation.
Additionally, the time between acquisitions in our case allows
for changes beyond just deformation, which must also be
accounted for.

C. Optical Flow Beyond Natural Image Applications

Previously proposed optical flow models have typically seen
application across a range of research fields. For example,
FlowNetS [50] and LiteFlowNet [51] have been used for
fluid motion estimation. In medical imaging, GlueNet [52]
adapted FlowNet 2.0 for displacement estimation in ultrasound
elastography. StrainNet [53] adapted FlowNetS to estimate
displacement fields occurring on the surface of deformed
materials using speckle images. Finally, in the context of
ground motion estimation, Montagnon et al. with CNN-DIS
[22] developed a CNN architecture to retrieve accurate dis-
placements from optical satellite images, using a two-step
process to estimate, first, the initial pixel-wise displacements,
and second, the sub-pixel component of displacement. All of
these methods managed to reach sub-pixel accuracy on their
data.

Using the same trained models for another problem without
any refinement of fine-tuning is not always possible, because
of the differences in the data (e.g. different formats, ranges of
displacement or noise and artifacts). Each method described
above has been trained on a dataset representative of the ad-
dressed problem (e.g. a PIV dataset representing the fluid flow
for [39], a speckle dataset for StrainNet [53], or a discontinuity
remote sensing dataset for CNN-DIS [22] in order to optimize
the model architecture and parameters to the specific problem.
In addition, aforementioned datasets and most optical flow
datasets (such as MPI Sintel and FlyingThings3D) use syn-
thetics, creating reliable accurate ground truth. In the ground
deformation measurement field, the dynamic nature of ground
motion (involving small, often subtle displacements that occur
over time) and the lack of dense and accurate ground-based
measurement data makes creating a ground truth database
exceptionally challenging. Therefore, to adapt models from the
literature, we need a synthetic representative dataset suited for
ground deformation estimation from optical satellite images.
Such dataset has been proposed by CNN-DIS [22], serving
as a valuable preliminary approach; however, it lacks the size
and complexity required for generating large comprehensive
displacement maps and remains inherently simplified.

D. Contributions

In this study, we propose a deep convolutional neural
network architecture trained on a new realistic synthetic earth-
quake displacement dataset FaultDeform to retrieve ground
displacements produced by earthquakes from optical images
with sub-pixel precision and high accuracy. We develop the
GeoFlowNet pipeline shown on Figure 1 that uses a U-
net architecture model to solve the full-scale displacement
estimation problem, with significant speed performance thanks
to its GPU implementation. We therefore overcome the basic
limitation, spread across state-of-the-art methods, of a uniform
local shift, by estimating extensive full-scale displacement
fields, while leveraging the multi-scale architecture to capture
valuable features at various scales.

This paper contributes to the literature in two major aspects:
• The creation of the first custom realistic dataset FaultDe-

form tailored for full-scale ground motion displacement



JOURNAL OF LATEX CLASS FILES, VOL. 13, NO. 9, SEPTEMBER 2014 4

pr
e-

im
ag

e
po

st
-im

ag
e

Slicing for sliding 
window

EW NS

Estimated 
displacement maps

EW

NS

Displacement field estimation 
with the U-Net architecture

Correlation ProductInput Images

Fig. 1. Input satellite images are tiled up into large 256 × 256 patches, processed into the CNN model, retrieving 256 × 256 displacement fields, used to
reconstruct full-scale full displacement maps.

estimation, offering the first ground-truth database based
on displacements synthetically generated from realistic
faults. The dataset is available to the community on this
Data Repository Grenoble Alpes.

• The development of the first end-to-end U-net-based
framework GeoFlowNet estimating accurate ground mo-
tion displacement maps able to give sub-pixel accuracy
and with displacement ranging from several pixels to less
than 0.1 pixels, radically surpassing speed of state-of-the-
art correlators, and available at this Git Repository.

III. GENERATION OF THE DATASET FAULTDEFORM

When applying existing trained models to very different data
without fine-tuning, results are typically very poor, especially
since our problem is notably distinct. As explained in the In-
troduction, optical satellite images used for measuring ground
movements face unique noise challenges compared to standard
natural images. Also, the displacements from earthquakes, are
typically small (less than 10 m) and often occur in the sub-
pixel domain, decaying smoothly over large distances from
sharp surface discontinuities.

Given these complexities and the lack of sufficient ground
truth data for natural earthquakes, there is a need to create a
training dataset accurately reflecting these challenges, incor-
porating real satellite images and realistic synthetic ground
displacement maps.

Our FaultDeform database is generated in 3 steps. First,
we download and prepare real satellite images acquired at
different times for stable regions containing no natural ground
displacements. Second, we generate a sequence of realistic
faults and compute realistic earthquake displacement maps.
Finally, we warp/resample the satellite images to include the
synthetic displacement maps.

1) We downloaded Landsat 8 images from Collection 2
using the Landsatxplore interface [54], from 14 different

scenes (defining 14 different locations), spanning stable
regions in which no ground deformation has occurred.
The locations cover diverse regions across Africa and
Asia, including scenes from the deserts of Chad, Niger,
and Libya; the rugged terrains of Afghanistan, Pakistan,
and Iran; mountainous areas in Mongolia and Uzbek-
istan; and varied landscapes in Ethiopia, Sudan, and
Yemen. We extracted the panchromatic band of Level 2
collection products, with a footprint of 185 km (cross-
track) by 180 km (along-track), and ground resolution of
15 m (pixel dimensions of 12300×12000). Images from
the same scene are globally co-registered (assuming a
simple translation) using phase correlation (a Python
implementation of the matrix-multiply DFT method
available in the Scikit-image library [32]). It reduces
global mis-registrations that might remain after process-
ing by the USGS. Images are then stacked onto the same
grid. Every scene contains 25 acquisitions, ranging from
2015 to 2023. Iteratively, pairs of 1024 × 1024 pixels
are extracted from the stacked images. For each scene,
we randomly selected one window from any of the first
24 images in the acquisition sequence, calling this the
”pre-image.” The corresponding ”post-image” was then
selected from the immediately following acquisition. For
every scene, we collected 9k window pairs (126k pairs
in total). We make sure the collected pairs respect a
correlation score minimum of 90%, in order to reduce
images too heavily corrupted by noise (clouds, natural
changes, etc.).

2) We developed a pipeline to randomly generate realistic
fault discontinuities with rough geometries within a
homogeneous, linear elastic half-space. Using analytical
expressions [55], [56], we relate slip on triangular fault
patches to surface displacement, calculating the resulting
displacement field from the synthetic fault geometry

https://doi.org/10.57745/AHEOVO
https://gricad-gitlab.univ-grenoble-alpes.fr/montagtr/GeoFlowNet
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and earthquake slip distribution. These faults adhere
to natural earthquake length-displacement scaling laws
[57], [58], rupture only the seismogenic part of the crust
(¡15 km), and exhibit geometric roughness (self-affine
scaling, Hurst exponent 0.8 [59]), fractal slip distribu-
tions [60], [61], and reduced slip in the uppermost crust
(shallow slip deficit [62]).
Fault lengths range from 5 to 150 km, down-dip widths
from 5 to 17 km, strikes from 0 to 360°, and dips from
30 to 90°. We only generate strike-slip faults with dips
varying +/-60° from vertical, as horizontal displacements
are more resolvable in nadir-view satellite images. Fault
models are discretized with triangular displacement ele-
ments (TDEs) using an unstructured meshing approach
(Mesh2D [63]), achieving high surface resolution and
coarser depth resolution, accounting for the rapid decay
of static displacements with distance. Observation points
are generated using an unstructured mesh, densifying
near surface ruptures to capture significant displacement
variations. These displacements are resampled onto a
regular grid using the griddata function in SciPy.
With this process, we created 14k earthquake displace-
ment maps (8000 × 8000 pixels), where every fault is
centered. We extract nine image windows (1024× 1024
pixels) from each displacement map, arranged in a 3×3
grid centered around the middle of the map, which gives
126k displacement maps in total.

3) Warping the second windows (all the post-images) using
quintic-order spline re-sampling algorithm [64]. The
precision of this resampling approach (∼ 1/100th pixel)
is significantly higher than the precision of state-of-the-
art correlators (<1/10th pixel). For each displacement
map–satellite image pair, we make four different warps:
we normalize every displacement map and multiply
by 4 different scaling factors, each randomly selected
from a different float range, in order to obtain four
different scaled displacement maps. The four scaling
factor intervals are [0.01, 1], [1, 5], [5, 15] and [15, 50].
These scaling factors are important for controlling the
range of displacements we want a trained model to be
able to retrieve. Therefore, we obtain 4 × 126k samples
for our total dataset.

This procedure is summarized on Figure 2. We split our
synthetic database that we name FaultDeform-126k (being the
full dataset with 126k samples) into 3 datasets : (1) training
with 90k samples, (2) validation with 18k samples, and (3)
test datasets with 18k samples. The train dataset is only used
for training our two models, the validation dataset is used to
tune the parameters and evaluate them during training, and the
test dataset is for comparing our trained models to other state-
of-the-art methods, in order to have fair comparison metrics
and criteria.

After a sensitivity study VI, we found that only 10k samples
were necessary for training, and reduced the database by a
factor or 9, using 10k samples for train, 2k samples for
validation and 2k samples for test, selected randomly from
our FaultDeform-126k database. The dataset is available for
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Fig. 2. Procedure to create one sample (pair of pre and post warped in red,
associated with the corresponding displacement maps) of the FaultDeform
dataset.

TABLE I
SUMMARY OF FAULTDEFORM DATASET CONFIGURATION AND

DISTRIBUTION

Component Details Values

Satellite Images
Number of Scenes 14
Images per Scene 25

Extracted Window Pairs
Window Size 1024× 1024 pixels

Number of Pairs per Scene 9000
Total Number of Pairs 126000

Displacement Maps

Fault Maps Size 8000× 8000 pixels
Number of Fault Maps 14000

Displacement Maps Size 1024× 1024 pixels
Number of Displacement Maps per Fault Map 9

Total Number of Displacement Maps 126000
Scaled Displacement Maps Scaling Factors Intervals [0.01, 1], [1, 5], [5, 15], [15, 50]

Final Dataset Splits
Training Dataset 4× 10000 samples

Validation Dataset 4× 2000 samples
Test Dataset 4× 2000 samples

the community on Data Repository Grenoble Alpes.
Table I summarizes the dataset configuration and distribu-

tion.

IV. PROPOSED DISPLACEMENT ESTIMATION METHOD

FlowNetS has shown its adaptability to different research
fields ( [50], [53]) and remains a key reference in CNN-based
optical flow estimation, while also being computationally
efficient.

The architecture named FlowNet2-SD from FlowNet 2.0
[36] is a modified FlowNetS architecture built to address the
specific problem of sub-pixel motion tracking, due to the
modifications they made (no stride and reduced kernel size
at the beginning of the network). We created a similar model
called GeoFlowNet-A with the same modifications.

We also made the same modifications that StrainNet [53])
made to the FlowNetS architecture. Originally, the FlowNetS
architecture provided an optical flow of 1/4 of the original
image resolution, so interpolation was required to retrieve the

https://doi.org/10.57745/AHEOVO
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full-scale displacement map. Simplifications of the architecture
gave StrainNet-F, built with 4 downsamplings followed by
4 up-samplings, thereby outputting full-resolution maps, and
we made the same modifications to obtain GeoFlowNet-
B. We also made these modifications to the GeoFlowNet-A
architecture to also directly retrieve full-scale displacement
maps.

We selected these both GeoFlowNet-A (for its modifica-
tions specifically designed for tracking sub-pixel motion) and
GeoFlowNet-B (for its ability to retrieve full-scale displace-
ment maps and reaching sub-pixel precision) to be trained with
our FaultDeform train database.

When training a data-driven model, a set of hyper-
parameters must be chosen that will control the learning
process:

1) As with FlowNet, we selected Adam as our optimization
method due to its faster convergence speed compared to
standard stochastic gradient descent with momentum.

2) We do not train our model using 1024 × 1024 pixel
windows. Instead, we randomly select 256× 256 crops
at each epoch, employing this as a form of data aug-
mentation to introduce more variability into the training
process. This approach significantly reduces computa-
tional burden, thereby improving computation time and
mitigating memory constraints. With this approach, we
can raise the batch size to 32.

3) After a few tests, we initiate the learning rate at 5e-4
and divide it by 2 every 20 epochs.

4) We use endpoint error (EPE) as the training loss, defined
as the average Euclidean distance between the predicted
and ground truth flow vectors across all pixels. It is
computed at the 5 scales of the network, and averaged
with a weighting coefficient of 1, except the one of the
last layer, which is set to 6 to give more importance
to the last level forming the network. This loss corre-
sponds to multi-scale EPE; the real EPE (EPE computed
between the output and the target) is the metric used for
validation.

5) We trained our two models GeoFlowNet-A and
GeoFlowNet-B on 50k batch iterations (40 epochs), on
4 × 10k train samples

With this strategy, training each of the networks on an
NVIDIA TESLA V100 SXM2 32Go GPU required 9 hours 30
minutes for GeoFlowNet-A and 10 hours for GeoFlowNet-B.

A. Implemented pipeline: GeoFlowNet

To evaluate and compare our models on real data, we
decided to implement a pipeline called GeoFlowNet (shown
on Figure 1) that takes as input two large satellite images, and
outputs directly the full-scale displacement maps.

GeoFlowNet constitutes a ready-to-use tool to retrieve
displacement maps from satellite images, and its code is
available online in a Git repository []. It utilizes PyTorch
for deep learning and Rasterio for geospatial data processing
and automates the process of computing displacement maps
between a pair of satellite images using trained GeoFlowNet-A

TABLE II
PARAMETERS USED FOR DIFFERENT MODELS.

Model Parameters Values
Window size k 256× 256

GeoFlowNet-A (512× 512 for synthetics)

(GeoFlowNet-A)
Stride s 128

(x for synthetics)

Window size k 256× 256

GeoFlowNet-B (512× 512 for synthetics)

(GeoFlowNet-B)
Stride s 128

(x for synthetics)

COSI-Corr

Initial window size 64× 64

Final window size 32× 32

Mask threshold 0.9
Number of iterations 2

MicMac

Cmin 0.5
γ 2

Window size 9× 9

Regularization term 0.3

CNN-DIS
Pixel window size 32× 32

Sub-pixel window size 16× 16

or GeoFlowNet-B models. An automated pre-processing step
aligns input rasters prior to computing the displacement map.

We use a sliding window procedure to iteratively evaluate
k×k large displacement maps from cropped k×k input pairs,
extracted from the input satellite images. To reconstruct the
full displacement fields corresponding to the satellite images,
the procedure utilizes a stride, retaining only the unique (non-
overlapping) displacements from all the maps, in order to
minimize edge effects as much as possible.

Models have been trained with 256× 256 pixels windows,
but can process any large window k×k pixels images to speed
up the evaluation. Default parameters are k = 256 with a stride
of s = 128.

V. EXPERIMENTAL RESULTS

As described in Section IV-A, we use our GeoFlowNet
pipeline with default parameters, a window size of 256×256,
and a stride of s = 128. For our synthetic comparative and
real data studies, we use COSI-Corr, MicMac and CNN-DIS
with all default parameters. The correlation parameters for all
four correlators are summarized in Table II. All methods use
a step of 1, to retrieve full scale displacement maps.

A. Comparisons on synthetics

We first make a quantitative and qualitative analysis based
on our FaultDeform test dataset. We compare our 2 trained
models with COSI-Corr (using the recent python implemen-
tation [65]), MicMac, and CNN-DIS [22].

Our test sample dimensions are 512× 512 pixels from the
1024 × 1024 pixels test samples. We take our 4 × 2k test
samples, and compute the real EPE for each sub-dataset, for
each method. Results are shown in Table III. The first step of
the CNN-DIS procedure, and MicMac, with its limited search
space set up at 5 pixels, are not able to retrieve displacements
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pre / post-warped sf : 2.3

(a) Ground-truth (b) GeoFlowNet-A (c) GeoFlowNet-B (d) COSI-Corr (e) MicMacexample 1 (f) CNN-DIS

Fig. 3. Displacement fields (256 × 256 pixels) in East-West and North-South directions from (b) GeoFlowNet-A, (c) GeoFlowNet-B, (d) COSI-Corr, (e)
MicMac and (f) CNN-DIS on the test synthetic example #1, with a scaling factor of 2.3. On the left, the pre and post-warped images and (a) the ground-truth
displacement maps used to warp them. Results are expressed in pixels.

TABLE III
ERROR (REAL EPE) FOR EACH SYNTHETIC TEST SUB-DATASET

(DISPLACEMENT FACTOR RANGES [0.01, 1], [1, 5], [5, 15], [15, 50])

Model
Sub-dataset range

[0.01, 1] [1, 5] [5, 15] [15, 50]

GeoFlowNet-A (GeoFlowNet-A) 0.169 0.238 0.302 0.780
GeoFlowNet-B (GeoFlowNet-B) 0.169 0.243 0.326 0.888

COSI-Corr 0.261 0.300 0.425 1.45
MicMac 0.193 0.253 x x

CNN-DIS 0.328 0.527 x x

larger than 5 pixels, so the evaluations on the [5, 15] and [15,
50] sub-dataset are invalid.

Both GeoFlowNet versions (GeoFlowNet-A and
GeoFlowNet-B) outperform COSI-Corr, MicMac and
CNN-DIS on all the synthetic test sub-datasets using the
EPE criterion. In addition, GeoFlowNet-A gives marginally
better results on three sub-datasets out of four compared to
GeoFlowNet-B. Thanks to a built-in regularization, MicMac
results remains very close to our models.

To have a deeper understanding of how the models behave
on the synthetic test data, three examples of the test samples
are shown on Figures 3, 4, 5 and 6. These examples are only
256 × 256 pixels because COSI-Corr does not pad boundary
windows, retrieving 256× 256 pixels displacement maps with
a 512 × 512 pixels input and reporting NaN values for a 1/2
window dimension around the original extents of the image.

Figure 3 shows that both GeoFlowNet versions correctly
retrieves the far-field and near-fault displacements, even when
they are relatively small (<2.3 pixel for E-W and <0.9 pixel
for N-S). COSI-Corr and CNN-DIS are significantly more
noisy in the far-field (particularly on the N-S component), with
common noisy features, which are suppressed by GeoFlowNet
versions. MicMac manages to partially reduce the noise far-
field thanks to a built-in regularization, yet it results in a very
granulated fault trace. CNN-DIS has difficulty tracking such

0Bold indicates the best results.

small displacements, particularly in the N-S component, which
is due to the initial pixel-wise registration step that corrupts
the refinement. In fact, the test images are more corrupted than
the original CNN-DIS training dataset [22] which makes its
first step unstable.

Figure 4 shows that with very large displacements (>30
pixels), COSI-Corr retrieves a highly inaccurate fault trace,
especially in near-field. Even with different configurations for
COSI-Corr, such as by raising the size of the initial window
(128 × 128 and 256 × 256, to account for the larger dis-
placement), we noticed no improvement. GeoFlowNet models
manage to retrieve accurate displacements in both the far-field
and near-fault zone, without any specific fine-tuning on the
model. CNN-DIS and MicMac results are not shown because
the methods are not designed to retrieve displacements larger
than 5 pixels.

Focusing on the near-field estimation, we compare the
GeoFlowNet-A method against COSI-Corr and MicMac on
a third synthetic test sample (Figure 5 and Figure 6), using
the same sample #3 but with two different scaling factors.
We only show GeoFlowNet-A, as GeoFlowNet-B has very
similar results). We zoom on the EW displacement results
near the fault. We compute a averaged cross-profile (Figures
5(b) and 6(b)) by calculating the mean displacement across
the fault over the yellow band from Figures 5(a) and 6(a).
We finally estimate the Fault Zone Width (FZW), defined as
the distance over which the fault-perpendicular strain exceeds
0.5% each side of the fault, in Figures 5(c) and 6(c). The
FZW is estimated visually, based on the approximate inflection
points of the horizontal displacements each side of the fault.
For small displacements (example #3.A with scaling factor of
0.7, on Figure 5), COSI-Corr shows a moving, less realistic,
and less accurate fault trace, with a wider FZW corrupted
with outliers, and with noisier far field displacements. MicMac
manages to delimit realistically the fault trace, but at the
expense of spatial details, especially around the fault trace.
This gives a granulated fault trace, which gives a smoothing of
the discontinuity when computing the mean profile, resulting
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example 2

pre / post-warped sf : 46

(a) Ground-truth (b) GeoFlowNet-A (c) GeoFlowNet-B (d) COSI-Corr

Fig. 4. Displacement fields (256 × 256 pixels) in East-West and North-South directions from (b) GeoFlowNet-A, (c) GeoFlowNet-B, (d) MicMac, and (e)
COSI-Corr on the test synthetic example #2, with a scaling factor of 46. MicMac and CNN-DIS are not designed for such high deformations. On the left,
the pre and post-warped images and (a) the ground-truth displacement maps used to warp them. Results are expressed in pixels.

Ground-truth GeoFlowNet-A COSI-CorrMicMac

example 3.A
sf : 0.7

(a)

(b)

(c) FZW
5 px

9 px
12 px

GeoFlowNet-A

COSI-Corr

MicMac

Fig. 5. Synthetic test sample #3-A (with scaling factor of 0.7). On (a), EW
displacement maps from GeoFlowNet-A, MicMac and COSI-Corr. On (b) the
mean of displacement profiles across the fault at the location represented in
yellow. On (c) an estimation of the fault zone width corresponding to the
three displacements results. Results are in pixels.

in a wider FZW. GeoFlowNet-A resolves a more accurate fault
trace, with a narrower FZW, and smoother accurate far-field
displacements (albeit with a slightly larger global bias). The
estimated FZW is the closest to the ground truth, highlighting
the superior performance of our model in resolving near-field
characteristics of the fault zone (FZW of around 5 pixels,
compared with 9 and 12 pixels for respectively MicMac and
COSI-Corr). With larger displacements (example #3.B with

Ground-truth GeoFlowNet-A COSI-CorrMicMac

example 3.B
sf : 2.7

(a)

(b)

(c) FZW
9 px

16 px
6 px

GeoFlowNet-A

COSI-Corr

MicMac

Fig. 6. Synthetic test sample #3-B (with scaling factor of 2.7). On (a), EW
displacement maps from GeoFlowNet-A, MicMac and COSI-Corr. On (b) the
mean of displacement profiles across the fault at the location represented in
yellow. On (c) an estimation of the fault zone width corresponding to the
three displacements results. Results are in pixels.

scaling factor of 2.7, on Figure 6), we observe that COSI-Corr
estimates a very sharp fault trace with a FZW of approx. 6
pixels (sharper than GeoFlowNet-A and MicMac, respectively
with a FZW of 9 and 16 pixels). However, this is at the cost
of an important localization error between the ground truth
fault trace and that resolved with COSI-Corr: more than 5
pixels of offset are visible in the perpendicular distance. For
MicMac, the granulated effect is even larger than in Figure 5
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1. GeoFlowNet-A 2. GeoFlowNet-B 3. COSI-Corr 4. MicMac 5. CNN-DIS

a

b

1.a

1.b

2.a

2.b

3.a

3.b

4.a

4.b

5.a

5.b

Fig. 7. EW component of the displacement maps from Pléiades images for the Ridgecrest earthquake. From left to right: GeoFlowNet-A, GeoFlowNet-B,
COSI-Corr, MicMac and CNN-DIS displacement maps. Two segments a and b cropped from each displacement map are shown for every method. Results
are expressed in meters, with one pixel being 50 cm.

and the fault trace has a very unrealistic shape. The FZW of
GeoFlowNet is thus better than MicMac, and it is correctly
located (which is not the case for COSI-Corr).

B. Comparisons on real data

1) 2019 Ridgecrest and 2013 Balochistan cases: We aim
to demonstrate that GeoFlowNet is effective at accurately
resolving real earthquake displacements preserved in optical
satellite images by applying our pipeline to two earthquake
case studies: 2019 Ridgecrest, and 2013 Balochistan.

In July 2019, the Ridgecrest earthquake sequence in South-
ern California’s Mojave desert produced cross-fault ruptures
from a Mw 6.4 foreshock on a NE-SW-striking left-lateral
fault, followed by a Mw 7.1 mainshock on a conjugate NW-
SE-striking fault [66]–[68]. Multiple studies utilized optical
image correlation (OIC) methods to quantify the surface
displacement fields and assess the degree of surface slip
localization (on- vs off-fault deformation) across the rupture
zone [68]–[71]. Using the surface displacements to extract the
strain field, these studies managed to map the along-strike
variation in fault zone width, which in turn may correlate with
features in the geology, fault structure, and seismic radiation of
the earthquake. For Ridgecrest, we used pre- and post-event
50 cm resolution Pléiades satellite images [71], respectively
acquired on 23rd June 2012 and 8th September 2019. This
allowed us to assess our model’s performance on data acquired
with a different sensor to that used in the training (i.e. Landsat-
8). Pléaides differs to Landsat-8 by being sensitive to different
spatial wavelengths, different off-nadir acquisition angles, and
different resolutions (0.5 m vs 15 m, thus spanning more than
one order of magnitude difference). For this study, we used a
1024× 1024 pixels crop located on the NW-SE-striking fault
, extracted from the 23k × 30k pixels Pléiades images.

On 24th September 2013, a powerful earthquake struck
the Awaran district in the Balochistan province of Pakistan,

generating widespread surface ruptures and displacement fields
across the region [72], [73]. The earthquake, with a mag-
nitude of Mw 7.7, nucleated south of the Chaman strike-
slip fault and propagated southwestward along the Hoshab
fault, producing a 200 km-long strike-slip surface rupture. For
the Balochistan earthquake, we employed 15k × 15k pixels
Landsat imagery at its native 15 m resolution, matching the
sensor type and resolution of our FaultDeform dataset. This
provided an opportunity to test our model on real earthquake
data with similar imaging characteristics, but in a different
geological and tectonic context, and for an event where the
deformation is small everywhere, i.e. clearly smaller than one
pixel. The pre-image of our example was acquired on 10th
September 2013, and the post-image on 26th September 2013
. For this second case study, the full 15k× 15k pixel images
are processed and compared, enabling to test GeoFlowNet on a
large zone scenario. For both real case studies, all estimations
were performed with a step of 1, i.e. a full dense estimation.

2) Qualitative comparisons: Both earthquakes involved
significant ground displacements (up to 6 m for Ridgecrest,
and up to 10 m for Balochistan [72]). Given the very high
resolution imagery used for the Ridgecrest case (50 cm
Pléiades imagery), and the medium resolution imagery used
for Balochistan (15 m Landsat-8 imagery), we are able to test
our full pipeline’s capability at resolving both pixel and sub-
pixel displacements. Although we lack ground truth displace-
ment maps of similar density for these real cases, comparing
our results with established methods such as COSI-Corr and
MicMac helps us evaluate consistency. Visual inspection of
the displacement fields near the fault ruptures also allows us
to identify potential errors, artifacts, or bias based on their
spatial distribution, offering another means for validating our
approach.

Across both cases, GeoFlowNet produced displacement
maps with noticeably less high frequency noise near the fault
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Fig. 8. EW component of the displacement maps from Landsat images for the Balochistan earthquake. From top to bottom: GeoFlowNet-A, GeoFlowNet-B,
COSI-Corr, MicMac and CNN-DIS displacement maps (left column). A zoom on the Hoshab fault is shown on the right column for every method. Results
are expressed in meters, with one pixel being 15 meters.

zones and in the far field compared to COSI-Corr, MicMac,
and CNN-DIS (Figures 7 and 8). The smoother outputs might
raise concerns about losing small fault features, but they offer
an advantage in terms of stability, particularly in areas where
displacement data are noisy or difficult to correlate.

Close to the fault rupture, both GeoFlowNet-A and B
provide a more consistent and realistic representation of the
displacement field, with fewer artifacts along the rupture
traces compared to COSI-Corr on Figure 7. This is especially
visible on the (b) segment (comparing 1.b and 2.b with
3.b) where COSI-Corr exhibits many outliers and unrealistic
geometric roughness. Although MicMac yielded relatively
clean maps, they are more pixelated (Figure 7.4.ab compared
to the GeoFlowNet smoother displacement profiles, which
preserve a thinner fault trace. We also notice a rather uniform
difference on each part of the fault between the GeoFlowNet-
A and GeoFlowNet-B results, especially in the far field. In
the North-East part of the fault, GeoFlowNet-B estimates
positive displacements with a magnitude of around 6% (0.05
meters, or 0.025 pixels) higher than GeoFlowNet-A. In the
South-East part of the fault, GeoFlowNet-A estimates negative
displacements with a magnitude of 2% (0.013 meters, or
0.0066 pixels) higher than GeoFlowNet-B.

For the Balochistan rupture (Figure 8), the fault trace is
very well resolved by GeoFlowNet, despite some longer-
wavelength patches of displacement that are likely to be
slightly underestimated (whiter patches on left side of
GeoFlowNet-B result in b.). As in the Ridgecrest case, in the

South-East part of the fault, GeoFlowNet-B estimates positive
displacements with a magnitude of around 116% (0.41 meters,
or 0.027 pixel) higher than A, and in the North-West part of the
fault, GeoFlowNet-A estimates negative displacements with a
magnitude of 43% (0.68 meters, or 0.045 pixel) higher than
B. Comparing with MicMac and COSI-Corr, GeoFlowNet-
A seems more accurate in both close- and far-field than
GeoFlowNet-B.

We acknowledge the difficulty in interpreting such observa-
tions for such a complex case, where the displacements are all
below the pixel size, with the majority being below 0.5 pixels
(7.5 m), and especially in the far-field where displacements
quickly attenuate to 0 m. Nevertheless, our results closely
match those of state-of-the-art methods, and showing that we
are able to retrieve the deformation field across a range of
displacements and imaging conditions.

3) Computation time: Finally, the GeoFlowNet pipeline is
designed to run on GPU and processes large image patches,
which allows for much faster processing compared to tra-
ditional CPU-based methods with local window estimation.
We cropped a 8000 × 8000 pixels from the original Pléiades
images (22976 × 29782 pixels) and processed this image
pair with a step of 1 with the 4 methods. GeoFlowNet-A
produces a full-scale displacement field in 44 s, while CNN-
DIS (the 2-step pipeline [74]) takes 2030 s on the same
GPU, COSI-Corr (using its envi implementation []) 460 s,
and MicMac 720 s, both on 32 CPU cores. Metrics on table
IV give the number of displacement estimations per second
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Fig. 9. Sensitivity plot showing the real EPE (in pixels) function of the size of the training dataset, for the four scaling factor intervals (SF) test sub-datasets.

TABLE IV
COMPUTATION TIME1FOR GEOFLOWNET-A, CNN-DIS, COSI-CORR AND

MICMAC: NUMBER OF DISPLACEMENT ESTIMATIONS (PROCESSED
WINDOW PAIRS) PER SECOND. PARAMETERS FOR THE COMPARISONS ARE

DEFAULT PARAMETERS (SEE TABLE II)

1 GPU 32 CPU cores Displacement est. / s

GeoFlowNet-A 44 s x 1,454,545
2-step CNN-DIS 2030 s x 31,527

COSI-Corr x 460 s 139,130
MicMac x 720 s 88,889

for all the 4 methods presented. The GeoFlowNet pipeline is
drastically faster than all existing methods, notably 10 times
faster than the fastest COSI-Corr, allowing the computation
of full-scale displacement maps on areas covering 11.5×14.8
km² (22976 × 29782 pixels Pléiades images) in less than 8
minutes.

VI. SENSITIVITY STUDY

A. Selection of the amount of data

The number of training data samples is crucial for model
performance. Too little data can lead to poor generalization,
while too much can increase computational costs without
improving accuracy. To address this, we conduct a sensitivity
analysis on GeoFlowNet-A (similar results were found for
GeoFlowNet-B) to determine the minimum number of sam-
ples required for accurate displacement estimations, assessed
through both real End Point Error (EPE) metric on the
synthetic test dataset and visual criteria on the real case of
Balochistan. For the EPE, we remind that the lowest the result,
the more accurate the model.

Figure 9 indicate that increasing the number of samples do
not yield any improvement in accuracy on our test data. In
fact, it seems that more data lower the accuracy for all scaling
factors. However, it is important to note that these observations
may not fully reflect performance in real-world scenarios.

We also show the results of the displacement maps on a
880×1256 pixels crop of Balochistan, shown on Figure 10, for
a model trained with 4×1k samples and a model trained with
4 × 10k samples (respectively named GeoFlowNet-A 1k and
GeoFlowNet-A 10k). This figure shows that the amount of data
directly impacts the quality of the results on real data, with a
significant reduction in noise correlated with topography. We
performed other tests with a higher number of data (20k, 40k,

1Bold indicates the best results.

60k, and 90k), noticing negligible differences in the resulted
maps, concluding that 10k training samples represents a good
trade-off between generalizability and over-killing.

GeoFlowNet-A 1k

GeoFlowNet-A 10k

Fig. 10. 880×1256 pixels crop of Balochistan displacement maps, for the two
GeoFlowNet-A models trained with 4×1k samples and a model trained with
4× 10k samples (respectively named GeoFlowNet-A 1k and GeoFlowNet-A
10k).

B. Selection of sub-datasets

In this section, we evaluate the choice of the synthetic
training samples based on their displacement size, i.e. the
scaling factor that was applied to the displacement maps
before warping. Training exclusively on the sub-dataset with
scaling factors limited to the range [0, 1] fails to converge
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Training sets
Testing sets [1, 5] [5, 15] [15, 50] [1, 5] & [5, 15] [1, 5] & [5, 15] & [15, 50] [0, 1] & [1, 5] & [5, 15] & [15, 50]

s.f. [0, 1] 0.131 0.227 0.31 0.17 0.203 0.153
s.f. [1, 5] 0.183 0.228 0.326 0.209 0.233 0.236

s.f. [5, 15] 1.6 0.254 0.37 0.258 0.298 0.306
s.f. [15, 50] 11.4 6.14 0.622 6.21 0.722 0.771

All scaling factors 13.31 6.85 1.63 6.85 1.47 1.47
TABLE V

TEST PERFORMANCE ACROSS DIFFERENT TRAINING AND TESTING INTERVALS. BOLD INDICATES THE BEST OF EACH LINE. S.F. = SCALING FACTOR

to an optimal solution; therefore, results from this subset are
excluded from the analysis. As expected, the first four lines of
Table V show that the best results are achieved when a model
is trained and tested on sub-datasets with the same scaling
factor interval. However, these models perform poorly when
evaluated on the sub-datasets with different scaling factor
ranges. In particular, training with small scaling factor ranges
limits the model’s ability to produce accurate results on larger
scaling factor ranges. Yet, when training on the four sub-
datasets (last column), the drop in accuracy on each test set is
minimal, with a decrease of around 0.05 pixels in EPE for the
smallest test set range. Given these observations, we selected
the model trained on the full set of sub-datasets.

Although training models on multiple sub-datasets with
different scaling factors allows for greater generalizability
and better performance across the total displacement range,
the importance of sub-pixel precision becomes resolution-
dependent. For example, in 10 m resolution imagery, achieving
sub-pixel precision of 1/10th of a pixel translates to a spatial
precision of 1 m. In contrast, for 0.5 m resolution data,
sub-pixel precision of 1/10th of a pixel corresponds to a
higher precision of 5 cm. Therefore, for very high-resolution
datasets, such as those from Pléiades or WorldView, achieving
extremely fine sub-pixel precision may be less critical: we
recommend in this case to use a specific small-scale model.

VII. LIMITATIONS AND FUTURE WORKS

The dataset used to train the network is critical for the qual-
ity of the synthetic experiments and the resulting displacement
maps on real scenarios. Enhancing the quality of the training
data could help to further mitigate inherent biases and improve
accuracy and precision (particularly important for cases where
displacement is largely sub-pixel, such as for Balochistan).
Improvements such as better data scheduling (highlighted
by FlowNet 2.0 [36]) and more diverse and realistic fault
simulations would also help to reduce bias.

Moreover, our model operates as a single-step estimation
process, relying on a single forward pass through a con-
volutional neural network. In contrast, implementations like
Flownet 2.0 utilize a sequence of models to progressively
refine the output using intermediate warping operations, which
has been shown to enhance precision [36]. Such an approach
presents a promising avenue for future research, as it could po-
tentially lead to improved accuracy in deformation estimates.

Finally a significant limitation of our current work is the
lack of quantitative validation in real-world scenarios. This

absence of empirical validation hinders a comprehensive un-
derstanding of the models’ actual performance, emphasizing
the need for further studies to validate our findings under
various conditions.

VIII. CONCLUSION

In this work, a deep learning-based scheme, GeoFlowNet,
has been proposed for ground motion estimation from satellite
optical images with various resolutions, containing a wide
range of displacements, and attaining sub-pixel precision. Two
CNN-based U-net versions, GeoFlowNet-A and GeoFlowNet-
B have been tested to extract detailed shallow-level features
across multiple scales. Additionally, we presented our new
realistic dataset FaultDeform generated from realistic faults,
used for training the models to retrieve full-scale ground mo-
tion displacement fields. A major upgrade is the significantly
reduced computation time required to obtain full-scale (pixel-
resolution) displacement maps, especially valuable when using
optical imagery covering large regions, with a high number of
pixels.

The growing volume of optical imagery from satellite
providers and government agencies increases the opportu-
nity for data-driven methods to emerge. Our model’s speed
and robustness across several displacement scales makes it
well-suited for quickly processing this data, particularly in
applications involving time-series analysis that require rapid
processing. Furthermore, automation and cloud-based systems,
combined with GPU processing, will streamline the manage-
ment of these large datasets.
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