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The optimized effective potential (OEP) approach has so far mainly been used in benchmark
studies and for the evaluation of band gaps. In this work, we extend the application of the OEP by
determining the analytical ionic forces within the plane-wave and pseudopotential framework. It is
first shown that, due to the constrained optimization inherent to the OEP approach, an extra term
needs to be added to the standard Hellmann-Feynman expression for the forces, whenever nonlocal
pseudopotentials are employed. Computing this term for functionals based on Hartree-Fock and
the hybrid PBE0 functional yields forces with excellent numerical accuracy. Furthermore, results
for equilibrium geometries and vibrational frequencies on a set of molecules and solids confirm that
the local exchange OEP is able to reproduce results obtained with the nonlocal exchange potential.
Our work opens up the possibility to study lattice dynamics using advanced orbital functionals for
describing exchange and correlation effects.

I. INTRODUCTION

In the field of computational physics, a wide variety
of approaches for total energy and force calculations are
available. Depending on the application, the accuracy-
cost ratio can be an important factor to consider. In
this regard, Kohn-Sham (KS) Density Functional The-
ory (DFT), with a well-chosen functional, is often the
preferred approach [1–4].

Within KS-DFT, approximate functionals are sorted
into different classes according to their level of description
of the exchange-correlation (xc) energy [5–7]. Starting
from the local density approximation (LDA), improved
functionals include a semilocal dependency through the
gradient of the density, and are known as the general-
ized gradient approximations (GGAs). Adding a depen-
dence on the KS kinetic energy density leads to the non-
local meta-GGAs. Each of the above functional classes
suffers, more or less, from self-interaction errors due to
their approximate description of Hartree-Fock (HF) ex-
change [8], a problem which can be mitigated with hybrid
functionals that mix in a fraction of HF exchange into a
semilocal functional [9, 10]. In this way, the KS density
matrix is introduced as an additional ingredient in the
xc functional. An accurate description of correlation can
be found with functionals based on the KS Green’s func-
tion that depend on the full KS spectrum. Examples are
functionals derived from many-body perturbation theory
(MBPT) such as the random phase approximation (RPA)
[11].

Meta-GGAs, hybrid and MBPT-based functionals all
have an explicit dependency on the KS orbitals, rather
than the density. As a consequence, the xc potential,
i.e., the functional derivative of the xc energy with re-
spect to the density, does not have an analytical ex-
pression. Self-consistent calculations are, therefore, often
performed within the generalised KS framework [12–14],
or by allowing for larger variational freedom. In the case
of hybrid functionals this implies the use of an integral
operator, the nonlocal exchange potential [15], and, in
the case of meta-GGAs, the use of a differential opera-

tor [16, 17]. The RPA functional has a natural extension
within MBPT. Free variations with respect to the many-
body Green’s function leads to a nonlocal and energy-
dependent potential - the GW self-energy [18–20]. Due
to the high complexity of such calculations there are only
a few reported in the literature [21–24].

In order to remain within the KS formulation, the vari-
ational freedom has to be restricted such that the orbitals
are generated by a local multiplicative potential. Func-
tional differentiation with respect to the density via the
KS orbitals leads to an integral equation, known as the
optimized effective potential (OEP) equation, for deter-
mining the xc potential numerically [25, 26]. Tests on
various systems have demonstrated that the OEP often
gives total energies and densities in close agreement with
results obtained within the generalised KS scheme [27–
29]. On the other hand, except for the highest occupied
molecular orbital (HOMO) eigenvalue [30], the spectrum
will always be different. The KS virtual orbitals can,
for example, be shown to provide a better description of
the optical excitation energies [31], but the fundamental
gap is strongly underestimated, even with the exact KS
potential [32, 33]. One can show that the KS potential
must jump with a constant when crossing integer par-
ticle numbers in the ensemble formulation of DFT [34].
Adding this constant, or the so-called derivative discon-
tinuity correction, to the KS gap results in the true fun-
damental gap. Within hybrid functionals, the corrected
KS gap is in good agreement with the gap obtained from
the generalised KS scheme [35], and same is expected to
be true for meta-GGAs [14]. Within RPA, it becomes
equivalent to the gap within G0W0 theory [36–38].

The numerical solution to the OEP equation has been
the subject of numerous studies. A direct solution based
on the inversion of the KS density response function is
known to present numerical instabilities in Gaussian ba-
sis sets [39–41]. These issues are almost absent from OEP
calculations resorting to plane-waves [42], real space grids
[43, 44], or spline basis sets [20, 45–48]. Furthermore, di-
rect minimization [49] and iterative approaches [50–52]
that circumvent the inversion of the KS density response
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function have been developed, making routine OEP cal-
culations feasible on a wide range of systems. All-electron
studies have focused on the role of the core-valence inter-
action and concluded that the pseudopotential approxi-
mation is valid also for OEP calculations [44, 53–56]. A
review on orbital-dependent functionals and their numer-
ical aspects can be found in Ref. 57.

Current applications of the OEP are mostly found in
band structure calculations. Either for a direct compar-
ison with experiment [58, 59], or as a starting point for
G0W0 calculations [35, 38, 60, 61]. In principle, self-
consistent OEP calculations also give access to the ionic
forces, which are relevant for structural relaxation and
phonon spectra. The prospect of using an advanced de-
scription of exchange and correlation for calculating these
important properties has so far not been much explored.
As of now, there are only a few works studying OEP
forces on small molecules using Gaussian basis sets [62–
64].

In the present study, we investigate the analytical
OEP forces using the plane-wave basis set and norm-
conserving pseudopotentials, and show that it is possible
to achieve excellent numerical accuracy when applied to
both molecules and solids.

The paper is organized as follows. In section II, we
provide the mathematical details of the OEP approach.
In section III, we discuss the OEP forces and their imple-
mentation using norm-conserving pseudopotentials. We
also analyze the numerical accuracy achieved on various
molecules and solids. Finally, in section IV, we exploit
the calculated forces to determine equilibrium geome-
tries, the vibrational modes of H2O and α-quartz, and
the phonon dispersion of diamond. The conclusions are
given in section V.

II. OPTIMIZED EFFECTIVE POTENTIAL

Similarly to xc functionals depending explicitly on the
density and its gradient, orbital-dependent functionals
based on the OEP are designed to predict the density
and the ground-state energy through a local effective KS
potential. The self-consistent procedure does, however,
present differences as the OEP KS potential does not
have an analytical expression explicit in the orbitals. In-
stead, the numerical solution of the OEP integral equa-
tion is required as an intermediate step in each iteration
towards self-consistency.

The ground-state total energy within KS-DFT is writ-
ten as

Etot = Ts + EHxc +

∫
vext(r)n(r) dr, (1)

where Ts is the kinetic energy of non-interacting electrons
moving in an effective KS potential veff(r) such that{

−1

2
∇2 + veff(r)

}
φi(r) = ϵiφi(r). (2)

EHxc is the Hartree (H) and xc energy, and vext(r) is the
external nuclear potential interacting with the electronic
density n(r). Each independent electron is described by
a Kohn-Sham orbital φi and has the energy ϵi. The total
energy is minimized when the effective potential is given
by

veff(r) = vext(r) + vHxc(r) (3)

where

vHxc(r) =
δEHxc

δn(r)
. (4)

All terms in Eq. (1) can be expressed explicitly in
terms of the density except for the KS kinetic energy and
the xc part of the Hxc energy. Since the functional depen-
dence of the exact xc energy on the density is unknown,
approximations are needed for its evaluation. The OEP
method is relevant for xc functionals with an implicit
dependence on the density via KS orbitals. In this case,
the functional derivative in Eq. (4) is evaluated using the
chain rule since the variation of the orbitals with respect
to veff is easy to construct from linear response theory

δExc

δveff(r)
=

∫
δn(r′)

δveff(r)
vxc(r

′) dr′. (5)

Let us now focus on the exact-exchange (EXX) ap-
proximation. Within EXX, there is no correlation and
the exchange energy functional is identical to the HF ex-
change energy [28]

Ex = −1

4

∫
γ(r, r′)v(r− r′)γ(r′, r) drdr′. (6)

Assuming closed-shell systems, γ is the first order spin-
averaged reduced density matrix and v is the Coulomb
interaction. Free variations of the EXX total energy with
respect to γ yields the HF equation with the nonlocal HF
exchange potential Vx(r, r

′) = − 1
2 v(r− r′) γ(r′, r) [3]. A

variation with respect to a local effective potential corre-
sponds to a minimization of the EXX total energy on a
restricted domain of allowed orbitals, and the minimum
is found when the exchange part of the effective poten-
tial obeys Eq. (5) [25, 26]. We thus need to evaluate the
functional derivative of Ex (Eq. (6)) with respect to veff

δEx

δveff(r)
=

∫
δγ(r′, r′′)

δveff(r)
Vx(r

′, r′′) dr′dr′′. (7)

Combining Eq. (5) and Eq. (7) yields the following inte-
gral equation for vx(r)∫

χs(r, r
′)vx(r

′) dr′ =

∫
Λs(r, r

′, r′′)Vx(r
′, r′′) dr′ dr′′,

(8)
known as the OEP equation. The variation of the elec-
tronic density with respect to veff is equal to the KS linear
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density response function and can be written explicitly
as

χs(r, r
′) = 2

occ∑
i

unocc∑
j

φ∗
j (r

′)φj(r)φ
∗
i (r)φi(r

′)

ϵi − ϵj

+ 2

occ∑
i

unocc∑
j

φ∗
i (r

′)φi(r)φ
∗
j (r)φj(r

′)

ϵi − ϵj
.

(9)

The variation of γ with respect to veff is given by

Λs(r, r
′, r′′) = 2

occ∑
i

unocc∑
j

φ∗
j (r

′)φj(r)φ
∗
i (r)φi(r

′′)

ϵi − ϵj

+ 2

occ∑
i

unocc∑
j

φ∗
i (r

′)φi(r)φ
∗
j (r)φj(r

′′)

ϵi − ϵj
.

(10)

Both χs and Λs contain summations over occupied and
unoccupied states.

The OEP equation allows us to interpret the optimal
local exchange potential as the potential that makes the
perturbation (Vx − vx), i.e. the perturbation that turns
the KS equation into the HF equation, produce a vanish-
ing first order density response [65, 66].

The theory presented above can readily be generalized
to other approximations based on nonlocal exchange such
as hybrid functionals [29, 35]. In the present work, we
have used the PBE0 functional, which mixes in a frac-
tion α = 0.25 of nonlocal exact exchange in the PBE
functional. Contrary to the HF method, electronic corre-
lation is present but remains described at the PBE level.

A direct numerical solution of the OEP equation re-
quires the construction of the response functions χs and
Λs, and the subsequent inversion of χs. This procedure
has been shown to work well on small systems but can
give rise to numerical instabilities, in particular when
Gaussian basis sets are used [39–41]. With large basis
sets, such as plane waves, it can instead be computa-
tionally demanding as it requires the summation over all
unoccupied states and the manipulation of large matrices
[52].

An iterative approach that avoids some of these prob-
lems was developed by Kümmel and Perdew [50, 51] and
generalized to the plane-wave and pseudopotential frame-
work by Nguyen et al [52, 67]. The basic idea is to exploit
the fact that the left and right hand sides of the OEP
equation are linear density responses, δn[vx] and δn[Vx],
of the potentials vx and Vx, respectively. These responses
can be calculated within Density Functional Perturbation
Theory (DFPT), a framework developed for the calcula-
tion of phonon modes [68]. For a given trial potential vix,
the two density responses will differ but their difference

∆ni(r) = δn[vix](r)− δn[Vx](r) (11)

can be used to update vx according to

vi+1
x (r) = v0x(r) +

i∑
m=1

βm∆nm(r), (12)

where v0x is the initial trial potential. In each iteration,
the coefficients βm are determined by minimizing the
integral of |∆ni+1| and convergence is achieved when
this value reaches a given threshold. The converged
exchange potential is then used to update veff and the
KS equation is solved non-self-consistently to generate
a new set of orbitals that are used for solving the OEP
equation another time. This cyclic procedure continues
until the electronic density is found converged to a
given threshold. An extension of this scheme to hybrid
functionals and solids can be found in Refs. 35 and 69.

III. ANALYTICAL FORCES WITH OEP

To understand the stability of a system, its set of nu-
clear forces needs to be computed. For a fixed configura-
tion of the nuclei, each force FI describes the variation
of the ground-state energy with respect to the position
RI of a given nucleus I

FI = −∂ER
tot

∂RI
. (13)

Following the notation in Ref. 70, we denote the set of
nuclear positions asR = {RI}. At equilibrium geometry,
the force exerted on each nucleus is zero. Calculating the
second derivative of ER

tot with respect to RI then yields
interatomic force constants, which are necessary quanti-
ties for computing harmonic vibrational frequencies [71].
The derivative in Eq. (13) can be evaluated using the

Hellmann-Feynman theorem (HFT) [72, 73], which states
that due to the stationary property of the total energy,
it is sufficient to consider the explicit dependence on ex-
ternal parameters, here the nuclear positions. The HFT
is valid in DFT and with the OEP method.
The total force becomes a sum of two components

FI = FNN
I + Fext

I . (14)

The first term is the derivative of the nuclear-nuclear
potential energy

FNN
I = −∂ER

NN

∂RI
= − ∂

∂RI

∑
J ̸=I

ZIZJ

|RI −RJ |
, (15)

where ZI is the charge of nucleus I. The second term
has its origin in the interaction between the nuclei and
the electrons

Fext
I = −

∫
nR(r)

∂vRext(r)

∂RI
dr, (16)

where

vRext(r) =
∑
I

ZI

|RI − r| . (17)

The calculation of Fext
I requires the knowledge of the

electronic density nR(r), obtained by performing a self-
consistent calculation at fixed nuclear geometry R.
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A. Nonlocal pseudopotentials

The force equations presented so far are valid in the
context of all-electron calculations. However, in prac-
tice, pseudopotentials are often used to reduce the com-
putational cost. In this approach, the core electrons are
frozen and described by an effective interaction. In gen-
eral, the pseudopotential is separated into two contribu-
tions [74, 75]

vext(r, r
′) = vL(r)δ(r, r

′) + vNL(r, r
′). (18)

The first term is fully local while the second is non-local
both in the radial and the angular momentum depen-
dence. This nonlocal contribution is written as a sum of
projectors, which are functions of the spherical harmon-
ics. The action of projectors is short-ranged as they are
only defined within the core radius, i.e., the cutoff region
[76–78]. Such a separable form for the pseudopotential
allows an accurate reproduction of the scattering proper-
ties of the all-electron external potential. It also crucially
improves the computational efficiency with respect to the
size of the plane wave basis set used.

A nonlocal external potential does not pose any prob-
lem for functionals depending explicitly on the density
or the gradient of the density because the total energy
is not only stationary with respect to the density, but
also with respect to variations of the KS density matrix.
The expression for the external force term, Eq. (16), then
only needs to be modified by replacing the density with
the density matrix

Fext
I = −

∫
γR(r, r′)

∂vRext(r, r
′)

∂RI
drdr′. (19)

However, the total energy with OEP functionals is not
stationary with respect to the KS density matrix, but
with respect to the effective local potential. This differ-
ence leads to an extra term in the expression for the OEP
total force. To derive this term, let us look at the EXX
total energy at fixed nuclear positions R

ER,EXX
tot = 2

occ∑
i

ϵRi −
∫

vRHx(r)n
R(r) dr

+
1

2

∫
nR(r)v(r− r′)nR(r′) drdr′

− 1

4

∫
γR(r, r′)v(r− r′)γR(r′, r) drdr′

+ ER
NN,

(20)

and take the derivative with respect to RI . We get
straightforwardly

FEXX
I = FNN

I + Fext
I +∆FEXX

I , (21)

where Fext
I is given by Eq. (19) and

∆FEXX
I = −

∫
vRx (r)

∂nR(r)

∂RI
dr

+

∫
V R
x (r, r′)

∂γR(r, r′)

∂RI
drdr′.

(22)

If the external potential was fully local, ∆FEXX
I would

vanish at self-consistency thanks to the OEP equation,
Eq. (8), being fulfilled. However, when the derivative of
nR and γR is taken via a nonlocal potential, the two
terms in Eq. (22) are not guaranteed to cancel. To see
this, let us look more closely at the derivative of the den-
sity with respect to the nuclear positions

δnR(r)

δvReff(r
′, r′′)

∂vReff(r
′, r′′)

∂RI
=

δnR(r)

δvReff(r
′, r′′)

×[(
∂vRL (r′)

∂RI
+

∂vRHxc(r
′)

∂RI

)
δ(r′, r′′) +

∂vRNL(r
′, r′′)

∂RI

]
.

(23)
The derivatives via the local potentials (vRL and vRHxc) in-
volve the standard non-interacting KS density response
function (see Eq. (9)). Therefore, when the OEP equa-
tion is fulfilled, they cancel exactly the corresponding
contributions coming from the derivative of the density
matrix with respect to the nuclear positions in Eq. (22).
However, the derivative via the nonlocal potential (vRNL)
requires the three-argument non-interacting KS density
response function. The OEP equation can thus not be
used and we are left with the following extra force term
to evaluate

∆FEXX
I = −

∫
vRx (r)

δnR(r)

δvReff(r
′, r′′)

∂vRNL(r
′, r′′)

∂RI
drdr′dr′′

+

∫
V R
x (r, r′)

δγR(r, r′)

δvReff(r
′′, r′′′)

∂vRNL(r
′′, r′′′)

∂RI
drdr′dr′′dr′′′.

(24)
We note that, since the nonlocal part of the external
potential is fixed in the self-consistent procedure, i.e., it
does not depend on the orbitals, only the bare responses
are needed. The computational cost of this extra force
term, calculated for the complete set of ions, is, therefore,
estimated to be similar to a single iteration of the self-
consistent procedure.

The extra force term due to the nonlocal pseudopo-
tential will appear for any functional based on the OEP
approach. In this work we have focused on hybrid func-
tionals and norm-conserving pseudopotentials, and im-
plemented Eq. (24) at the end of the self-consistent cy-
cle. This was done within a modified version of the
OEP implementation in the ACFDT (Adiabatic Connec-
tion Fluctuation Dissipation Theorem) package of the
QUANTUM ESPRESSO distribution [35, 52, 67, 79]. In order
to evaluate the change in the KS orbitals with respect to
variations in the ionic positions, we have imported and
adapted routines based on DFPT from the PHonon pack-
age. The internuclear and external force terms (Eqs. (15)
and (19)) are general and both already implemented in
the PWscf package.

With the knowledge of analytical forces, the design of
a structural optimization tool for the OEP method can
be devised. We have completed it by adapting the ex-
isting Broyden-Fletcher-Goldfarb-Shanno algorithm [80–
83] implemented within PWscf.
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B. Numerical test

As discussed in section II, the OEP self-consistent pro-
cedure runs two intertwined parts. One solves the Kohn-
Sham equation non-self-consistently to retrieve the elec-
tronic density and the corresponding KS orbitals of the
ground-state, while the other solves the OEP equation it-
eratively to generate the local EXX potential. The whole
procedure is initialized with a good starting guess for the
KS potential. We have found the PBE approximation
to be a convenient choice in this regard. In addition to
the plane wave basis set cutoff, there are two parameters
that control the accuracy of the final results. The accu-
racy of the iterative solution to the OEP equation is de-
termined by setting a threshold for

∫
|∆n| (see Eq. (11)),

and the accuracy of the self-consistent OEP potential is
determined by setting a threshold for the difference in
KS densities in-between successive cycles.

1.55 1.60 1.65 1.70 1.75
Li-H bond distance (Å)

0

0.01

0.02

0.03

0.04

To
ta

lf
or

ce
F t

ot
(H

a/
Å

)

EXX (−∆FEXX)

EXX

HF

Figure 1. Change in the analytical total force Ftot (defined
in Eq. (25)) of the LiH molecule upon variations of its in-
tramolecular bond distance. The HF method is compared to
EXX with and without the extra force term in Eq. (24).

In principle, one should use pseudopotentials opti-
mized for the specific functional used [53]. However,
since our objectives are to study the numerical preci-
sion and to compare OEP to generalized KS calculations
we have settled for PBE optimized norm-conserving Van-
derbilt (ONCV) pseudopotentials [84]. Independently of
the functional used to optimize the pseudopotential they
will, in general, contain nonlocal projectors and the extra
OEP force term in Eq. (24) is necessary to include.

We first tested our implementation of the OEP forces
on a simple system, the LiH molecule. We used a simu-
lation cell of 20 Bohr and a plane-wave basis set with a
kinetic energy cutoff of 80 Ry. The quantity we are in-
terested in is the so-called ”total force”, which is defined

as

Ftot =

√√√√ M∑
I=1

3∑
α=1

(Fα
I )

2 (25)

where the α-index runs over the Cartesian components
of the force on each of the M ions. The quantity Ftot

is a positive-definite scalar able to describe the global
behaviour of the system. Its value decreases upon ap-
proaching an energy minimum, and is zero at equilib-
rium.

0 1 2 3 4 5 6 7
Number of relaxation steps

1.5

1.6

1.7

1.8

1.9

2.0

2.1

2.2

2.3

Li
-H

bo
nd

di
st

an
ce

(Å
) OEP25

PBE025

Figure 2. Evolution of the intramolecular bond distance of the
LiH molecule after each iteration of the geometry relaxation
procedure. The nonlocal PBE025 functional is compared to
the local OEP25.

In Fig. 1, the total force is plotted as a function of the
Li-H intramolecular bond distance within the HF and
EXX approximations. The EXX calculations have been
performed with and without the inclusion of the extra
OEP force term, ∆FEXX. Without this term, EXX pre-
dicts an equilibrium bond distance at 1.645 Å as com-
pared to 1.625 Å for HF. The difference of 0.020 Å cor-
responds to a difference in Ftot of 0.008 Ha/Å. On the
other hand, if we looked at the total EXX energy as a
function of bond distance, we would find the same geom-
etry at equilibrium as with HF. This inconsistency can
be explained by the missing OEP force term, previously
identified. Including it in the calculation of Ftot gives a
good agreement between the EXX and HF total forces
on the LiH molecule. Given that the importance of in-
cluding nonlocal projectors in pseudopotentials increases
with the number of electrons, we expect that ∆FEXX will
become even more important for heavier elements.
Having verified that the OEP forces come out ac-

curately, we then optimized the geometry of the LiH
molecule. Since the HF approximation is not expected
to give a good equilibrium geometry, we used PBE0 with
25% of exact exchange (PBE025). We compared the
fully nonlocal PBE025, already implemented, to the cor-
responding local OEP version, which we call OEP25. In
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Figure 3. (a) Change in the analytical force FA exerted on one
of the hydrogen atoms of the H2O molecule along the bond it
forms with the O atom, according to different approximations.
The corresponding numerical force FN is not plotted as it
is indistinguishable from FA on the scale of the figure. (b)
Absolute difference between FA and FN forces at fixed cutoff
of 80 Ry and (c) 200 Ry.

Fig. 2, we see that starting from a Li-H bond length of
2.200 Å, the convergence of the geometry with OEP25
follows the same pattern as PBE025. The relaxation
steps are similar, with both methods returning, after only
five iterations, the same intramolecular bond distance of
1.607 Å.
We will now present a more comprehensive study of

the accuracy of OEP forces by comparing the analyti-
cal force, FA, as obtained from Eq. (21), with the nu-
merical force, FN, calculated by finite difference, using
the five-point stencil formula with a step size of 0.01 Å.
Given that energies converge faster than forces thanks to
error cancellation, numerical forces also converge faster
than analytical ones. Indeed, FA is calculated by omit-
ting certain contributions that are zero only at perfect
self-consistency. The absolute difference |FA − FN| can
therefore be viewed as an estimation of the error on the
analytical forces calculated and the quality of the self-
consistent procedure. We started by studying the water
molecule H2O (see Fig. 3) using five different approxima-
tions: PBE, HF, EXX, PBE025, and OEP25. All data
have been obtained using a simulation cell of 25 Bohr,
and results for 80 Ry and 200 Ry plane-wave cutoff are

−0.3

−0.2

−0.1

0

F A
of

at
om

Si
(1

)
(H

a/
Å
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Figure 4. (a) Change in the analytical force FA exerted on
one of the silicon ion of the α-SiO2 quartz phase upon varia-
tions of its position along the Cartesian x-axis, according to
different approximations and at a plane-wave cutoff of 80 Ry.
The corresponding numerical force FN is not plotted as it is
indistinguishable from FA on the scale of the figure. (b) Ab-
solute difference between FA and FN forces at fixed cutoff of
80 Ry and (c) 200 Ry.

compared. The threshold on the energy convergence of
PBE, HF, and PBE025 was set to lowest possible value to
ensure high accuracy of the numerical forces. The same
was done for the two different thresholds used by EXX
and OEP25 (see Sec. II). Regarding the atomic structure,
the angle between the two O-H bonds has been fixed to
104.3°. Only the O-H(1) bond distance is varied while the
length of O-H(2) is set to 0.97 Å. These parameters de-
fine a geometry for the water molecule that is close to the
PBE equilibrium geometry. By performing several test
calculations at different geometries, we found that the
choice of starting geometry does not impact the results
we obtained on H2O.

In Fig. 3(a), we plot the analytical force on atom H(1)

along the O-H(1) bond distance as the bond is stretched.
A smooth behaviour is observed for every method. Sim-
ilarly to LiH, the effect of using a local OEP potential
as an approximation to the nonlocal Fock exchange po-
tential appears very small for both HF and PBE025. In
Fig. 3(b), the difference between analytical and numer-
ical forces is calculated at a cutoff of 80 Ry. For every
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Table I. Structure parameters and vibration frequencies of the H2O molecule calculated at equilibrium geometry with various
methods. The O-H bond distance and the H-O-H bond angle are given. The frequencies have been calculated for the infrared
active modes in-plane scissoring δH-O-H, symmetric stretching νs

O-H, and asymmetric stretching νas
O-H. Results obtained in the

literature with CCSD(T)/TZ(2df,2pd) [85] as well as experimental results [86] are also presented for reference.

d(O-H) (Å) Θ(H-O-H) (°) δH-O-H (cm−1) νs
O-H (cm−1) νas

O-H (cm−1)

PBE 0.9668 104.38 1597 3703 3816

PBE025 0.9558 104.91 1640 3857 3971

OEP25 0.9558 104.91 1639 3858 3972

HF 0.9385 106.06 1760 4113 4221

EXX 0.9380 106.17 1757 4123 4233

CCSD(T) [85] 0.9594 104.2 1650 3835 3944

Harmonic expt [86] 0.9572 104.52 1649 3832 3943

Anharmonic expt [86] 0.9572 104.52 1595 3657 3756

method, the scale of the error on FA is found to be rel-
atively small. The performance of the hybrid PBE025
functional is one order of magnitude better than PBE,
and three orders of magnitude better with HF. If we now
analyze the performance of the OEP methods, we notice
that OEP25 produces a similar error to PBE025, which
on average is about 4 × 10−5 Ha/Å at 80 Ry. On the
other hand, EXX fails to deliver the exceptionally small
error seen with HF. While HF returns force differences
of the order of 10−7 Ha/Å, EXX results are closer in
magnitude to PBE025 and OEP25. The difference ob-
served between EXX and HF is probably related to the
threshold used to solve the OEP equation. In Fig. 3(c)
we present the same curves as in Fig. 3(b) but with a
higher plane-wave cutoff of 200 Ry. An improvement of
roughly one order of magnitude is seen in the error pro-
file of all methods except HF, for which the error was
already very small. The enhanced performance of the
EXX approximation suggests that, for a given threshold
used to solve the OEP equation, a higher plane-wave cut-
off helps to improve the accuracy of the EXX potential.
For the OEP methods, the extra source of error related
to the evaluation of the local KS potential via the OEP
equation seems to have a small impact. This is evident
from the good agreement observed between OEP25 and
PBE025 in Figs. 3(b) and 3(c). Only small irregularities
in the error of the force can be seen with OEP25.

To investigate whether the high accuracy we observe
on molecules also extends to solids, we have performed
the same analysis of forces on the α-quartz phase of SiO2.
For this solid that belongs to the P3221 space group, cell
parameters and atomic positions have first been relaxed
at the PBE level using a uniform 333 Monkhorst-Pack
grid of k points and a cutoff of 80 Ry. On the optimized
structure, one of the silicon ions has then been displaced
away from its equilibrium position along the Cartesian
x-axis, and the change in the force exerted on this ion
has been monitored using PBE, PBE025 and OEP25 at
80 Ry and 200 Ry. The data obtained are presented in

Fig. 4.
Similarly to the conclusions drawn from Fig. 3, we find

on silica that PBE025 performs better than PBE at fixed
planewave cutoff. The overall error on FA forces is, how-
ever, smaller on SiO2 as compared to H2O. This renders
the irregularities in the error profile of OEP25 more ap-
parent, despite their amplitudes being very small, about
5 × 10−6 Ha/Å at 80 Ry. Given the magnitude of the
force exerted on ion Si(1) in Fig. 4(a), the errors observed
here are not expected to be of practical importance. As
already noticed on H2O, using a larger cutoff leads to a
decrease of the error in analytical forces for all methods.
The OEP25 irregularities are also dampened, reducing
from 5 × 10−6 Ha/Å at 80 Ry to 2 × 10−6 Ha/Å at
200 Ry. The different results obtained on SiO2 confirm a
good accuracy of the OEP forces for periodic solids. We
have been able to identify two main sources of errors in
the analytical forces. The first error is method depen-
dent. Different functionals may need different cutoffs to
be fully converged. The second error is specific to the
OEP method and is related to the accuracy of the lo-
cal potential generated from the iterative solution of the
OEP equation. Both of these errors can be reduced by
increasing the plane-wave cutoff and by improving the
convergency thresholds of the OEP and KS equations.

IV. APPLICATIONS

Given the high accuracy seen in the previous section,
the calculated OEP forces can be exploited to compute
vibrational frequencies. In this section, we will calculate
the OEP vibrational frequencies of different molecular
and solid state systems, and compare them to the ones
predicted by the corresponding methods that use a non-
local exchange potential.
The three systems investigated are the water molecule

H2O, diamond, and the α-quartz phase of SiO2. For
H2O, we used the same functionals as tested in Sec. III,
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Figure 5. Band structure plot of diamond obtained along the
high symmetry path L - Γ - X. Data have been obtained using
PBE025 and OEP25. The PBE025 bands have been spline-
interpolated between the dots.

i.e. PBE, HF, EXX, PBE025, and OEP25. For dia-
mond and SiO2, only PBE, PBE025 and OEP25 have
been used. For each functional we first relaxed the struc-
ture. The vibration modes were subsequently determined
using the Phonopy Python package [87, 88]. Considering
the atomic positions and the existing symmetries in the
system, this code is able to generate several relevant su-
percell configurations through slight displacement of the
elements. After computation of the analytical forces of
each supercell, the existing vibration modes in the system
can be predicted by Phonopy and their frequency calcu-
lated by finite difference of the forces using the central
derivative formula.

A. H2O

The O-H bond distance d(O-H), the bond angle
Θ(H-O-H), and the vibrational frequencies of the infrared
active modes of H2O are presented in Table I. The data
have been obtained using a simulation box size of 25 Bohr
and a plane-wave cutoff of 80 Ry. The accuracy achieved
at the end of the optimization procedure is excellent for
all approximations. It has been possible to converge the
O-H bond distance below 1 × 10−4 Å, the bond angle
below 1 × 10−2 degree, and the vibrational frequencies
below 1 cm−1. We also tried increasing the cutoff from
80 to 200 Ry without noticing any changes in the results.
This confirms that the errors in the forces noted at 80
Ry in Sec. III are sufficiently small to be of no relevance
for an accurate determination of equilibrium geometries
and vibrational frequencies.

If we compare the structural parameters from each
method, we see that the equilibrium geometry predicted
by OEP25 is consistent with that of PBE025. The good
agreement between these two methods also extends to
the vibrational frequencies, with PBE025 and OEP25 re-

turning similar values for the three infrared active modes,
namely the in-plane scissoring δH−O−H, the symmetric
stretching νsO−H, and the asymmetric stretching νasO−H.
On the other hand, small differences can be observed in
the structural parameters obtained by the EXX and HF
methods. Although very close in geometry, the changes
in the O-H bond length and bond angle are sufficient
to affect the vibrational frequencies. Compared to HF,
EXX returns a lower frequency for the deformation mode,
but higher for the two elongation modes. This change is
consistent with the evolution of the structural param-
eters between the two methods as EXX predicts more
rigid bonds and a looser angle than HF. The evolution
of the structural parameters between EXX and its non-
local exchange counterpart method HF also agrees with
the results presented by Wu et al. [62]. It confirms that,
despite including a maximal fraction of local OEP ex-
act exchange, the EXX method is able to mimic well HF
performance.
Compared to reference CCSD(T)/TZ(2df,2pd) [85]

and harmonic experimental [86] data, PBE025 and
OEP25 are the only two methods returning appropri-
ate structural and vibrational properties for the isolated
water molecule.

B. Diamond

Diamond crystallizes in the Fd-3m space group.
Thanks to the high symmetry, the atomic positions are
fixed within the unit cell. Only the lattice parameter a
is left to vary in order to identify the optimized unit cell.
We have identified the suitable cell dimensions by moni-
toring the change of the total energy upon variations of
the lattice parameter a. The values of 6.700 Bohr for
both OEP25 and PBE025, and 6.742 Bohr for PBE are
optimal.
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part and to PBE.



9

Table II. Structural parameters of α-SiO2 according to different functionals. The internal parameters x, y, and z given describe
the position of oxygen and silicon ions within the unit cell. The Si-O bond distances, the Si-O-Si bond angle and the O-Si-O
bond angles are also given. For every methods considered, experimental unit cell parameters have been used (a = 4.916 Å,
c = 5.405 Å) [89].

PBE PBE025 OEP25 Expt [89]

x(Si) 0.4685 0.4727 0.4727 0.4697

x(O) 0.4120 0.4147 0.4148 0.4135

y(O) 0.2694 0.2623 0.2623 0.2669

z(O) 0.1172 0.1235 0.1235 0.1191

d(Si-O) (Å) 1.612 1.599 1.599 1.605

1.617 1.603 1.603 1.614

Θ(Si-O-Si) (°) 142.7 145.3 145.3 143.7

Θ(O-Si-O) (°) 108.7 108.9 108.9 108.8

108.7 108.9 108.9 109.0

109.1 109.2 109.2 109.2

110.8 110.4 110.4 110.5

We first calculated the electronic band structure along
the L - Γ - X high symmetry path within PBE025 and
OEP25 (see Fig. 5). The OEP25 bands are easy to
generate using post-processing tools since the local ex-
change potential is k-independent. For PBE025 we only
have the band energies on the k-point grid used in the
self-consistent calculation. The bands have, therefore,
been spline-interpolated between these points. The band
structures are clearly different in the two approximations.
The first conduction band is shifted by approximately 2
eV in PBE025. This difference is expected and related
to the derivative discontinuity within the OEP method
[32, 33]. Adding the derivative discontinuity correction to
the OEP25 result returns a gap in very good agreement
with PBE025, with an energy difference of 0.02 eV.

We calculated the phonon dispersion along a high sym-
metry path in the Brillouin Zone with Phonopy using a
single 2×2×2 supercell containing 64 carbon atoms. A
uniform 222 Monkhorst-Pack grid of k points and a plane
wave cutoff of 100 Ry have been employed. The results
are presented in Fig. 6. Despite the use of the frozen
phonon approach, our PBE results agree well with the
data presented by Mounet et al. [90] using DFPT. We
also notice a very good agreement between the PBE025
and OEP25 frequencies. As expected, both methods re-
turn higher frequencies than PBE because the effect of
exact exchange is well known to strengthen bonds. This
case study proves that accurate phonons can be calcu-
lated using the OEP method.

C. SiO2

The last system we considered is the α-quartz phase of
SiO2. Unlike diamond, α-quartz silica has polar bonds.
Therefore, correct phonons can only be obtained if the
LO-TO splitting is explicitly calculated. To evaluate the
LO-TO splitting, knowledge of the dielectric tensor and
Born effective charges of all symmetry-inequivalent ions
within the unit cell is required [70, 92]. However, since
our present objective is to compare the performance of
the OEP25 functional with respect to PBE025, we have
neglected the LO-TO splitting correction when comput-
ing the phonon modes of SiO2.

For this study, we have used experimental unit cell pa-
rameters [89] and then relaxed the atomic positions for
each functional. We have used a uniform 333 Monkhorst-
Pack dense grid of k points and a plane-wave cutoff of
100 Ry. The structural parameters are presented in Ta-
ble II. The internal coordinates x(Si), x(O), y(O), and
z(O) describe, along with the symmetries of the crys-
tal, the position of each ion within the cell. Given the
complexity of the SiO2 unit cell, it is remarkable that
PBE025 and OEP25 produce similar structural parame-
ters. These two methods give tighter bonds and looser
angles than PBE. On the other hand, experimental struc-
ture parameters appear to be located halfway between
these methods.

We then calculated the phonon modes at the Γ-point
by generating a total of nine different 1×1×1 supercells
with Phonopy. The list of phonon modes and their as-
sociated frequencies are presented in Table III. For each
mode, we find an excellent agreement between PBE025
and OEP25. As expected, by including a fraction of
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Table III. Phonon frequencies calculated at the Γ-point of α-SiO2 on the relaxed structures presented in Table II for different
functionals. Frequencies are given in cm−1. While the acoustic sum rule is applied, the LO-TO splitting is only considered in
experimental results [91]. Phonon frequencies affected by LO-TO splitting are underlined in the table.

PBE PBE025 OEP25 Expt [91]

Eu(TO1) 140 67 67 133

Eu(LO1) 140 67 67 133

A1(1) 211 167 167 219

Eu(TO2) 263 242 242 269

Eu(LO2) 263 242 242 269

A1(2) 351 354 354 358

A2(TO1) 352 363 364 361

Eu(TO3) 386 388 388 394

Eu(LO3) 386 388 388 402

Eu(TO4) 442 446 447 453

Eu(LO4) 442 446 447 512

A1(3) 452 453 453 469

A2(TO2) 484 489 489 499

Eu(TO5) 677 696 696 698

Eu(LO5) 677 696 696 701

A2(TO3) 756 782 783 778

Eu(TO6) 776 797 797 799

Eu(LO6) 776 797 797 812

Eu(TO7) 1042 1085 1085 1066

Eu(LO7) 1042 1085 1085 1227

A2(TO4) 1050 1092 1093 1072

A1(4) 1061 1101 1102 1082

Eu(TO8) 1133 1181 1182 1158

Eu(LO8) 1133 1181 1182 1155

exact exchange, the frequencies obtained are in general
higher in energy than that of PBE. For the TO modes
located over 1000 cm−1, experimental frequencies are lo-
cated halfway between PBE and PBE025/OEP25 results,
which might indicate that the true fraction of exact ex-
change to include for PBE0 should actually be lower than
the standard 25%. The comparison with experimental
data also show for which LO modes a significant shift of
the frequencies we calculated can be expected.

This comprehensive analysis on SiO2 α-quartz con-
firms that our implementation of OEP forces can be used
for accurate studies of complex systems.

V. CONCLUSIONS AND OUTLOOK

Achieving full self-consistency with orbital-dependent
xc functionals requires the solution of the OEP equa-
tion. Although numerically challenging, the OEP repre-
sents a simplification over the use of nonlocal and energy-

dependent potentials. Being formulated within the KS-
DFT framework, it is, for example, easy to combine the
OEP with existing codes for excited state properties (e.g.
GW ) or lattice dynamics.

In this work, we have shown that OEP forces, within
hybrid functionals, can be computed with a numerical
accuracy similar to that obtained with commonly used
functionals in DFT. However, we also showed that spe-
cial care is needed when employing nonlocal pseudopo-
tentials. Since the OEP is based on a constrained opti-
mization, an extra force term needs to be added to the
standard Hellmann-Feynman expression for the forces.
We implemented this term within the ACFDT package of
the QUANTUM ESPRESSO distribution, that already com-
putes the OEP potential. This allowed us to calculate
forces, relax geometries, and determine phonon frequen-
cies for a number of molecules and solids. Our different
studies show that the local OEP exchange potential is
a good approximation to the nonlocal exchange poten-
tial, being able to produce almost identical equilibrium
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structures and phonon frequencies.

The high numerical accuracy we have obtained with
the OEP applied to hybrid functionals paves the way
for determining the OEP forces also with more advanced
functionals, such as those based on MBPT. Furthermore,
our work provides a first step towards the calculation
of phonon spectra and electron-phonon couplings within
DFPT, using an advanced treatment of exchange and

correlation.
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G. Kresse, Beyond the quasiparticle approximation:
Fully self-consistent GW calculations, Phys. Rev. B
98, 155143 (2018).

[25] R. T. Sharp and G. K. Horton, A Variational Ap-
proach to the Unipotential Many-Electron Problem,
Phys. Rev. 90, 317–317 (1953).



12

[26] J. D. Talman and W. F. Shadwick, Optimized ef-
fective atomic central potential, Phys. Rev. A 14,
36–40 (1976).

[27] K. Aashamar, T. M. Luke, and J. D. Talman,
Properties of single-term atomic states calculated
in a variationally optimized-local-central-potential
model, Phys. Rev. A 19, 6–16 (1979).

[28] J. B. Krieger, Y. Li, and G. J. Iafrate, Construc-
tion and application of an accurate local spin-
polarized Kohn-Sham potential with integer discon-
tinuity: Exchange-only theory, Phys. Rev. A 45,
101–126 (1992).

[29] J. Kim, K. Hong, S.-Y. Hwang, S. Ryu, S. Choi, and
W. Y. Kim, Effects of the locality of a potential de-
rived from hybrid density functionals on Kohn–Sham
orbitals and excited states, Phys. Chem. Chem.
Phys. 19, 10177-10186 (2017).

[30] C.-O. Almbladh and U. von Barth, Exact results for
the charge and spin densities, exchange-correlation
potentials, and density-functional eigenvalues, Phys.
Rev. B 31, 3231–3244 (1985).

[31] E. J. Baerends, O. V. Gritsenko, and R. van Meer,
The Kohn–Sham gap, the fundamental gap and the
optical gap: the physical meaning of occupied and
virtual Kohn–Sham orbital energies, Phys. Chem.
Chem. Phys. 15, 16408-16425 (2013).

[32] Y. Li, J. B. Krieger, M. R. Norman, and G. J. Iafrate,
Band-structure calculations of noble-gas and alkali
halide solids using accurate Kohn-Sham potentials
with self-interaction correction, Phys. Rev. B 44,
10437–10443 (1991).

[33] J. P. Perdew, Density functional theory and the
band gap problem, International Journal of Quan-
tum Chemistry 28, 497-523 (1985).

[34] J. P. Perdew, R. G. Parr, M. Levy, and J. L. Bal-
duz, Density-Functional Theory for Fractional Par-
ticle Number: Derivative Discontinuities of the En-
ergy, Phys. Rev. Lett. 49, 1691–1694 (1982).

[35] M. Hellgren, L. Baguet, M. Calandra, F. Mauri, and
L. Wirtz, Electronic structure of TiSe2 from a quasi-
self-consistent G0W0 approach, Phys. Rev. B 103,
075101 (2021).

[36] Y. M. Niquet and X. Gonze, Band-gap energy in the
random-phase approximation to density-functional
theory, Phys. Rev. B 70, 245115 (2004).
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