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Abstract
Lattice Boltzmann models are briefly introduced together with references to methods used to
predict their ability for simulations of systems described by partial differential equations that
are first order in time and low order in space derivatives. Several previous works have been
devoted to analyzing the accuracy of these models with special emphasis on deviations from
pure Newtonian viscous behaviour, related to higher order space derivatives of even order.
The present contribution concentrates on possible inaccuracies of the advection behaviour
linked to space derivatives of odd order. Detailed properties of advection-diffusion and
athermal fluids are presented for two-dimensional situations allowing to propose situations
that are accurate to third order in space derivatives. Simulations of the advection of a
gaussian dot or vortex are presented. Similar results are discussed in appendices for three-
dimensional advection-diffusion.

∗ A preliminary version of this contribution was presented by Pierre Lallemand at the Inter-
national Conference for Mesoscopic Methods in Engineering and Science, Hambourg (Germany),
18-22 July 2016.
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1) Introduction
Lattice Boltzmann models have been developed over almost three decades [7] based on
microscopic physical models [9] and practices of numerical methods to solve PDE’s [4].
The physical base is the notion of particles undergoing successive phases of free travel and
collisions. Every function of the microscopic properties that is conserved in collisions will
correspond to a macroscopic quantity that varies slowly in space and time and thus can be
useful for computer simulations. The kinetic theory of gases has developed relationships
between elementary motions and collisions of particles and partial differential equations
describing the behavior of the relevant macroscopic quantities. It gives guidance to setting-
up simplified models that may lead to useful numerical tools.
Computational fluid dynamics aims to predict the behavior of these quantities. It usually
limits the description to a number of locations in space and at a number of times. Here we
choose t = nδt, r := (iê1 + jê2) δr for 2-D problems and r := (iê1 + jê2 + lê3) δr for 3-D
problems, which are the “nodes” where the state of the fluid is defined, and (ê1, ê2, ê3) are
unit vectors for the spatial mesh. For simplicity further detailed expressions will be written
for the 2-D case and some results will be given for 3-D cases.
In the basic Lattice Boltzmann Model (LBM), particles move synchronously between the
various nodes, usually going to close neighbors in one time step. This allows to define a set
of N elementary velocities of amplitude of the order of δr/δt, {cp|p = 0, 1, . . . , N − 1}, of
Cartesian components (cpx, cpy). At time n, the system is fully described by a set of N ×M

distribution functions fp(i, j, n) or by a point X is phase space Φ ∈ RN×M for M active
nodes. The dynamics is inspired from the Boltzmann equation. It consists in two steps:
(i) Local collision: fp(i, j, n) 7→ f ∗

p (i, j, n)

(ii) Propagation to neighboring nodes:
fp(i+ cpx, j + cpy, n+ 1) = f ∗

p (i, j, n)

or from neighboring nodes:
fp(i, j, n+ 1) = f ∗

p (i− cpx, j − cpy, n).
In the following, we define various Lattice Boltzmann models (Section 2), then explain the
algorithm of generationg the equivalent equations (Section 3), and the stability analysis
in the linear case (Section 4). Then we present analytic results from the linear analysis
(Section 5), including athermal fluid is simulated with the D2Q9 and the D2Q13 schemes.
We study the distortion of a Gaussian dot or vortex in Section 6. Some technical precisions
are presented in the appendices.

2) A brief description of the lattice Boltzmann equation
The lattice Boltzmann equation (LBE) evolves on a d dimensional lattice δrZd with lattice
spacing δr and is fully defined by two ingredients: a set of discrete velocities V := {cp} and a
collision model. Since the LBE is designed to simulate low-Mach-number flows, the discrete
velocities V is symmetric, that is, −V = V, or,

∀ cp ∈ V, cp̄ := −cp ∈ V,
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thus,
∑

p cp = 0. Corresponding to each discrete velocity cp, there is a distribution function
fp(rj, tn) at every lattice point rj and each discrete time tn := nδt, where n ∈ N0 :=

{0, 1, 2, . . . , } and δt is the time step size. In this setting, the unit of the velocity is
c := δr/δt. The discrete velocity set V, the set of nodes δrZd, and the discrete time step
size are tied together as follows :

∀ cp ∈ V and rj ∈ δrZd, rj + cpδt ∈ δrZd.

The evolution of the lattice Boltzmann equation consists of two steps: (a) a local collision
model

fp(rj, n) 7→ f ∗
p (rj, n),

where fp(rj, n) and f ∗
p (rj, n) are the pre-collision and the post-collision states at the lattice

node rj and the time tn, respectively; and (b) propagation (or advection) from one lattice
node rj to another rj + cpδt in one time step according to discrete velocities cp:

fp(rj + cpδt, n+ 1) = f ∗
p (rj, n).

A LBM model is fully defined by two pieces of information: the set of elementary velocities
and the rules that govern the collision step. As one usually aims to simulate fluid flows,
it is highly suggested to use a set of elementary velocities as isotropic as possible. This
means using orthogonal coordinates and for each possible velocity amplitude, sets obtained
by symmetry and permutation of the axis.

Note that one can also use 6 velocities based on the hexagon, but this cannot be extended
to 3-D cases.
We will adopt the notation of DdQq for a model in d-dimensional space with q velocities.
In this work we shall mostly focus on the lattice Boltzmann (LB) models in space of two
dimensions (2D). The most often used thirteen discrete velocities in 2D are listed in Table 1.
We note that these discrete velocities conform with the Cartesian square lattice in 2D.
However, it is possible also to use a triangular lattice in 2D [5]. Obviously, the Cartesian
lattice in 2D can be easily extended to 3D.

Number |cp/c|2 cp/c

1 0 (0, 0)

4 1 (1, 0), (0, 1), (−1, 0), (0, −1)

4 2 (1, 1), (−1, 1), (−1, −1), (1, −1)

4 4 (2, 0), (0, 2), (−2, 0), (0, −2)

Table 1: The first 13 discrete velocities used in the various lattice Boltzmann models.

We consider simple local collision model that gives prevalence to the notions of “conservation”
and symmetry, two equivalence concepts according to Nöther. In this work we will use the
linear relaxation model proposed by d’Humières [7], in which the collision process is modeled
by the linear relaxations of the velocity moments {mp} of the distribution functions {fp}.
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Given a set {cp|p = 0, 1, . . . , (q − 1)} of q discrete velocities, there always exists a q × q

invertible matrix M such that

(1) m = Mf , f = M−1m,

where f and m denote the vectors of q dimensions of the distribution functions {fp} and the
moments {mp}, respectively, i.e.,

f := (f0, f1, . . . , fq−1)
†,

m := (m0, m1, . . . , mq−1)
†,

where † denotes transpose. It is convenient to use orthogonal polynomials on the discrete
velocity set V so that the relaxation processes of moments are independent to each other.
The orthogonal polynomials with respect to a weight of unity for the models up to thirteen
velocities in 2D are given in Table 2. Denote the polynomials in Table 2 by Pq(cp), then
the transformation matrix can be constructed with its matrix elements given by Pq(cp), i.e.,
Mpq = Pq(cp).
in the use at each node of a linear transformation of the set of distribution functions fp to
moments based on polynomials of the elementary velocities components of increasing order
chosen as isotropic as possible. It is also convenient to orthogonalize the moments of the
same symmetry. This allows to define a “moment matrix” M that relates the distributions
fp and the moments mp by m = Mf . (Note that M must be invertible.) We use for a 2-D
model with N velocities the nomenclature D2QN. The polynomials used to generate M (by
replacing (x, y) by (cpx, cpy) for each elementary velocity) are:

model Orthogonal Polynomials on V, r :=
√
x2 + y2

D2Q1 1
D2Q5 1, x, y, −4 + 5r2, x2 − y2

D2Q9 1, x, y, −4 + 3r2, x2 − y2, xy,
−(5− 3r2)x, −(5− 3r2)y, 4− 3

2
(7 + 3r2)r2

1, x, y, −28 + 13r2, x2 − y2, xy,
−(3− r2)x, −(3− r2)y,

D2Q13 1
12
(202− 189r2 + 35r4)x, 1

12
(202− 189r2 + 35r4)y,

−1
2
(280− 361r2 + 154r4), − 1

12
(65− 17r2)(x2 − y2),

− 1
24
(288− 1162r2 + 819r4 − 137r6)

Table 2: The orthogonal polynomials for the moments in D2Qq lattice Boltzmann models,
with q = 1, 5, 9 and 13. For 3-D cases, see Appendix-2

Similar expressions can be obtained for 3-D cases (see Appendix 2). The successive moments
can be interpreted as density ρ, components of momentum {jx, jy}, kinetic energy (E),
components of the stress tensor, components of heat flux, and so on.
Depending on which situation is to be simulated, we shall consider that in situations of
dimensionality d, there are 1, d + 1 or d + 2 moments conserved in collisions. Either {ρ},
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or {ρ, jx, jy} or {ρ, jx, jy, E} allow to simulate respectively advection–diffusion, athermal
Navier–Stokes, Navier–Stokes problems for d = 2. The other moments (non-conserved mo-
ments) evolve with simple linear relaxation:

(2) m∗
p = mp + sp(m

eq
p −mp)

where sp is a relaxation rate and meq
p the equilibrium value of the moment mp. We consider

that meq
p is a function of the local conserved quantities and that the relaxation rates are

given values.
Numerous papers [7, 8, 9] and practices of numeric have analyzed the behavior of the model
described above in situations where conserved quantities vary slowly in space and time (on
time or spatial scales large compared to the elementary units δt or δr.) A popular approach is
to follow the kinetic theory approach with the Chapman–Enskog expansion. An alternative
way proposed by one of us performs a Taylor expansion assuming smooth behavior of the
conserved quantities.
The method involves an expansion of the non-conserved moments in powers of the time
increment δt (considered as a small quantity)

m = m(0) + δt m(1) + δt2 m(2) + ...

and to get iteratively the terms m(l). One gets expressions that involve space derivatives of
the conserved moments of increasing order together with time derivatives. At each step of
the process higher order time derivatives are eliminated by using the results of the previous
step.
This leads to equivalent PDE’s relating the conserved quantities that are first order in time
derivatives and of desired order in space derivatives (somewhat like in the hierarchy Euler,
Navier–Stokes, Burnett, super–Burnett, etc). A careful analysis of the iterative process
allows to state whether adding more elementary velocities improves the accuracy of the
results already available. Note however that these approaches (Chapman-Enskog, Taylor
expansion, etc.) don’t give all the necessary information concerning numerical stability
of the method. Useful results, although not complete, are provided by the study of the
dispersion equation for plane waves summarized in appendix 1. The equivalent equations
method allows to obtain expressions for higher order terms and thus to discuss resulting
inaccuracies and in some cases ways to improve the models. Some results are presented
below.

3) Generation of equivalent equations
Here we describe the principle of the generation of equivalent equations.
• Ingredients
To completely define the LBE process, we need the following ingredients :
-List of elementary velocities, here {cix, ciy}. (to simplify writing we take units such that ci
is of the order of 1, and thus will have just one small parameter to deal with when making
expansions. This is sometimes called the “acoustic scaling”.)

5



Pierre Lallemand, François Dubois and Li-Shi Luo

-Matrix of moments M (of dimension n× n), and M−1 its inverse.
-List of moments conserved in collision W (of dimension nc equal either to 1 or to 3)
-List of equilibrium values of the non-conserved moments M eq (n − nc), which depend on
the local values of the conserved quantities W .
-List of relaxation rates for the non-conserved moments S (n− nc).
-Time evolution of the LBE process written in f space as n equations :

(3) fj(t+∆t, r) = f ∗
j (t, r − cj∆t)

where the superscript ∗ indicates a “post-collision” quantity and ∆t is the small parameter
for expansions.
The collision step is performed in moment-space, whereas the propagation step is performed
in f-space.
• Iterative process
We assume “smoothly varying” behaviour for all quantities to be dealt with. Then we can
expand the relation (3) at various orders of accuracy relative to the small parameter ∆t. At
order zero, we find that the pre-collision distribution f is close to the post-collision particle
distribution f ∗:

f ∗ = f +O(∆t) .

When we re-write this relation in terms of the moments m, we deduce from the previous
relation and the basic iteration of the lattice Bolzmann scheme

(4) m∗
k = mk + sk (m

eq
k −mk)

the fact that both m and m∗ are close to the equilibrium

(5) m = meq +O(∆t) , m∗ = meq +O(∆t) .

• Order one
After this first step, we expand the relation (3) at the order one, transform the particles into
moments and replace the moments in the first order terms by their equilibrium values. We
obtain by this way:

(6) mk +∆t
∂meq

k

∂t
+O(∆t2) = m∗

k −∆t
∑
jℓα

Mkj c
α
j M

−1
jℓ

∂meq
ℓ

∂xα
+O(∆t2) .

For the moments that are equilibrium, id est mk ≡ m∗
k, the relation (6) gives immediatly

the equivalent partial differential equations at order one:

(7)
∂meq

k

∂t
+
∑
ℓα

(∑
j

Mkj c
α
i M

−1
jℓ

) ∂meq
ℓ

∂xα
= O(∆t) .

Moreover, for the moments mk that are not at equilibrium, we extract the difference mk−m∗
k

from the relations (4) and (6). Then a first order expansion for these non-conserved moments
emerge:

mk = meq
k − ∆t

sk

(∂meq
k

∂t
+
∑
ℓα

(∑
j

Mkj c
α
j M

−1
jℓ

) ∂meq
ℓ

∂xα

)
+O(∆t2) .
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It is then usefull to explicit the nonconserved moments afer relaxation, using (4) and the
previous relation:

(8) m∗
ℓ = meq

ℓ +
(
1− 1

sℓ

)
∆t

(∂meq
ℓ

∂t
+
∑
ℓβ

(∑
j

Mℓj c
β
j M

−1
jp

) ∂meq
p

∂xβ

)
+O(∆t2) .

• Expansion at order two and more
The next step is to expand the relation (3) up to second order accuracy; due to (5), we can
replace the moments m and m∗ by their equilibrium values for the second order terms. We
obtain in this way

(9)


mk +∆t

∂mk

∂t
+

∆t2

2

∂2meq
k

∂t2
= m∗

k −∆t
∑
jℓα

Mkj c
α
j M

−1
jℓ

∂m∗
ℓ

∂xα

+
∆t2

2

∑
jℓαβ

Mkj c
α
j c

β
j M

−1
jℓ

∂2meq
ℓ

∂xα ∂xβ
+O(∆t3) .

In the expansion (9), there are three terms of order 2: ∂2meq
k

∂t2
in the left hand side, the term∑

jℓαβ Mkj c
α
j c

β
j M

−1
jℓ

∂2meq
ℓ

∂xα ∂xβ in the right hand side and the term induced by the expansion
(8) inside the first order term ∂m∗

ℓ

∂xα in the left hand side. After taking a careful attention
of all these terms, we obtain the partial equivalent equations at order 2. For the end of the
computation at second order, we refer to our original contribution [2]. For the extension at
fourth order in a general nonlinear approach, we refer to [3]. The extention to linearised
schemes at fourth order accuracy has been proposed in [4]. The algorithm has been simplified
in [1]. In this contribution, we have used this last version, also called “Berlin algorithm”.

The basic development is made in terms of moments :

(10) mi = m0
i +m1

i∆t+m2
i∆t

2 + ...

and we go back and forth between f-space and m-space with matrices M or M−1 as necessary.
At order 0, m0

i is the set of the nc conserved moments + equilibrium values of the n − nc

other moments.
We expand Eq. 3 in powers of ∆t and collect the various powers of ∆t, The “propagation”
on the right hand side of Eq. 3 increases the order in ∆t by one unit, so one gets expressions
of the type

(11)
∑
p

∂ptm
q−p
i =

∑
A∂pmq−1−p

i

where A is an operator expressed in powers of M−1PM where P is linked to the velocity set.
This allows to get iteratively the values of the non-conserved moments in terms of space and
time derivatives of the conserved quantities W . There are however unwanted time derivatives
of order larger than 1. They are eliminated iteratively using the results previously derived.
The complexity of the expressions increases very fast with the order of the iterations, so some
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care is needed to estimate which contributions can be safely discarded. The net result is
either 1 or 3 partial differential equations of the W quantities that are first order in time and
high order in space and so can be directly compared to classic PDE’s (Euler, Navier-Stokes,
etc...).

4) Linear Analysis of Lattice Boltzmann Models in 2D
A practical approach to the study of stability is described below. Several important features
of the ability of a LBM model to simulate physical flows can be obtained for specialized
situations that provide a lot of useful information. Consider a domain with {Nx, Ny} active
nodes and periodic boundary conditions. One looks for solutions of the form

(12) mp(i, j, n) = Apa
i
pb

j
pz

n

So we take an initial condition periodic in space:

(13) mp(i, j, 0) = mp0ϕ
i
pxϕ

j
py +Mp0

using phase factors ϕpx = exp(ıkxcpx) and ϕpy = exp(ıkycpy). {kx, ky} can be interpreted as
components of the wave vector and Mp0 is linked to a uniform field (say uniform density and
constant background velocity, a situation allowing to test Galilean invariance of the models).
One can compute the moments mp1 at time n = 1. Assuming that the initial amplitudes
mp0 are small, one linearizes the new values with respect to mp0. If the components of the
wave vector are compatible with the periodicity conditions, – kxNx and kyNy are multiple of
2π – then the expressions for the new values are the same at all points (mp1 within a simple
phase factor). The problem thus simplifies to a q × q problem. One gets

(14) mp1 = Emp0 = z mp0

with a matrix G defined by q equations in “fspace”:

(15) Gp = (I +M−1CM)ϕpxϕpy

and the corresponding one in “mspace”, E = MGM−1. C corresponds to the collision step
and can be obtained from Eq. (2). Under such periodic conditions, analysis can be made at
a single node, and so one just needs to consider q-dimensional vectors

Φ = {f0, · · · , fq−1}

as elements of phase space, together with the scalar product defined as

(16) ⟨Φ1|Φ2⟩ =
q−1∑
p=0

f 1
p f

2
p

Note that when this is applied to the moments mp, sums of products of small integers are
involved and so there may be accidental degeneracies. It may therefore be quite useful to
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determine the rank of the parts of the moment matrix M corresponding to moments of the
same orders.
The determination of the eigenvalues and eigenfunctions of E can be done with the dispersion
equation formalism. For particular values of the wave vector, this can be done analytically.
In particular for kx = ky = 0 one gets zp = 1 − sp indicating that 0 ≤ sp ≤ 2 for stability.
For small values of the wave vector, one can solve the dispersion equation by successive
approximations for the roots zl close to 1 then compute γl = log(zl) that will be compared
to the predictions of the standard PDE’s. When numerical values of all parameters present
in E are given, one can use fast linear algebra packages (for instance in LAPACK) for several
values of the components of the wave vector. Any situation leading to an eigenvalue zl with
modulus greater than 1 is numerically unstable and therefore not suitable for simulations.
It is found that this usually occurs for “large” values of kx or ky (say between 1 and π) so
developments in ki near k = 0 are often not able to predict the corresponding instability.

5) Analytic results from the linear analysis
• D2Q5 model for advection-diffusion equation in 2D
It has been known for a long time that a 5 velocity (D2Q5) model can be used to simulate
advection-diffusion in 2-D.

(17) ∂tρ+ V ·∇ρ− κ∆ρ = 0.

However it is found that the effective diffusivity κ varies as the square of the advective
velocity. This is not satisfactory so one can use D2Q9 with adequate expressions for the
equilibrium of the non-conserved moments.
We shall use the following Table 3, where Vx and Vy are the x and y components of the
advective velocity V , respectively, and u and a parameters for optimization.

Moment Parity Rate Equilibrium
ρ + 0 ρ

jx − s1 ρ Vx
jy − s1 ρ Vy
E + s3 ρ (α + 3V 2)

pxx + s4 ρ (V 2
x − V 2

y )

pxy + s4 ρ Vx Vy
qx − s6 d1 ρ Vx
qy − s6 d1 ρ Vy
ϖ + s8 ρ (β + a V 2)

Table 3: D2Q9 equilibrium moments for advection-diffusion, including two parameters, u
and a, for further optimization. V 2 := V 2

x + V 2
y .

The choice of relaxation rates and expressions in terms of velocity was made in accordance
to the symmetry of the set of elementary velocities (the parity is indicated in the second
column to be used for the particular two-relaxation times (TRT) models).
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Applying the Taylor expansion method in the linear case with the so-called “Berlin algorithm”
[1] to third order in space derivatives and neglecting non linear terms in density, one gets
one equivalent equation for the density:

(18) ∂tρ+ V ·∇ρ− κ∆ρ = O(∇3ρ),

where the diffusivity κ is independent of velocity:

(19) κ =
α + 4

6

(
1

s1
− 1

2

)
.

The next order

(20) O(∇3) =
∑
αβγ

Hαβγ(V ) ∂3αβγρ, α, β, γ ∈ {x, y},

leads to corrections to advection and thus corresponds to the aim of the present report.
Considering a plane wave ρ(r, t) = exp(γt) exp(ık · r) and taking only contributions linear
in velocity in Eq. (18), the phase velocity is

(21) V · k [1 + A(k, V̂ )].

From now on, we refer to A(k, V̂ ) as the “anomalous advection” and we try and minimize
its magnitude.
This correction factor A(k, V̂ ) is a complicated function depending on the orientations (with
respect to the computational grid) of both the velocity V and the wave-vector k. However
it becomes independent of orientations when

(22) d1 = −1 or σ1σ4 =
1

12
,

where we use the Hénon parameters [6] defined by σi =
1

si
− 1

2
. Note that the condition

for isotropy of the shear viscosity of the standard D2Q9 model leads also to the equivalent
value for the parameter c1 = −1.
When d1 = −1, the correction to advection becomes:

(23) A1 =
1

24

[
2 + α + 4(ασ3 − 2σ4)σ1 + 8(4 + α)σ2

1

]
,

and when σ1σ4 = 1
12

, it reduces to

(24) A2 =
1

72

[
7− d1 + 3α + 12σ1 σ3 (1− α + d1)− 24σ2

1 (4 + α)
]
.

Both expressions can be put to 0 by suitable choice of the parameters σi provided stability
of the process is satisfied.
We mention that the next order in the equivalent equation Eq. (18) gives rise to a correction
to the viscous term, allowing to define the “hyper-diffusivity”. This has been studied for
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Vx = Vy = 0 in ref. [4]. The results presented here for the D2Q9 model can be extended to
3-dimensional situations. The simplest model is based on D3Q7 with elementary velocities
{0, 0, 0}, {1, 0, 0}, {−1, 0, 0}, {0, 1, 0}, {0,−1, 0}, {0, 0, 1}, {0, 0,−1}. However the effective
diffusivity is velocity-dependent. Therefore models based on D3Q15 or D3Q19 have been
proposed. The basic properties of these models for advection-diffusion and the tuning of
parameters to get rid of anomalous advection are summarized in Appendix 2.

• Athermal fluid simulated with D2Q9
We start with the common D2Q9 model with 3 conservations defined by the Table 4. Apply-
ing the Taylor expansion analysis up to third order in space derivatives leads to a hierarchy
of equivalent equations for ρ, jx, jy analogous to Equ. 18. As we consider only the linear
behavior of the three conserved quantities it is convenient to express the results in terms of
matrices for the successive orders in space derivatives (shown later as N0, N1, N2 and N3).

Moment Parity Rate Equilibrium
ρ + 0 ρ

jx − 0 jx
jy − 0 jy

E + s3 ρ

(
α + 3

j2x + j2y
ρ

)
XX + s4

j2x − j2y
ρ

XY + s4
jxjy
ρ

qx − s6 −jx
qy − s6 −jy

ϖ + s8 ρ

(
β − 3

j2x + j2y
ρ

)
Table 4: Equilibrium values of the D2Q9 moments for fluid equations.

The first order, which aims to match Euler’s equations, is

(25) M0 +M1 =


∂t ∂x ∂y

(α + 4)

6
∂x − VxV ·∇ ∂t + V ·∇+ Vx∂x Vx ∂y

(α + 4)

6
∂y − VyV ·∇ Vy∂x ∂t + V ·∇+ Vy∂y


higher orders Ml are cumbersome and not given here.
Starting from initial conditions

ρ(x, y, t) = 1 + ρ0 exp(ωt) cos(k · r),(26a)
J(x, y, t) = V + J0 exp(ωt) cos(k · r),(26b)

11
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we apply the matrices Ml and show results just for the particular case where the mean
velocity is orthogonal to the wave vector. In addition we apply a rotation of the axis such
that the wave vector is along the axis Ox:

(27) N0 =

 ω 0 0

0 ω 0

0 0 ω

 ,

(28) N1 =

 0 1 0
α+4
6

0 0

0 V 0

 k ,

(29) N2 =

 0 0 0

0 (ασ3 − 2σ4)(1− 3V 2) 0

(α + 4)σ4V 0 −2σ4

 k2

6
.

Note that Navier-Stokes equations can be expressed just with these three matrices but with-
out the off-diagonal terms N1(3, 2) and N2(3, 1) and the velocity in N2(2, 2).
At order 3, taking the usual values of the parameters α = −2 and β = 1 in order to simplify
the expressions, one gets:

(30) N3 =

 0 − 1
18

0

h0 + h1 V
2 g1 f1(θ) h3 V − g3 V f2(θ)

g2 V
2 f1(θ) h4 V − g2 V

2f1(θ) g2 V f1(θ)

 k3

with

(31)



f1(θ) = sin 4 θ , f2(θ) = sin2 2 θ ,

h0 =
1− 3 (σ2

3 + σ2
4)

27
,

h1 =
(σ3 + 3σ4 − 2σ6)(σ3 − σ4)

6
, h3 =

(σ4 − 2σ6)(σ3 − σ4)

3
,

g1 =
1− 6σ6 (σ3 + σ4)

24
, g2 =

1− 12σ4 σ6
24

, g3 =
1 + 12 σ6 (σ3 − 2σ4)

24
,

h4 =
1 + 6σ4(σ3 + σ4 − 2σ6)

18

where the relaxation rates appear as

(32) σ3 =
1

sE
− 1

2

for the energy mode,

(33) σ4 =
1

sXX

− 1

2

12
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for components of the stress tensor, and

(34) σ6 =
1

sqx
− 1

2

for the components of the heat flux. This third order matrix becomes independent of the
angle θ for

(35) σ3 = σ4 and σ4 σ6 =
1

12

leading to

(36) N isotropic
3 =

 0 3(α− 2) 0

(α + 4)(α− 2)(6σ2
4 − 1) 0 0

0 6(α(12σ2
4 − 1)− 2) 0

 k3

216

One can then obtain the complex relaxation rate of the waves.

Transverse wave and V perpendicular to k

At order 1 in k, the phase velocity is 0.
At order 2 in k, the attenuation is −σ4/3k2, we recover the usual shear dynamic viscosity

ν0 =
1

3
σ4

At order 3 in k, one gets a phase velocity

(37) vφ =
1

24
V (1− 12σ4σ6) sin 4θ.

Transverse wave and V parallel to k

At order 1 in k, the phase velocity is V .
At order 2 in k, the attenuation corresponds to an effective shear viscosity

(38) νeff =
1

3
σ4

(
1− 3V 2

)
= ν0

(
1− 3V 2

)
.

At order 3 in k, the phase velocity is modified (at first order in V ) by

(39)
1

24
[16σ4(σ4 − σ6) + (1− 12σ4σ6) f2(θ)]V.

Similarly expressions are readily obtained for acoustic waves when V = 0 [4]; cancellation
of the corresponding expression occurs for the particular case νeff = 1/

√
108, which may

be referred to as a “quartic condition” which can be seen as the ancellation of the “hyper-
viscosity”.

• Athermal fluid simulated with D2Q13

13
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Similar expressions have been derived for the D2Q13 model † and we just give the results of
the analysis of the waves, using for the relaxation rates

(40) σ4 =
1

sXX

− 1

2

for components of the stress tensor, and

(41) σ6 =
1

sqx
− 1

2

for the components of the heat flux, and

(42) σ8 =
1

srx
− 1

2

for the components of the “next” heat flux.

Transverse wave and V perpendicular to k

At order 1 in k, the phase velocity is 0.
At order 2 in k, the effective shear viscosity is

(43) νeff =
3 + c1

4
σ4

[
1− 12(7 + 6q)

77(3 + c1)
V 2

]
= ν0

[
1− 12(7 + 6q)

77(3 + c1)
V 2

]
showing that one can eliminate the velocity dependence of the effective shear viscosity for
the particular value of the parameter q = −7/6.
At order 3 in k, there is an additional phase velocity

(44) vφ =
σ4(89772σ6 + 30888σ8)− 10055

157080
V sin 4θ

Transverse wave and V parallel to k

At order 1 in k, the phase velocity is V .
At order 2 in k, the effective shear viscosity is

(45) νeff =
3 + c1

4
σ4

(
1− 12

77

7 + 6q

3 + c1
V 2

)
showing that the velocity dependence is the same as in the previous case.
At order 3 in k, the phase velocity is modified by

vφ =

[
σ4

(
128− 306c1

85
σ6 +

306c1 + 182

85
σ8

)
− 31

102

]
V f2(θ)

+

[
σ4

(
−1 + c1

5
σ6 +

9c1 − 1

20
σ8

)
− 5 + 3c1

48
+

3 + c1
2

σ2
4

]
V .(46)

†See Appendix 2 for details on the relaxation step

14



Discrete effects due to advection in the lattice Boltzmann method

It is possible to remove the angular dependence by taking

(47) σ6 = σ8 =
1

12σ4

which leads to an additional phase velocity

(48) vφ =
3 + c1
24

(12σ2
4 − 1)V.

The special value σ4 =
1√
12

allows to get rid of the additional phase velocity.
In the general case of arbitrary orientations of the wave vector k and of the advection speed
V , expressions are quite complicated. Some information on the relative importance of the
corrections to the advection are shown in Fig. 1. The advection term is computed numerically
as

(49) g(k) = k · V
(
1 + h k2

)
with h depending on the orientation of both k and V . It is represented in Fig. 1 as solid
curve for D2Q13 and a dashed curve for D2Q9 for V parallel to Ox and k at angle θ.

Figure 1: Advection factor for main velocity along Ox axis and wave vector vs angle θ.
Dotted line in the absence of anomalous advection. Solid line contribution h for D2Q13,
dashed line for D2Q9.

Some consequences of the correction to advection are presented below.
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6) Distortion of a Gaussian initial conditions
Consider the following Gaussian initial condition

(50) Γ(r, 0) = g0 exp

[
−
(
r

r0

)2
]
,

centered at the origin = (0, 0), where r :=
√
x2 + y2 is the distance to the center. When

the Gaussian initial condition Γ(r, 0) is used as the initial density ρ(r, 0) of the advection-
diffusion equation or the initial stream function ψ(r, 0) of the Navier-Stokes equation, the
solution for both cases is

(51) Γ(r, t) = g0
r20

r20 + 4χt
exp

[
−(r − V t) · (r − V t)

r20 + 4χt

]
in the presence of a uniform velocity V := (Vx, Vy) [10], where χ = κ for the advection-
diffusion equation and χ = ν for the Navier-Stokes equation.
The solution Γ(r, t) is invariant under rotation.
The results of simulation are shown below for several cases.

(52) ψ(r, 0) = g0 exp

[
−
(
r

r0

)2
]

or the initial stream function ψ(r, 0) for the Navier-Stokes (centered at the origin {0,0} and
r is the distance to the center), evolve as

(53) Γ(r, t) = g0
r20

r20 + 4κt
exp

[
−(r − V t) · (r − V t)

r20 + 4κt

]
or

(54) ψ(r, t) = g0
r20

r20 + 4 ν t
exp

[
−(x− Vxt)

2 + (y − Vyt)
2

r20 + 4 ν t

]
in the presence of a uniform velocity V := (Vx, Vy) [10]. The computed field is invariant by
rotation. The results of simulation are shown below for several cases.
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Diffuse D2Q9
Fig. 2 shows the distribution of ρ(x, y) for three different conditions. The computation is
done on a square domain 1012 with periodic boundary conditions. The main parameters
are: κ = 0.008, Vx = 0.10, Vy = 0 and 3200 time steps. Initial radius is r0 = 5.0 and
initial locations are chosen so that final states do not overlap. The top feature is obtained
with q = −1, the lower feature is obtained with 12σ1 σ4 = 1 and one can verify that the
results are close to rotational invariance. The right feature satisfies neither of the isotropy
conditions and it is clear that it is not rotationally invariant.

Figure 2: Advection of an initial Gaussian disturbance simulated with diffusive D2Q9 under
conditions described in the text. Top and lower features are isotropic (respectively for q = −1

or 12σ1σ4 = 1). The middle feature uses conditions that are not tuned for isotropy.

17



Pierre Lallemand, François Dubois and Li-Shi Luo

Navier–Stokes D2Q9
Simulation of the D2Q9 model have been performed in a 3012 domain with periodic boundary
conditions. The initial condition is uniform speed (indicated in the caption), the shear
viscosity is ν = 0.0035, the vortex has initial radius r0 = 8.0. After a number of iterations
the vorticity of the flow is shown in Fig. 3. The rotational symmetry is obviously absent
when the condition 35 is not satisfied, (right feature). The feature on the left uses only the
second condition of Eq.35 as the first one is incompatible with numerical stability for small
shear viscosity.

Figure 3: Simulation with D2Q9. Vorticity of the velocity field from an initial gaussian
stream function after 9000 time steps for an advection velocity {0.03, 0.00}. Left with
isotropy condition 12σ4 σ6 = 1. Right: arbitrary conditions.

Navier–Stokes D2Q13
In a first study, one considers the advection of shear plane waves by a uniform velocity V

parallel to the wave vector. The domain is periodic of size 240× 240 which corresponds to a
smallest wave vector k0 = 2π/240. Various cases are indicated below with numerical values
of the relative advection either “experimental” as determined from simulations or theoretical
using expressions given above.
Case kx/k0 ky/k0 k/k0 Simulation Theory Relative Error
A 5 12 13 0.9959 0.9960 0.01 %
B 10 24 26 0.9827 0.9840 0.13 %
C 13 0 13 0.9915 0.9917 0.02 %
D 26 0 26 0.9652 0.9666 0.15 %

Cases A and B, respectively C and D, correspond to the same orientation of the wave vector.
The data clearly show an increase of the anomaly of the advection when the wave vector

18
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increases and an effect of the orientation.
In a second study, simulation of the D2Q13 model have seen performed in a 3632 domain
with periodic boundary conditions. The initial condition is uniform speed (indicated in the
caption), the shear viscosity is ν = 0.003, the vortex has radius r0 = 11.0. After a number of
iterations the vorticity of the flow is shown in Fig. 4. The rotational symmetry is obviously
absent. For comparison the figure also shows what is obtained without velocity.

Figure 4: Simulation with D2Q13. Vorticity of the velocity field from an initial Gaussian
stream function after 2770 time steps. Left with an advection velocity {0.10, 0.00}. Right
with no advection.

Qualitative interpretation

To confirm qualitatively the influence of anomalous advection for the present case, the ad-
vection is treated in Fourier space. The initial stream function ψ can be represented as

(55) π r20
∑
kx,ky

exp

[
−r20

k2x + k2y
4

]

and each Fourier component evolves as

(56) exp
[(

− ν (k2x + k2y) + ı g(k)V
)
t
]

For g(k) depending on k, the resulting stream function and the associated vorticity can be
computed numerically. An example of such computations is shown in Fig. 5.
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Figure 5: Vorticity of the vortex with main velocity at 14◦ from Ox and r0 = 4 in a
domain of size 80 × 80. Initial state at bottom, final state at top. The advection used
is g(k) = 1 + 0.01

(
cos(4 θ)− cos(2 θ)

)
) k2.

The advection-diffusion case has also been studied in 3-D cases. As recalled earlier, the
simple and popular D3Q7 is inadequate as the diffusivity depends on the square of the
advective velocity, so we give results for D3Q15 and D3Q19 in Appendix 3.
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Conclusion
It has been shown in the present report that lattice Boltzmann models can be tuned to reduce
or in some cases eliminate defects that occur when they are used to simulate situations of
flows with significant velocities or with features of rather small scales. However the analysis
has been performed only in linearized situations, so that much work remains to be done for
actual nonlinear flows in particular to estimate the errors due to inaccuracies in the advection
which were pointed by Frisch for the early lattice gas models [11].

Appendix 1) Moments for the D2Q13 lattice Boltzmann scheme
For the D2Q13 model, we use the moments built with the polynomials given in Table 2. The
equilibrium values are given in the following Table 5.

Moment Parity Rate Equilibrium
ρ + 0 ρ

jx − 0 jx
jy − 0 jy

E + s3 αρ+ 13
j2x + j2y
ρ

XX + s4
j2x − j2y
ρ

XY + s4
jxjy
ρ

Qx − s6 jx

(
c1 −

36 q − 35

77
(j2x + j2y)

)
Qy − s6 jy

(
c1 −

36 q − 35

77
(j2x + j2y)

)
Rx − s8 jx

(
−63c1 + 65

24
+ q j2x +

42 q − 105

22
j2y

)
Ry − s8 jy

(
−63c1 + 65

24
+

42q − 105

22
j2x + q j2y

)
E2 + s10 β ρ

E3 + s11 γ ρ

XY Z − s12 0

Table 5: Moments of the D2Q13 lattice Boltzmann scheme for fluid flow including a tuning
parameter q.

The relaxation phase uses the following relaxation rates and equilibrium value, such that the
speed of sound waves in cs =

√
(α + 28)/26 and the shear and bulk viscosities are

(57) ν0 =
1

4
(c1 + 3)σ4, ζ0 =

1

26
(13c1 − α + 11)σ3.
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In the presence of a mean velocity, the shear viscosity is

(58) ν(V ) = ν0

[
1− 12(7 + 6q)

77(3 + c1)
V 2

]
leading to optimize the model with q = −7/6.

Appendix 2) Advection-diffusion for three-dimensional situations

D3Q15
The model follows the usual D3Q15 based of elementary velocities {0, 0, 0}, and permutations
of {1, 1, 1} and of {1, 0, 0}. The moments are computed with the matrix

(59) M =



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 -1 0 0 0 0 1 -1 1 -1 1 -1 1 -1
0 0 0 1 -1 0 0 1 1 -1 -1 1 1 -1 -1
0 0 0 0 0 1 -1 1 1 1 1 -1 -1 -1 -1
-2 -1 -1 -1 -1 -1 -1 1 1 1 1 1 1 1 1

0 2 2 -1 -1 -1 -1 0 0 0 0 0 0 0 0

0 0 0 1 1 -1 -1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 -1 -1 1 1 -1 -1 1

0 0 0 0 0 0 0 1 1 -1 -1 -1 -1 1 1

0 0 0 0 0 0 0 1 -1 1 -1 -1 1 -1 1

0 -4 4 0 0 0 0 1 -1 1 -1 1 -1 1 -1
0 0 0 -4 4 0 0 1 1 -1 -1 1 1 -1 -1
0 0 0 0 0 -4 4 1 1 1 1 -1 -1 -1 -1

16 -4 -4 -4 -4 -4 -4 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 -1 -1 1 -1 1 1 -1


.

associated to the orthogonal polynomials :

Parity

+ 1

− x

− y

− z

+ −2 + x2 + y2 + z2

+ 2 x2 − y2 − z2

+ y2 − z2

+ x y

+ y z

+ z x

− x (−13/2 + 5/2 (x2 + y2 + z2))

− y (−13/2 + 5/2 (x2 + y2 + z2))

− z (−13/2 + 5/2 (x2 + y2 + z2))

+ 16− 55/2 (x2 + y2 + z2) + 15/2 (x2 + y2 + z2)2

− x y z

In the presence of a uniform advective velocity {Vx, Vy, Vz}, the relaxation rates si and the
equilibrium values of the non-conserved moments are given by the following Table.
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Moment Parity Rate Equilibrium
ρ + 0 0

jx − s1 ρ Vx
jy − s1 ρ Vy
jz − s1 ρ Vz
ee + s5 α ρ+ ρ (V 2

x + V 2
y + V 2

z )

xx + s6 ρ (2V 2
x − V 2

y − V 2
z )

yy + s6 ρ (V 2
y − V 2

z )

xy + s6 ρ Vx Vy
yz + s6 ρ Vy Vz
zx + s6 ρ Vz Vx
qx − s11 d1 ρ Vx
qy − s11 d1 ρ Vy
qz − s11 d1 ρ Vz
d3 + s14 β ρ

tt − s15 0

Table 6: Equilibrium moments for advective D3Q15.

This leads to an effective diffusivity

(60) κ =
2 + α

3
σ1

independent of the velocity. The analysis of the anomalous advection shows that it can be
suppressed for two conditions.

First case

(61) σ5 =
4

(1 + 3α)
σ6 −

6 (2 + α)

(1 + 3α)
σ1 +

3 (1 + α)

4 (1 + 3α)

1

σ1
for d1 = −7

3
.

Second case

(62) σ5 =
10 (2 + α)

(3 + 2 d1 − 5α)
σ1 −

15α− 2 d1 + 17

12 (3 + 2 d1 − 5α)

1

σ1
for σ6 =

1

12σ1
.

D3Q19
The model follows the usual D3Q19 based of elementary velocities {0, 0, 0}, and permutations
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of {1, 1, 0} and of {1, 0, 0}. The moments are computed with the following matrix M :

(63)



1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 -1 0 0 0 0 1 -1 1 -1 0 0 0 0 1 1 -1 -1
0 0 0 1 -1 0 0 1 1 -1 -1 1 -1 1 -1 0 0 0 0

0 0 0 0 0 1 -1 0 0 0 0 1 1 -1 -1 1 -1 1 -1
-30 -11 -11 -11 -11 -11 -11 8 8 8 8 8 8 8 8 8 8 8 8

0 2 2 -1 -1 -1 -1 1 1 1 1 -2 -2 -2 -2 1 1 1 1

0 0 0 1 1 -1 -1 1 1 1 1 0 0 0 0 -1 -1 -1 -1
0 0 0 0 0 0 0 1 -1 -1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 -1 -1 1

0 -4 4 0 0 0 0 1 -1 1 -1 0 0 0 0 1 1 -1 -1
0 0 0 -4 4 0 0 1 1 -1 -1 1 -1 1 -1 0 0 0 0

0 0 0 0 0 -4 4 0 0 0 0 1 1 -1 -1 1 -1 1 -1
0 -4 -4 2 2 2 2 1 1 1 1 -2 -2 -2 -2 1 1 1 1

0 0 0 -2 -2 2 2 1 1 1 1 0 0 0 0 -1 -1 -1 -1
12 -4 -4 -4 -4 -4 -4 1 1 1 1 1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 1 -1 1 -1 0 0 0 0 -1 -1 1 1

0 0 0 0 0 0 0 -1 -1 1 1 1 -1 1 -1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 -1 -1 1 1 1 -1 1 -1



.

associated to the orthogonal polynomials :

Parity

+ 1

− x

− y

− z

+ −30 + 19 (x2 + y2 + z2)

+ 2 x2 − y2 − z2

+ y2 − z2

+ x y

+ y z

+ z x

− x (−9 + 5 (x2 + y2 + z2))

− y (−9 + 5 (x2 + y2 + z2))

− z (−9 + 5 (x2 + y2 + z2))

+ (2 x2 − y2 − z2) (−5 + 3 (x2 + y2 + z2))

+ (y2 − z2) (−5 + 3 (x2 + y2 + z2))

+ 12− 53/2 (x2 + y2 + z2 + 21/2 (x2 + y2 + z2)2

− x (y2 − z2)

− y (z2 − x2)

− z (x2 − y2)

In the presence of a uniform advective velocity {Vx, Vy, Vz}, the relaxation rates si and the
equilibrium values of the non-conserved moments are given by the Table 7.
Applying the same analysis as for D2Q9, one can show that the effective diffusivity is

(64) κ =
α + 30

57

(
1

s1
− 1

2

)
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Moment Parity Rate Equilibrium
ρ + 0 ρ

jx − s1 Vx ρ

jy − s1 Vy ρ

jz − s1 Vz ρ

ee + s5 α ρ+ 19 (V 2
x + V 2

y + V 2
z ) ρ

xx + s6 (2 V 2
x − V 2

y − V 2
z ) ρ

yy + s6 (V 2
y − V 2

z ) ρ

xy + s6 Vx Vy ρ

yz + s6 Vy Vz ρ

zx + s6 Vz Vx ρ

qx − s11 d1 Vx ρ

qy − s11 d1 Vy ρ

qz − s11 d1 Vz ρ

xxe + s14 0

yye + s14 0

d3 + s16 β ρ

tx − s17 d2 Vx ρ

ty − s17 d2 Vy ρ

tz − s17 d2 Vz ρ

Table 7: Equilibrium moments for the diffusive D3Q19 lattice Boltzmann scheme

independent of the velocity V . The order 3 for the equivalent equation includes terms linear
in applied velocity that can be interpreted as corrections to the advection factor. This
correction can be suppressed with two possible sets of parameters.

First case
For d1 = −2/3 and d2 = 0, the relaxation rate s5 should satisfy:

(65) σ5 =
76

3α− 5
σ6 +

6 (α + 30)

5− 3α
σ1 +

3 (11 + α)

4 (3α− 5)

1

σ1

where σi =
1

si
− 1

2
is the Hénon parameter.

Second case
For σ6 =

1

12σ1
, the relaxation rate s5 should satisfy:

(66) σ5 =
10 (α + 30)

21 + 19 d1 − 5α
σ1 −

279− 19 d1 + 15α

12 (21 + 19 d1 − 5α)

1

σ1

Values of the parameters will be constrained by stability conditions, in particular σ5 > 0.
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Two Relaxation Times (TRT)
Note that most of the relaxation rates do not appear in the previous conditions, so one can
use the simpler TRT situation (with only two relaxation rates, one for + parity and one for
− parity). The various results shown in this Appendix are summarized in the table 8 that
applies to the TRT case.

Case Conditions

D3Q19-1 d1 = −2

3
, d2 = 0 , σ6 =

2 (30 + α)

27− α
σ1 −

11 + α

27− α

1

4σ1

D3Q19-2 σ1 =
1√
12
, σ6 =

1√
12

D3Q15-1 d1 = −7

3
, σ6 = 2

2 + α

1− α
σ1 −

1 + α

1− α

1

4σ1

D3Q15-2 σ1 =
1√
12
, σ6 =

1√
12

Table 8: Isotropy of anomalous advection : results for the TRT situation.

To be complete, we add some results for the “hyper-diffusivity” derived from the equivalent
equations at order 4.

Appendix 3)
Hyper-diffusivity of the three-dimensional diffusion models

In the absence of an advection velocity, one can easily obtain the “hyper-diffusivity” carrying
out the equivalent process to fourth order. The formula are quite complicated so we only give
conditions for obtaining a null hyper-diffusivity like was done for the shear hyper-viscosity.

D3Q15

(67) σ11 =
(8α + β) + 14(α + 2)(1− 6σ2σ6)

(8α + β)(12σ1σ6 − 1)
σ1,

σ5 =
σ1

4 [5 (α + 2)(3α + 1)(1− 12σ1σ6) + 30(α + 1) + 2(β − 1)]
×{

60(α + 2)2(12σ1σ6 − 1)σ2
1 − 960(α + 2)σ2

1σ
2
6

+4(2β − 40α + 68− 45α2)σ1σ6 + 15(α + 2)α
}

(68)

D3Q19

(69) σ11 = − 1

19
σ1

84(α + 30)σ1σ6 − 95β − 52α− 420

(2α + 5β)(12σ1σ6 − 1)
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σ5 =− 1

4 {84 (α + 30)(3α− 5)σ1σ6 − 21α2 − 722 β − 937α− 546}σ1
×

(1008 (α + 30)2σ3
1 σ6 − 84((α + 30)2 + 304(α + 30)σ2

6)σ
2
1

+ 4(32676− 63α2 − 512α + 722β)σ6 σ1 + 21(α + 30)(α− 8))(70)

These expressions can be simplified for the TRT case. One obtains the same results for the
two models:

(71) σ1 = σ11 =
1√
12
, σ5 = σ6 =

1√
3
,

Note that one gets the same value of σ1 as in Table 1, but a different one for σ6. It is thus
not possible to have at the same time no anomalous convection and no hyper-diffusivity.
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