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Abstract: Gait analysis is essential for evaluating walking patterns and identifying functional limita-
tions. Traditional marker-based motion capture tools are costly, time-consuming, and require skilled
operators. This study evaluated a 3D Marker-less Motion Capture (3D MMC) system using pose and
depth estimations with the gold-standard Motion Capture (MOCAP) system for measuring hip and
knee joint angles during gait at three speeds (0.7, 1.0, 1.3 m/s). Fifteen healthy participants performed
gait tasks which were captured by both systems. The 3D MMC system demonstrated good accuracy
(LCC > 0.96) and excellent inter-session reliability (RMSE < 3◦). However, moderate-to-high accuracy
with constant biases was observed during specific gait events, due to differences in sample rates and
kinematic methods. Limitations include the use of only healthy participants and limited key points
in the pose estimation model. The 3D MMC system shows potential as a reliable tool for gait analysis,
offering enhanced usability for clinical and research applications.

Keywords: 3D markerless motion capture; quantitative gait analysis; pose estimation; stereoscopic
cameras; depth estimation

1. Introduction

Gait analysis is a vital tool for clinicians to evaluate walking patterns and to detect
functional limitations. It is often added into traditional physical tests such as the 6 min
walk test (6MWT) and the Timed-Up-and-Go (TUG) test [1,2]. In general, these tests are
assessed qualitatively by the clinicians and self-reported by the patient [3,4], and some
quantitative values such as gait speed or distance covered might also be provided by the
clinician. However, these evaluations suffer from inter-observer variability and human
error, reducing their precision and clinical relevance. Moreover, a single visual assessment
does not capture all of the desired quantitative values at once, potentially overlooking
interesting features that could enable a broader and more precise analysis [5,6]. Today, to
obtain a precise evaluation of the gait, 3D Motion Capture (MOCAP) is used. Combining
infrared cameras, reflective sensors and force plates, this technology is considered the gold
standard of quantitative gait analysis. However, its limitations make its deployment in
clinics difficult. Indeed, 3D motion capture is expensive, requires operator proficiency, and
is time-consuming, which slows down its usage. Furthermore, the accuracy of lower limb
kinematics is influenced by correct marker placement and soft tissue artifacts [7–10].

Over the last decade, advancements in artificial intelligence have led to the devel-
opment of Markerless Motion Capture (MMC). MMC enables human pose estimation
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from digital camera footages [11]. Being cost and time effective, this technology, which
uses open-source pose estimators [12], could be a valuable clinical tool, allowing clini-
cians to easily evaluate a patient’s walking patterns. While 2D pose estimation (2D MMC)
has shown promising results [13–15], 3D pose estimation techniques (3D MMC) remain
relatively new. Recent studies utilizing RGB cameras and triangulation methods during
treadmill or over-ground activities have shown promise [16–18]. Similarly, RGB-D cameras
like commercial Microsoft Kinect have been employed to combine depth and 2D pose
estimations for gait and sit-to-stand assessments, demonstrating good agreement with
traditional MOCAP [19–22].

However, using a single Kinect camera for motion analysis leads to body occlusions
issues, and using multiple Kinect cameras simultaneously can introduce accuracy and
stability challenges due to how the cameras detect body key points [23]. At the same time,
a simple method combining a single depth camera with a separate pose estimation tool
has shown promising results for identifying 3D body key points [24]. Nevertheless, this
approach has not been yet tested with multiple depth cameras.

Thus, the aim of this study was to compare two motion capture systems for quanti-
tative gait analysis in healthy adults: a simple 3D MMC system using a combination of
multiple depth cameras and a pose estimator, against the OptiTrack optoelectronic MOCAP
system (NaturalPoint, Inc., Corvallis, OR, USA), considered the gold standard. The primary
hypothesis was that the markerless system would measure hip and knee joint angles in
the sagittal plane with good accuracy compared to MOCAP. The secondary hypothesis
proposed that the markerless system would demonstrate an excellent test–retest reliability.
The findings show that the 3D MMC system exhibits excellent test–retest reliability and
a moderate-to-good accuracy when compared to MOCAP, suggesting its potential as an
accessible option for clinicians.

2. Materials and Methods
2.1. Participants

Fifteen young healthy participants (8 females, 7 males, age 27.8 years ± 4.5, height
175 cm ± 10, body mass 70 kg ± 12) were recruited. The exclusion criteria included
musculoskeletal injuries and the inability to walk without assistance.

2.2. Experimental Setup and Procedure

Static calibration was conducted for marker-based motion capture system to estimate
segment orientation. After 6mn of habituation on the treadmill at a comfortable pace [25],
all participants were asked to walk barefoot at three different speeds for 3 min each (slow:
0.7; medium: 1.0; fast: 1.3 m/s). Between each speed, a thirty-second break was given
if needed.

To assess the inter-session reliability of the 3D MMC system, participants repeated the
same procedure one week later for a second time in the same order.

2.3. Data Recording and Processing
2.3.1. Marker-Based System (MOCAP)

Height and body mass were recorded before the placement of the markers. Thirty-two
passive reflective markers were placed on the anatomical landmarks of the participant
according to Rizzoli Body marker set protocol (Figure 1). Prior to the test, participants were
asked to wear black shorts and a black shirt. Acquisitions were recorded simultaneously at
100 Hz with a set of 9 infrared OptiTrack Motive 2.2.0 cameras (NaturalPoint, Inc., Corvallis,
OR, USA). Two force plates placed under the treadmill were used to measure ground
reaction forces at a frequency of 1000 Hz. The gait segmentation was determined from the
heel-strike recorded by the force plates. Data recorded by OptiTrack system were exported
as C3D files. The markers were used to construct a skeletal model that was scaled with
height and mass information, and joint angle kinematics were computed using OpenSim
IK tools [26] and Matlab (MATLAB, version R2023a. Natick, MA, USA: The MathWorks
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Inc. Retrieved from https://www.mathworks.com/) for the right hip and knee joints. In
this study, hip and knee joints were given 6 degrees of freedom.
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Figure 1. Rizzoli body markerset for OptiTrack (32 Markers).

2.3.2. Markerless System (3D MMC)

Two-dimensional digital videos were collected with a set of three ZED 2 cameras
(Stereolabs, San Francisco, CA, USA) at a frequency of 30 Hz. The three cameras were
placed at the front, back, and right side of the participant. The artificial intelligence tool
YOLOv8 [27] was used to estimate the pose of the participants for each of the 2D digital
videos, displaying a list of 17 key points. More precisely, the YOLOv8x-pose-p6 pre-trained
model was used without any other data training. The “neural depth mode” from Stereolabs’
ZED SDK 4.0 was used to obtain the depth of the 2D key points estimated with YOLOv8.
The calibration of extrinsic camera parameters using the ZED360 tool from Stereolabs
determined the positions and orientations of the cameras in space. This process enabled the
merging of the 3D key points from each camera into a single, unified set of 3D key points.

Finally, joint angles for knee and hip were computed directly from the 3D key points
using a simple, straightforward method, assuming a rigid body relationship between the
adjacent joints (i.e., knee, hip, and shoulder for the hip angle; knee, ankle, and hip for
the knee angle). This method provides a quick and efficient estimation of joint angles but
assumes that the estimated key points are accurate representations of the joint centers. The
gait segmentation for 3D MMC was determined with the minimum knee flexion angle [28].
To smooth the data, a Butterworth low-pass filter was applied to the raw 3D key point
trajectories, with a cutoff frequency of 6 Hz. The entire process, from key point extraction
to angle computation, was carried out using Python (Python, version 3.9.13. Wilmington,
DE, USA: Python Software Foundation. Retrieved from https://www.python.org/).

2.4. Data Analysis and Statistical Calculation

All of the following statistical tests were performed with Python (Python 3.9.13).
To evaluate the accuracy of the 3D MMC system, Root Mean Square Error (RMSE) and
Lin’s Concordance Correlation Coefficient (LCC) with, respectively, their standard de-
viation and 95% confidence intervals were computed for the whole waveforms to as-
sess agreement between the two methods. Moreover, from 3D MMC and MOCAP val-
ues, the averaged minimum, maximum, and Range of Motion were calculated for flex-
ion/extension of the hip and knee joint angles. A Pearson correlation coefficient (r) was

https://www.mathworks.com/
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calculated, and a Bland–Altman analysis was performed to assess the correlation and
possible bias between both systems. For Pearson correlations, coefficients were inter-
preted as follows: 0.0–0.30 negligent; 0.30–0.50 low; 0.50–0.70 moderate; 0.70–0.90 high;
0.90–1.00 very high [29]. Lin’s Concordance Correlation Coefficients were interpreted as fol-
lows: 0.0–0.90 poor; 0.90–0.95 moderate; 0.95–0.99 substantial; 0.99–1.0 almost perfect [30].

Test–retest reliability was determined using Intraclass Correlation Coefficients (ICC2,1),
Standard Error of Measurement (SEM), and Minimal Detectable Change (MDC) for the
maximum, minimum, and Range of Motion (ROM) values. Furthermore, to assess the
reliability of the whole waveform, Root Mean Square Error (RMSE) and Lin’s Concordance
Correlation Coefficient (LCC) were computed. For the RMSE, SEM, and MDC values,
clinical significance was established for differences over 5◦ [31]. The ICC2,1 values were
interpreted as follows: 0.0–0.5 poor; 0.5–0.75 moderate; 0.75–0.9 good; 0.9–1.0 excellent [32].

3. Results
3.1. Inter-Session Reliability

The 3D MMC system demonstrated a high test–retest reliability for hip and knee joint
angles across all speeds. The intraclass correlation coefficients (ICC2,1) were consistently
above 0.75, except for the minimum knee joint angle at 1.3 m/s (ICC2,1 = 0.61), with the
maximum hip joint angles showing the highest reliability (ICC2,1 > 0.90). All minimal
detectable change (MDC) values were below 3◦, with the lowest MDC observed for the
maximum hip joint angles (MDC < 1.5◦) (Table 1).

Table 1. Reliability of 3D MMC system. ICC2,1, SEM, MDC for maximum, minimum, and ROM
values of the hip and knee flexion/extension joint angles are presented. RMSE and LCC values for
the entire knee and hip joint flexion/extension angle waveforms are presented.

Joint
(Sagittal

Plan)

Speed
[m/s] Max Min ROM RMSE

[◦] (SD)
LCC

(95% CI)

ICC2,1
(95% CI)

SEM
[◦]

MDC
[◦]

ICC2,1
(95% CI)

SEM
[◦]

MDC
[◦]

ICC2,1
(95% CI)

SEM
[◦]

MDC
[◦]

Knee 0.7 0.85
(0.63 0.95) 1.78 2.46 0.85

(0.61 0.95) 0.66 0.92 0.85
(0.63 0.95) 1.85 2.56 2.34

(0.90)
0.96

(0.93 0.99)

1 0.82
(0.49 0.94) 1.85 2.56 0.86

(0.64 0.95) 0.80 1.11 0.81
(0.48 0.93) 2.20 3.00 2.20

(0.97)
0.99

(0.98 0.99)

1.3 0.86
(0.59 0.96) 1.60 2.22 0.61

(0.14 0.85) 1.19 1.64 0.82
(0.53 0.93) 2.00 2.77 2.42

(1.44)
0.98

(0.97 1.00)

Hip 0.7 0.90
(0.74 0.97) 1.01 1.40 0.84

(0.57 0.94) 1.37 1.9 0.80
(0.52 0.93) 1.26 1.74 1.80

(0.82)
0.98

(0.98 0.99)

1 0.94
(0.83 0.98) 0.83 1.15 0.77

(0.44 0.92) 1.22 1.69 0.80
(0.50 0.93) 1.47 2.04 1.49

(0.60)
0.98

(0.97 0.99)

1.3 0.90
(0.71 0.97) 1.05 1.45 0.78

(0.46 0.92) 1.05 1.45 0.84
(0.59 0.94) 1.02 1.41 1.80

(1.18)
0.98

(0.96 0.99)

ROM (Range of Motion), MMC (Markerless Motion Capture), RMSE (Root Mean Square Error), ICC (intraclass cor-
relation coefficient), SEM (Standard Error of Measurement), MDC (Minimum Detectable Change), CI (confidence
interval), SD (standard deviation), LCC (Lin’s Concordance Correlation Coefficient).

The waveform similarity was also high across the test sessions. The Root Mean Square
Error (RMSE) values were all under 2.5◦, with the lowest RMSE values observed for the
hip joint waveforms (RMSE < 1.80◦). Likewise, Lin’s Concordance Correlation Coefficients
(LCCs) were ≥0.98, except for the knee joint angles at 0.7 m/s (LCC = 0.96) (Table 1)
(Figure 2).
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Figure 2. Hip and knee flexion/extension angles waveforms of the 3D Markerless Motion Capture
(3D MMC) system at 1.0 m/s. The average gait cycle waveforms with standard deviation of the
15 participants for gait session 1 (blue) and gait session 2 (red) are represented. The associated RMSE
values are indicated.

3.2. Accuracy Against MOCAP
3.2.1. Non-Corrected Joint Angles

The 3D MMC system showed varying accuracy when compared to MOCAP, with a
noticeable constant bias in the joint angle peaks at all speeds. The Bland–Altman plots
indicated that most joint angles’ minimum, maximum, and ROM values were within the
limits of agreement, though significant constant bias was detected for both knee and hip
angles. Pearson’s correlation coefficients for hip angles ranged from 0.13 to 0.53 (except for
hip ROM at 0.7 m/s), while for knee angles, Pearson’s r ranged from 0.50 to 0.93 (except for
knee maximum angle at 0.7 m/s and 1.0 m/s) (Table 2).

Table 2. Accuracy of 3D MMC system against MOCAP. Bland–Altman bias and Pearson’s r coefficient
are presented for maximum, minimum, and ROM values of the hip and knee flexion/extension joint
angles. RMSE and LCC values for the entire knee and hip joint flexion/extension angle waveforms
are presented.

Joint
(Sagittal Plan)

Speed
[m/s] Max Min ROM RMSE [◦]

(SD)
LCC

(95% CI)

B-A Bias [◦]
(LoA) r B-A Bias [◦]

(LoA) r B-A Bias [◦]
(LoA) r

Knee 0.7 9.2
(0.3 18.0) 0.41 1.6

(−3.2 6.5) 0.7 7.6
(−2.0 17.2) 0.5 6.00 (2.05) 0.92

(0.88 0.93)

1 8.2
(−1.6 18.0) 0.46 0.9

(−2.5 4.3) 0.93 7.2
(−2.8 17.4) 0.54 6.09 (2.10) 0.93

(0.90 0.96)

1.3 7.0
(0.1 13.9) 0.63 0.6

(−3.9 5.2) 0.71 6.4
(−1.0 13.7) 0.65 6.80 (1.60) 0.92

(0.90 0.94)

Hip 0.7 6.1
(−2.0 14.2) 0.14 −3.3

(−12.1 5.4) 0.29 9.4
(5.6 13.2) 0.81 5.86 (1.70) 0.83

(0.80 0.87)

1 5.7
(−2.8 14.2) 0.19 −5.1

(−13.4 3.1) 0.13 10.8
(5.6 16.0) 0.53 6.20 (1.50) 0.86

(0.82 0.89)

1.3 6.9
(−1.5 15.4) 0.28 −5.7

(−13.7 2.2) 0.14 12.7
(6.8 18.5) 0.52 6.62 (1.60) 0.88

(0.85 0.90)

ROM (Range of Motion), MMC (Markerless Motion Capture), RMSE (Root Mean Square Error), LCC (Lin’s Concor-
dance Correlation Coefficient), B-A Bias (Bland–Altman Bias), LoA (limit of agreement), SD (standard deviation).

The accuracy of the entire waveform showed moderate agreement with MOCAP. The
RMSE values for hip and knee joint angle waveforms ranged from 5.86◦ to 6.80◦, while the
LCC values were between 0.83 and 0.93 (Table 2) (Figure 3).

3.2.2. Corrected Joint Angles

After correcting for disparities in joint center localization between the two systems,
the accuracy significantly improved. Indeed, a disparity in the localization of shoulder, hip,
knee, and ankle joint centers between 3D MMC and MOCAP systems resulted in an offset
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in the kinematic waveform of joint angles. This offset was corrected by subtracting the
average difference in the entire waveforms between the MOCAP and 3D MMC systems for
each gait session. Following this adjustment, the same statistical analysis was used and the
results are presented in Table 3:

Table 3. Accuracy of 3D MMC system with offset removed against MOCAP. Bland–Altman bias
and Pearson’s r coefficient are presented for maximum, minimum, and ROM values of the hip
and knee flexion/extension joint angles. RMSE and LCC values for the entire knee and hip joint
flexion/extension angle waveforms are presented.

Joint
(Sagittal Plan)

Speed
[m/s] Max Min ROM RMSE [◦]

(SD)
LCC

(95% CI)

B-A Bias [◦]
(LoA) r B-A Bias [◦]

(LoA) r B-A Bias [◦]
(LoA) r

Knee 0.7 5.04
(−2.47 12.56) 0.58 −2.54

(−5.39 0.30) 0.90 7.59
(−2.05 17.23) 0.50 4.10 (1.58) 0.96

(0.94 0.98)

1 3.86
(−4.37 12.08) 0.45 −3.43

(−6.37 −0.48) 0.91 7.28
(−2.83 17.39) 0.54 4.14 (1.56) 0.97

(0.95 0.98)

1.3 2.46
(−3.72 8.63) 0.73 −3.90

(−6.34 −1.47) 0.94 6.36
(−0.95 13.67) 0.65 4.85 (1.33) 0.96

(0.95 0.97)

Hip 0.7 4.23
(2.34 6.12) 0.96 −5.19

(−7.67 −2.72) 0.95 9.42
(5.61 13.23) 0.81 4.14 (0.95) 0.91

(0.88 0.95)

1 4.49
(2.10 6.89) 0.94 −6.33

(−9.75 −2.92) 0.89 10.82
(5.6 16.05) 0.53 4.73 (0.92) 0.91

(0.89 0.93)

1.3 5.64
(2.38 8.90) 0.89 −7.03

(−10.73 −3.33) 0.86 12.67
(6.83 18.51) 0.52 5.40 (0.84) 0.91

(0.90 0.93)

ROM (Range of Motion), MMC (Markerless Motion Capture), RMSE (Root Mean Square Error), LCC (Lin’s Concor-
dance Correlation Coefficient), B-A Bias (Bland–Altman Bias), LoA (limit of agreement), SD (standard deviation).

Post-correction, all RMSE values were below 5◦, except for the hip joint angle at 5.40◦

at 1.3 m/s. The LCC values increased to 0.91 for hip angle waveforms and were above
0.96 for the knee angle waveforms (Figure 3). Further improvements were seen in joint
angle measurements post-correction. The Bland–Altman plots continued to show constant
bias across the maximum, minimum, and ROM measurements of the knee and hip angles
(Figure 4). The Pearson’s r coefficients were above 0.81 for all hip joint angle measurements
(except for ROM at 1.0 and 1.3 m/s) and above 0.90 for the minimum knee joint angles. The
Pearson’s r for the maximum and ROM knee joint angles ranged between 0.50 and 0.73,
except for maximum knee joint angle at 1.0 m/s (Table 3).
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Figure 3. Hip and knee flexion/extension angle waveforms at 1.0 m/s. The average gait cycle
waveforms with standard deviation of the 15 participants for 3D MMC (blue) and MOCAP (red)
are represented. The associated RMSE and LCC values are indicated. (a) Without offset removed;
(b) offset removed.
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4. Discussion

The aim of this study was to assess the reliability and accuracy of a 3D Markerless
Motion Capture (3D MMC) system against a Motion Capture (MOCAP) system. The two
hypotheses were validated as the results indicated excellent reliability during test–retest
methods and a moderate-to-excellent accuracy compared to MOCAP. However, the results
highlighted the presence of constant biases around the maximum, minimum, and ROM
values of the hip and knee flexion/extension joint angles.

The 3D MMC system showed excellent test–retest reliability across different gait
speeds (slow, medium, and fast), with ICC2,1 values above 0.75 for all speeds and conditions,
except for the minimum knee joint angle at 1.3 m/s. These finding are consistent with
previous research [33]. For example, Balta et al. [33] found that markerless systems using
depth cameras like the Kinect could reliably measure gait parameters in the sagittal plane
(ICC2,1 > 0.85). The high LCC values (>0.96) and low RMSE values (<3◦) found in the
present study further underscore the 3D MMC system’s reliability, consistent with the
findings of Kanko et al. [34], who found an inter-session variability below 3◦ using multiple
digital cameras, indicating clinical precision. These findings indicated that, from one
gait test to the other, any measured variation would likely be due to a change in the gait
pattern itself, and would not be an error from the system, especially for the hip joint (RMSE
and MDC < 2◦). Notably, the 3D MMC system’s inter-session reliability may be even
higher than the marker-based system’s due to the absence of markers. Indeed, marker
placement in traditional MOCAP systems can introduce variability and error up to 5◦, as
it relies on precise positioning by the operator, which can vary between each session [9].
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Therefore, the 3D MMC system might be more advantageous than the traditional MOCAP
for test–rest reliability.

The accuracy of the 3D MMC system was then assessed in comparison to MOCAP for
each gait speed. Initially, the 3D MMC system exhibited significant discrepancies in joint
angle measurements (LCC < 0.90 and RMSE > 7◦). These discrepancies could be explained
by the differing joint angle localization methods of the two systems, resulting in noticeable
offsets between their joint angle measurements (Figure 3). Such biases and offsets have
already been reported in previous studies. For instance, Thomas et al. [22] used a single
depth camera for gait analysis, and Kanko et al. [16], utilized multiple digital cameras,
finding offsets resulting in significant RMSE values, particularly for the hip joint (RMSE of
11◦). Two main factors may have contributed to the presence of the offsets found in the
present study and in the literature. First, pose estimators are not primarily designed for
precise biomechanical analysis, as they are trained on large open access datasets, making
them prone to large-scale mislabeling of certain joints, like the hip joint [35]. Second, as Liu
and Chang [24] reported in their study combining depth and 2D estimations, the depth
estimation in this present study and in Thomas et al.’s [22] only captured the depth of the
closest surface to the camera, rather than the precise joint location, leading to differing
joint localizations between the two systems. Therefore, to assess the precision of the 3D
MMC system without the offset undermining the results, there was a need to remove it.
The method used for the offset removal was the same used by Nüesch et al. [36], and more
recently by Piche et al. [37]. In these two studies assessing the precision of an inertial
measurement unit system against the MOCAP, the offset was removed by subtracting the
average difference in the entire waveforms between both systems for each gait session.
The results of these studies improved significantly after the offset removal. This reinforces
the idea that correcting the signals in the present study might improve the concordance
between MOCAP and 3D MMC.

After offset correction of the 3D MMC system for both hip and knee angles, the results
significantly improved (Table 3, Figure 3). The 3D MMC system assessed in this study
showed a moderate-to-high accuracy compared to MOCAP for the entire waveform at all
speeds. Almost all of the RMSE values were below the clinical precision threshold [31],
and LCC values showed moderate-to-substantial concordance. These results were in line
with the literature, although it is important to note that the studies did not apply similar
corrections. For example, Balta et al. [33] recently found their 3D MMC systems using a
depth camera to be highly accurate in comparison to MOCAP when the camera was pointed
at the side of the individual (RMSE < 4.5◦). Similarly, Kanko et al. [16] demonstrated that
3D MMC using multiple digital cameras was an effective method to measure hip or knee
joint angle in gait analysis (RMSE < 3.6◦). If the 3D MMC system assessed in this present
study showed a high accuracy over the entire waveform, only a moderate-to-high accuracy,
as well as constant biases, were found for a specific event in the gait cycle (maximum and
minimum joint angle and Range of Motion). There are two reasons that can explain these
differences. The first reason is that a 30 Hz sample rate was used to record the participants
with the 3D MMC system, compared to a 100 Hz sample rate for the MOCAP system.
Due to spatial restrictions in the acquisition room, a sample rate of 30 Hz was necessary
to capture the wide angle of view of the ZED 2 cameras. While this sample rate may
have allowed for a high tracking resolution, it is not surprising that some differences in
the peak values were found between the 3D MMC and MOCAP, as Nakano et al. [38]
reported previously. They demonstrated that a higher sample rate (120 Hz) provided a
greater accuracy than lower sample rates (30 Hz) compared to MOCAP, especially for
high-speeds movements. The second reason explaining these contrasts resides in the
differences in kinematic computation of joint angles between 3D MMC and MOCAP. In
the present study, the angles were computed directly from the 3D key points through
direct kinematics. This approach is quick, highly repeatable [39] and thus practical for
applications requiring substantial precision in short time, such as longitudinal tracking and
training interventions. However, direct kinematics differs fundamentally from the inverse
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kinematic computations used in MOCAP. This discrepancy arises because direct kinematics
does not consider the underlying biomechanical relationships and joint constraints modeled
in inverse kinematics. Additionally, for the 3D MMC system, hip flexion/extension was
calculated based on a vector constructed from the hip and shoulder key points, and the
femur vector. Therefore, beyond not computing the exact hip joint angle, the compensatory
movement of the shoulder during gait could have led to an underestimation of true hip
flexion and extension, potentially affecting the results. Therefore, the differences in the
joint angle measurements between 3D MMC and MOCAP observed in this study can be
partly attributed to these methodological distinctions.

In this study, the 3D MMC system showed excellent inter-session reliability, and
a good accuracy compared to the MOCAP system, even if constant biases were found.
Nevertheless, a few limitations need to be considered when interpreting the findings of this
study. First, this study exclusively involved healthy participants, highlighting the need for
further research to explore the application of 3D MMC in populations with a pathological
gait issue, as it could provide valuable insights [18,40]. Second, although the low-speed gait
task used in this study approximated the average gait speed of older adults [41], this does
not conclusively demonstrate that this 3D MMC system is effective in older populations.
Third, due to spatial constraints in the acquisition room, the cameras were positioned at
the front, back and right side of the participants. Therefore, it is not impossible that the 3D
MMC system might have produced slightly different results if the cameras were placed in
different locations. Fourth, the pose estimation model used in this study only displayed
17 key points on the body, with only one on each foot. Thus, it was not possible to evaluate
the ankle joint kinematics. Therefore, an improvement of the 3D MMC system would be to
retrain the pre-trained pose estimation model to display an additional key point on each
foot to allow the ankle joint angle to be computed.

5. Conclusions

This study demonstrates that the 3D MMC system offers excellent reliability and
moderate-to-good accuracy compared to the traditional MOCAP system for gait analysis.
The high test–retest reliability ensures that the changes observed in gait patterns are due
to actual variations in the subject’s movement rather than errors in the system. While the
initial assessments revealed some inaccuracies, these were largely attributed to differences
in the joint angle localization methods. After correcting these offsets, the accuracy of the
3D MMC system improved significantly, with RMSE values below 5◦ for hip and knee
joint angles. The 3D MMC system’s ability to provide reliable and reasonably accurate
measurements without the use of markers presents a significant advantage, especially
for long-term patient monitoring and clinical applications where ease of use and patient
comfort are priorities. Future improvements, such as integrating a biomechanical model
and increasing the sample rate, could further enhance the precision of this system. Overall,
the 3D MMC system is a promising tool for gait analysis, offering a practical and reliable
alternative to traditional MOCAP systems.
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