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CORRESPONDENCES BETWEEN AFFINE HECKE ALGEBRAS

AND APPLICATIONS

ANNE-MARIE AUBERT

Abstract. We review the construction of generalized affine Hecke algebras at-
tached to Bernstein series of both smooth irreducible and enhanced L-parameters
of p-adic reductive groups and apply it to the study of the Howe correspondence.
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1. Introduction

Affine Hecke algebras are known to be very useful to describe the smooth complex
representations of reductive p-adic groups, in terms of the supercuspidal representa-
tions of their Levi subgroups. Their use in the classification of smooth irreducible
representations started with the seminal papers of Kazhdan and Lusztig [34] for
Iwahori-spherical representations and of Lusztig [43], [44] for unipotent representa-
tions.
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2 ANNE-MARIE AUBERT

For G a p-adic group, the theory of the Bernstein Center of [15] provides a decom-
position of the category R(G) of smooth representations of G as the direct product
of a family of full subcategories Rs(G), that are called Bernstein blocks. Here s is
the equivalence class of a pair (L, σ), where L is a Levi subgroup of G and σ is an
irreducible supercuspidal representation of L (see §3 for more details). By [31], if G
is symplectic group or an orthogonal group, each Bernstein block is Morita equiv-
alent to the category of modules of an extended affine Hecke algebra H(G, s), that
is, the crossed product of an affine Hecke algebra by the group algebra of a finite
group. By [59], for G an arbitrary p-adic group, and every s = [L, σ]G such that the
restriction of σ to L1 is multiplicity free, where L1 is the subgroup of L generated
by all its compact its subgroups, the Bernstein block Rs(G) is Morita equivalent to
the category of modules of an algebra H(G, s), which is the crossed product of an
affine Hecke algebra by a (2-cocycle) twisted group algebra of a finite group.

In recent works, we showed that affine Hecke algebras play a similar role on the
Galois side of the local Langlands correspondence. In [8], we introduced a notion
of cuspidality for enhanced Langlands parameters for G, which conjecturally puts
irreducible supercuspidal representations of G in bijection with such enhanced L-
parameters. We also define cuspidal support maps and Bernstein series for enhanced
L-parameters, in analogy with Bernstein’s theory of representations of p-adic groups.
In [9], to every Bernstein series Φs∨

e (G) of enhanced Langlands parameters for G we
canonically associated an affine Hecke algebra H(G∨, s∨), again possibly extended by
the twisted group algebra of a finite group. We proved that the simple modules of this
algebra are naturally in bijection with the members of the Bernstein series, and that
the set of central characters of the algebra is naturally in bijection with the collection
of cuspidal supports of these enhanced Langlands parameters. These bijections send
tempered or (essentially) square-integrable representations to the expected kind of
Langlands parameters.

Furthermore, in [9] and [10], we proved that for many reductive p-adic groups (in
particular for classical groups), if a Bernstein series Irr(Rs(G)) for G corresponds

to a Bernstein series Φs∨

e (G) of enhanced Langlands parameters for G via the lo-
cal Langlands correspondence, then the algebras H(G, s) and H(G∨, s∨) are Morita
equivalent.

We review the construction of these algebras, and explain how these results can
be apply to describe the theta correspondence for p-adic groups. The theory of this
correspondence, also known as the Howe correspondence, was initiated by Roger
Howe and builds upon the work of Weil in a representation theoretic treatment:
a key role in the theory is played by the Weil representation (so-called, oscillator
representation), a representation of a non-linear-algebraic group (the metaplectic
group), described notably in [11]. It turned out that this correspondence has many
important uses in local representation theory. Furthermore, its global counterpart
(which agrees with local theta correspondence locally) provides one of a very few
direct ways to explicitly construct automorphic forms.

We describe some of the recent results on the description of the Howe correspon-
dence over both finite fields and non-archimedean local fields. For (Gn, G

′
n′) an
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irreducible reductive dual pair, formed of a p-adic symplectic group Sp2n(F ) and a
p-adic orthogonal group O2n′(F ), we show in Theorem 5.1.4 that the compatibility
the Howe correspondence with parabolic induction leads to a collection of corre-
spondences between simple modules of algebras H(Gn, s) and H(G′

n′ , s′), where s′ is
explicitely described in term of s. We consider in particular the case of tempered rep-
resentations and derive in Theorem 5.2.3 a correspondence at the level of C∗-algebras
when n′ = n or n′ = n+ 1.

The study of the Howe correspondence has been also heavily influenced by the re-
cent developments in the framework of the Langlands program, so that new results
are formulated in this spirit (see notably [3], [25], and [24]). As a consequence of our
results, we show that the Howe correspondence induces a collection of correspon-
dences between simple modules of the algebras H(G∨

n , s
∨) and H(G′∨

n′ , s′∨) attached
to Bernstein series of enhanced L-parameters ofGn and G′

n′ , respectively. We studied
in [4] the case where s = [T, triv]Gn (with T a maximal torus in G and triv the trivial
character of T ) and n′ ∈ {n, n+1}, via the Kazhdan-Lusztig parametrization of the
simple modules of H(Gn, s) and H(G′

n′ , s′) (in this case, we have s′ = [T ′, triv]G′

n′

where T ′ is a maximal torus in G′).

We thank the anonymous referee for helpful suggestions that allowed to improve
the readability of the paper.

2. Representations of finite reductive groups

Let k be a finite field and let k be a fixed algebraic closure of k. Let G be a
connected reductive algebraic group defined over k, and let G = G(k) denote the
group of the k-rational points of G. The usual scalar product ( , )G on the space of
class functions on G is defined by

(2.0.1) (f1, f2)G := |G|−1
∑

g∈G

f1(g) f2(g).

Let Irr(G) be the set of equivalence classes of irreducible representations of G. For
π ∈ Irr(G), we will also write π for its character. By Corollary 7.7 of [20], for any
π ∈ Irr(G), there exists a k-rational maximal torus T of G and a character θ of T such

that π occurs in the Deligne-Lusztig virtual character R
G

T (θ), i.e., (π,R
G

T (θ))G 6= 0.

Deligne and Lusztig introduced in [20] the following two regularity conditions: a
character θ of T is said to be

• in general position if its stabilizer in (NG(T)/T)(k) is trivial,
• non-singular if it is not orthogonal to any coroot.

If the center of G is connected, then θ is non-singular if and only if it is in general
position (see Proposition 5.16 in [20]).

We denote by G∨ the reductive connected group with root datum dual to that of
G. The G-conjugacy classes of pairs (T, θ) as above are in one-to-one correspondence
with the G∨-conjugacy classes of pairs (T∨, s) where T∨ is a k-rational maximal torus
of G∨ and s is a semisimple element of G∨ belonging to T∨.
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The Lusztig series E(G, s) is defined to be the set
{
π ∈ Irr(G) : (π,R

G

T (θ))G 6= 0, where (T, θ)G corresponds to (T∨, s)G∨

}
.

The set Irr(G) decomposes into a disjoint union

(2.0.2) Irr(G) =
⊔

(s)

E(G, s),

where (s) runs over the G∨-conjugacy classes of semisimple elements of G∨. If θ is
the trivial character of T, then the representation π is called unipotent. By definition,
E(G, 1) is the subset of unipotent representations in Irr(G). We denote by G∨(s) the
centralizer of s in G∨, and by G∨(s) the group of k-rational points of G∨(s).

Remark 2.0.3. If π ∈ E(G, s) and G∨(s) is a torus, then π = ±RG

T (θ) with θ in

general position (see Lemma 3.6.9 in [13]).

If the center of G∨ is connected then the group G∨(s) is always connected. How-
ever, in general it may be disconnected, and we extend the notion of Deligne-Lusztig
character as follows. We denote by G∨(s)◦ the identity component of G∨(s), and by
G∨(s)◦ the group of k-rational points of G∨(s)◦. For T∨ a k-rational maximal torus
of G∨(s)◦ and θ∨ a character of T∨, we set

(2.0.4) R
G∨(s)

T∨ (θ∨) := Ind
G∨(s)
G∨(s)◦(R

G∨(s)◦

T∨ (θ∨)).

We define E(G∨(s), 1) to be the set of irreducible constituents of R
G∨(s)

T∨ (1).

By Theorem 4.23 of [39] when the center of G∨ is connected, and by §12 of [41]
in general, there is a bijection

(2.0.5) E(G, s) 1−1−−→ E((G∨(s), 1), π 7→ πu.

The bijection (2.0.5) satisfies the following properties:

(1) It sends a Deligne-Lusztig character R
G

T (θ) in G (up to a sign) to a Deligne-

Lusztig character R
G∨(s)

T∨ (1), where 1 denotes the trivial character of T∨ (see

§12 of [41]).
(2) It preserves cuspidality in the following sense: if s ∈ G∨, and E(G, s) contains

a cuspidal representation πc, then
(a) the largest k-split torus in the center of G∨(s) coincides with the largest

k-split torus in the center of G∨ (see (8.4.5) of [39]),
(b) the unipotent representation πuc is cuspidal.

(3) The dimension of every representation π ∈ E(G, s) is given by

(2.0.6) dim(π) =
|G|p′

|G∨(s)(k)|p′
dim(πu),

where |G|p′ is the largest prime-to-p factor of the order ofG (see Remark 13.24
of [21]).
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2.1. Centralizers of semisimple elements in classical groups. Let G be a
classical group of rank n over k, i.e., G is a symplectic group, a special orthogonal

group or an orthogonal group. Let Tn ≃ k
××· · ·×k× be a k-rational maximal torus

of G. For s = (λ1, . . . , λn) ∈ Tn, we denote by νλ(s) the number of the λi’s which
are equal to λ, and by 〈λ〉 the set of all roots in k of the irreducible polynomial of λ
over k. By §1.B of [7], the centralizer CG(s) of s in G decomposes as a product

(2.1.1) CG(s) =
∏

〈λ〉⊂{λ1,...,λn}

G(λ)(s),

where G(λ)(s) is a reductive quasi-simple group of rank equal to νλ(s) · |〈λ〉|. The
followings hold:

(i) if G = Sp2n, then G1(s) ≃ Sp2ν1(s) and G−1(s) ≃ Sp2ν−1(s),

(ii) if G = SO2n+1, then G1(s) ≃ SO2ν1(s)+1 and G−1(s) ≃ O±
2ν−1(s)

,

(iii) If G = O±
2n, then G1(s) ≃ O±

2ν1(s)
and G−1(s) ≃ O±

2ν−1(s)
,

(iv) If G = Un or if λ 6= ±1, then G(λ)(s) is either a general linear group or a
unitary group.

We set

(2.1.2) G 6=(s) :=
∏

〈λ〉⊂{λ1,...,λm},λ6=±1

G(λ)(s).

By (2.1.1), we have

(2.1.3) CG∨(s) = G1(s)
∨ ×G−1(s)×G 6=(s),

and hence a bijection

(2.1.4)
E(CG∨(s), 1) ≃ E(G1(s)

∨, 1) × E(G−1(s), 1) × E(G 6=(s), 1)
πu 7→ πu1 ⊗ πu−1 ⊗ πu6=

.

We obtain a one-to-one correspondence

(2.1.5)
Ls : E(G, s) → E(G1(s)

∨, 1)× E(G−1(s), 1)× E(G 6=(s), 1)
π 7→ πu1 ⊗ πu−1 ⊗ πu6=

.

2.2. The Howe correspondence over finite fields. We suppose that the char-
acteristic of k is odd. Let N be a positive integer, and let W be a vector space over
k of dimension 2N , equipped with a nondegenerate alternated bilinear form 〈 , 〉. A
pair of reductive subgroups of Sp(W ) = Sp2N (k), where each one is the centralizer
of the other, is called reductive dual pair. We study irreducible dual pairs, because
these are the building blocks of all the others. Such pairs are of the following kinds:

◦ pairs of type I:
– (Sp2n(k),ON ′(k)) with nN ′ = N ;
– (Un(k),Un′(k)) with nn′ = 2N ;

◦ pairs of type II:
– (GLn(k),GLn′(k)) with nn′ = 2N .
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A reductive dual pair (G,G′) is said to be in the stable range (with G′ smaller)
if the defining vector space for G has a totally isotropic subspace of dimension
greater or equal than the dimension the defining vector space for G′, e.g. the pairs
(Sp2n(k),O2n′(k)) such that n ≥ 2n′.

Howe introduced a correspondence Θn,n′ : R(Gn) → R(Gn′) between the cate-
gories of complex representations of these subgroups. It is obtained from a particular
representation of Sp2N (k), called the Weil (or oscillator) representation. In order
to define this representation, we must introduce the Heisenberg group. This is the
group with underlying set H(W ) =W × k and product

(2.2.1) (w1, t1) · (w2, t2) =

(
w1 + w2, t1 + t2 +

1

2
〈w1, w2〉

)
.

Let ̺ be an irreducible representation of H(W ). Its restriction to the center ZH(W ) ≃
k of H(W ) equals ψ̺, for a certain character ψ̺ of k.

By the Stone-von-Neumann Theorem (see Theorem 2.I.2 in [49]), for any non-
trivial character ψ of ZH(W ) there exists (up to equivalence) a unique irreducible
representation ̺ of H(W ) such that ψ̺ = ψ. This representation is known as the
Heisenberg representation. It depends on ψ, so we denote it by ̺ψ.

The natural action of Sp(W ) on H(W ) fixes the elements of its center. Hence,
for a fixed character ψ of k, the representations ̺ψ and g · ̺ψ agree on ZH(W ), for
any g ∈ Sp(W ). The Stone-von-Neumann Theorem implies that there is an operator
ωψ(g) verifying

(2.2.2) ̺ψ(g · w, t) = ωψ(g)̺ψ(w, t)ωψ(g)
−1.

This defines a projective representation ωψ of Sp(W ), which can be lifted to an actual
representation of Sp(W ), known as the Weil representation.

The restriction of ωψ of Sp2N (k) to Gn ×G′
n′ is

(2.2.3) ωGn,G′

n′
=

∑

π∈Irr(G)

π′∈Irr(G′)

mπ,π′ π ⊗ π′, where mπ,π′ ∈ Z≥0.

Define Θn′ : Z Irr(Gn) → Z Irr(G′
n′) by

(2.2.4) Θn′(π) :=
{
π′ ∈ Irr(G′

n′) : mπ,π′ 6= 0
}
, for π ∈ Irr(Gn).

The occurrence of a irreducible representation π of Gn in the Howe correspondence
for (Gn,G

′
n′
π
) with n′π minimal (i.e., such that ΘG′

n′
(π) = 0 for any n′ < n′π) is

referred to as the first occurrence.

2.2.1. The Howe correspondence for unipotent representations. Between members of
a dual pair, the only ones having cuspidal unipotent representations are: GL1(k),
Sp2(a2+a(k), U(a2+a)/2(k) (which have a unique such representation, say τa), and

O2a2(k) (which has two: τ Ia and τ IIa = τ Ia ⊗ sign).

From now on, we will only consider pairs formed by a symplectic group Sp2n(k)
and an orthogonal group Oǫ

2n′(k), where ǫ ∈ {±}, with O+
2n′(k) split and O−

2n′(k)
nonsplit. The following results were established in [1]:
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(1) if π is a cuspidal irreducible representation of Gn = Sp2n(k), then Θn′
π
(π) is

a singleton {π′} with π′ cuspidal irreducible,
(2) if π ∈ Irr(Gn) is unipotent then any π′ ∈ Θn′(π) is unipotent,
(3) the representation τa of Sp2(a2+a)(k) corresponds to τ IIa if ǫ is the sign of

(−1)a and to τ Ia+1 otherwise.

Thus, the Howe correspondence between cuspidal unipotent representations is de-
scribe by the function θ : N → N, defined by

(2.2.5) θ(a) :=

{
a if ǫ is the sign of (−1)a

a+ 1 otherwise.

By [7], the Howe correspondence for unipotent representations of the dual pair
(Sp2n(k),O

ǫ
2n′(k)) induces a correspondence between the parabolically induced repre-

sentations i
Sp2n(k)
Sp2(a2+a)(k)⊗T

(τa⊗1) and i
Oǫ

2n′ (k)

Oǫ

2θ(a)2
(k)⊗T′(τ

′
θ(a)⊗1), where τ ′θ(a) ∈ {τ Iθ(a), τ IIθ(a)},

and T, T′ are products of GL1(k)’s.
It induces a correspondence between the endomorphism algebras of these parabol-

ically induced representations, and hence a correspondence ΩNa,N ′
a
between irre-

ducible representations of Weyl groups of types BNa and BN ′
a
, where Na := n−a2−a

and N ′
a := n− θ(a)2.

The following conjectural explicit description of ΩNa,N ′
a
for pairs (Sp2n(k),O

ǫ
2n′(k))

was formulated in [7], and confirmed in [55], and in [45], independently.
Let us introduce first some definitions and notation: λ := (λ1 ≥ λ2 ≥ · · · ≥ λl)

where λi ∈ Z≥0 is called a partition of n if |λ| := λ1 + λ2 + · · · + λl = n. We write
λ ⊣ n. We denote by P(n) set of partitions of n, and we write λ∪µ for the partition
of n+m with parts λ1, . . . , λl, µ1, . . . , µl. The usual order on partitions is defined by

λ ≤ λ′ if and only if λ1 + · · ·+ λi ≤ λ′1 + · · ·+ λ′i, for all i ∈ N.

We define another order on partitions as follows: for λ, λ′ partitions of possibly
different integers, we write

(2.2.6) λ � λ′ if and only if λ′i+1 ≤ λi ≤ λ′i, for all i ∈ N.

It says that λ � λ′ if the Young diagram of λ is contained in the one of λ′ and that
we can go from the first to the second by adding at most one box per column. For
instance, the partitions λ = (4, 1, 1) of 6, and λ′ = (4, 4, 1, 1) of 10 verify λ � λ′. We
observe that if two partitions λ = (λ1 ≥ λ2 ≥ · · · ≥ λl) and λ

′ = (λ1 ≥ λ2 ≥ · · · ≥
λl′) satisfy λ � λ′ and |λ| = |λ′|, then we have λ = λ′. Indeed, by (2.2.6), we have
l ≤ l′, and

|λ| =
l∑

i=1

λi ≤
l∑

i=1

λ′i = |λ| − (λ′l+1 + · · ·+ λ′l′),

thus, l′ = l and λi = λ′i for all i ∈ {1, . . . , l}.
Irreducible characters of a Weyl group of type Bn or Cn are known to be parametrized

by bipartitions of n (see for instance [19]). We denote by χξ,η the irreducible char-
acter which corresponds to the bipartition (ξ, η) of n.
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In the rest of this section we consider pairs (Sp2n(k),O
ǫ
2n′(k)) in the stable range

(i.e., such that that n ≥ 2n′). We write Na(ζ) := Na − |ζ| if ζ is a partition such
that |ζ| ≤ Na. Then we have:

(1) Cases (Sp2n,O
+
2n′) with a even and (Sp2n,O

−
2n′) with a odd:

ΩNa,N ′
a
=

min(Na,N ′
a)∑

r=0

∑

(ξ,ζ)∈P2(r)

∑

η,η′

χξ,η ⊗ χξ,η′ ,

where the third sum is over the partitions η ⊣ Na(ξ) and η′ ⊣ N ′
a(ξ) such

that ζ � η and ζ � η′.
(2) Cases (Sp2n,O

+
2n′) with a odd and (Sp2n,O

+
2n′) with a even:

ΩNa,N ′
a
=

min(Na,N ′
a)∑

r=0

∑

(ξ,ζ)∈P2(r)

∑

ξ′,η′

χξ′,η ⊗ χξ,η′ ,

where the third sum is over the partitions ξ′ ⊣ Na(η) and η′ ⊣ N ′
a(ξ) such

that ξ � ξ′ and η � η′.

In general, there exist representations π ∈ Irr(G) such that Θn′(π) contains more
than one element. Hence, one may wonder if it would be possible to extract a one-

to-one correspondence. Several approaches to this questions were considered:

• definition of the eta correspondence for dual pairs (Sp2n(k),ON ′(k)) in the
stable range in [28],

• construction of a one-to-one correspondence for unipotent representations of
pairs of type II and of pairs in the stable range of the form (Oǫ

2a2(k),Sp2(a2+a+N)(k))

or (Sp2(a2+a+2)(k),O
ǫ
2a2+N (k)) [6],

• construction of a one-to-one theta correspondence for unipotent representa-
tions of irreducible pairs of type I in the stable range in [22],

• extension of both eta and theta correspondences to all irreducible pairs of
type I in [57].

Let (ξ′, η′) ∈ P2(N
′
a). We set

(2.2.7) Θξ′,η′ :=
{
χξ,η : χξ,η ⊗ χξ′,η′ occurs in ΩNa,N ′

a

}
.

Recall that a partition is called symplectic if each odd part appears with even mul-
tiplicity. There is a bijection between symplectic partitions of 2n and unipotent
conjugacy classes of Gn = Sp2n(k). We denote by Oλ the unipotent class associated
to the symplectic partition λ. The Springer correspondence maps χξ,η to a pair
(Oλ, ρ) for some irreducible character ρ of CGn

(u)/CGn
(u)◦, where u ∈ Oλ. In this

situation we write λξ,η := λ.

Definition 2.2.8. We say that χξmax,ηmax ∈ Θξ′,η′ is maximal if

λξ,η ≤ λξmax,ηmax for all (η, ξ) ∈ Θξ′,η′ .

Remark 2.2.9. Since the order is not total, it is not clear a priori that a maximal
representation exists, and if so, that it is unique.
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Definition 2.2.10. We say that χξmin,ηmin
∈ Θξ′,η′ is minimal if

λξmin,ηmin
≤ λξ,η for all (η, ξ) ∈ Θξ′,η′ .

A representation is said to be extremal if it is either maximal or minimal.

Let (ξ′, η′) ∈ P2(N
′
a). By [22],

(1) there exists a unique maximal representation χξmax,ηmax ∈ Θξ′,η′ , it is given
by

ξmax := ξ′ and ηmax := (Na −N ′
a + η′1 + η′2, η

′
3, . . . , η

′
l).

(2) there exists a unique minimal representation χξmin,ηmin
∈ Θξ′,η′ , it is given by

ξmin := ξ′ and ηmin := (Na −N ′
a) ∪ η′.

3. Smooth representations of p-adic reductive groups

Let F be a non Archimedean local field andWF its abolute Weil group. We denote
by IF , PF ⊂WF the inertia group and the wild inertia group of F , respectively, and
by kF the residual field of F (a finite field with q elements, where q is a power of a
prime number p). We denote by W t

F :=WF ⋊ IF the tame Weil group of F .
Let G be a connected reductive algebraic group defined over F . We denote by G

the group of the F -rational points of G. Let L be a Levi subgroup of a parabolic
subgroup P of G and let Xnr(L) denote the group of unramified characters of L.
Let σ be an irreducible supercuspidal smooth representation of L and O the set of
equivalence classes of representations L of the form σ ⊗ χ, with χ ∈ Xnr(L). We
write s := (L,O)G = [L, σ]G for the G-conjugacy class of the pair (L,O) and B(G)
for the set of such classes s. We set sL := (L,O)L.

We denote by Rs(G) the full subcategory of R(G) whose objects are the represen-
tations (π, V ) such that every irreducible G-subquotient of π has its supercuspidal
support in s. The categories Rs(G) are indecomposable and split the full smooth
category R(G) in a direct product:

(3.0.1) R(G) =
∏

s∈B(G)

R
s(G).

Let Irrs(G) denote the set of irreducible objects of the category Rs(G). As a direct
consequence of (3.0.1), we have

(3.0.2) Irr(G) =
∏

s∈B(G)

Irrs(G).

3.1. Depth-zero supercuspidal representations of p-adic groups. We denote
by B(G, F ) the Bruhat-Tits building of G and by Br(G, F ) := B(G/ZG, F ) the
reduced Bruhat-Tits building of G. We have B(G, F ) = Br(G, F ) × (X∗(ZG) ⊗Z

R), where X∗(ZG) is the set of F -algebraic cocharacters of ZG For each point x in
B(G, F ), we denote by Gx,0 the parahoric subgroup of G associated to x, by Gx,0+
the pro-p unipotent radical of Gx,0, and Gx,0 the quotient Gx,0/Gx,0+, (the points
of) a connected reductive group over the residue field of F . Let [x] denote the image
of x in Br(G, F ) and G[x] the stabilizer of [x] under the action G on Br(G, F ).
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A depth-zero representation of G is a representation which admits non-zero in-
variant vectors under the action of the pro-p unipotent radical Gx,0+ of a parahoric
subgroup Gx,0 of G.

Let π be any irreducible depth-zero supercuspidal representation of G. There
exists a vertex x ∈ Br(G, F ) and an irreducible cuspidal representation πx of Gx,
such that the restriction of π to Gx,0 contains the inflation infl(πx) of πx (see §1-2
of [50] or Proposition 6.6 of [53]). The normalizer NG(Gx,0) of Gx,0 in G is a totally
disconnected group that is compact mod center, which, by the proof of (5.2.8) in
[17], coincides with the fixator G[x] of [x] under the action of G on Br(G, F ). Let
π̃x denote an extension of infl(πx) to G[x]. Then π is compactly induced from a
representation of G[x]:

(3.1.1) π = c-IndGG[x]
(π̃x).

The representation π is called unipotent if πx is unipotent

3.2. Depth-zero supercuspidal representations of p-adic classical groups.

Example 3.2.1. Let E be an unramified quadratic extension of F , and let V be a
vector space over E of dimension n. There are two classes of hermitian forms on V .
They are distinguished by the parity of the valuation of the determinant of the form:
we denote the form by 〈 , 〉+ if the valuation is even, and by 〈 , 〉− otherwise. We
denote the corresponding unitary groups by U±

n (F ). The group U+
n (F ) is quasi-split.

If n is odd, then the groups U+
n (F ) and U−

n (F ) are isomorphic, if n is even, then
U−
n (F ) is an inner form of U+

n (F ).
The standard maximal parahoric subgroups of G = U±

n (F ) are the groups Gx,0
such that Gx,0 is isomorphic to the product of two unitary groups Un1(kF ) and
Un2(kF ) with n1 + n2 = n. By §2.2 and (3.1.1), the supercuspidal unipotent repre-
sentations of Un(F ) are the representations π = c-IndLG[x]

(π̃x), where πx = τa1 ⊗ τa2
with a21 + a1 = 2n1 and a22 + a2 = 2n2. For i ∈ {1, 2}, we denote by λi the partition
of ni defined by λi := (ki, ki − 1, ki − 2, . . . , 1, ).

Example 3.2.2. Let G = SO2n+1(F ). The standard maximal parahoric subgroups
Gx,0 of G have type Dn1 × Bn2 with n1 + n2 = n. We have Gx,0 ≃ SO2n1(kF ) ×
SO2n2+1(kF ). The corresponding depth-zero supercuspidal representation of G in
compactly induced from the the inflation to Gx,0 of an irreducible cuspidal represen-
tation π1x ⊗ π2x of Gx,0. We have π1x ∈ E(SO2n1 , (s1)) and π

2
x ∈ E(SO2n2+1, (s2)). By

2.1, the group Ws1 is of one of the following types

(1) Da21
×Db21

with a21 + b21 = n1 and a1, b1 ∈ Z≥0,

(2) A2
a1−1 ×A2

ℓ1−1 with a1 =
c1+c21

2 , ℓ1 =
d1+d21

2 , a1 + ℓ1 = n1 and c1, d1 ∈ Z≥0,

(3) Da21
×Aa1−1 with a1 =

c1+c21
2 , a21 + a1 = n1 and a1, c1 ∈ Z≥0,

and Ws2 is of one of the following types

(1) Da22
× Cb22+b2 with a22 + b22 + b2 = n2 and a2, b2 ∈ Z≥0,

(2) A2
a2−1 ×A2

ℓ3−1 with a2 =
c2+c22

2 , ℓ2 =
d2+d22

2 , a2 + ℓ1 = n2 and c2, d2 ∈ Z≥0,
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(3) Da22
×Aa2−1 with a2 =

c2+c22
2 , a22 + a2 = n2 and a2, c2 ∈ Z≥0,

(4) Cb22+b2 ×Aa2−1 with a2 =
c2+c22

2 , b22 = b2 + a2 = n2 and b2, c2 ∈ Z≥0.

4. Affine Hecke algebras

Let R := (X,R, Y,R∨) be a root datum. We denote by W the group generated
by the sα for α ∈ R. It is a finite Weyl group. We write S := {sα : α ∈ ∆}. Then
(W,S) is a finite Coxeter system.

We choose, for every s ∈ S, a complex number qs, such that

(4.0.1) qs = qs′ if s and s′ are conjugate in W .

Let q : S → C be the function s 7→ qs. We define a new C-algebra H(W,q) which
has a vector space basis {Tw : w ∈ W}. Here T1 is the unit element and the TW
satisfy the following quadratic relations and braid relations

(4.0.2) (Ts + 1)(Ts − qs) = 0 and TsTs′Ts · · ·︸ ︷︷ ︸
m(s, s′) terms

= Ts′TsTs′ · · ·︸ ︷︷ ︸
m(s, s′) terms

for any s, s′ ∈ S.

Fix q ∈ R>1 and let λ, λ∗ : R→ C be functions such that

• if sα and sβ are conjugate in W , then λ(α) = λ(β) and λ∗(α) = λ∗(β),
• if α∨ /∈ 2Y , then λ∗(α) = λ(α).

We note that α∨ ∈ 2Y is only possible for short roots α in a type B component of
the root system R.

For α ∈ R we write

(4.0.3) qsα := qλ(α) and (if α∨ ∈ m∨
max) qs′α := qλ

∗(α).

We denote by ℓ the usual length function on W . Let H(W,q) denote the Iwahori-
Hecke algebra of W . It has a basis {Tw : w ∈W} such that

TwTv = Twv if ℓ(w) + ℓ(v) = ℓ(wv),
(Tsα + 1)(Tsα − qsα) = 0 if α ∈ ∆.

Let {θx : x ∈ X} denote the standard basis of C[X]. Then the affine Hecke algebra
H(R, λ, λ∗, q) is the vector space C[X]⊗C H(W,q) such that C[X] and H(W,q) are
embedded as subalgebras, and for α ∈ ∆ and x ∈ X:

θxTsα − Tsαθsα(x) =

(
(qλ(α) − 1) + θ−α

(
q

λ(α)+λ∗(α)
2 − q

λ(α)−λ∗(α)
2

))
θx − θsα(x)

θ0 − θ−2α
.

When α∨ /∈ 2Y , the cross relation simplifies to

θxTsα − Tsαθsα(x) = (qλ(α) − 1)
θx − θsα(x)

θ0 − θ−α
.
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4.1. Affine Hecke algebras and Bernstein blocks. Let s = [L, σ]G ∈ B(G).
We write sL := [L, σ]L and denote by W s the extended finite Weyl group NG(sL)/L.
The set of roots of G with respect to L contains a root system Σs, namely the set
of roots for which the associated Harish-Chandra µ-function has a zero on the orbit
Xnr(L) · σ. This induces a semi-direct decomposition

(4.1.1) W s =W (Σs)⋊R
s,

where W (Σs) is the Weyl group of Σs and Rs is the stabilizer in W s of the set of
positive roots. We have

(4.1.2) L1 =
⋂

χ∈Xnr(L)

ker(χ),

and we suppose that the restriction of σ to L1 is multiplicity free. By [59], there
exists a 2-cocycle

(4.1.3) ♮s : Rs ×R
s −→ C[Xnr(L) · σ]×,

such that we have a bijection

(4.1.4) Irrs(G) −→ Irr(H(G, s)),

where H(G, s) is the twisted extended affine Hecke algebra of the form

(4.1.5) H(G, s) := H(R, λ, λ∗, q)⋊C[Rs, ♮s].

4.2. Affine Hecke algebras and enhanced L-parameters. We denote byW ′
F :=

WF×SL2(C) theWeil-Deligne group of F and byG∨ the complex connected reductive
group with root datum dual to that of G. The results in [8], [9] apply to an arbitrary
group G, but, for the simplicity of the exposition, we suppose here that G is a pure
inner twist of an F -split group G∗.

A Langlands parameter – or L-parameter – is then a morphism ϕ : W ′
F → G∨ such

that

• ϕ|SL2(C) is morphism of algebraic groups,
• ϕ(w) is a semisimple element of G∨, for any w ∈WF .

Let ZG∨ denote the center of G∨.
For ϕ a given L-parameter, we define

(4.2.1) Sϕ := CG∨(ϕ(W ′
F )).

An enhanced L-parameter is a pair (ϕ, ρ) where ϕ is an L-parameter for G and
ρ ∈ Irr(Sϕ), with Sϕ := Sϕ/S

◦
ϕ. For ϕ a given L-parameter, the representation ρ

is called an enhancement of ϕ. We define an action of G∨ on the set of enhanced
L-parameters by:

(4.2.2) g · (ϕ, ρ) := (gϕg−1, gρ), for g ∈ G∨,

where gρ : h 7→ ρ(g−1hg). We denote by Φe set of G∨-conjugacy classes of enhanced
L-parameters, and by Φe(G) the subset formed by the ones that are relevant for G.
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By applying (4.2.1) to the restriction ϕ|WF
of ϕ to WF , we define the (possibly

disconnected) complex reductive group

(4.2.3) Gϕ := CG∨(ϕ(WF × {1})).
We denote by G◦

ϕ the identity component of Gϕ, and we set

• u = uϕ := ϕ (1, ( 1 1
0 1 )) (a unipotent element);

• AGϕ(uϕ) := π0(CGϕ(u)). We have Sϕ ≃ AGϕ(uϕ).

An enhanced L-parameter (ϕ, ρ) ∈ Φe is called cuspidal if the following properties
hold:

• ϕ is discrete (i.e., ϕ(W ′
F ) is not contained in any proper Levi subgroup of

G∨),
• (uϕ, ρ) is a cuspidal pair in Gϕ (see [40], and Remark 4.6, Definition 4.7 and
Definition 4.11 in [5]).

We denote by Φe,cusp(G) the set of G
∨-conjugacy of cuspidal enhanced L-parameters

for G.

Example 4.2.4. Let G = Sp2n(F ) and let ιG∨ : G∨ →֒ GL2n+1(C) be the standard
embedding. For every L-parameter ϕ for G, we define

(4.2.5) Iϕ := {τ ∈ Irr(WF ) : τ occurs in ιG∨ ◦ ϕ|WF
} .

We have Iϕ = IOϕ ⊔ ISϕ ⊔ IGL
ϕ , where IOϕ (resp. ISϕ) is the subset of Iϕ formed by

the representations that are orthogonal (resp. symplectic), and IGL
ϕ is the maximal

subset of Iϕ which is formed by representations τ that are not selfdual and satisfy
τ∨ ∈ IGL

ϕ for every τ ∈ IGL
ϕ . Hence, we have the following decomposition

(4.2.6) ιG∨ ◦ ϕ =
⊕

τ∈IOϕ

τ ⊠Mτ ⊕
⊕

τ∈ISϕ

τ ⊠Mτ ⊕
⊕

τ∈IGL
ϕ

(τ ⊕ τ∨)⊠Mτ

where Mτ is a multiplicity space of τ . Let mτ denote the dimension of Mτ . We have

(4.2.7) Gϕ ≃
∏

τ∈IOϕ

Spmτ
(C)×

∏

τ∈ISϕ

Omτ (C)×
∏

τ∈IGL
ϕ

GLmτ (C).

By [52], if the enhanced L-parameter (ϕ, ρ) is cuspidal, then we have

(4.2.8) mτ =





d2τ + dτ (with dτ ∈ Z≥0) if τ ∈ IOϕ
d2τ (with dτ ∈ Z>0) if τ ∈ ISϕ
1 if τ ∈ IGL

ϕ .

Let C ∈ U(G◦
ϕ) and let E irreduciblebe an G◦

ϕ-equivariant local system on C. By

[40], the IC-sheaf Fρ := IC(C, Eρ) occurs as a summand of iG
◦

L⊂P(IC(Ccusp, Ecusp)), for
some triple (P,L, (Ccusp, Ecusp)), where P is a parabolic subgroup of G◦ with Levi
subgroup L and (Ccusp, Ecusp) is a cuspidal unipotent pair in L. Moreover, the triple
(P,L, Ccusp, Ecusp) is unique up to G◦-conjugation.

Let ρ◦ ∈ Irr(AG◦(u)). The cuspidal support of (u, ρ◦), denoted by ScG
◦

(u, ρ◦), is
defined to be

(4.2.9) (L, (v, ρ◦cusp))G◦ , where v ∈ Ccusp and ρ◦cusp ↔ Ecusp.
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We set T := Z◦
L and M := CG(T ). The cuspidal support of (u, ρ) is a (well-defined)

triple (M, v, ρcusp)G , where ρ
◦
cusp occurs in the restriction of ρcusp to AG◦(u). The

cuspidal support of (ϕ, ρ) is defined to be

(4.2.10) Sc(ϕ, ρ) := (CLG(T ), (ϕv , ρcusp)).

Recall from Section 3.3.1 of [29] that the group of unramified characters of L is
naturally isomorphic to (ZL∨ ⋊ IF )

◦
WF

. We consider this as an object on the Galois
side of the local Langlands correspondence and we write

(4.2.11) Xnr(
LL) := (ZL∨⋊IF )

◦
WF

.

Given (ϕ, ρ) ∈ Φe(L) and z ∈ (ZL∨⋊IF )WF
, we define (z · ϕ, ρ) ∈ Φe(L) by

(4.2.12) z · ϕ := ϕ on IF × SL2(C) and (z · ϕ)(FrF ) := z̃ϕ(FrF ),

where z̃ ∈ (ZL∨⋊IF )WF
represents z.

An inertial equivalence class for Φe(G) is the G∨-conjugacy class s∨ of a pair
(LL, s∨L), where L is a Levi subgroup of G, LL = L∨ ⋊WF and s∨L is a Xnr(

LL)-orbit
in Φe,cusp(L).

The Bernstein series Φs∨

e (G) associated to s∨ ∈ B(G∨) is defined to be the fiber
of s∨ under the map Sc defined in (4.2.10). By [8], the set Φe(G) of G∨-conjugacy
classes of enhanced L-parameters for G is partitioned, analogously to (3.0.2), as

(4.2.13) Φe(G) =
∏

s∨∈B(G∨)

Φs∨(G).

In [9], we canonically associated an affine Hecke algebra (possibly extended with a

finite R-group) H(G∨, s∨) to every Bernstein series Φs∨

e (G) of enhanced Langlands
parameters for G. While we considered only the first case of (4.2.1), our construction
applies equally well to both the other cases. We showed that the simple modules
of this algebra are naturally in bijection with the elements of the Bernstein series
Φs∨

e (G) and that the set of central characters of the algebra is naturally in bijection
with the collection of cuspidal supports of these enhanced Langlands parameters.

We summerise the construction ofH(G∨, s∨). By applying (4.2.1) to the restriction
ϕ|IF of ϕ to the inertia group IF ⊂ WF , we define the (possibly disconnected)
complex reductive group

(4.2.14) Jϕ := CG∨(ϕ(IF × {1})).
Let R(J ◦,T ) be the set of α ∈ X∗(T )\{0} which appear in the adjoint action of T
on the Lie algebra of J ◦

ϕ . By Proposition 3.9 in [9], R(J ◦,T ) is a root system. We

denote byW ◦
s∨

its Weyl group. LetWs∨ := NG∨(s∨)/L∨. We haveWs∨ =W ◦
s∨
⋊Frs∨ ,

where
Frs∨ :=

{
w ∈Ws∨ : w(R(J ◦,T )+) ⊂ R(J ◦,T )+

}
.

We define a root datum

Rs∨ := (Rs∨ ,X
∗(Ts∨), R

∨
s∨ ,X∗(Ts∨)),

where Ts∨ ≃ s∨L and

Rs∨ = {mα α : α ∈ R(J ◦,T )red ⊂ X∗(Ts∨)} ,
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with mα ∈ Z>0. The group Ws∨ acts on Rs∨ . In [9] we defined Ws∨-invariant
functions

(4.2.15) λ : ms∨ → Q>0 and λ∗ : {mαα ∈ ms∨ : mαα ∈ 2X∗(Ts∨)} → Q.

We choose semisimple subgroups Ji ⊂ J ◦, normalized by NG(s), such that the
derived group J ◦

der is the almost direct product of the Ji, and the multiplication
map

(4.2.16) mJ ◦ : Z◦
J ◦ × J1 × · · · × Jd → J ◦

is a surjective group homomorphism with finite central kernel. It induces a decom-
position

(4.2.17) Lie(J ) = ZLie(J ◦) ⊕ Lie(J1)⊕ · · · ⊕ Lie(Jd).
We obtain an orthogonal, Ws∨-stable decomposition

(4.2.18) R(J ◦,T ) = m1 ⊔ · · · ⊔md, where mi := R(Ji,Ji ∩ T ).

We let ~r := (m1, . . . ,md) be an array of variables, corresponding to (4.2.16) in the
sense that mi is relevant for Ji and mi only. We have

(4.2.19) H(G∨, s∨) = H(R, λ, λ∗, ~r)⋊C[Rs∨ , ♮s
∨

],

where H(R, λ, λ∗, ~r) is a generalized version (with d indeterminates) of the algebras

considered in §4 and ♮s
∨

: Rs∨ ×Rs∨ → C× is 2-cocycle. The cocycle is trivial when
G is an inner twist of GLn(F ), a pure inner twist. of a quasi-split classical group or
of the group GSpinn(F ) (see [9], [10]), and when G is the exceptional group of type
G2 (see [12]).

5. Howe correspondence

5.1. A correspondence between Hecke algebras of p-adic groups. We will
consider here only the case of dual pairs formed by a p-adic symplectic group and a p-
adic orthogonal group of even dimension. The other cases can be treated in a similar
way. Let n and n′ be two fixed non-negative integers, and let Wn be a symplectic
space of (even) dimension 2n over F . The corresponding group of isometries is the
symplectic group Gn := Sp(Wn). Let Vn′ be a quadratic space of dimension 2n′

over F (i.e., a space endowed with a non-degenerate symmetric F -bilinear form).

We denote by ηn′ the character of F× associated to F (
√
∆n′)/F , where ∆n′ is the

discriminant of the form. The orthogonal group G′
n′ := O(Vn′) is the corresponding

group of isometries, and (Gn, G
′
n′) is a dual pair in Sp(W2nn′). Fixing a non-trivial

additive character ψ of F , we obtain the so-called Weil representation ω of the
metaplectic cover Mp(W2nn′) of SpW2nn′

. We can define a splitting Gn × G′
n′ →

Mp(W2nn′) (see [36]). By means of this splitting we obtain a Weil representation of
Gn ×G′

n′ . which we denote ωn,n′.
For every π ∈ Irr(Gn), the maximal π-isotypic quotient of ωn,n′ is of the form

π⊗Θn′(π), where Θn′(π) is a smooth representation of G′
n′ , called the full theta lift

of π to Wn′ . The representation Θn′(π), when non-zero, has a unique irreducible
quotient, denoted by θn′(π), which is called the small theta lift of π. Similarly, if
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π′ ∈ Irr(G′
n′), the maximal π′-isotypic quotient of ωn,n′ is of the form Θn(π

′) ⊗ π′,
where Θn(π

′) is a smooth representation of Gn, called the full theta lift of π′ to
Vn. The representation Θn(π

′), when non-zero, has a unique irreducible quotient,
denoted θn(π

′), which is called the small theta lift of π′. These statements were
first formulated by Howe in [33], and were proved by Waldspurger in [60] when the
residual characteristic of F is odd, and by Gan and Takeda [26] in general.

We have Vn′ = V an ⊕ Hn′

, where V an is an anisotropic F -vector subspace, and
H is the hyperbolic plane. For m′ ≥ 0, let Vm′ := V an ⊕ Hm′

. The collections
T := {Wm : m ≥ 0} and T′ := {Vm′ : m′ ≥ 0} are called Witt tower of vector spaces.
One can then consider a tower of the theta correspondence associated to the tower
of reductive dual pairs (Gn, G

′
m′)m′≥0. For an irreducible smooth representation π of

Gn, we thus have the representation θm′(π). The smallest non-negative integer n′min
such that θn′

min
(π) 6= 0 is called the first occurrence index of π for the Witt tower T′,

and the representation θ0(π) := θn′

min
(π) is called the first occurrence of π for this

Witt tower. Similarly, one can then consider a tower of the theta correspondence
associated to the tower of reductive dual pairs (Gm, G

′
n′)r≥0. For an irreducible

smooth representation π′ of G′
n, we have the representation θm′(π). The smallest

non-negative integer n′min such that θnmin
(π′) 6= 0 is called the first occurrence index

of π′ for the Witt tower T, and the representation θ0(π′) := θnmin
(π) is called the

first occurrence of π′ for this Witt tower. By Chapter 3 in [49], such n′min and nmin

exist and n′min ≤ n′ and nmin ≤ n. Moreover, we have Θm′(π) 6= 0 for any m′ ≥ n′min
and Θm(π

′) 6= 0 for any m ≥ nmin. By Theorem 2.5 in [35] (see also Chapter 3
in [49]), if the representation π is supercuspidal then Θn′

min
(π) is irreducible (and

thus is equal to θn′

min
(π)) and supercuspidal. Similarly, if π′ is supercuspidal then

Θnmin
(π′) is irreducible (and thus is equal to θnmin

(π′)) and supercuspidal.
A Levi subgroup Ln of a parabolic subgroup Pn of Gn is isomorphic to Gn0 ×

GLn1(F ) × · · · × GLnr(F ), where n0 + n1 + · · · + nr = n, and any π ∈ Irr(Gn)
is isomorphic to a subquotient of the parabolic induced representation iLn,Pn(σ)
where σ ∈ Irrsc(Ln). We have σ ≃ πn′

0
⊗ τ1 ⊗ · · · ⊗ τr, where πn′

0
∈ Irrsc(G

′
n′

0
) and

τi ∈ Irrsc(GLmi
(F )) for 1 ≤ i ≤ r. A Levi subgroup L′

n′ of a parabolic subgroup P ′
n′

of G′
n′ is isomorphic to G′

n′

0
×GLn′

1
(F )×· · ·×GLn′

r′
(F ), where n′0+n

′
1+ · · ·+n′r′ = n′

and any π′ ∈ Irr(G′
n) is isomorphic to a subquotient of the representation iL′

n,P
′
n
(σ′),

where σ′ ≃ π′n′

0
⊗ τ ′1 ⊗ · · · ⊗ τ ′r′ ∈ Irrsc(L

′
n′) such that π′n′

0
∈ Irrsc(G

′
n′

0
) and τ ′j ∈

Irrsc(GLn′

j
(F )) for 1 ≤ j ≤ r′. The Gn-conjugacy class (Ln, σ)Gn of the pair (Ln, σ)

is uniquely determined by π, is called the supercuspidal support of π, and denoted by
Sc(π). Similarly, the G′

n′-conjugacy class of the pair (L′
n′ , σ′n′) is uniquely determined

by π′, is called the supercuspidal support of π′, and denoted by Sc(π′). We set

(5.1.1) n := n− n0 n′ := n′ − n′0, d := n− n′, and d0 := n0 − n′0.

By [35], if Θn′(π) 6= {0} and π′ := θn′(π), then

(1) if n′ ≤ n, the supercuspidal support of π′ is
(
L′
n′ , π′n′

0
⊗ η−1

n′ τ1 ⊗ · · · ⊗ η−1
n′ τℓ ⊗ νd−1

F ⊗ νd−2
F ⊗ · · · ⊗ νd0F

)
G′

n′

,
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where π′n′

0
:= θ0(πn0).

(2) if n′ ≥ n, the supercuspidal support of π is
(
Ln, πn0 ⊗ ηn′τ ′1 ⊗ · · · ⊗ ηn′τ ′r′ ⊗ ηn′ν−d−1

F ⊗ ηn′ν−d−2
F ⊗ · · · ⊗ ηn′ν−d0F

)
Gn

.

where πn0 := θ0(π′n′

0
).

Let L ∈ {Ln, L′
n′}. Recall that a character of L is said to be unramified if it

is trivial on all the compact subgroups of L. We denote by Xnr(L) the group of
unramified characters of L.

Proposition 5.1.2. For any π ∈ Irrs(Gn), where s = [Ln, σ]Gn , we have θn′(π) ∈
Irrθ(s)(Gn), where

(5.1.3) θ(s) := [L′
n′ , σ′]G′

n′
.

Proof. Let π ∈ Irrs(Gn), where s = [Ln, σ]Gn and π′ := θn′(π). Thus, we have
Sc(θn′(π)) = (L′

n′ , σ′)G′

n′
. We set s′ := [L′

n′ , σ′]G′

n′
. Let χ ∈ Xnr(Ln), and let

πχ ∈ Irr(Gn) such that Sc(πχ) = (Ln, χ ⊗ σ)Gn . The character χ has the following
form: χ = triv⊗ χ1 ⊗ · · · ⊗ χr, where χi ∈ Xnr(GLni

(F )) for 1 ≤ i ≤ r. By applying
the previous formula (case (1)) to the representation πχ we see that, if n′ ≤ n, then
the supercuspidal support of θn′(πχ) is(

L′
n′ , π′n′

0
⊗ χ1η

−1
n′ τ1 ⊗ · · · ⊗ χrη

−1
n′ τr ⊗ νn

′−n
F ⊗ · · · ⊗ νn

′−n−1
F

)
G′

n′

= (L′
n′ , (χ⊗ triv⊗ · · · ⊗ triv︸ ︷︷ ︸

n0 − n′

0 times

)⊗ σ′)G′

n′
.

The character χ⊗ triv⊗(n0−n′

0) of L′
n′ being unramified, we have θn′(πχ) ∈ Irrs

′

(G′
n′).

Since every representation in Irrs(Gn) is of the form πχ for some χ ∈ Xnr(Ln), we
get

θn′(Irrs(Gn)) ⊂ Irrs
′

(G′
n′).

On the other hand, if n′ ≥ n, by definition of the representation πχ its supercuspidal
support is (Ln, χ⊗ σ)Gn , hence, by the formula (case (2)) applied to π, it equals

(
Ln, πn0 ⊗ ηn′χ1τ

′
1 ⊗ · · · ⊗ ηn′χr′τ

′
r′ ⊗ ηn′νn

′−n
F ⊗ · · · ⊗ ηn′νm−n−1

F

)
Gn

.

Thus, by applying the formula (case (2)) to πχ, we get

Sc(θn′(πχ)) = (L′
n′ , π′n′

0
⊗ χ1τ

′
1 ⊗ · · · ⊗ χr′τ

′
r′)G′

n′
= (L′

n′ , χ′ ⊗ σ′)G′

n′
,

where χ′ := triv⊗ χ1 ⊗ · · · ⊗ χr′ ∈ Xnr(L
′
n′). Hence, θn′(πχ) ∈ Irrs

′

(G′
n′). �

Theorem 5.1.4. For every s ∈ B(G), the Howe correspondence π 7→ θn′(π) for the

reductive dual pair (Gn, G
′
n′) induces a correspondence E 7→ θ(E) between subsets of

simple modules of the extended affine Hecke algebras H(Gn, s) and H(G′
n′ , θ(s)).

Proof. By [31], the algebras H(Gn, s) for any s ∈ B(Gn) and H(G′
n′ , s′) for any

s′ ∈ B(G′
n′) are extended affine Hecke algebras (that is, the 2-cocycles are trivial

in the case of classical groups). Then the result follows from the combination of
Proposition 5.1.2 with (3.0.2). �
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5.2. A correspondence between completions of Hecke algebras. To study
representations of G it is often useful to consider various group algebras of G. There
is the Hecke algebra H(G), defined to be the convolution algebra of locally constant,
compactly supported functions f : G → C. The category R(G) is equivalent to
the category of of nondegenerate H(G)-modules. By letting G act on H(G) by left
translation, we obtain from (3.0.1) a decomposition

(5.2.1) H(G) =
⊕

s∈B(G)

H(G)s,

with H(G)s ∈ Rs(G). The spaces H(G)s are two-sided ideals of H(G).
From the point of view of noncommutative geometry, for the study of tempered

representations of G, it is interesting to use the reduced C∗-algebra C∗
r (G), whose

spectrum coincides with the tempered dual Irrt(G) of G. Analogously, we have the
following decomposition of C∗

r (G):

(5.2.2) C∗
r (G) =

⊕

s∈B(G)

C∗
r (G)

s.

Theorem 5.2.3. We suppose that n′ = n or n′ = n + 1. Then the theta corre-

spondence π 7→ θn′(π) for the reductive dual pair (Gn, G
′
n′) induces a correspondence

between subsets of simple modules of C∗
r (G)

s and C∗
r (G)

θ(s).

Proof. By Theorem 1.2 in [23], if π ∈ Irrt(Gn), then θn′(π) ∈ Irrt(G′
n′). On the other

hand, by Theorem 6.2 in [58], when G is Gn or G′
n′ , then C∗

r (G)
s is Morita equivalent

to the reduced C∗-completion of H(G, s) for each s ∈ B(G). Thus, the result follows
from Theorem 5.1.4. �

Remark 5.2.4. Mesland and Şengün already observed in [46] that certain cases of
the theta correspondence can be described by using objects of C∗-algebraic nature.
More precisely, they constructed Hilbert C∗-bimodules over C∗-algebras of groups
in equal rank dual pairs and showed that the Rieffel induction functors implemented
by these modules coincide with the theta correspondence.

5.3. The Howe correspondence for depth-zero representations. In [54], Pan
proved that the theta correspondence preserves depth zero representations for type
I reductive dual pairs (G,G′) over p-adic fields of odd residual characteristic and
is compatible with the theta correspondence for finite reductive dual pairs in the
following sense. Let (π,V) be a depth-zero representation of G. There exists a
point x of B(G, F ) such that π has non-zero invariant vectors under Gx,0+ and
an irreducible cuspidal representation πx of Gx,0 which is contained in VGx,0+ . If
(π′,V ′) ∈ Irr(G′) corresponds to (π,V) via the theta correspondence, then there exists
a point x′ of B(G′, F ) such that π′ has non-zero invariant vectors under G′

x′,0+ and

an irreducible cuspidal representation πx′ of G
′
x′,0 which is contained in VG

′

x′,0+ , and
the representation πx′ corresponds to πx via the theta correspondence for reductive
dual pair (Gx,0,G

′
x′,0) over kF .

5.4. The Howe correspondence for supercuspidal representations.
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5.4.1. The Howe correspondence for positive-depth supercuspidal representations. Loke
and Ma gave in [38] a description of the local theta correspondence between tame
supercuspidal representations in terms of the supercuspidal data. Tame supercusp-
idal representations were constructed in [61]. Let D(Gn′) (resp. D(G′

n′)) be a set
of supercuspidal data for Gn (resp. G′

n′). For a given supercuspidal Yu datum Σ,
let [πΣ] denote the isomorphism class of the supercuspidal representation attached
to Σ. In [30] an equivalence relation ∼ on D(Gn) was defined so that the map from
D(Gn) := D(Gn)/ ∼ to Irrsc(Gn) given by [Σ] 7→ [πΣ] is a bijection. We set

DT :=
⋃

n

D(Gn).

Using the moment maps and theta correspondences over finite fields, a theta lift for

supercuspidal data was defined in [38]. It is a map

(5.4.1) ϑn′,T′ : D(Gn′) →֒ DT′ .

Suppose that Σ ∈ D(Gn) and [Σ′] := ϑn,T′([Σ]) ∈ Dn′(G′) for some n′. By [38],
we have θn(πΣ) = π′Σ′ , and, conversely, if π and π′ are irreducible supercuspidal
representations of Gn and G′

n′ , respectively, then there exists Σ ∈ D(Gn) such that
π = πΣ and π′ = π′Σ′ , where [Σ′] := ϑn′,T′([Σ]).

5.5. A correspondence between Hecke algebras for enhanced L-parameters.

Let s = [Ln, σ]Gn ∈ B(Gn). When F has characteristic zero, a local Langlands cor-
respondence σ 7→ (ϕσ , ρσ) is available via endoscopy, due to Arthur and Mœglin
(see [2] and [48]). By [27], this result extends to the case where F has positive
characteristic.

We set

(5.5.1) s
∨ := [L∨

n , (ϕσ , ρσ)]G∨
n
.

By [9], for G ∈ {Gn, G′
n′}, the algebra H(G, s) is canonically isomorphic to the alge-

braH(G∨, s∨). Thus, by Theorem 5.1.4, the Howe correspondence π 7→ θn′(π) for the
reductive dual pair (Gn, G

′
n′) induces a correspondence E 7→ θ(E) between subsets of

simple modules of the extended affine Hecke algebras H(G∨
n , s

∨) and H(G′∨
n′ , θ(s)∨),

and hence a correspondence

(5.5.2) (ϕ, ρ) 7→ (θn′(ϕ), θn′(ρ))

between subsets of the series Φs∨

e (Gn) and Φ
θ(s)∨
e (G′

n′).
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tions”, Ann. Sci. Éc. Norm. Supér. (4) 51 (2018), no.4, 927–991.
[39] G. Lusztig, Characters of reductive groups over a finite field, Ann. Math. Stud., Princeton,

1984.
[40] G. Lusztig, “Intersection cohomology complexes on a reductive group”, Invent. Math. 75.2

(1984), 205–272.
[41] G. Lusztig, “On the representations of reductive groups with disconnected centre”,
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[49] C. Mœglin, M.-F. Vignéras, and J.-L. Waldspurger, Correspondances de Howe sur un corps

p-adique, Lecture Notes in Math. 1291, Springer.

[50] L. Morris, “Tamely ramified supercuspidal representations”, Ann. scien. Éc. Norm. Sup. 4e
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