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CORRESPONDENCES BETWEEN AFFINE HECKE ALGEBRAS

AND APPLICATIONS

ANNE-MARIE AUBERT

ABSTRACT. We review the construction of generalized affine Hecke algebras at-
tached to Bernstein series of both smooth irreducible and enhanced L-parameters
of p-adic reductive groups and apply it to the study of the Howe correspondence.
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1. INTRODUCTION

Affine Hecke algebras are known to be very useful to describe the smooth complex

Date: September 10, 2024.

representations of reductive p-adic groups, in terms of the supercuspidal representa-
tions of their Levi subgroups. Their use in the classification of smooth irreducible
representations started with the seminal papers of Kazhdan and Lusztig [34] for
Iwahori-spherical representations and of Lusztig [43], [44] for unipotent representa-
tions.
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For G a p-adic group, the theory of the Bernstein Center of [15] provides a decom-
position of the category R(G) of smooth representations of G as the direct product
of a family of full subcategories R°(G), that are called Bernstein blocks. Here s is
the equivalence class of a pair (L, o), where L is a Levi subgroup of G and o is an
irreducible supercuspidal representation of L (see §3l for more details). By [31], if G
is symplectic group or an orthogonal group, each Bernstein block is Morita equiv-
alent to the category of modules of an extended affine Hecke algebra H(G,s), that
is, the crossed product of an affine Hecke algebra by the group algebra of a finite
group. By [B9], for G an arbitrary p-adic group, and every s = [L, 0|g such that the
restriction of o to L' is multiplicity free, where L' is the subgroup of L generated
by all its compact its subgroups, the Bernstein block $R°(G) is Morita equivalent to
the category of modules of an algebra H(G,s), which is the crossed product of an
affine Hecke algebra by a (2-cocycle) twisted group algebra of a finite group.

In recent works, we showed that affine Hecke algebras play a similar role on the
Galois side of the local Langlands correspondence. In [§], we introduced a notion
of cuspidality for enhanced Langlands parameters for G, which conjecturally puts
irreducible supercuspidal representations of GG in bijection with such enhanced L-
parameters. We also define cuspidal support maps and Bernstein series for enhanced
L-parameters, in analogy with Bernstein’s theory of representations of p-adic groups.
In [9], to every Bernstein series %' (G) of enhanced Langlands parameters for G we
canonically associated an affine Hecke algebra H(GV,s"), again possibly extended by
the twisted group algebra of a finite group. We proved that the simple modules of this
algebra are naturally in bijection with the members of the Bernstein series, and that
the set of central characters of the algebra is naturally in bijection with the collection
of cuspidal supports of these enhanced Langlands parameters. These bijections send
tempered or (essentially) square-integrable representations to the expected kind of
Langlands parameters.

Furthermore, in [9] and [10], we proved that for many reductive p-adic groups (in
particular for classical groups), if a Bernstein series Irr(R°(G)) for G corresponds
to a Bernstein series <I>sev (G) of enhanced Langlands parameters for G via the lo-
cal Langlands correspondence, then the algebras H(G,s) and H(G",s") are Morita
equivalent.

We review the construction of these algebras, and explain how these results can
be apply to describe the theta correspondence for p-adic groups. The theory of this
correspondence, also known as the Howe correspondence, was initiated by Roger
Howe and builds upon the work of Weil in a representation theoretic treatment:
a key role in the theory is played by the Weil representation (so-called, oscillator
representation), a representation of a non-linear-algebraic group (the metaplectic
group), described notably in [I1]. It turned out that this correspondence has many
important uses in local representation theory. Furthermore, its global counterpart
(which agrees with local theta correspondence locally) provides one of a very few
direct ways to explicitly construct automorphic forms.

We describe some of the recent results on the description of the Howe correspon-
dence over both finite fields and non-archimedean local fields. For (G,,G’,) an
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irreducible reductive dual pair, formed of a p-adic symplectic group Sp,,, (F') and a
p-adic orthogonal group Og,/(F'), we show in Theorem [5.1.4] that the compatibility
the Howe correspondence with parabolic induction leads to a collection of corre-
spondences between simple modules of algebras H (G, s) and H(G',,s'), where s’ is
explicitely described in term of 5. We consider in particular the case of tempered rep-
resentations and derive in Theorem [5.2.3]a correspondence at the level of C*-algebras
whenn'=norn' =n+1.

The study of the Howe correspondence has been also heavily influenced by the re-
cent developments in the framework of the Langlands program, so that new results
are formulated in this spirit (see notably [3], [25], and [24]). As a consequence of our
results, we show that the Howe correspondence induces a collection of correspon-
dences between simple modules of the algebras H(Gy,,s") and H(G.7,s") attached
to Bernstein series of enhanced L-parameters of G, and G/, respectively. We studied
in [4] the case where s = [T, triv]q, (with 7" a maximal torus in G and triv the trivial
character of T') and n’ € {n,n + 1}, via the Kazhdan-Lusztig parametrization of the
simple modules of H(Gy,s) and H(G),,s") (in this case, we have s’ = [T",triv]¢,
where 7" is a maximal torus in G'). !

We thank the anonymous referee for helpful suggestions that allowed to improve
the readability of the paper.

2. REPRESENTATIONS OF FINITE REDUCTIVE GROUPS

Let k be a finite field and let k be a fixed algebraic closure of k. Let G be a
connected reductive algebraic group defined over k, and let G = G(k) denote the
group of the k-rational points of G. The usual scalar product (, )g on the space of
class functions on G is defined by

(2.0.1) (f1, fo)e = IGI7 Y filg) fa(g)-

geG

Let Irr(G) be the set of equivalence classes of irreducible representations of G. For
m € Irr(G), we will also write 7 for its character. By Corollary 7.7 of [20], for any
7 € Irr(G), there exists a k-rational maximal torus T of G and a character 6 of T such

that m occurs in the Deligne-Lusztig virtual character R%(H), i.e., (m, R%(H))G # 0.

Deligne and Lusztig introduced in [20] the following two regularity conditions: a
character 6 of T is said to be

e in general position if its stabilizer in (Ng(T)/T)(k) is trivial,
e non-singular if it is not orthogonal to any coroot.

If the center of G is connected, then 6 is non-singular if and only if it is in general
position (see Proposition 5.16 in [20]).

We denote by GV the reductive connected group with root datum dual to that of
G. The G-conjugacy classes of pairs (T, #) as above are in one-to-one correspondence
with the GV-conjugacy classes of pairs (T, s) where TV is a k-rational maximal torus
of GV and s is a semisimple element of G belonging to TV.
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The Lusztig series £(G, s) is defined to be the set
{7? € Irr(G): (m, R%(@))G # 0, where (T, #)g corresponds to (T, S)Gv} .
The set Irr(G) decomposes into a disjoint union

(2.0.2) Ir(G) = | |&(G, s),
(s)

where (s) runs over the GV-conjugacy classes of semisimple elements of GY. If 6 is
the trivial character of T, then the representation 7 is called unipotent. By definition,
E(G, 1) is the subset of unipotent representations in Irr(G). We denote by G"(s) the
centralizer of s in G", and by GV (s) the group of k-rational points of GY(s).

Remark 2.0.3. If 7 € £(G,s) and G"(s) is a torus, then ™ = j:R%(H) with 6 in
general position (see Lemma 3.6.9 in [13]).

If the center of G" is connected then the group G"(s) is always connected. How-
ever, in general it may be disconnected, and we extend the notion of Deligne-Lusztig
character as follows. We denote by G"(s)° the identity component of G (s), and by
GY(s)° the group of k-rational points of GV (s)°. For T" a k-rational maximal torus
of GY(s)° and 6 a character of TV, we set
(2.0.4) 5 9(0Y) = mdg, ). (RS " (0%)),

We define £(GV(s),1) to be the set of irreducible constituents of R%v (S)(l).

By Theorem 4.23 of [39] when the center of G is connected, and by §12 of [4]
in general, there is a bijection

(2.0.5) E(G,s) =5 £((GY(s),1), mw> 7"
The bijection (Z.0.5]) satisfies the following properties:

(1) It sends a Deligne-Lusztig character R%(H) in G (up to a sign) to a Deligne-

\
Lusztig character R%\/ ®)

§12 of [A1]).
(2) It preserves cuspidality in the following sense: if s € GV, and £(G, s) contains
a cuspidal representation m., then
(a) the largest k-split torus in the center of G"(s) coincides with the largest
k-split torus in the center of G (see (8.4.5) of [39]),
(b) the unipotent representation 72 is cuspidal.
(3) The dimension of every representation w € £(G, s) is given by
: ‘G‘p' : u
(2.0.6) dim(m) = OO dim(7"),
where |G|, is the largest prime-to-p factor of the order of G (see Remark 13.24
of [21]).

(1), where 1 denotes the trivial character of T" (see
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2.1. Centralizers of semisimple elements in classical groups. Let G be a
classical group of rank n over k, i.e., G is a symplectic group, a special orthogonal
group or an orthogonal group. Let T,, ~ kE“x---xk" be a k-rational maximal torus
of G. For s = (\1,...,\,) € Ty, we denote by vy(s) the number of the \;’s which
are equal to \, and by ()\) the set of all roots in k of the irreducible polynomial of A
over k. By §1.B of [7], the centralizer Cg(s) of s in G decomposes as a product

(2.1.1) Co(s)=  JI  Cus.

)

where Gy,(s) is a reductive quasi-simple group of rank equal to vx(s) - [(A)|. The
followings hold:
(i) if G = Spy,, then G4(s) ~ Spy,, () and G_1(s) = Spy,,_, (s
(ii) if G = SOz2n+1, then Gy(s) 22 SOgy,(s)+1 and G_;(s) = Oiil(s),
(iii) If G = O3, then G,(s) ~ 03,y and G_;(s) = Oy, o,
(iv) If G = Uy or if A # =£1, then G(y)(s) is either a general linear group or a
unitary group.

We set
(2.1.2) Gu(s) = 11 Gy (s).

()‘>C{)‘17---7)\m},)\7é:|:1

By (211I), we have
(2.1.3) Cgv(s) =Gy (s)” x G_y(s) x Gyu(s),
and hence a bijection

(2.1.4) S(C«;;]gs),l) : E(G1(s)Y,1) ifg%_lli%%x E(Gx(s),1)

We obtain a one-to-one correspondence

Lz EG,s) — E(Gi(s)Y,1) x E(G_1(s),1) x E(Gx(s),1)

(2.1.5) - s A @l .
1 -1 #

2.2. The Howe correspondence over finite fields. We suppose that the char-
acteristic of k£ is odd. Let IV be a positive integer, and let W be a vector space over
k of dimension 2N, equipped with a nondegenerate alternated bilinear form (, ). A
pair of reductive subgroups of Sp(W) = Spyx(k), where each one is the centralizer
of the other, is called reductive dual pair. We study irreducible dual pairs, because
these are the building blocks of all the others. Such pairs are of the following kinds:

o pairs of type I:
— (Span(k), Ons(K)) with nN" = N;
— (Up(k), Uy (k) with nn’ = 2N;

o pairs of type II:
— (GL,(k), GL,/ (k)) with nn’ = 2N.
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A reductive dual pair (G,G’) is said to be in the stable range (with G’ smaller)
if the defining vector space for G has a totally isotropic subspace of dimension
greater or equal than the dimension the defining vector space for G/, e.g. the pairs
(Spay, (), Ogps (k) such that n > 2n/.

Howe introduced a correspondence O, ,/: R(G,) — R(G,) between the cate-
gories of complex representations of these subgroups. It is obtained from a particular
representation of Spyy(k), called the Weil (or oscillator) representation. In order
to define this representation, we must introduce the Heisenberg group. This is the
group with underlying set H(W) =W X k and product

(2.2.1) (wi,t1) - (we,t2) = <w1 + wo,t1 + 12 + %(wl,w2>> .
Let ¢ be an irreducible representation of H(W). Its restriction to the center Z gy =~
k of H(W) equals 1),, for a certain character 1, of k.

By the Stone-von-Neumann Theorem (see Theorem 2.1.2 in [49]), for any non-
trivial character ¢ of Zyy there exists (up to equivalence) a unique irreducible
representation ¢ of H(W) such that ¢, = 1. This representation is known as the
Heisenberg representation. It depends on 1, so we denote it by 0.

The natural action of Sp(W) on H (W) fixes the elements of its center. Hence,
for a fixed character ¢ of k, the representations g, and g - oy agree on Zgyy), for
any g € Sp(W). The Stone-von-Neumann Theorem implies that there is an operator

wy(g) verifying
(2:2.2) 00 (g - w,t) = wy(g) oy (w, thwy(g) "

This defines a projective representation wy, of Sp(W), which can be lifted to an actual
representation of Sp(W), known as the Weil representation.
The restriction of wy, of Spyy (k) to G, x G, is

(2.2.3) WG, G, = Z My 7 ® 7, where my o € Z>.
" welrr(G)
! €lrr(G/)
Define ©,,: Z Irr(G,) — Z Irr(G,) by
(2.2.4) Oy (m) :={7' € Irr(G},) : my v #0}, for 7 € Irx(Gy).

The occurrence of a irreducible representation 7 of G,, in the Howe correspondence
for (Gy, Gy, ) with n minimal (i.e., such that B¢, () = 0 for any n' < nl) is
referred to as the first occurrence.

2.2.1. The Howe correspondence for unipotent representations. Between members of
a dual pair, the only ones having cuspidal unipotent representations are: GLj(k),
SPa(a2+a(k); Uw2yay/2(k) (which have a unique such representation, say 7,), and
Os,2 (k) (which has two: 7! and 7! = 7] @ sign).

From now on, we will only consider pairs formed by a symplectic group Sps,, (k)
and an orthogonal group O, (k), where e € {£}, with O ,(k) split and O, ,(k)
nonsplit. The following results were established in [I]:
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(1) if 7 is a cuspidal irreducible representation of G, = Spy,(k), then ©,, (7) is
a singleton {7’} with 7’ cuspidal irreducible,

(2) if 7 € Irr(Gy,) is unipotent then any 7’ € ©,, () is unipotent

(3) the representation 7, of Spy(42.4)(k) corresponds to 71 if € is the sign of

(—=1)® and to 7., otherwise.

Thus, the Howe correspondence between cuspidal unipotent representations is de-
scribe by the function 6: N — N, defined by

0(a) = {a if € is the sign of (—1)

(2.2.5) .
a+1 otherwise.

By [7], the Howe correspondence for unipotent representations of the dual pair
(Span(k), OS5, (k)) induces a correspondence between the parabolically induced repre-

n (k) n/( )
sentations 18113;2+ )(k)®T(Ta®1) and i,? ST (Té(a)@)l), where Té(a) € {Tel(a T;% )}

and T, T" are products of GL1(k)’s.

It induces a correspondence between the endomorphism algebras of these parabol-
ically induced representations, and hence a correspondence {1y, n: between irre-
ducible representations of Weyl groups of types By, and By, where N, :=n— a’—a
and N! :=n — 0(a)%

The following conjectural explicit description of Qn, nv for pairs (Spy, (k), 05,/ (k))
was formulated in [7], and confirmed in [55], and in [45], independently.

Let us introduce first some definitions and notation: X := (A > Ao > -+- > )\))
where \; € Z>g is called a partition of n if |A| := A\; + Ao + -+ - + X\ = n. We write
A 4 n. We denote by P(n) set of partitions of n, and we write AU p for the partition
of n+m with parts A1, ..., A;, 1, .- ., ;. The usual order on partitions is defined by

A<\ if and only if )\1—1—---+)\Z~§)\1+---—|—)\;, for all 7+ € N.

We define another order on partitions as follows: for A, A partitions of possibly
different integers, we write

(2.2.6) A=) ifandonly if A, <X\ <\, forallieN.

It says that A\ < X if the Young diagram of \ is contained in the one of \' and that
we can go from the first to the second by adding at most one box per column. For
instance, the partitions A = (4,1,1) of 6, and X' = (4,4,1,1) of 10 verify A < X. We
observe that if two partitions A = (A; > Ay > -+ > )\l) and N =\ > X >0 >
Ar) satisfy A < X and |A| = |\, then we have )\ = X. Indeed, by (220, we have
1<, and

A = ZA <ZX A= (Ng1 + -+ ),

thus, ' =1 and \; = \] foralhe{l,..., }.

Irreducible characters of a Weyl group of type B,, or C,, are known to be parametrized
by bipartitions of n (see for instance [19]). We denote by x¢, the irreducible char-
acter which corresponds to the bipartition (£,7n) of n.
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In the rest of this section we consider pairs (Sp,, (k), OS,,(k)) in the stable range
(i.e., such that that n > 2n/). We write N,(¢) := N, — || if ¢ is a partition such
that |¢| < N,. Then we have:

(1) Cases (Spyy, O3 /) with a even and (Spy,, O,,,) with a odd:

min(Ng,N/,

)
Oy = Y. DD Xen @ Xews

r=0 " (§&0)€P(r) n'

where the third sum is over the partitions n 4 N,(£) and ' 4 N/(§) such
that ( <npand ( <X 7/.
(2) Cases (Spyy, O /) with a odd and (Sp,,, OF ,) with a even:

Qn, N2 = Z Z Z Xe'n @ Xe s

r=0 " (§0)eP(r) &'’

where the third sum is over the partitions & - N,(n) and n' 4 N/ (&) such
that £ < ¢ and n < 7/.

In general, there exist representations m € Irr(G) such that ©,,(7) contains more
than one element. Hence, one may wonder if it would be possible to extract a one-
to-one correspondence. Several approaches to this questions were considered:

e definition of the eta correspondence for dual pairs (Spy, (k), Ons(k)) in the
stable range in [28],

e construction of a one-to-one correspondence for unipotent representations of
pairs of type I and of pairs in the stable range of the form (0%, (k), Spo(a2-ya+ 3y (K))
or (Sp2(a2+a+2)(k)7 §a2+N(k)) [6]7

e construction of a one-to-one theta correspondence for unipotent representa-
tions of irreducible pairs of type I in the stable range in [22],

e extension of both eta and theta correspondences to all irreducible pairs of
type I in [57].

Let (¢,1') € Pa(N}). We set

(2.2.7) Opr 1= {Xfﬂi : Xen @ Xeray OCCurs in QNa,N[l}-

Recall that a partition is called symplectic if each odd part appears with even mul-
tiplicity. There is a bijection between symplectic partitions of 2n and unipotent
conjugacy classes of G,, = Spy, (k). We denote by O, the unipotent class associated
to the symplectic partition A\. The Springer correspondence maps x¢, to a pair
(Ox, p) for some irreducible character p of Cg (u)/Cg  (u)°, where u € Oy. In this

situation we write A¢, = A.
Definition 2.2.8. We say that x¢ .. nma € Oy is mazimal if
/\5,77 é Afmaxﬂ?max fOI' a“ll (777 g) € @5/,7’],‘

Remark 2.2.9. Since the order is not total, it is not clear a priori that a maximal
representation exists, and if so, that it is unique.
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Definition 2.2.10. We say that x¢ . n.. € O,y is minimal if
)\gminvnmin S /\5777 fOl“ all (777 g) S 66/777,'

A representation is said to be extremal if it is either maximal or minimal.

Let (€,7') € P2(Ng)- By [22,
(1) there exists a unique maximal representation X¢, .. mme € ¢y it is given
by

Emax = 5/ and  Mypax 1= (Na - N; + 77/1 + 77577737 ce 777;)'

(2) there exists a unique minimal representation x¢, .. ». . € Og v, it is given by
/ ! /
Emin ==& and  Nmin 1= (Na_Na)UTI'
3. SMOOTH REPRESENTATIONS OF p-ADIC REDUCTIVE GROUPS

Let F' be a non Archimedean local field and W its abolute Weil group. We denote
by Ir, Pr C Wg the inertia group and the wild inertia group of F, respectively, and
by kp the residual field of F' (a finite field with ¢ elements, where ¢ is a power of a
prime number p). We denote by W} := Wy x I the tame Weil group of F.

Let G be a connected reductive algebraic group defined over F. We denote by G
the group of the F-rational points of G. Let L be a Levi subgroup of a parabolic
subgroup P of G and let X,,(L) denote the group of unramified characters of L.
Let o be an irreducible supercuspidal smooth representation of L and O the set of
equivalence classes of representations L of the form o ® x, with x € X,,(L). We
write s := (L, O)g = [L, o] for the G-conjugacy class of the pair (L, Q) and B(G)
for the set of such classes s. We set sz, := (L, O)[.

We denote by SR*(G) the full subcategory of R(G) whose objects are the represen-
tations (7, V') such that every irreducible G-subquotient of 7 has its supercuspidal
support in 5. The categories R*(G) are indecomposable and split the full smooth
category R(G) in a direct product:

(3.0.1) RG) = [ ®©.
s€B(G)

Let Irr*(G) denote the set of irreducible objects of the category R*(G). As a direct
consequence of ([B.0.1]), we have

(3.0.2) r(G) = ] I°(G).
s€B(G)

3.1. Depth-zero supercuspidal representations of p-adic groups. We denote
by B(G, F') the Bruhat-Tits building of G and by B.(G,F) = B(G/Zqg,F) the
reduced Bruhat-Tits building of G. We have B(G,F) = B,(G, F) x (Xy«(Z¢) ®z
R), where X, (Zq) is the set of F-algebraic cocharacters of Zg For each point x in
B(G, F'), we denote by G the parahoric subgroup of G associated to x, by G, o+
the pro-p unipotent radical of G0, and G, the quotient G5 0/Gy 0+, (the points
of) a connected reductive group over the residue field of F. Let [x] denote the image
of z in By(G, F') and G|, the stabilizer of [r] under the action G on B,(G, F).
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A depth-zero representation of G is a representation which admits non-zero in-
variant vectors under the action of the pro-p unipotent radical G 0+ of a parahoric
subgroup G, of G.

Let m be any irreducible depth-zero supercuspidal representation of G. There
exists a vertex € B,(G, F) and an irreducible cuspidal representation 7, of G,
such that the restriction of 7 to G contains the inflation infl(7,) of 7, (see §1-2
of [50] or Proposition 6.6 of [53]). The normalizer Ng(G, ) of G40 in G is a totally
disconnected group that is compact mod center, which, by the proof of (5.2.8) in
[17], coincides with the fixator G[,) of [r] under the action of G on B(G, F). Let
7, denote an extension of infl(m;) to G|;. Then 7 is compactly induced from a
representation of G

(3.1.1) m = c-Indg (T2).
The representation 7 is called unipotent if w, is unipotent

3.2. Depth-zero supercuspidal representations of p-adic classical groups.

Example 3.2.1. Let F be an unramified quadratic extension of F', and let V' be a
vector space over E of dimension n. There are two classes of hermitian forms on V.
They are distinguished by the parity of the valuation of the determinant of the form:
we denote the form by (, )t if the valuation is even, and by (, )~ otherwise. We
denote the corresponding unitary groups by U (F). The group U (F) is quasi-split.
If n is odd, then the groups U} (F) and U, (F) are isomorphic, if n is even, then
U,, (F) is an inner form of U} (F).

The standard maximal parahoric subgroups of G = U (F) are the groups Gy o
such that G, is isomorphic to the product of two unitary groups U, (kr) and
Up, (kr) with n; + ng = n. By §221and (B.1.1]), the supercuspidal unipotent repre-
sentations of U, (F") are the representations = = C-Indém (7z), where my, = 74, ® Tay
with a% +a; = 2n; and a% + ag = 2ny. For i € {1,2}, we denote by \; the partition
of n; defined by \; := (k;, ki — 1,k; —2,...,1,).

Example 3.2.2. Let G = SOg,41(F'). The standard maximal parahoric subgroups
Gz,0 of G have type D,, x By, with n; + ny = n. We have G, ¢ ~ SOq,, (kr) X
SO2p,+1(kr). The corresponding depth-zero supercuspidal representation of G in
compactly induced from the the inflation to G o of an irreducible cuspidal represen-
tation 71 ® 72 of G 9. We have 7l € £(SOa,,, (s1)) and 72 € £(SO2ny+1, (s2)). By
211 the group Wy, is of one of the following types

(1) Da% X Db% with CL% + b% =n; and aq1,b1 € Zzo,

. Cl+02 d1+d2
(2) Azl—l X Aa—l with a1 = 5 L 0= 5 Loay+41 =n1 and ¢q,d; € Z207

. c +c2
(3) Da% X Ag,—1 with a1 = 12 L, a% + a1 =n1 and ay, ¢ € Z>o,

and W, is of one of the following types
(1) Da% X Cb%—l—bg with CL% + b% + b = ng and ag, by € Z>o,

. cotc2 do+d?
(2) Agg—l X A%g—l with a9 = 22 2, EQ = 22 2, as —I—fl = N2 and C2,d2 S Zzo,
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2
(3) Da% X Ag,—1 with ag = 62;62, a% + as = ng and ag, c2 € Z>,

2
(4) Cb%-‘rbz X Aa2_1 with as = 02—502, b% = b2 + az = no and b2,62 S Zzo.

4. AFFINE HECKE ALGEBRAS

Let R := (X, R,Y,RY) be a root datum. We denote by W the group generated
by the s, for @ € R. Tt is a finite Weyl group. We write S := {s, : « € A}. Then
(W, S) is a finite Coxeter system.

We choose, for every s € S, a complex number ¢z, such that

(4.0.1) gs = gy if s and s are conjugate in W.

Let q: S — C be the function s — g;. We define a new C-algebra H(W, q) which
has a vector space basis {T,, : w € W}. Here T is the unit element and the Ty
satisfy the following quadratic relations and braid relations

(4.02) (Ts+1)(Ts—qs) =0 and T TyTs - =TyTsTy--- for any s,s € S.

m(s,s’) terms  m(s,s’) terms

Fix ¢ € Ry and let A\, A*: R — C be functions such that
e if s, and sg are conjugate in W, then A(a) = A(8) and A*(a) = A*(f),
o if a¥ ¢ 2V, then \*(a) = \(«).

We note that oV € 2Y is only possible for short roots « in a type B component of
the root system R.
For a € R we write

(4.0.3) Gso = @ and (if 0¥ € M) a5, = ¢4 @,

We denote by ¢ the usual length function on W. Let H(W,q) denote the Iwahori-
Hecke algebra of W. It has a basis {1y, : w € W} such that

TwT, = Ty if l(w)+L(v) = L(wo),
(Tso +1)(Ts, —q5,) = 0 ifacA

Let {0, : © € X} denote the standard basis of C[X]. Then the affine Hecke algebra
H(R, A\, A", q) is the vector space C[X] ®@c H(W, q) such that C[X] and H(W, q) are
embedded as subalgebras, and for « € A and z € X:

(0)+2* () @-2*@) \\ Uz — Os_ (2
0. Ts, — TsoOs(z) = ((qA(a) 140, (qA VO qk = >> 90_70_2(),

When o ¢ 2Y, the cross relation simplifies to

0 — esa (z)

sz _Ts .
02T, — Tt I

)= (N - 1)

Sa(z
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4.1. Affine Hecke algebras and Bernstein blocks. Let s = [L,0]g € B(G).
We write sz, := [L, o]z, and denote by W* the extended finite Weyl group Ng(sz,)/L.
The set of roots of G with respect to L contains a root system X°, namely the set
of roots for which the associated Harish-Chandra p-function has a zero on the orbit
Xnr(L) - 0. This induces a semi-direct decomposition

(4.1.1) W =W () x R,

where W (X*) is the Weyl group of ¥° and fR® is the stabilizer in W* of the set of
positive roots. We have

(4.1.2) L'= (] ker(x),

and we suppose that the restriction of o to L' is multiplicity free. By [59], there
exists a 2-cocycle

(4.1.3) 1 R x R — C[Xp(L) - 0],

such that we have a bijection

(4.1.4) Ir*(G) — Irr(H(G, 5)),

where H(G,s) is the twisted extended affine Hecke algebra of the form
(4.1.5) H(G,s) := H(R, A\, A", q) x C[R°,1°].

4.2. Affine Hecke algebras and enhanced L-parameters. We denote by W, :=
W xSLy(C) the Weil-Deligne group of F' and by GV the complex connected reductive
group with root datum dual to that of G. The results in [§], [9] apply to an arbitrary
group G, but, for the simplicity of the exposition, we suppose here that G is a pure
inner twist of an F-split group G*.

A Langlands parameter — or L-parameter — is then a morphism ¢: W; — GV such
that

® ©|sr,(c) is morphism of algebraic groups,
e o(w) is a semisimple element of GV, for any w € Wp.
Let Zav denote the center of GV.
For ¢ a given L-parameter, we define

(4.2.1) Sp = Cav (p(W)).

An enhanced L-parameter is a pair (@, p) where ¢ is an L-parameter for G and
p € Irr(S,), with S, 1= S,/S;. For ¢ a given L-parameter, the representation p
is called an enhancement of . We define an action of GV on the set of enhanced
L-parameters by:

(4.2.2) g (¢,p) = (909 ".%p), forgeGY,

where 9p: h > p(g~'hg). We denote by ®, set of G¥-conjugacy classes of enhanced
L-parameters, and by ®.(G) the subset formed by the ones that are relevant for G.
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By applying (@21 to the restriction ¢|w, of ¢ to Wg, we define the (possibly
disconnected) complex reductive group

(4.2.3) Gy = Cav (p(Wr x {1})).

We denote by GZ the identity component of G, and we set

e u=u,:=¢(1,(41)) (a unipotent element);

o Ag,(uy) = mo(Cg,(u)). We have S, ~ Ag, (uy).
An enhanced L-parameter (@, p) € @, is called cuspidal if the following properties
hold:
e ¢ is discrete (i.e., p(W}) is not contained in any proper Levi subgroup of
GY),
o (uy,p) is a cuspidal pair in G, (see [40], and Remark 4.6, Definition 4.7 and
Definition 4.11 in [5]).

We denote by P cusp(G) the set of GV-conjugacy of cuspidal enhanced L-parameters
for G.

Example 4.2.4. Let G = Sp,,,(F) and let tgv: GV < GLg,+1(C) be the standard
embedding. For every L-parameter ¢ for GG, we define

(4.2.5) I, = {7 €Irr(WF) : 7 occurs in tgv o ¢|w, } -
We have I, = IS U Ig U IS’L, where Ig (resp. IE) is the subset of I, formed by

the representations that are orthogonal (resp. symplectic), and ISL is the maximal
subset of I, which is formed by representations 7 that are not selfdual and satisfy
™ e ISL for every T € ISL. Hence, we have the following decomposition

(4.2.6) LGvOgD:@TgMTEB@TgMTED @(T@Tv)ﬁMT
TelQ Tel TelGt
where M. is a multiplicity space of 7. Let m., denote the dimension of M,. We have
(4.2.7) Go > [ SPm.(©) x J] Om.(©) x J] GLm.(C).
TelQ Tel TelGt

By [52], if the enhanced L-parameter (¢, p) is cuspidal, then we have

d,zr +d, (With d, € ZZO) if e Ig
(4.2.8) my; =< d?> (with d, € Zq) if 7 € I3

1 if e IG".

Let C € u(g;) and let £ irreduciblebe an Q;—equivariant local system on C. By

[40], the IC-sheaf F, := IC(C,&,) occurs as a summand of i%ocp (IC(Ceusp, Ecusp)), for
some triple (P, L, (Ccusp,Ecusp)), Where P is a parabolic subgroup of G° with Levi
subgroup £ and (Ceusp, Ecusp) 1S a cuspidal unipotent pair in £. Moreover, the triple
(P, L, Ceusps Ecusp) 1s unique up to G°-conjugation.

Let p° € Irr(Age(u)). The cuspidal support of (u,p°), denoted by Sc9° (u, p°), is
defined to be

(4.2.9) (L, (v, pousp))go,  where v € Ceusp and pgug, < Ecusp-
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We set T := 7% and M := Cg(T). The cuspidal support of (u, p) is a (well-defined)
triple (M, v, peusp)g, Where pgg, occurs in the restriction of peusp to Age(u). The
cuspidal support of (¢, p) is defined to be

(4210) SC((,D, p) = (CLG(T)7 ((pva pcusp))-

Recall from Section 3.3.1 of [29] that the group of unramified characters of L is
naturally isomorphic to (Zpv x I F)?/VF' We consider this as an object on the Galois
side of the local Langlands correspondence and we write

(4211) %nr(LL) = (ZLVNIF)?/VF'
Given (¢, p) € ®c(L) and z € (Zpv w1, )Wy, we define (z - ¢, p) € ®o(L) by
(4.2.12) z-p:=¢on Ip x SLy(C) and (z - ¢)(Frr) := Zp(Frr),

where Z € (Zv w1, )Wy represents z.

An inertial equivalence class for ®,(G) is the GV-conjugacy class s of a pair
(FL,sY), where L is a Levi subgroup of G, 'L = LY x W and sy is a Xy, (L' L)-orbit
in ®¢ cusp(L).

The Bernstein series ®3' (G) associated to sV € B(GY) is defined to be the fiber
of §¥ under the map Sc defined in (EZI0). By [8], the set ®¢(G) of GY-conjugacy
classes of enhanced L-parameters for G is partitioned, analogously to (B:0.2)), as

(4.2.13) e (G)= [] ().
SVEB(GY)

In [9], we canonically associated an affine Hecke algebra (possibly extended with a
finite R-group) H(G",s") to every Bernstein series ®¢ (G) of enhanced Langlands
parameters for G. While we considered only the first case of (£.2]]), our construction
applies equally well to both the other cases. We showed that the simple modules
of this algebra are naturally in bijection with the elements of the Bernstein series
®3'(G) and that the set of central characters of the algebra is naturally in bijection
with the collection of cuspidal supports of these enhanced Langlands parameters.

We summerise the construction of H(G",s"). By applying (£.2.]]) to the restriction
©|r of ¢ to the inertia group Ir C Wp, we define the (possibly disconnected)
complex reductive group

(4.2.14) Jp = Cav(o(Ip x {1})).
Let R(J°, T) be the set of « € X*(7)\{0} which appear in the adjoint action of T
on the Lie algebra of J7. By Proposition 3.9 in [9], R(J°,T) is a root system. We
denote by W, its Weyl group. Let Wyv := Ngv(s")/LY. We have Wyv = W2, xFrgv,
where

Frov := {w e Wy : w(R(T°, T)Y) C R(JT°, T)"}.
We define a root datum

Rev = (Rev, X*(To ), RY% , X.(Tu)),

where T,v ~ s/ and

Rs\/ = {maOZ NS R(jO7T)red C X*(EV)},
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with my € Zso. The group Wyv acts on Rev. In [9] we defined Wov-invariant
functions

(4.2.15) Aimgv = Qs and  A*: {mqa € mgv : meav € 2X,(Tyv)} — Q.

We choose semisimple subgroups J; C J°, normalized by Ng(s), such that the
derived group Jj,. is the almost direct product of the [J;, and the multiplication
map

(4.2.16) myge: Lo X Jy X - X Jg—J°

is a surjective group homomorphism with finite central kernel. It induces a decom-
position

(4.2.17) Lie(J) = Zyje(go) ® Lie(J1) @ - - - @ Lie(Ja).
We obtain an orthogonal, W,v-stable decomposition
(4.2.18) R(J°, T)=miU---Umyg, where m;:=R(T;,TiNT).

We let 7 := (my,...,mg) be an array of variables, corresponding to (£.2.I6]) in the
sense that m; is relevant for J; and m; only. We have

(4.2.19) H(GY,s") = H(R,A A7) x CI9F 1],

where H (R, A\, \*,7) is a generalized version (with d indeterminates) of the algebras
considered in §4] and hsv cR xR CX s 2-cocycle. The cocycle is trivial when
G is an inner twist of GL,,(F'), a pure inner twist. of a quasi-split classical group or
of the group GSpin,, (F) (see [9], [10]), and when G is the exceptional group of type
Go (see [12]).

5. HOWE CORRESPONDENCE

5.1. A correspondence between Hecke algebras of p-adic groups. We will
consider here only the case of dual pairs formed by a p-adic symplectic group and a p-
adic orthogonal group of even dimension. The other cases can be treated in a similar
way. Let n and n’ be two fixed non-negative integers, and let W,, be a symplectic
space of (even) dimension 2n over F. The corresponding group of isometries is the
symplectic group G,, := Sp(W,,). Let V,» be a quadratic space of dimension 2n’
over F' (i.e., a space endowed with a non-degenerate symmetric F-bilinear form).
We denote by 7,/ the character of F* associated to F(v/A,/)/F, where A, is the
discriminant of the form. The orthogonal group G/, := O(V,,s) is the corresponding
group of isometries, and (G,,G’,) is a dual pair in Sp(Way,). Fixing a non-trivial
additive character ¢ of F', we obtain the so-called Weil representation w of the
metaplectic cover Mp(Woy,,,/) of Ssznn/' We can define a splitting G, x G, —
Mp(Wapy) (see [36]). By means of this splitting we obtain a Weil representation of
Gp x G!,. which we denote wy, ;.

For every m € Irr(Gy,), the maximal m-isotypic quotient of wy, s is of the form
T ® Oy (m), where ©,,(7) is a smooth representation of G/ ,, called the full theta lift
of m to W,r. The representation ©,,(7), when non-zero, has a unique irreducible
quotient, denoted by 6, (), which is called the small theta lift of w. Similarly, if
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n’ € Irr(G!,), the maximal n'-isotypic quotient of w;, s is of the form O, (n’) ® 7',
where O,,(7') is a smooth representation of Gy, called the full theta lift of 7’ to
V. The representation ©,(7"), when non-zero, has a unique irreducible quotient,
denoted 6,,(7"), which is called the small theta lift of 7/. These statements were
first formulated by Howe in [33], and were proved by Waldspurger in [60] when the
residual characteristic of F' is odd, and by Gan and Takeda [26] in general.

We have V,y = V@ @ H" | where V2" is an anisotropic F-vector subspace, and
H is the hyperbolic plane. For m’ > 0, let V, := V* @ H™ . The collections
T:={W,, : m>0}and ' := {V,,» : m' > 0} are called Witt tower of vector spaces.
One can then consider a tower of the theta correspondence associated to the tower
of reductive dual pairs (G, G! ,)m/>0. For an irreducible smooth representation 7 of
G, we thus have the representation 6,/ (7). The smallest non-negative integer n! .
such that Hn;nin(ﬂ) # 0 is called the first occurrence index of m for the Witt tower T,
and the representation 6%(r) := 0, () is called the first occurrence of 7 for this
Witt tower. Similarly, one can then consider a tower of the theta correspondence
associated to the tower of reductive dual pairs (Gp,, G}, )r>0. For an irreducible
smooth representation 7’ of G, we have the representation 6, (7). The smallest
non-negative integer n . such that 6, . (7') # 0 is called the first occurrence index
of 7’ for the Witt tower T, and the representation 0°(7’) := 6, . (7) is called the
first occurrence of 7’ for this Witt tower. By Chapter 3 in [49], such n ., and nmin
exist and n ;. < n’ and npin < n. Moreover, we have ©,, (r) # 0 for any m' > n! .
and ©,,(7") # 0 for any m > npi,. By Theorem 2.5 in [35] (see also Chapter 3
in [49]), if the representation 7 is supercuspidal then ©,, () is irreducible (and
thus is equal to Hninin(ﬂ)) and supercuspidal. Similarly, if 7’ is supercuspidal then
O, (7') is irreducible (and thus is equal to 6,_, (7)) and supercuspidal.

A Levi subgroup L,, of a parabolic subgroup P, of G,, is isomorphic to G, x
GLy, (F) x -+ x GL,, (F'), where no +ny + -+ + n, = n, and any = € Irr(G,)
is isomorphic to a subquotient of the parabolic induced representation iz, p, (o)
where o € Irrge(Ly,). We have o ~ Ty @TL® -+ & Tpy where Tty € IrrSC(G’né) and
7; € Irrge(GLyy, (F')) for 1 < ¢ <r. A Levi subgroup L/, of a parabolic subgroup P/,
of G/, is isomorphic to G;L& X GLyy (F) % -+ x GLyy (F), where ng+n/ +---+nj, =n/
and any 7’ € Irr(G),) is isomorphic to a subquotient of the representation iz; pr(o’),
where o ~ W;Lg) T @ - @7l € Irrge(L),) such that W;L& € IrrSC(G;LZ)) and 7/ €
IrrSC(GLn} (F)) for 1 < j <r'. The G,-conjugacy class (L, o)q, of the pair (L, o)
is uniquely determined by 7, is called the supercuspidal support of 7, and denoted by
Sc(mr). Similarly, the G/ ,-conjugacy class of the pair (L, 0’ ,) is uniquely determined
by 7', is called the supercuspidal support of 7/, and denoted by Sc(7’). We set

(5.1.1) ni=n-ny W:=n"—-n), d:=n-n', and dy:=ng—n|.
By [35], if ©,/(7) # {0} and 7’ := 0,/(r), then

(1) if #’ <7, the supercuspidal support of 7’ is

(L;L,, Ty @ T @ @@V Qv 2@ uij)G, :

n!
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where W;Lf) = 0°(1p,)-
(2) if @’ > 7, the supercuspidal support of 7 is
(Lns o @ T @ -+ @ W7o @ Mg~ @ v 2@ - @ ™)

n
where 7, :=0%(x/, ).
0

Let L € {L,,L!,}. Recall that a character of L is said to be unramified if it
is trivial on all the compact subgroups of L. We denote by X,.(L) the group of
unramified characters of L.

Proposition 5.1.2. For any m € Irt*(G,,), where s = [Ly,0]q,, we have 0,/(m) €
I’ (G,,), where

(5.1.3) 0(s) :== [Ly,0']cr -

Proof. Let m € Irt*(G,,), where s = [L,,0]g, and 7’ := 6,/(r). Thus, we have
Sc(On (7)) = (L1, 0")qr,. We set 5" := [LI,,0'lcr,. Let x € Xu(Lyp), and let
7y € Irr(Gy) such that Sc(my) = (Ln, x ® 0)q, . The character x has the following
form: x =triv® x1 ® - -- ® Xy, where x; € X (GLy,, (F)) for 1 <i < r. By applying
the previous formula (case (1)) to the representation m, we see that, if 7’ <7, then
the supercuspidal support of 6, (my) is

<L;1” Ty @ X1 T @ Xy T OV @ V?'_ﬁ_l)
= (L, (x @ frive - @ triv) @ 0')gr .
S— n’

no — ny times

’
G

The character x ® triv®(0=70) of L', being unramified, we have 6, () € Irrﬁl(G;,).
Since every representation in Irr®(G),) is of the form 7, for some x € X,:(Ly), we
get
0, (Irr*(Gy)) C I (G),)).

On the other hand, if @’ > 7@, by definition of the representation , its supercuspidal
support is (L, x ® 0)g,,, hence, by the formula (case (2)) applied to 7, it equals

(Ln, Tig @ M X1T) @ -+ @ Nt X Ty @ N/ " @ -+ @ nnw?‘ﬁ‘1>G .
Thus, by applying the formula (case (2)) to m,, we get

Sc(O (my)) = (L/n/,ﬂ';% RXIT] @ ® XTIT;/)G;/ =(L,,xX ® al)G:ﬂ,

where Y/ := triv ® x1 ® -+ @ X € Xne(L!,). Hence, O, (my) € Irr® (G”,,). O

Theorem 5.1.4. For every s € B(G), the Howe correspondence 7+ 0, (m) for the
reductive dual pair (G,,G",) induces a correspondence E — 0(E) between subsets of
simple modules of the extended affine Hecke algebras H(Gp,s) and H(G),,0(s)).

Proof. By [31], the algebras H(Gj,s) for any s € B(G,) and H(G),,s’) for any
s’ € B(G!,) are extended affine Hecke algebras (that is, the 2-cocycles are trivial
in the case of classical groups). Then the result follows from the combination of
Proposition with (B.0.2]). O



18 ANNE-MARIE AUBERT

5.2. A correspondence between completions of Hecke algebras. To study
representations of G it is often useful to consider various group algebras of GG. There
is the Hecke algebra H(G), defined to be the convolution algebra of locally constant,
compactly supported functions f: G — C. The category R(G) is equivalent to
the category of of nondegenerate H(G)-modules. By letting G act on H(G) by left
translation, we obtain from (B.0.I]) a decomposition

(5.2.1) nGe) = @ MGy,
s€B(G)
with H(G)® € R°(G). The spaces H(G)® are two-sided ideals of H(G).

From the point of view of noncommutative geometry, for the study of tempered
representations of G, it is interesting to use the reduced C*-algebra C}(G), whose
spectrum coincides with the tempered dual Irr*(G) of G. Analogously, we have the
following decomposition of C}(G):

(5.2.2) CH @) = P cre)y.
s€B(G)

Theorem 5.2.3. We suppose that n’ = n or n’ = n + 1. Then the theta corre-
spondence m > 6, (m) for the reductive dual pair (Gy,G.,) induces a correspondence
between subsets of simple modules of C*(G)* and CF(G)?¢).

Proof. By Theorem 1.2 in [23], if 7 € Irr*(G,,), then 6, (7) € Irr*(G’,). On the other
hand, by Theorem 6.2 in [58], when G is G,, or G}, then C}(G)® is Morita equivalent
to the reduced C*-completion of H(G,s) for each s € B(G). Thus, the result follows
from Theorem (.14l O

Remark 5.2.4. Mesland and Sengiin already observed in [46] that certain cases of
the theta correspondence can be described by using objects of C*-algebraic nature.
More precisely, they constructed Hilbert C*-bimodules over C*-algebras of groups
in equal rank dual pairs and showed that the Rieffel induction functors implemented
by these modules coincide with the theta correspondence.

5.3. The Howe correspondence for depth-zero representations. In [54], Pan
proved that the theta correspondence preserves depth zero representations for type
I reductive dual pairs (G,G’) over p-adic fields of odd residual characteristic and
is compatible with the theta correspondence for finite reductive dual pairs in the
following sense. Let (m,)) be a depth-zero representation of G. There exists a
point x of B(G, F) such that m has non-zero invariant vectors under G, o+ and
an irreducible cuspidal representation m, of G, o which is contained in VG0t If
(7", V") € Irr(G’) corresponds to (m, V) via the theta correspondence, then there exists
a point 2’ of B(G', F') such that 7’ has non-zero invariant vectors under G/, ,, and

. . . . D . e
an irreducible cuspidal representation 7, of G/, , which is contained in V"=".0+, and
the representation 7, corresponds to 7, via the theta correspondence for reductive
dual pair (G0, G, ) over kp.

5.4. The Howe correspondence for supercuspidal representations.
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5.4.1. The Howe correspondence for positive-depth supercuspidal representations. Loke
and Ma gave in [38] a description of the local theta correspondence between tame
supercuspidal representations in terms of the supercuspidal data. Tame supercusp-
idal representations were constructed in [61]. Let D(G, ) (resp. D(G!,)) be a set
of supercuspidal data for G, (resp. G.,). For a given supercuspidal Yu datum 3,
let [7x] denote the isomorphism class of the supercuspidal representation attached
to X. In [30] an equivalence relation ~ on D(G,,) was defined so that the map from
D(G,) :=D(G,)/ ~ to Irre.(G,,) given by [X] + [rg] is a bijection. We set

Dy :=|D(Gn).

Using the moment maps and theta correspondences over finite fields, a theta lift for
supercuspidal data was defined in [38]. It is a map

(5.4.1) ﬂn’,‘l” : 5(Gn/) — 53:/.

Suppose that ¥ € D(G,) and [¥] := d,w([E]) € Dyw(G) for some n’. By [38],
we have 0,(my;) = 7§, and, conversely, if 7 and 7’ are irreducible supercuspidal
representations of G,, and G/, respectively, then there exists ¥ € D(G),) such that
7 =ny and 7’ = 7§, where [X'] := 0,y x([X]).

5.5. A correspondence between Hecke algebras for enhanced L-parameters.
Let s = [Lyp, 0la, € B(Gp). When F has characteristic zero, a local Langlands cor-
respondence o — (¢,,p,) is available via endoscopy, due to Arthur and Moeeglin
(see [2] and [48]). By [27], this result extends to the case where F' has positive
characteristic.

We set

(5.5.1) 5" =Ly, (Yo: o]y -

By [9], for G € {G,,G!,}, the algebra H(G,s) is canonically isomorphic to the alge-
bra H(GV,s"). Thus, by Theorem[5.1.4] the Howe correspondence 7 + 6,/ () for the
reductive dual pair (G, G, ) induces a correspondence E + §(E) between subsets of
simple modules of the extended affine Hecke algebras H(G),,s") and H(G.7,0(s)"),
and hence a correspondence

(5.5.2) (0, 0) = (B (), 0 (p))

between subsets of the series 5 (G,,) and @g(s)v(G;L,).
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