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1. Introduction
Secondary organic aerosol (SOA) constitutes a major fraction of atmospheric particles worldwide. It is composed 
of a multitude of organic compounds (e.g., Kourtchev et al., 2016). Our current understanding and modeling of 
SOA formation processes are highly uncertain (Pai et al., 2020) and involve representing the complex interplay 
between gas-phase oxidation and condensation of semi- and low-volatile organic species. SOA models need to 
include processes such as (a) the multi-step oxidation of the large variety of organic compounds emitted naturally 
and by human activities, (b) the condensation of semi-volatile species to the particle phase, and (c) the heter-
ogeneous and in-particle reactivity of condensed species. This complexity can only be represented in models 
that explicitly account for aerosol physico-chemical processes. In these so-called explicit models, the aim is to 
represent the fate of each individual chemical species through individual reactions, which can number in the 10 9 
range (e.g., Aumont et al., 2005). The Generator of Explicit Chemistry and Kinetics for Organics in the Atmos-
phere (GECKO-A, Aumont et al., 2005) is an example of such a model able to generate chemical mechanisms 
that explicitly describe the oxidation of organic compounds in the atmosphere, as well as their condensation 
into the particle phase (Camredon et al., 2007). It has previously been used to study SOA formation in various 
settings such as atmospheric chamber experiments (La et al., 2016), sensitivity studies (Aumont et al., 2012; 
Hodzic et al., 2015; Valorso et al., 2011) and urban plume modeling (Lee-Taylor et al., 2015; Mouchel-Vallon 
et al., 2020).

Abstract Predicting secondary organic aerosol (SOA) formation relies either on extremely detailed, 
numerically expensive models accounting for the condensation of individual species or on extremely simplified, 
numerically affordable models parameterizing SOA formation for large-scale simulations. In this work, we 
explore the possibility of creating a random forest to reproduce the behavior of a detailed atmospheric organic 
chemistry model at a fraction of the numerical cost. A comprehensive data set was created based on thousands 
of individual detailed simulations, randomly initialized to account for the variety of atmospheric chemical 
environments. Recurrent random forests were trained to predict organic matter formation from dodecane and 
toluene precursors, and the partitioning between gas and particle phases. Validation tests show that the random 
forests perform well without any divergence over 10 days of simulations. The distribution of errors shows that 
the sampling of initial conditions for the training simulations needs to focus on chemical regimes where SOA 
production is the most sensitive. Sensitivity tests show that specializing multiple random forests for a specific 
chemical regime is not more efficient than training a single general random forest for the entire data set. The 
most important predictors are those providing information about the chemical regime, oxidants levels, and 
existing organic mass. The choice of predictors is crucial as using too many unimportant predictors reduces the 
performances of the random forests.

Plain Language Summary Organic compounds constitute a significant fraction of atmospheric 
particles and thus have an impact on health and climate. Predicting the contribution of organic compounds to 
atmospheric particles is extremely complex because of the very large number of different chemical species 
potentially condensing into the aerosol phase. Air quality and climate models usually rely on simplified, 
empirical approaches to predict organic aerosol mass concentrations, based on laboratory experiments. In this 
work, we apply a machine learning approach to construct a tool that behaves like the most detailed organic 
chemistry model, for a numerical cost affordable by air quality and climate models. Building upon this method, 
it will be possible to bring the complexities of organic chemistry to large-scale models.
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Because of their size, explicit mechanisms like those generated by GECKO-A cannot be used in 3D air quality 
models, which rely on empirical SOA parameterizations. The volatility basis set (VBS, Donahue et al., 2006) 
and its derivatives (e.g., Cappa & Wilson,  2012; Donahue et  al.,  2011) are the most prevalent representa-
tions of SOA chemistry in this field. In such models, simplifications are made to represent SOA formation by 
grouping organic species of similar properties into discretized bins, that is, volatility or oxidation state are the 
typically chosen properties for the VBS bins. This approach has been presented by Pankow et al.  (2015) as 
the anonymized view of SOA modeling, as opposed to the molecular view of SOA modeling used by explicit 
models.

Previous attempts have been made to bring the molecular view of SOA modeling to 3D models. Li et al. (2015) 
included the near explicit Master Chemical Mechanism (MCM v3.2, Saunders et al., 2003; Jenkin et al., 2003), 
in the Community Multiscale Air Quality model (CMAQ, Foley et al., 2010). MCM is a near explicit mecha-
nism, as some simplifications are made to simplify its development such as removing unlikely reaction channels 
and simplifying the oxidation of minor or unknown products. At the time MCM therefore used approximately 
17,000 reactions involving approximately 6,000 species to represent the progressive oxidation of 142 primary 
hydrocarbons. Although the implementation of MCM in CMAQ was able to reproduce reasonably well the 
observed SOA surface concentrations over eastern US for a case study, this approach did not have further appli-
cations to our knowledge, and was limited by the considerable computational cost required to run regional scale 
simulations.

Lannuque et al. (2018) created VBS-GECKO, an empirical VBS parameterization where the stoichiometric coef-
ficients were optimized to fit data produced from GECKO-A runs instead of being fitted to empirical data. 
Their method had the advantage of parameterizing the model over the multi-day simulated aging of SOA, which 
cannot be obtained from the shorter chamber studies used to derive traditional VBS parameterizations. Lannuque 
et al. (2020) ran VBS-GECKO in an air quality model (Menut et al., 2013) and showed that VBS-GECKO was 
producing more SOA in the summer over Europe compared to the traditional SOA parameterization that is based 
on laboratory data (Couvidat et al., 2012). Because, in essence, their resulting model was a linear combination 
of multiple VBS produced for different levels of pollution, it relied on the assumption that atmospheric chemis-
try behaves linearly between the selected chemical regimes. As a result, VBS-GECKO may have been applied 
outside of its application domain.

Here, we propose to use a machine learning (ML) approach to bring the molecular view to 3D chemistry-climate 
models across a range of chemical regimes representative of tropospheric conditions. ML techniques have been 
applied previously for air quality forecasts (Liao et al., 2020) demonstrating that it is possible to run a trained arti-
ficial intelligence in a 3D model. Keller and Evans (2019) used the GEOS-Chem chemical mechanism solver to 
train multiple random forests that were then able to emulate the chemical solver behavior in that same model for 
various pollutant, for a fraction of the computational cost of the default GEOS-Chem model. Kelp et al. (2020) 
improved on this method by using a unique neural network to predict 20 chemical species. They implemented it 
in GEOS-Chem (Kelp et al., 2022), achieving stable 1-year simulations for ozone prediction with less than 10% 
bias compared to the reference and reducing computational times by a factor of five. The motivation of these 
previous studies stems from reducing the costs of calculating chemistry, that is usually taking from 50% to 90% 
of the computational costs of running global chemistry models such as GEOS-Chem (Keller & Evans, 2019).

Schreck et al. (2022) recently presented a neural network approach to emulate the behavior of idealized GECKO-A 
simulations for the SOA formation following the oxidation of three individual precursors reacting with OH under 
varied environmental conditions. While this work showed the ability of neural networks to reproduce idealized 
oxidation situations, it showed their limitations when extrapolated to realistic simulations with diurnally varying 
conditions. The results indicate that this type of system needs to be trained with a data set representative of the 
conditions in which it will be applied.

In this paper, we train a random forest on a data set constructed with multiple GECKO-A simulations, with the 
primary aim of predicting SOA mass from the oxidation of toluene and dodecane for realistic atmospheric condi-
tions over a range of chemical regimes covering daytime and nighttime oxidation by the main oxidants (OH, O3, 
and NO3). Our objective is to build an empirical SOA model that is able to reproduce the aerosol mass that a 
complex, explicit mechanism would predict, at a numerical cost that is comparable to that of reduced chemical 
mechanisms currently used in large-scale models.
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2. Methods
2.1. Reference Organic Chemistry Mechanisms

GECKO-A (Aumont et al., 2005) is a software tool allowing the automatic generation of detailed multi-generational 
organic chemistry mechanisms (Figure 1). It is based on state-of-the-art knowledge of atmospheric organic chem-
istry and structure activity relationships (e.g., Atkinson, 1997; Raventos-Duran et al., 2010) to estimate unknown 
reaction kinetics and thermodynamics. It calculates the gas-particle partitioning of individual organic species 
based on estimates of their volatility (Valorso et  al.,  2011). In the present study, chemical mechanisms were 
generated for the oxidation by OH, NO3, and O3 of toluene (C7H8) and dodecane (C12H26), two compounds 
emitted by anthropogenic activities. Currently, GECKO-A only includes gas-phase oxidation and condensation 
of semi-volatile organic compounds. There are no heterogeneous processes and no aerosol phase processes (e.g., 

Figure 1. Schematic depiction of the data set construction based on Generator of Explicit Chemistry and Kinetics for 
Organics in the Atmosphere explicit modeling simulations (top) used to train the random forests depicted on the bottom. The 
variables meaning (mtot and mgas) are indicated in Table 2. E(ti) is lumping all environmental conditions (see Table 2) at 
time ti.
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oligomerization) included in the model. The resulting toluene full oxidation 
mechanism contains 8,560 species involved in 47,349 chemical reactions, 
including 4,536 gas-aerosol equilibrium reactions. The oxidation mechanism 
for dodecane was completed to the fourth generation. This was done in order 
to reduce the generated mechanism to a manageable size for the purpose 
of this work. The resulting dodecane oxidation mechanism contains 75,745 
species involved in 465,751 chemical reactions, including 20,968 gas-aerosol 
equilibrium reactions.

2.2. Data Set Construction

To create the data set used to train and evaluate the random forest model, we 
ran a large set of simulations for toluene and dodecane (see Figure 1). Each 
simulation is performed for 230 hr with a uniformly sampled set of randomly 
chosen initial conditions and external forcing (see Table  1). Temperature, 
relative humidity, and atmospheric pressure are selected in ranges typical 
of values found in the lower troposphere. This ensures that the SOA emula-
tor will have the correct sensitivity to changes in these parameters through 
the effects of (a) temperature on reaction rates and SOA evaporation, (b) 
relative humidity on OH formation, and (c) pressure on third-body reaction 
rates. Initial concentrations of precursors, NOx and CO are randomly picked 

to cover a wide range of chemical regimes. All model simulations start at 10:00 a.m. UTC and simulate a diurnal 
light cycle defined by the chosen latitude. The latitude is varied from 80°S to 80°N to ensure that the model does 
not fit to a specific diurnal cycle. The model time-step length is 5 min. After initialization, the precursor, NOx, 
O3, and CO freely react without constraints. The other external forcings (temperature, relative humidity, pres-
sure, latitude, NO emissions, and seed) are maintained constant for the whole simulation. Holding these external 
forcings constant in the data set in not expected to bias the random forests results because the high number of 
different simulations still covers a wide range of environmental conditions. The simulated photochemistry leads 
to the multi-generational formation of semi- and low-volatile secondary organic compounds that can condense 
to form SOA.

Table 1 
Environmental and Chemistry Parameters Used for Generating the 
Generator of Explicit Chemistry and Kinetics for Organics in the 
Atmosphere Box-Model Data Set

Parameter Range

Latitude (°) −80–80

Temperature (K) 216–313

Preexisting aerosol seed (μg m −3) 0.03–340

Initial precursor (ppb) 0–16

Initial O3 (ppb) 1–100

Relative humidity (%) 3–102

Atmospheric pressure (atm) 0.5–1.02

Initial NOx (ppb) a 10 −4–42

Initial CO (ppb) 33–1,012

NO Emission (molec cm −2 s −1) 10 7–10 9

 aSampled in log space.

Table 2 
List of Predictors and Outcomes Used for Training the Random Forests

Predictors (units) Outcomes (units) (prediction method)

Temperature (K) Total organic mass (μg m −3) (direct)

Water vapor concentration (H2O) (molec/cm 3) Organic gaseous fraction (dimensionless) (trend)

Pressure (atm)

Solar zenith angle (deg)

𝐴𝐴 𝐴𝐴NO2
 (s −1)

NO (molec/cm 3)

NO2 (molec/cm 3)

O3 (molec/cm 3)

OH (molec/cm 3)

H2O2 (molec/cm 3)

CH2O (molec/cm 3)

Aerosol seed mass (μg m −3)

Total organic mass (mtot) (μg m −3)

Organic gaseous fraction (mgas) (dimensionless)

Organic aerosol fraction (maer) (dimensionless)

Precursor (molec/cm 3)

Note. The short names used in Figure 9 are mentioned in round brackets.
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2.2.1. Outcomes

In this work, the aim is to predict the distribution of organic species between gas and aerosol phases. In order 
to build a flexible approach that will allow future developments such as adding additional phases (e.g., aqueous 
phase) and predicting organic matters properties (e.g., solubility for deposition of organic vapors and particles), 
the first chosen outcome is the total organic mass mt (μg m −3):

𝑚𝑚𝑡𝑡 = 𝑚𝑚𝑔𝑔 + 𝑚𝑚𝑎𝑎 (1)

mg and ma are respectively the total gas- and particle-phase organic mass. The goal is to have only one outcome mt 
in mass concentration units (μg m −3) and predict the contributing phases to the total mass as fractions of this mt. 
We arbitrarily chose to predict gaseous mass fraction γ (mg = γ × mt). ma can then be derived as ma = (1 − γ) × mt.

Following the method of Keller and Evans (2019), we also established a variance criterion to decide whether the 
random forest should predict the value of the predictor or its trend. For stability and better performances, this 
variance criterion is used to identify stable and unstable outcomes. This classification is based on the standard 
deviation of the ratio between post- and pre-numerical time-step solve value. This ratio was calculated for each 
outcome and each time-step on the whole training data set. The standard deviation of these ratios was calculated 
and if the value of this standard deviation is below a threshold of 0.07, the outcome is classified as stable and its 
trend is predicted. Otherwise, the outcome is unstable and its direct value is predicted. For the two outcomes used 
in this work, we found that the value of the total mass outcome mt is unstable and needs to be directly predicted, 
while the gas phase fraction γ is stable and its trend is predicted.

2.2.2. Predictors

We selected the predictors based on parameters relevant to SOA formation (see Table 2). The concentration of the 
precursor as well as the main daytime oxidants (OH, O3) and the aerosol seed concentrations have been chosen 
for their key role in SOA formation. The pressure and temperature modulate the kinetics that control gas-phase 
oxidation. Temperature is also very important for the condensation of vapors. The solar zenith angle and the 
photolysis rate of NO2 represent the influence of the diurnal cycle on gas kinetics.

At each time-step of the GECKO-A simulations, predictors are computed before chemistry is integrated, and 
outcomes are computed after the solver has finished. Four Thousand simulations (≈10 6 time-steps) where 
produced for each precursor, resulting in a total of 8,000 simulations (≈2 × 10 6 time-steps).

The collection of all predictor and outcome values at every time-step therefore constitutes a data set representative 
of what the integration of an explicit chemical scheme would produce for a given predictor over one time-step.

2.3. Random Forest Regression

We use Python libraries scikit-learn (Pedregosa et al., 2011) to fit the random forests, and dask (Dask Devel-
opment Team, 2016) to handle parallelization of the code on the NCAR CISL supercomputers (Computational 
and Information Systems Laboratory, 2017). The simulations were randomly split between training (80% of all 
simulations) and validation (20%) sets. The analysis shown in Section 3 was performed on the validation data set.

Keller and Evans (2019) trained individual random forests for each of their outcomes, considering all chemical 
tracers as predictors. They integrated the random forest models within GEOS-Chem at each model time-step. In 
contrast, our approach involved training individual random forests for each SOA precursor to predict all outcomes 
simultaneously (total organic mass and organic gaseous fraction). This means that each tree predicts a vector 
of values instead of predicting single values (see Figure  1). This approach has the advantage of simplifying 
the model training and evaluation, and its future implementation in 3D models. As the data set contains values 
spanning many orders of magnitude, it was successively log-transformed, power-transformed and normalized to 
map the data as close as possible to a Gaussian distribution. For simplicity, this sequence of transformations was 
applied to all variables, including those that are almost Gaussian. The training data set was shuffled prior to the 
regression procedure to avoid bias related to the random forest learning a specific diurnal cycle.

Hyperparameters for the random forest were tuned automatically during the random forest training with the 
scikit-learn library. The number of decision trees is the most important hyperparameter because it impacts both 
the numerical cost of running the random forest as well as the quality of the random forest. Random forest's 
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training configurations were tested with 10, 50, 75, and 100 decision trees. The random forest hyperparameters 
optimization consistently selected 50 trees, which is the same number of decision trees that were selected in 
Keller and Evans (2019).

3. Results
3.1. Training Data Set Characterization

Figure 2 depicts the typical time evolution of a few randomly selected simulations from the validation data set. As 
expected, the precursor is progressively oxidized during the 10 days of the simulation. The kinetics of this decay 
depends on the concentration of the precursors' oxidants: OH (daytime) and NO3 (nighttime) for dodecane, OH, 
O3 (daytime), and NO3 (nighttime) for toluene. Given that concentrations of these oxidants depend on randomly 
selected initial and environmental conditions in each simulation, the decay kinetics vary for each simulation. The 
oxidation of the precursor leads to the progressive formation of gaseous organic compounds. Depending on the 
availability of oxidants, the formation of these secondary organic compounds can peak early in the simulation 
as in simulations 8,007 and 8,027 in Figure 2. On the other hand, the evolution displays a characteristic stepwise 
diurnal profile, with the organic mass increasing during daytime when photochemistry can take place. After 
the peak of the quicker oxidation simulations, the total organic mass decreases because the oxidation products 
are ultimately lost to the terminal CO2 formation step.  As their oxidation progresses, the secondary gaseous 
compounds become more oxidized and are able to condense onto the pre-existing aerosol seed, forming SOA. 
SOA formation therefore highly depends on the availability of oxidants. For instance, simulation 1,069 displays a 
typical case of a slow precursor decay causing the slow formation of secondary organic compounds with almost 
no SOA production.

As shown in Figure 2 on a few sample simulations, this work is aimed at reproducing a large variety of situa-
tions, with the SOA formation behavior that non-linearly depends on multiple parameters. Figure 3 depicts the 
distribution of SOA mass yield as a function of key parameters describing the chemical regimes controlling SOA 
formation.

The precursor controls the total amount of organic carbon that is available to form SOA. Both dodecane and tolu-
ene SOA yields are not constant as a function of the precursor concentration. This is a typical illustration of the 
non-linearity of SOA formation and atmospheric chemistry in general. As precursor mixing ratios increase,  the 
precursor becomes a significant competitor for oxidants, slowing the formation of later generations organic 
compounds that are more likely to efficiently contribute to SOA. This hypothesis is confirmed by the fact that 

Figure 2. Time evolution of precursor oxidation, organic gas, and organic aerosol formation from toluene and dodecane oxidation for representative training 
simulations.
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the dodecane SOA yield decay starts for lower precursor mixing ratios, which is explained by the faster reaction 
rate of dodecane with the main oxidant OH compared to toluene (kdodecane + OH,298 = 1.32 × 10 −11 cm 3/molec/s vs. 
ktoluene +OH,298 = 5.6 × 10 −12 cm 3/molec/s, Mellouki et al., 2021).

As the seed concentrations were selected over a wide range (see Table 1), the limiting effect of low pre-existing 
seeds can only be seen in the lowest chosen concentrations, below 40 μg m −3. In the rest of the range of seed 
concentrations, SOA yield has identical distribution probability. In our simulations, as the nature of this seed is 
not accounted for, the fact that seed is present is enough to trigger SOA condensation and it is rarely limiting.

The NOx mixing ratios control the formation of ozone and OH through the photolysis of NO2 and the reaction 
of ozone with NO. However the relationship of NOx with oxidants levels is not trivial and also depends on the 
concentrations of organic compounds. Here, the simulated higher SOA yields at lower NOx levels could be 
explained by the role of NOx on the oxidation of organic compounds. After the initial oxidation step forming a 

peroxy radical (RH + OH 𝐴𝐴
+O2

→  RO2 + H2O), the peroxy radical can react with NO to form an alkoxy radical that 
can fragment, leading to more volatile compounds that are less likely to form SOA. If NO concentration is low 
enough, peroxy radicals are more likely to react with HO2 and other peroxy radicals to form more oxidized species 
that are more likely to form SOA. This can explain the higher SOA yields at lower NOx shown on Figure 3. This 
effect is better seen after defining the RO2 regime β as:

𝛽𝛽 =
𝑘𝑘RO2+NO

× NO

𝑘𝑘RO2+NO
× NO + 𝑘𝑘RO2+HO2

× HO2

 (2)

where 𝐴𝐴 𝐴𝐴RO2+NO
= 7.7 × 10−12cm3molec

−1
s−1 , 𝐴𝐴 𝐴𝐴RO2+HO2

= 5.1 × 10−12cm3molec
−1
s−1 . This ratio indicates which 

pathway is favored for RO2 radicals: when β = 1, they only react with NO and when β = 0 they never react with 
NO. For dodecane, Figure 3 shows that from β = 0.4 to β = 1, the median value of the SOA yield decreases from 
60% to less than 1%. Below β = 0.4, the SOA yield decreases down to less than 1% at β = 0.15. This low yield 
for low β values can be explained by low levels of oxidants limiting SOA production in very low NOx situations. 
For toluene, this peak in SOA yield happens around β = 0.5 with a median value of 19%. It is less marked than for 
dodecane because the impact of the RO2 + NO reaction pathway on fragmentation is lower on cyclic and shorter 
molecules like toluene and its oxidation products (Aumont et al., 2013).

For both precursors, the SOA yield increases with ozone mixing ratios. Higher ozone mixing ratios are associated 
with higher OH concentrations, which can explain higher SOA yields.

3.2. Training Data Set Size Impact

For this sensitivity test, random forests were trained for each predictor, with a limit on the number of points taken 
from the data set to train the random forest (50,000, 100,000, 500,000, and 1,000,000 points). Two kinds of tests 
are presented for each validation simulation. First, the random forest was tested on each time-step individually 
by using the reference predictors as inputs and comparing the random forest output with the reference outcomes.

Figure 3. Dependence of average organic aerosol mass and aerosol mass yield as a function of the chemical environment.
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To evaluate the performance of the random forests, the Pearson correlation coefficient (r) was used to depict the 
ability of the random forests to reproduce trends in SOA formation and destruction. The normalized root mean 
square error (NRMSE) was also used:

NRMSE =

√

∑𝑁𝑁

𝑖𝑖=1 (𝑦𝑦𝑖𝑖−𝑦𝑦𝑖𝑖)
2

𝑁𝑁

𝑄𝑄3 −𝑄𝑄1

 (3)

yi and 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖 are the ith GECKO-A reference and predicted aerosol mass respectively, N is the number of time-steps 
and Q3 − Q1 is the difference between the first and the third quartiles. NRMSE values illustrate the ability of the 
random forests to simulation SOA mass without bias.

The resulting Pearson correlation coefficients (r) and NRMSE distributions are shown on Figure  4 (black 
boxplots), as a function of the number of points used for training the random forest. With the exception of a few 
outliers, the random forest is very accurate to predict outcomes on a single time-step, even with only 50,000 
training points. The Pearson correlation coefficient displays median values around r = 0.99 for both toluene and 
dodecane while the NRMSE displays median values below 0.1 for toluene and 0.15 for dodecane.

For the second test in Figure 4 (orange boxplots), as well as the rest of this paper, the random forest is constrained 
with the initial conditions and the environmental conditions from the reference simulation. At the end of each 
time-step, the predicted outcomes are used in the input predictors for the next time-step. In these validation 
tests, the random forest model accumulates errors with time. This is reflected in the median r values decreasing 
compared to individual time-steps tests to approximately r = 0.98 for toluene and r = 0.96 for dodecane. The 
performances are also more spread with the interquartile range for 100,000 points increasing from 0.002 to 
0.05 for toluene and from 0.003 to 0.09 for dodecane. Conversely, for 100,000 training points, NRMSE values 
increase to approximately 0.3 for toluene and 0.5 for dodecane. The NRMSE interquartile range for 100,000 

Figure 4. Boxplot distribution of (a) Pearson correlation coefficients and (b) normalized root mean square error (note 
the y-axis log-scale) for testing individual time-step predictions (black) and full simulation runs (yellow) for toluene and 
dodecane simulations. The number of points that were used to train each random forest are shown on the x-axis. The middle 
lines of the boxplots are the median, the top and bottom of the boxes denote the first and third quartiles and the whiskers 
extend to the 5th and 95th percentiles of the distribution.

 21698996, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022JD

038227 by C
ochrane France, W

iley O
nline L

ibrary on [13/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Atmospheres

MOUCHEL-VALLON AND HODZIC

10.1029/2022JD038227

9 of 16

points increases from 0.09 to 0.3 for toluene and from 0.2 to 2 for dodecane. Increasing the number of points used 
to train the random forest slightly improve the r scores. For toluene, using 500,000 or 1,000,000 points provides 
similar performances while for dodecane, using 1,000,000 points still increases r and reduces the interquartile 
range. The median NRMSE decreases slightly when increasing the number of training points, from 0.3 to 0.2 
for toluene and from 3 to 1 for dodecane. We could not test higher numbers of training points due to the limited 
size of the created data set, but it seems that above 500,000 training points, the gains are marginal at best for the 
considered precursors.

3.3. Sample Simulations Tests

To illustrate the behavior of the random forest model, Figure 5 displays the random forest results on the same 
sample simulations that were shown on Figure 2. The associated relative errors on predicted aerosol mass are 
shown on Figure 6. The random forest is able to reproduce the timeseries of gas and aerosol mass in all but one 
of the examples (simulation 1,053). For these simulations, the random forest can reproduce the typical step-
wise  daytime growth of organic mass of the slower oxidation simulations (simulation 1,069, 1,091, and 8,011), 
as well as reproducing the peaking growth of organic mass for faster oxidation simulations (8,007 and 8,027). 
For all simulations (except 1,053), the relative error tends to be the highest for the first 5 days of the simulations, 
converging toward errors lower than 10% for the last 5 days. Finally, for the worst random forest simulation in this 
sample (1,053), the model exhibits errors around ±100% after 2 days and cannot recover from the accumulated 
errors. The relative error remains between 50% and 100% but not producing any unrealistic mass concentrations.

It is clear that the computational resources required to run the random forest emulators are much lower than 
those needed for full GECKO-A model runs. However, it is difficult to perform a fair comparison because the 
GECKO-A box model is parallelized and coded in Fortran, while the random forests were tested with a simple, 
non parallelized Python code. Such a comparison between GECKO-A and neural networks was carried out by 
Schreck et al. (2022), showing that runtime was decreased by a factor of 300 for toluene, and a factor of 22,000 
for dodecane simulations. These factors are increased by one or two additional orders of magnitude when the 
neural networks are run on GPUs, but the comparison is unfair to the CPU bound GECKO-A code. We however 
can still expect that the random forests trained in this work would exhibit similar performance improvements, but 
further investigations are needed.

3.4. Errors Distribution

In order to identify the type of situations where the random forest is not able to reproduce the explicit model 
behavior, we examine the distribution of the NRMSE defined in Equation 3. The validations random forest simu-
lations were split in four categories, depending on their NRMSE. The distributions of environmental conditions 
according to this split are displayed on Figure 7.

First the existing seed concentration distribution does not vary with the quality of the random forest simulations. 
As was shown above on Figure  3, the aerosol mass yields dependence on seed concentration is low, which 
explains why the random forest performances are not sensitive to this variable. As long as some seed aerosol is 
available, the system is not sensitive to its mass concentrations.

For toluene, the lower quality random forest simulations (third and fourth NRMSE quartiles) are typically 
described with lower NOx regimes: on average β ≈ 0.82 for the first two NRMSE quartiles, compared to β = 0.7 
and β = 0.65 for the last two NRMSE quartiles. The third and fourth NRMSE quartiles simulations also exhibit 
higher OH mixing ratios: 𝐴𝐴 OH

3
rdquartile

median
= 0.04  ppt and 𝐴𝐴 OH

4
thquartile

median
= 0.07  ppt compared to 𝐴𝐴 OH

1
stquartile

median
= 0.01  ppt 

for the first quartile. The aerosol mass yields (≈12%–13%) are similar for all quartiles. The non-linear depend-
ence of the SOA yield on the RO2 regime (Figure 3) seems to be the determining factor for toluene simulations. 
Under-representing lower RO2 regimes in the training data set therefore has a strong impact on the random forest 
performances. In our case, this under-representation is the likely the consequence of the simple random selection 
of the training simulations environmental conditions.

Dodecane lower quality simulations are heavily skewed toward simulations with high NOx regimes (𝐴𝐴 𝐴𝐴
4

thquartile

median
= 1 

vs. 𝐴𝐴 𝐴𝐴
1

stquartile

median
= 0.87 ) and lower OH mixing ratio (𝐴𝐴 OH

4thquartile

median
= 8.8 × 10−5  ppt vs. 𝐴𝐴 OH

1stquartile

median
= 3.7 × 10−3  ppt) 

and lower aerosol mass yields (𝐴𝐴 Y
4

thquartile

median
= 0.68 % vs. 𝐴𝐴 Y

1
stquartile

median
= 8.1 %). This behavior difference between 
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toluene and dodecane may be explained by the number of dodecane training simulations available for higher 
NOx regimes, which include many outliers (1,236 outliers out of 2,568 point for the highest RO2 regime bin 
on Figure 3) in terms of aerosol yield. The random forest is therefore not able to reproduce the complex 
behavior of dodecane SOA formation in this specific regime. In this case, the complexity of the dodecane 
oxidation for very high NOx situations cannot be properly reproduced by the random forest with the given 
training data set.

A possible way to improve the ability of the system to reproduce the complex relationship between β and SOA 
formation is to create independent random forests specialized for specific RO2 regimes. To test this hypothesis, 
the training data set was split in three separate sets according to the initial RO2 regimes: a low NOx set (β < 0.3, 
100,280 training points for toluene, 72,200 points for dodecane), a mid NOx set (0.3 < β < 0.7, 594,780 points 
for toluene, 268,640 points for dodecane) and a high NOx set (β > 0.7, 363,170 points for toluene, 650,900 points 
for dodecane). Three specialized random forests were therefore trained on these three datasets for each precursor.

Figure 5. Time-series of three toluene and three dodecane sample experiments, comparing the Generator of Explicit Chemistry and Kinetics for Organics in the 
Atmosphere reference simulations (dashed lines) and the random forest simulations (continuous lines) for the predicted organic gas (black) and aerosol (orange) mass.

Figure 6. Time-series of the relative error on predicted aerosol mass for three toluene and three dodecane sample experiments shown on Figure 5.
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Figure 8 displays the distribution of Pearson correlation coefficients for the toluene and dodecane validation 
simulations for each specialized random forest compared to the original random forest trained with 1,000,000 
points. For toluene simulations, all the specialized random forests display similar performances to the original 
random forest: for low NOx, rmedian = 0.98, for mid NOx, rmedian = 0.99 and for high NOx, rmedian = 1.0. Similarly 
for dodecane simulations, all specialized random forests exhibit performances similar to the original one, with 
median r values ranging from 0.98 to 0.99.

It is likely that the potential improvement caused by specializating the random forests over different RO2 regimes 
is negatively compensated by performance reduction caused by a lower number of training points. Furthermore, 
in the dodecane case, specializing a random forest for high NOx does not have a significant impact on the number 
of validation outliers in this regime.

3.5. Predictors Importance

After training the random forest, it is possible to estimate the relative importance of the chosen predictors. The 
feature importances in the scikit-learn python library, known as Gini importance or mean decrease impurity, are 
estimated following Breiman (2017): at a given node, the importance of the predictor selected as the threshold 

Figure 7. Boxplot distribution of validation simulations properties, according to their Generator of Explicit Chemistry and Kinetics for Organics in the Atmosphere 
simulation versus random forest normalized root mean square error quartile.

Figure 8. Boxplots of the Pearson correlation coefficients distribution for the toluene and dodecane validation simulations 
for the original random forests (black) and the three specialized random forests: low NOx (orange), mid NOx (blue), and high 
NOx (green).
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criteria is defined as the total decrease in node impurity weighted by the proportion of samples reaching that 
node (which approximates the probability of reaching that node). This method gives more weight to predictors 
used in nodes higher up in the decision tree structure. The importance of each predictor is then averaged over 
all trees of the random forest. It is crucial to keep in mind that the correlation of predictors in the data set can 
bias the importance metrics of the model. When there is high correlation between predictors, it can be difficult 
for the model to determine which of the correlated variables are actually important for making predictions. As a 
result, the predictors importance metrics may be distributed more evenly across the correlated variables, leading 
to lower importance scores for all the correlated variables. This makes it more difficult to interpret the relative 
importance of each predictor and identify the most important predictors. Several techniques can be used such as 
recursive feature elimination (Gregorutti et al., 2017) to remove highly correlated predictors before training the 
model to obtain more accurate and informative variable importance metrics.

The resulting predictors importances are shown on Figure 9. For both toluene and dodecane, the most important 
predictor for organic mass is the total organic mass in the previous time-step. This finding is consistent with 
the fact that total organic mass is one of the predicted outcomes by the random forests. CH2O and H2O2 are the 
second and third (resp. third and second) most important predictors for dodecane (resp. toluene). Since higher 
H2O2 concentrations are indicative of low NOx situations, H2O2 can be considered as a proxy for the RO2 regime. 
CH2O is the only predictor related to secondary organic gaseous species and could be interpreted as a proxy for 
organic gases formation.

The water vapor concentration and organic gaseous fraction (mg) are the fourth most important predictors for 
dodecane and toluene, respectively. Since the random forests are predicting the trend of mg, it is logical that its 
previous step value is a significant predictor. The importance of water vapor is likely related to its role in OH 
production.

O3 is the fifth most important predictor for both precursors. The information brought by the ozone predictor is 
related to general oxidants levels, the diurnal cycle as well as the RO2 regime. NO2 is the sixth most important 
predictor for dodecane while it is the precursor's concentration for toluene. These two predictors provide informa-
tion about the diurnal cycle, the oxidants levels as well as the potential for secondary organic matter production. 
The seventh is the organic gaseous mass fraction for dodecane and NO2 for toluene. The precursor's concentration 
and temperature are the eighth most important predictors for dodecane and toluene respectively. For both precur-
sors, the organic aerosol fraction (ma) is the ninth most important predictor. Because the gaseous mass fraction 

Figure 9. Predictors relative importance for the toluene (black) and dodecane (orange) random forests. The rank of each 
predictor is indicated at the top of the bars. The predictors names are detailed in Table 2.
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is a more important predictor for both precursors, ma only provides complementary information. The remaining 
predictors only have negligible contributions to the random forests. Since we've shown that SOA formation is not 
sensitive to pre-existing particle seed (see Figure 3) it is logical that this predictor is not important. Predictors 
directly related to the diurnal cycle (𝐴𝐴 𝐴𝐴NO2

 and solar zenith angle) are unimportant here, meaning that there is 
enough information provided by the time evolution of ozone and precursor concentrations to control for daytime 
versus nighttime organic matter production. Similarly, the precursor decay as well as ozone concentrations give 
enough information related to oxidant concentrations and RO2 regime, explaining the weak importance of OH 
and NO predictors.

Since the contributions of the various predictors are dominated by only a few of them, we trained new random 
forests only using the 8 most important predictors for each precursor: mt, CH2O, H2O2, H2O, O3, NO2, mg and the 
precursor concentration for dodecane and mt, H2O2, CH2O, mg, O3, the precursor concentration, NO2 and temper-
ature for toluene. Figure 10 compares the Pearson correlation coefficients (r) and NRMSE scores calculated for 
each validation simulation (359 for each precursor) of the random forest trained with the 16 original predictors 
with the random forest trained with the eight most important identified predictors (see Figure 9).

Reducing the number of predictors for dodecane improves r for 239 (67%) validation simulations, with an aver-
age r increase of 0.12. The NRMSE decreased for 212 (59%) dodecane validation simulations, with an aver-
age NRMSE reduction of 59%. For 160 (45%) of the dodecane validation simulations, both r and NRMSE are 
improved. Reducing the number of predictors leads to an improvement of r for 212 (62%) toluene validation 
simulations, with an average r increase of 0.019. The NRMSE decreased for 190 (53%) toluene validation simu-
lations, with an average NRMSE reduction of 40%. For 148 (41%) of the toluene validation simulations, both r 
and NRMSE are improved.

As shown in Figure 10, reducing the number of predictors is beneficial for the worst performing simulations, 
especially for dodecane. For both toluene and dodecane, the majority of validation simulations are improved 

Figure 10. Scatterplot of the validation simulations' Pearson correlation coefficients (r) as a function of their normalized 
root mean square error (NRMSE) for toluene (top row) and dodecane (bottom row, note different y-axis scale), for the random 
forests trained with the 16 originally selected predictors (ALL, left column) and the random forests trained with only the eight 
most important predictors (HALF, right column). The colors depict whether r, NRMSE or both scores are improved when 
reducing the number of predictors.
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when halving the number of predictors. However, 7 out of the 8 selected predictors are shared by both random 
forests. The relative importance and ranks of the predictors differ between both random forests. There is therefore 
no guarantee that different precursors have the same optimal number of predictors and that they share the same 
predictors.

4. Conclusions
In this work we trained two random forests to predict organic mass production in both gas and aerosol phases 
resulting from toluene and dodecane oxidation. The random forests were trained on a data set created with the 
GECKO-A explicit organic chemistry box model. The data set contains a series of single box-model simula-
tions covering a wide range of environmental conditions to ensure that the resulting random forests are able to 
reproduce the complex relations between organic aerosol production and the chemical environment. The result-
ing random forests show very good performances in predicting organic mass evolution in varied conditions 
when tested on a similar random set of box-model simulations. The distribution of errors in testing simulations 
highlights however the importance of carefully preparing the training data set. Our results suggest that random 
sampling over a range of possible environmental conditions is insufficient to build a robust training data set, and 
that is more important to properly sample a range of more complex chemical parameters such as the RO2 regimes 
(β). We have shown that the range of β that needs focus depends on the precursors. For instance, the dodecane 
random forest has weaker performance for high β whereas the toluene random forest has lower performance for 
medium β values. However, creating multiple random forests each trained over a smaller range of β does not lead 
to more robust results than a single random forest. It seems more efficient to add additional training data points 
for the poorly performing RO2 regimes.

The selection of predictors is also a crucial step. We have shown that it is possible to increase the random forest 
performance by reducing the number of predictors to the most important ones. However, there is no reason to 
think that these predictors have to be the same for different precursors, highlighting the care that must be taken 
in their selection. In this work, we selected the most important predictors by first training a random forests with 
a wide selection of predictors, and then training a new random forest with only the most important predictors 
identified in the first random forest.

In this work, we have therefore shown the feasibility of building random forests that behave like a detailed chem-
ical mechanism for predicting secondary organic mass and its partitioning between gas and particle phases. There 
are still some limitations to overcome before the implementation of the random forest SOA emulator within a 
chemistry-climate model. First, even if the random forests are performing well, there are still some critical outli-
ers at the validation stage (e.g., high NOx dodecane). More work needs to be focused at removing these outliers 
because falling in one of these bad cases in a 3D model run would likely make the full simulation diverge. Second, 
the random forests were each trained to reproduce the oxidation of a single precursor. Additional studies are 
required to quantify whether it is important to represent the interactions of multiple primary hydrocarbons, their 
competition for oxidants, and the impact on the resulting SOA formation.

Data Availability Statement
The data set that was constructed to train and test the random forests and the Python code implementing the 
random forest training and testing have been uploaded on Zenodo (Mouchel-Vallon & Hodzic, 2022).
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