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Abstract—Spiking Neural Network (SNN) are peculiar net-
works based on the dynamics of timed spikes between fully
asynchronous neurons. Their design is complex and differs from
usual artificial neural networks as they are highly sensitive to
their hyperparameters. Some SNNs are unable to emit enough
spikes at their outputs, causing a more challenging, even an
impossible, learning task. Such networks are called silent networks.
By considering mistuned hyperparameters and architecture, this
concept describes a generalization of the signal-loss problem.
In this work, to accelerate the hyperparameter optimization of
SNNs trained by surrogate gradient, we propose to leverage
silent networks and multi-fidelity. We designed an asynchronous
black-box constrained and cost-aware Bayesian optimization
algorithm to handle high-dimensional search spaces containing
many silent networks, considered as infeasible solutions. Large-
scale experimentation was computed on a multi-nodes and multi-
GPUs environment. By considering the cost of evaluations, we
were able to quickly obtain acceptable results for SNNs trained on
a small proportion of the training dataset. We can rapidly stabilize
the inherent high sensitivity of the SNNs’ hyperparameters before
computing expensive and more precise evaluations. We have
extended our methodology for search spaces containing 21 and up
to 46 layer-wise hyperparameters. Despite an increased difficulty
due to the higher dimensional space, our results are competitive,
even better, compared to their baseline. Finally, while up to 70%
of sampled solutions were silent networks, their impact on the
budget was less than 4%. The effect of silent networks on the
available resources becomes almost negligible, allowing to define
higher dimensional, more general and flexible search spaces.

I. INTRODUCTION

Spiking Neural Networks (SNNs) are analog neural networks
closer to the biology compared to their relative digital Artificial
Neural Networks (ANNs). SNNs use time for computations via
sparse events named spikes [1]. The peculiar characteristics of
SNNs make them suitable for low-power applications and easily
scalable thanks to the inherent neurons’ asynchronicity [2],
[3]. However, they cannot be directly computed on usual Von
Neumann architectures. Instead, SNNs are run on specific
neuromorphic hardware, such as SpiNNaker [4]. One can also
compute SNN on regular CPU or GPU hardware by using
simulators, such as Lava1. These specificities contribute to
a rich choice of hyperparameters (HPs), notably concerning
the neuron’s model (like the ANN activation function) [5],

1https://github.com/lava-nc/lava-dl

[6]. However, a counterpart is that SNNs are known to be
very sensitive to their numerous HPs [5], [7]–[9], making their
HyperParameter Optimization (HPO) challenging.

HPO of machine learning models is a well-defined problem
[10], yet tuning HPs of SNNs with the same methodology as
with ANN, appears to be inefficient when high dimensional
search-spaces are considered [5]. We define the HPO via the
maximization of the classification accuracy on a test set of a
trained SNN N , hyperparameterized by λ, as:

λ⋆ ∈ argmax
λ∈Λ

Accuracy(N λ
θ⋆ ,Dvalid), s.t. c1 ≤ 0, c2 ≤ 0, ...

(1)
where θ⋆ are the optimal parameters (e.g. weights) obtained by
training N on a training set Dtrain. The bounded search space, Λ
contains all HPs combinations λ. The theoretical optimum, λ⋆,
is defined according to the intermediate performances computed
on the validation dataset, Dvalid. As in [5], [11], we consider
black-box constraints defined by ci ≤ 0. These constraints
model a minimum required per-sample spiking activity for a
certain proportion of the dataset within a given layer i. In
this work, we only consider a constraint cout on the output
layer of N . For good practice [12], the final performances and
generalization capability of N λ⋆

θ⋆ are assessed using a hold-out
test dataset written Dtest.

The computational complexity of training a SNN can be
explained by several HPs [9] (e.g., train set size, epochs, batch
size, number of neurons, etc.), but also by specific fidelity
HPs, such as the duration or the number of encoding frames
of a single sample from the dataset. Thus, we also consider
a cost function Cost : N λ → R+ defining the positive
computational cost (e.g., training time) of a SNN. In this
work, a multi-fidelity Bayesian Optimization (BO) algorithm
leverages Cost to accelerate the search of λ⋆.

The main contributions of the paper are as follows:
• The design of a high dimensional search space, from

dimension 21 to 46, including fidelity hyperparameters,
and containing many silent networks.

• A significant decrease in the impact on the time budget
of silent networks while maintaining competitive perfor-
mances.
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• A Cost-Aware Scalable Constrained Bayesian optimization
(CASCBO) algorithm using Thompson sampling on the
greedy improvement per unit with an asynchronous trust
region.

• An improved constraint formulation linked to the early
stopping criterion to reduce the computational cost of
selecting silent networks within a high dimensional search
space.

• A parallel asynchronous implementation of our approach
on clusters of GPUs (Grid’5000 [13]).

The paper is organized as follows. In Section II works
tackling HPO of SNNs and multi-fidelity bayesian optimization
are presented. Subsequently, in Section III, we present the
applied methodology, including a modified version of the early
stopping and our Cost Aware Scalable Constrained Bayesian
Optimization algorithm to handle the costs of evaluating SNNs.
In Sections IV and V, we discuss experimental results and the
effects of the fidelity HPs on the optimization process. We
give the main conclusions of this work and some perspectives
in Section VI.

II. BACKGROUND AND RELATED WORKS

A. Multi-fidelity and spiking neural networks
In [5], the Scalable Constrained Bayesian Optimization

algorithm (SCBO) [11] was applied to HPO of 4 SNNs
trained by Spike Timing Dependent Plasticity (STDP) [14]
and SLAYER [15], to classify Poisson Encoded MNIST [16]
and DVS-Gesture [17]. The authors applied an indirect spike-
based early stopping criterion to early detect silent networks
and avoid costly and worthless computations. A silent network
is a SNN unable to output enough spikes for a given task
because of mistuned HPs or architecture. This concept is a
generalization of the signal loss problem [18], [19] explained by
a too deep SNN. Because spiking datasets have a heterogeneous
spiking activity, for and within each class, the early stopping is
based on a per-sample spiking activity. If one can detect that,
a proportion βtrain of samples within the training dataset Dtrain
outputting less than α spikes, is superior to a given proportion
β (βtrain ≥ β), then the training is stopped and the SNN is
considered as a silent network. So, a constraint as described
in 1 can be written, cout ≤ 0 ⇐⇒ βtrain − β ≤ 0. A negative
or positive value of cout, is an indication that the training phase
has been stopped or fully completed. Therefore, the constraint
forces SCBO to find HPs combinations carrying out the training
process. Furthermore, results in [5], emphasize that some very
early stopped SNNs can have acceptable performances (≈ 80%
accuracy), leading the way to even more accelerated HPO by
considering multi-fidelity, i.e., training on smaller subsets of
Dtrain.

Hyperparameters definitely have an impact on the compu-
tation time of SNNs. In [9], Cost was considered within a
multi-objective approach so to maximize the accuracy while
minimizing the training time per epoch. The authors have
demonstrated that high accuracies can be obtained in lower
training time. As a result, intensive and expensive training is
not necessary to obtain competitive accuracies.

Another work [20] used Bayesian Optimization HyberBand
(BOHB), a multi-fidelity Bayesian Optmization algorithm based
on the HyperBand algorithm [21]. Authors optimized a 3
HPs search space (leakage, time-steps, learning rate) of the
S-Resnet38 architecture applied to CIFAR-10 and CIFAR-100.
However, the impact of the multi-fidelity on the optimization
process (the training set size) was not investigated. BOHB
maximizes the fidelity HP, i.e. the size of the training subset
from Dtrain, by doing the assumption that higher fidelity always
results in better performances [10]. However, as described
in [10], multi-fidelity HPO can be divided into two groups,
one for which the previous assumption holds, and another
one where higher fidelity does not necessarily result in better
performances, notably in the case of overfitting.

In our SNNs problem, specifically when they are simu-
lated [22], [23], several HPs can control a certain fidelity, i.e.,
complexity of the simulator. In BindsNet [22], the temporal
granularity, named dt, in milliseconds, controls the number
of time steps during the simulation. In Brian2 [23], one
can choose between different numerical integration methods
such as Euler or Runge-Kutta algorithms, which also affects
the performances [7]. In general, and for non-event-driven
simulators, spikes of a sample are accumulated within a certain
number of frames. This HP also has implications on the
performances of the SNN. The higher the number of frames,
the higher the computation time, but not necessarily the better
the performances [24], [25].

B. Asynchronous and cost aware BO

Because of the early stopping criterion described in [5],
asynchronous parallelization is unavoidable, as silent networks
can be detected in a few seconds (on Poisson encoded MNIST),
while fully trained SNNs can last a few hours. To tackle
asynchronous BO several techniques exist in the literature. For
instance, fantasizing [26] consists in using the Gaussian Process
posterior distribution to impute values of pending evaluations,
and including them in the optimization of the acquisition
function without retraining the Gaussian process for every
fantasy. Another and simpler solution is to use asynchronous
Thompson Sampling [27] which replaces the acquisition
function by the maximization of a batch of samples from
the Gaussian process posterior distribution. Such an approach
is cheaper compared to fantasies and local penalization [28], as
it does not involve the optimization of an acquisition function.
Therefore, Thompson Sampling appears to be a reliable strategy,
particularly when our search space may contain many silent
networks [5]. These silent networks can be quickly detected and
evaluated, involving numerous queries to obtain new batches
of solutions in a short period of time.

Additionally, Thompson sampling is used in Trust Region
Bayesian Optimization (TuRBO) [29] and in its constrained
version known as SCBO [11]. SCBO allows tackling HPO for
high dimensional and black-box constrained problems. Such
an approach was successfully applied in [5] for optimizing
hyperparameters of SNNs while leveraging silent networks.



Nonetheless, difficulties arise when dealing with multi-
fidelity. A solution to this are Multi-output Gaussian processes
(MOGP), allowing to jointly model, with a single Gaussian
process, all fidelities [28]. MOGP allows the transfer of
information between levels of fidelities. In [28], the authors
proposed a multi-fidelity approach to TuRBO implying discrete
fidelities, modeled by a MOGP outputting a M -dimensional
mean and a M ×M co-variance matrix for each sample from
the posterior, where M is the number of fidelities. A major
drawback of this approach is the discretization of a single HP
describing the fidelity. We saw that when SNNs are simulated
the fidelity can be expressed as a combination of different
HPs which can be continuous, and might sometimes result in
overfitting. Thus, a solution to our problem is to consider a
generalization of multi-fidelity Bayesian optimization, known
as Cost-Apportionned Bayesian Optimization (CArBO) [30].
Here, the idea is to train two Gaussian processes, one for
estimating the actual objective function, and a second to impute
the computational cost of a HPs combination. The algorithm
then optimizes an acquisition function known as the cost-
cooling Expected Improvement per unit (EIpu):

EI-cool(λ) :=
EI(λ)
C̃(λ)κ

, (2)

where λ is a HPs combination and C̃ the positive mean from
the Gaussian process posterior distribution (on the costs) for a
given sample λ. The annealing parameter κ, decreasing from
1 to 0, describes the contribution of the cost on the EIpu,
allowing to focus on cheap computation at the beginning and
on expensive ones by the end of the remaining budget. When
κ→ 0, the acquisition function becomes the usual Expected
Improvement (EI). Unfortunately, a major drawback of EIpu
is its difficult tractability toward asynchronous parallelization.

III. METHODOLOGY

A. Improved early stopping and constraints

The early stopping criterion, described in [5], is based on
two HPs, α describing the minimum number of output spikes
for a single sample from Dtrain, and β the maximum acceptable
proportion of samples outputting less than α spikes. During the
training, after each batch, the proportion βtrain of non-spiking
samples is computed. If βtrain ≥ β, the training is stopped. We
can extend this to λtrain ∈]0, 1], an HP defining the proportion of
the initial Dtrain used for training. To even more accelerate the
detection of silent networks, β now describes the proportion of
samples from the subset D′

train of Dtrain, outputting less than α
spikes. So, as described in alg. 1, which can be easily extended
to batches of data, the early stopping is now based on the subset
of Dtrain proportional to λtrain. Thus, selecting a convenient β
relies on the minimum value of λtrain and on the size of Dtrain.
Moreover, instead of computing a constraint on the proportion
of samples outputting less than α spikes, cout := βtrain−β, we
rewrite it as the proportion β′

train of samples that have outputted
at least α spikes before the network being stopped:

cout := 1− β′
train − β . (3)

Algorithm 1 SNN training with improved constraint

Inputs:
1: N λ

θ Network
2: Dtrain Training data
3: λtrain Proportion of Dtrain

4: epochs Number of epochs
5: α Minimum spiking activity
6: β Maximum proportion of non spiking samples
7:

Outputs: N λ
θ⋆ , β′

train
8: D′

train ← SUBSET(Dtrain, λ
train) Exctract λtrain%

9: out← ∅ Output spikes
10: i, e← 1
11: while (βtrain ≤ β) ∧ (e ≤ epochs) do
12: nscount← 0 Number of non spiking samples
13: scount← 0 Number of spiking samples
14: while (βtrain ≤ β) ∧ (i ≤ |D′

train|) do
15: out← Train(N λ

θ ,D′
train[i])

16: if SUM(out) < α then Number of output spikes
17: nscount← nscount+ 1
18: βtrain ← nscount

|D′
train|

Ratio of non spiking samples

19: else
20: scount← scount+ 1
21: β′

train = scount

|D′
train|

Ratio of spiking samples

22: i← i+ 1

23: e← e+ 1
return N λ

θ⋆ , β′
train

So we obtain a stochastic value (depending on the shuffling
of the dataset), describing how far the training of N went
before being stopped. If the training of N was not stopped,
then cout < 0. A hypergeometric distribution can model the
probability of encountering non-spiking samples within the
first n samples from D′

train during training. If X is the number
of non-spiking samples encountered after n draws, then X ∼
Hypergeometric(n,K, |D′

train|). However, we cannot know a-
priori the values of K, i.e., the number of non-spiking samples
in D′

train. Moreover, this value K may vary through epochs.
Thus, in probability, the higher K, the lower β′

train and the
sooner N should be stopped. Therefore, one of the objectives
of the optimization algorithm is to minimize cout to ensure a
minimal per-sample spiking activity.

B. Cost aware Thompson sampling

In the following section we describe our modification of
the Scalable Constrained Bayesian Optimization (SCBO) [11],
specifically designed for our HPO problem, so to handle the
cost of evaluations. We named this algorithm Cost Aware
Scalable Constrained Bayesian Optimization (CASCBO).

In SCBO [11], Thompson sampling replaces the acqui-
sition function and is adapted to black-box constraints. In
this work, the accuracy, the constraint on the outputs and



the cost are modelled by their respective Gaussian process.
For simplicity, we write the performances of a network as
f(λ) := Accuracy(N λ

θ⋆ ,Dvalid), the value of the constraint
for the HPs combination λ is written cout(λ), and Cost(λ)
is the positive computational cost of training N λ. Therefore,
CASCBO maintains 3 Gaussian Processes for the 3 previous
functions. The resulting prior distributions are written :

f(λ1:k) ∼ GP
(
µf
0 (λ

1:k),Σf
0 (λ

1:k)
)

,

cout(λ
1:k) ∼ GP

(
µcout
0 (λ1:k),Σcout

0 (λ1:k)
)

,

Cost(λ1:k) ∼ GP
(
µCost
0 (λ1:k),ΣCost

0 (λ1:k)
)

,

(4)

where λ1:k is the archive, i.e., the sequence of input solutions
λ(1), . . . , λ(k). The mean functions are denoted µ0, and Σ0 are
the kernels (here a Matèrn 5/2) for f , cout and Cost. We write
the estimators of f(λ1:k), cout(λ

1:k) and Cost(λ1:k) obtained
from the Gaussian processes as f̂ , ĉout and Ĉost.

At each iteration, SCBO samples λ0, . . . , λS candidate
solutions, within a trust region L ⊆ Λ. Here we consider Λ as
the unit hypercube. Thompson sampling uses the posterior
distributions, f̂ , ĉout and Ĉost, to sample r = 1, . . . , R,
realizations for all s = 1, . . . , S candidates. In the original
version of SCBO, for each realization, the algorithm computes
the set of feasible candidates F̂r := {λs | ĉout(λs) < 0}. In this
work, F̂r contains the potential non-silent HPs combinations.
While F̂ ∁

r contains potential silent networks. Then SCBO
selects a potentially optimal candidate λ̃r for a realization
r such that:

λ̃r ∈ argmin
λ∈F̂r

⋃
F̂∁

r

{
−f̂(λ) , if λ ∈ F̂r

ĉout(λ) , if F̂r = ∅
(5)

So, at each iteration, SCBO returns a batch of R potentially
optimal solutions, selected according to 5. A high number of
candidates S and the stochasticity of the estimators, f̂ , ĉout and
Ĉost, ensure the diversity of the selected potentially optimal
candidates, λ̃0,...,R.

Inspired by the EIpu [30], described by 2, and to include
Ĉost in 5, we propose to compute a greedy improvement based
on the current best solution λbest, ∆(λ) = f(λbest) − f̂(λ).
Then, according to the sign of ∆(λ), the improvement will be
weighted or penalized by Ĉost(λ). If cout is positive, then it
should be penalized by Ĉost(λ).

We propose to rewrite 5 as:

If F̂r ̸= ∅ ,

λ̃r ∈ argmin
λ∈F̂r

{
∆(λ)÷ Ĉost(λ)κ , if ∆(λ) < 0

∆(λ)× Ĉost(λ)κ , else
, (6a)

otherwise ,

λ̃r ∈ argmin
λ∈F̂∁

r

{
ĉout(λ)× Ĉost(λ)κ . (6b)

So, for each realization, 6 should return the λ with the best
greedy improvement per unit if ∆(λ) is negative. Otherwise,

it should return the less costly λ compared to the potential
loss of performances. If none of the realizations are feasible,
then it will return the solutions with the minimum constraint
violation penalized by the cost.

C. Asynchronous trust regions

TuRBO [29] and SCBO [11] implement trust regions. A
trust region, L, is a subspace of Λ (unit hypercube), centered
on the current best solution λbest. In its simplest shape, L is
described by a hypercube of length l. At each iteration, both
algorithms return, via the posterior distributions and Thompson
sampling, a batch of solutions within L. When computed with
the actual objective function, this batch of evaluated solutions,
written B, is used to:

• shrink L, by l← l ÷ 2, if after nfail successive iterations
the algorithm failed to improve λbest

• expand L, by l ← l × 2, if at each and during nsuccess
successive iterations the algorithm improved λbest.

At the end of each iteration, the center of L, i.e. λbest, is
updated if the best solution from B is better than λbest. In this
work, a solution λ1 is better than λ2 if:

f(λ1) > f(λ2) , if (ν(λ1) < 0) ∧ (ν(λ2) < 0)

cout(λ1) < cout(λ2) , if cout(λ2) ≥ 0

Cost(λ1) < Cost(λ2) , else if (f(λ1) = f(λ2))
(7)

Concerning the parallelization, we use a flexible asyn-
chronous approach. It consists of constantly keeping a FIFO
queue of non-evaluated solutions waiting to be sent to idle
worker processes. When the number of solutions within this
queue is under a certain threshold, the evaluated solutions are
returned, and used to update the surrogates of CASCBO. Thus,
we cannot ensure that at each iteration, the trust region will be
updated using a fixed batch size. Indeed, because of the early
stopping and because HPs have an impact on the evaluation
time, the trust region can shrink while expensive evaluations
of previous batches are not yet evaluated. Thus, at a certain
time t, some evaluated solutions can be located outside the
current trust region.

For simplicity, we consider a single trust region, even if in
TuRBO and SCBO multiple trust regions can be maintained at
the same time. Because of the asynchronicity, the center of the
trust region can be relocated to a solution that was sampled
a few batches before, and so this solution can be outside the
current L.

We write LI the trust region at the iteration I , and Li the trust
region at a given previous iteration i < I . Moreover, λi are now
solutions (HPs combinations) sampled by CASCBO at iteration
i. The batch at I is written BI . This batch is now built with pairs
(λi, Li), made of evaluated solutions λi and their respective
Li, sampled at previous iterations i. For readability, we do not
write the quintuple (λi, Li, f(λi), cout(λi), Cost(λi)), as f(λi),
cout(λi) and Cost(λi) are known when λi is evaluated. So, at
iteration I , BI := {(λi,j , Li) | i < I, 0 ≤ j ≤ r} \ B0,...,I−1.

Now that we can temporally link solutions to the previous
trust regions it were sampled in, we can redefine the update



of the current LI . When the size of the FIFO queue of non-
evaluated solutions is lower than a threshold, a batch BI of
evaluated solutions is returned to CASCBO to compute the next
iteration I . By using 7, we can determine the best (λi,j , Li) ∈
BI . The current trust region LI is then updated as follows:

• If the best λi,j /∈ LI , and if λi,j is better than λbest,
according to 7, the algorithm goes back-in-time such that
LI ← Li.

• Otherwise shrink or expand LI as previously described.
Thanks to the previous update, while costly solutions are

computed, CASCBO can exploit a cheaper trust region. When
costly solutions are evaluated, and if one of them improves
the current best solution while being outside the current trust
region, then LI is restored to the state at which the best costly
solution was sampled. So, while computing expensive solutions,
CASCBO can retrieve cheap and relevant information.

IV. EXPERIMENTAL SETUP

In this study, six distinct experiments were conducted. Two
of them classify the Poisson Encoded MNIST [16]. The first
experiment optimizes a search space of 22 HPs applied globally
to the network. While the second experiment optimizes 46 HPs
applied layer-wise. The same networks and search spaces were
applied to the NMNIST dataset [31].

For the first four experiments, the network architecture is a
convolutional spiking neural networks, taken from the original
SLAYER paper [15]. Instead of a Spike Response Model
(SRM) neuron’s model, we used a Leaky Integrate and Fire
(LIF) with adaptive threshold. Concerning experiments 5 and
6 applied to the SHD [32] dataset, we optimized an existing
architecture [33] using SLAYER, consisting of 3 hidden feed-
forward layers. Experiment 5 optimizes 21 HPs applied globally,
and the 42 HPs of experiment 6 are applied, when possible,
layer-wise. All experiments and HPs are summed-up in Table I.
For concision, all boundaries can be found within the given
code2, as well as all experimental data. Continuous HPs, such
as the neuron’s threshold, are not discretized to keep a wider
range of possibilities, including potential silent networks.

Batches from the datasets have the following shape :
B.F.C.H.W , i.e. batch size, frames, channels, height, and
width. The batch size and number of frames are HPs to be
tuned. The MNIST, NMNIST and SHD datasets follow the
same pattern, respectively (B.F.1.28.28), (B.F.2.34.34) and
(B.F.1.700). The Tonic [34] Python package was used to
load and convert DVS data into frames. Both MNIST and
NMNIST have the same number of samples. They are divided
into a training (Dtrain), validation (Dvalid) and test (Dtest), sets
of respective sizes 48000, 12000 and 10000. The SHD dataset
contains fewer samples than previous datasets, but was still
divided into three subsets of sizes 6524, 1632 and 2264. All
validation sets are randomly extracted from the training sets
while keeping classes proportions. A cluster of GPUs from
Grid5000 [13] was used for computations. A total of 16
NVIDIA A-100 (40 Gib) were used, one of them was dedicated

2https://github.com/ThomasFirmin/fidelity_hpo_snn

to the computation of CASCBO. Each node contains 4 GPUs,
a 32-cores AMD EPYC 7513 (Zen 3) CPU and 512 GiB of
RAM. CASCBO was parallelized using OpenMPI, instantiated
with Zellij3 and BoTorch [35]. The LAVA-DL4 simulator
is used to implement SLAYER.

V. RESULTS AND DISCUSSION

A. Analysis of the best solutions

Results presented in Table I are selected according to the best
accuracy on Dvalid found by CASCBO, and final accuracies are
computed on Dtest. The budget in the seventh column is in GPU
hours. So, to get the real duration of an experiment, in hours,
the budget should be divided by the number of used GPUs,
here 16. To evaluate stochasticity of the best solutions, SNNs
are retrained 16 times during 25 or 100 epochs, depending
on potential overfitting. To our knowledge, in the literature
of HPO applied to SNNs, we optimized the highest number
of hyperparameters while maintaining competitive accuracies
on standard benchmarks. Although experiments 2, 4 and 6
are more difficult due to the higher number of HPs, this does
not always translate into lower accuracies. In Table I, one can
even observe improvements when HPs are optimized layer-
wise. However, it is not always the case, depending on the
parametrization of CASCBO, available resources and budget.

Concerning experiments 1 to 4, and compared to the baseline
results from [15], we can notice that our results, are more
stochastic, even if they are close to the baseline, and slightly
better for experiment 4. We assume this stochasticity might be
explained by the usage of an adaptive LIF, rather than SRM
neurons. An additional source of uncertainty may arise from
the difference in simulators used. The baseline was computed
using the original SLAYER simulator5, whereas we utilized
SLAYER-2 from LAVA-DL.

Moreover, our networks are trained on fewer data than the
given baseline. Indeed, a good practice [10], [12] when doing
HPO, even manually, is to have three subsets of data, Dtrain,
Dvalid and Dtest, to prevent overfitting the HPs, and to guarantee
a certain degree of generalizability. When doing HPO, a bias
is introduced because of an additional step in the design of a
SNN.

Concerning experiments 5 and 6, results indicate that by
tuning HPs, one could significantly improve the accuracies of
handcrafted architecture presented in [33].

In Fig. 1, we used the t-SNE algorithm [36] to apply
dimensionality reduction on evaluated solutions produced by
CASCBO. One can see there exist different areas (clusters
of points) of the search space containing good solutions. The
darkest and biggest clusters, in all six figures, indicate groups
of solutions that are mostly silent networks. So, we can deduce
that some part of the search space, distinct from the ones
containing high accuracy solutions, contains many infeasible
solutions, i.e. silent networks.

3https://github.com/ThomasFirmin/zellij
4https://github.com/lava-nc/lava-dl
5https://bitbucket.org/bamsumit/slayer



TABLE I: Summary of experiments

# Dataset HPs Selected HPs α, β Budget Test accuracy Source

1 MNIST 22 λtrain, frames, epochs, batch
size, output spike rate for true
and false label, learning rate,

time constant of spike function
derivative, gradient scale,
threshold, threshold step,

current decay, voltage decay,
threshold decay, refractory

decay, neurons dropout

momentum of SGD, learning
rate schedule, filters and kernel

size for each conv layer

5, 3% 224 97.56± 0.70
99.36± 0.05 [15]

2 MNIST 46 5, 3% 224 99.06± 0.14

3 NMNIST 22 5, 3% 640 94.96± 2.26
99.20± 0.02 [15]

4 NMNIST 46 5, 3% 640 98.85± 0.38

5 SHD 21 both momentums of ADAM,
number of neurons for each

dense layer

10, 1% 224 89.55± 1.74
70.58± 1.9 [33]

6 SHD 42 10, 1% 224 90.19± 2.43

(a) Experiment 1 (b) Experiment 2

(c) Experiment 3 (d) Experiment 4

(e) Experiment 5 (f) Experiment 6

Fig. 1: t-SNE applied on all evaluated solutions returned by
CASCBO. The lighter or yellower the point, the higher the
accuracy.

Concerning λtrain, it is not always necessary to use the
full training dataset to obtain good accuracies. With proper
parameter tuning, on MNIST, we can reach about 96% of
accuracy by only using 10% of Dtrain. Most of the dataset is
then used to refine the accuracy to reach about 99% validation
accuracy. Similar behaviors can be observed on NMNIST and
SHD.

B. Analysis of CASCBO

In this section, we analyze the behaviors of CASCBO during
the optimization process. Table II sums-up the best solutions
found by CASCBO, and selected according to the best accuracy
on Dvalid. The number of evaluated HPs combinations, the

TABLE II: Results from CASCBO without retraining

# cout Cost Train Valid # eval. % silent % budg.

1 −0.03 1228 97.31 97.54 2073 55.3 2.2

2 −0.03 1412 98.55 98.28 1823 70.5 1.6

3 −0.03 4255 97.34 97.05 2291 57.0 0.6

4 −0.03 1523 98.65 98.33 3666 55.9 4.0

5 −0.10 437 94.96 98.77 3469 45.5 1.6

6 −0.10 1029 99.83 98.77 2367 49.2 2.1

proportion of sampled silent networks and their influence on
the budget (GPU hours) are shown in the three last columns.

One can see that while almost half of the sampled solutions,
70% for experiment 2, are silent networks, their impact on
the budget is greatly diminished, from 0.6% up to only 4%.
Additionally, Fig. 2 illustrates that most of the silent networks
are sampled at the beginning of the optimization (red lines)
when λtrain and the cost are low. Then, CASCBO can quickly
converge toward fully trained networks (black lines). The
differences of Cost and number of evaluated solutions between
experiment 3, 4, 5 and 6, is explained by a focus of CASCBO
on solutions with a lower or higher number of epochs.

So, multi-fidelity, combined with constraints and early
stopping, allows to quickly escape from areas where silent
networks are located. These areas are represented by the biggest
and darkest clusters in Fig. 1.

The results presented in Fig. 3 serve as a baseline comparison
with [5]. By using the same number of GPUs, we were able
to obtain a faster convergence and similar results on Poisson
encoded MNIST. The SCBO algorithm, with constraints on
the spiking activity, required at least 900 GPU hours before
ending the first exploitation phase (after about 60 hours), while
in CASCBO this phase ended after 180 GPU hours (12 hours).
Similar behaviors are observed during the first exploration
phase. In [5], this phase ended after about 525 GPU hours,
while CASCBO required about 60 GPU hours. So, including
fidelity parameters and costs within the HPO of SNNs, allows
to significantly increase the convergence of the algorithm while
maintaining competitive performances.

VI. CONCLUSION

In this paper, we leveraged multi-fidelity optimization to
handle HPs influencing the cost of training a SNN. The
expensiveness of SNNs can be explained by diverse HPs, such



(a) Experiment 1 (b) Experiment 2 (c) Experiment 3

(d) Experiment 4 (e) Experiment 5 (f) Experiment 6

Fig. 2: Validation accuracies according to start and end training dates of all evaluated solutions. A horizontal line represents the
training period of a single SNN. The longer the line, the more expensive the training. A red line represents a silent network
that has been stopped, and a black line is a fully trained SNN.

Fig. 3: Validation accuracies optimizing 20 HPs with SCBO
during 1600 GPU hours and on MNIST (Train: 98.91± 0.12,
Valid: 98.57± 0.25, Test: 98.80± 0.19) [5].

as the temporal resolution of the simulator, the size of the
network or the size of the training dataset. We designed a
new Bayesian optimization approach called CASCBO, based
on SCBO [11], allowing to consider costs of evaluations,
constraints, and high dimensional search spaces. To improve the
detection of silent networks and reduce their negative influence
on the budget, we redefined specific constraints. These are
based on the number of samples that output at least; and
not at most, α spikes for a certain layer. This new definition
follows a hypergeometric law, giving a stronger quantitative and
probabilistic meaning to the constraints. Moreover, to handle

asynchronicity and the high stochasticity of a SNN evaluation,
we propose an asynchronous trust region with back-in-time,
providing the opportunity to CASCBO to restore a previous
trust region if a better and late evaluation ends outside the
current trust region.

Experiments indicate that CASCBO can optimize high
dimensional and constrained search spaces, including fidelity
HPs. These HPs have an effect on the training time of SNNs,
and so on the budget allocated to silent networks. The proposed
methodology makes the impact of silent networks negligible,
allowing to define a more general and flexible search space. The
optimization process can quickly stabilize the high sensitivity of
SNNs to their HPs, before tackling expensive evaluations. Our
approach empirically indicates that expensive evaluation on the
full training dataset is not necessary to obtain high accuracies.
Despite the complexity of the problem, the presented results
remain competitive compared to their baseline accuracies, yet
better. Additionally, when doing HPO, to prevent overfitting
the HPs [12] a more rigorous approach is necessary. It includes
train, validation, and test subsets; meaning that we train on
fewer data compared to the baselines, which improves the
generalizability of our solutions. Finally, we are working on
applying our methodology to cost-aware multi-objective HPO
of SNNs where minimizing the number of spikes is important,
while maintaining a minimum spiking activity.
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