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Abstract 

RNA modifications contribute to the various functions of RNAs in all living organisms. 

Some of these modifications are dynamic and contribute to the regulation of gene expression. In 

bacteria, their roles in stress, environmental adaptation, and in infections caused by pathogens have 

been recently fully recognized. In this review, we describe several methodologies including mass 

spectrometry, next generation RNA sequencing methods, biochemical approaches, and cryo-EM 

structural analysis that are used to detect and localize the modifications in tRNAs and rRNAs. We 

illustrate how the combination of methods was necessary to avoid technical biases for a successful 

mapping of the modifications in tRNAs and rRNAs in Staphylococcus aureus. 

Keywords: RNA modifications; Staphylococcus aureus ; tRNA; rRNA; Mass Spectrometry; 

RNA-seq; cryo-EM structure  
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1 Introduction 

RNA molecules are chemically modified at different positions of the nitrogenous bases or 

the ribose cycle. These modifications are common to all domains of life and are present in all RNA 

classes, including stable non-coding RNAs (tRNAs, rRNAs, some regulatory RNAs) and generally 

less stable mRNAs. They involve covalent alterations (i.e. methylations, acetylation and 

deamination) or isomerization (i.e. pseudouridines) of nucleotides (Figure 1A). To date, over 170 

modifications have been found in RNAs from different organisms, with the most common 

modification being methylation (see MODOMICS database) (Boccaletto et al. 2022). Overall, they 

influence chemical and physical properties of RNAs with consequences on their stability, 

structure, recognition, transport, and cellular localization (Frye et al. 2016). Specific enzymes are 

responsible for their deposition and removal, providing a large degree of variability (de Crécy-

Lagard and Jaroch 2020; Ishitani et al. 2008). These modulations add a sophisticated regulatory 

layer in gene expression and often connect external stimuli to various cellular processes. This is 

particularly the case for bacteria, which need to rapidly adapt their growth to environmental 

stresses, to the host responses, to nutrient availability, and to antimicrobials or dangerous chemical 

reactive species. 

Epitranscriptomic regulation often targets the most modified RNA species, tRNAs and 

rRNAs, influencing the translation process. Both codon decoding and peptide bond formation are 

affected by specific modifications on tRNAs and rRNAs, which influence translation rates and 

accuracy. Consequently, they directly impact protein yields, their proper folding, and activity 

(Samatova et al. 2020; Antoine et al. 2021). Translation regulation fine tunes protein synthesis to 

balance the relative abundance of proteins in the same pathways or to provide the correct 

stoichiometry of complexes (Li et al. 2014). In addition, translational control is well appropriate 

when fast adaptation is required (Tollerson and Ibba 2020; Duval et al. 2015). In different stress 

conditions, modulation of RNA modifications can be rapidly achieved by changing the level of 

the modification enzymes or by affecting their activity. 

Stable non-coding RNAs, rRNAs and tRNAs, which represent in bacteria >95% of total 

RNA fraction are extensively modified during their maturation. Despite decades of studies, the 

comprehensive and reliable profiling of tRNA and rRNA modifications was accomplished only 

for a few model species. For bacterial species, such comprehensive profiling was performed for 
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Escherichia coli as a prominent representative of Gram-negative bacteria (see MODOMICS) and 

rather recently, for Bacillus subtilis (de Crecy-Lagard et al. 2020) and Staphylococcus aureus 

(Antoine et al. 2019) as representative Gram-positive species. Despite the fact that MODOMICS 

and tRNAdb (Jühling et al. 2009) databases show that all known bacterial tRNAs have numerous 

common modifications, they also revealed specificity among bacterial species. Dihydrouridine 

(D), pseudouridine (ψ), 5-methyluridine (m5U/T) and 7-methylguanosine (m7G) are highly 

common, while 2’-O-methylations (Nm), 4-thiouridine (s4U), and anticodon loop modifications 

are rarer, and others are unique for specific tRNA species (Figure 1B). Although Gram-negative 

and Gram-positive bacterial species share a number of common tRNA modifications, 

characteristics were identified in the D-arm, e.g. Gm18 is only found in Gram-negative bacteria, 

while m1A22 is primarily observed in several Gram-positive bacteria. In contrast to tRNAs, rRNA 

modification profiles are less diverse among bacteria. However, the exact modification position is 

not necessarily conserved between different bacterial species but a similar modification is often 

present in the same rRNA structural domain (Piekna-Przybylska et al. 2008). Hence, it is of 

importance to gain more knowledge on the evolution of RNA modifications across bacterial 

phylogeny, and analyze the structural environment of chemical modifications to gain insights into 

their role and mode of interaction with neighboring residues. 

Accurate detection of RNA modifications is still an extremely difficult task, as today there 

is still not a unique method that provides the whole pattern of RNA modifications. These 

approaches include various chromatographies (i.e. TLC, HPLC), reverse transcriptase analyses, 

affinity gel electrophoresis, and more sophisticated methods including liquid chromatography-

tandem mass spectrometry analyses of nucleosides or RNA fragments (LC-MS/MS), and deep 

sequencing approaches(Schaefer et al. 2017; Wetzel and Limbach 2016; Motorin and Helm 2022; 

Yoluç et al. 2021). Recent nanopore technologies can potentially provide access to multiple 

modifications in native RNA molecules (Garalde et al. 2018; Begik et al. 2021). Even if these 

methods offer an extraordinary amount of information and depth, they nevertheless suffer from 

limitations and biases.  

Here we describe the methodologies that were used to determine the modification patterns 

of stable RNAs (tRNAs and rRNAs) from Staphylococcus aureus, which is an opportunistic 
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human bacterial pathogen causing a large variety of infections. We will especially underline the 

power of combining complementary methodologies. 

2 RNA purification 

2.1 Isolation of total RNA from S. aureus 

Sample requirements differ depending on the type of technique used for detecting RNA 

modifications. High amounts of homogenous RNAs are often required for successful analyses and 

appropriate methods for RNA purification should be optimized. A minimal number of purification 

steps following efficient cell lysis and RNA stabilization is crucial for correct RNA yield, purity, 

and integrity. The main challenge in RNA extraction from S. aureus is the disruption of the thick 

peptidoglycan cell wall. Successful approaches use enzymatic treatment with lysostaphin (Bastos 

et al. 2010), mechanical bead-beating or a combination of both methods in the presence of protein 

denaturants to inhibit RNase activities and abolish RNA-protein interactions (i.e., phenol, 

guanidine isothiocyanate) (Atshan et al. 2012; Beltrame et al. 2015; França et al. 2011). S. aureus 

RNA samples are routinely prepared with the FastRNA® Pro blue kit (MP Biomedical), which 

uses mechanical bead-beating of bacteria suspended in the commercial solution designed to 

prevent RNA degradation. For large scale preparations (up to 500 mL of culture in logarithmic 

phase), bead-beating lysis of S. aureus, suspended in a 1:1 mixture of aqueous buffer and acidic 

phenol/chloroform/isoamyl alcohol, is performed. RNA is further purified by chloroform 

extraction and ethanol precipitation. 

2.2 Purification of rRNAs and tRNAs 

As total RNA samples contain a mixture of different species (rRNAs, tRNAs, mRNAs, sRNAs, 

etc.), enrichment of the RNA molecule of interest is often beneficial for the analysis of 

modifications. Several approaches are based on size selection of RNAs (Poulson 1973). A rapid 

strategy is the use of specific filters (cutoff 50 kDa) to enrich for rRNAs (retentate) or tRNAs 

(filtrate) after ultrafiltration. Depending on the specific analysis to be performed on the RNAs, 

more laborious purification methods might be required. To purify small amount of individual 16S 

and 23S rRNAs as well as tRNAs, S. aureus RNA species can be separated by polyacrylamide gel 

electrophoresis (PAGE) and subsequently eluted from the excised bands (electroelution or “crush 

and soak”) (Meyer and Masquida 2016; Petrov et al. 2013). To get larger amounts of RNAs and 
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to avoid gel impurities, chromatographies performed under native conditions are preferred 

(Kanwal and Lu 2019). For instance, size-exclusion chromatography can be used to purify the 

different rRNAs (23S, 16S and 5S) and the tRNA fractions (Chionh et al. 2013; McKenna et al. 

2007). Alternatively, weak anion exchange chromatography using DEAE (diethylaminoethyl) 

matrix is widely used to separate tRNAs and rRNAs, which elute at low and high salt 

concentration, respectively (Easton et al. 2010). Finally, to analyze modification profiles of rRNA 

incorporated in fully matured and actively translating ribosomes, rRNAs (23S, 16S and 5S) can be 

recovered by phenol-chloroform extraction of purified S. aureus total ribosomes (Khusainov et al. 

2016) or polysomes samples, obtained from sucrose gradients fractionation (Brielle et al. 2017).  

2.3 Purification of individual tRNAs 

Individual tRNAs can be purified from total tRNA using biotinylated oligo DNA probes which 

specifically hybridize to the target tRNA molecule. Yokogawa and co-workers (Yokogawa et al. 

2010) optimized this method for thermostable tRNAs and we adapted it for the purification of S. 

aureus tRNAs. The procedure consists of four steps: (i) design and preparation of the DNA probe, 

(ii) probe-resin immobilization, (iii) tRNA-probe hybridization, and (iv) tRNA isolation. The DNA 

probe is composed of 35 to 40 nucleotides and contains a biotin at the 5’ or 3’ end. Its sequence is 

usually complementary to the region between the D-arm and the anticodon loop. The biotinylated 

probe is immobilized on a streptavidin Sepharose resin using standard procedures. Hybridization 

of target tRNA and DNA probe requires denaturation of tRNA under conditions which maintain 

tRNA:DNA interaction. The buffer containing tetra-ethylammonium chloride has been reported 

as the best to destabilize the tRNA tertiary structure and to enhance the interaction between tRNA 

and DNA probes (Yokogawa et al. 2010). After hybridization, the remaining non-target tRNAs 

are removed by washing the resin with a non-denaturing buffer. Then, the desired tRNA is eluted 

with the non-denaturing buffer pre-heated at 60°C. The quality of the purification is assessed by 

denaturing PAGE and the identity of the tRNA is confirmed by mass spectrometry (MS). 

Depending on the yield of the purification, eventual contaminations can be removed by gel 

purification or ion-exchange chromatography. The purification method described above is efficient 

for most tRNAs, but further optimization is often required for tRNA isoacceptors, poorly 

transcribed tRNAs, and tRNAs with high GC content. Methods such as reciprocal circulating 

chromatography (RCC) (Miyauchi et al. 2007) and chaplet column chromatography (CCC) 
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(Suzuki and Suzuki 2007) have been optimized to increase the yield of GC-rich tRNAs (Ohira et 

al. 2022). 

3 Mass spectrometry to identify and localize modifications in RNAs 

Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) is the most trusted 

method for direct and unambiguous detection of RNA modifications, as it provides precise 

measurements of molecular masses (accuracy < 1 Da) even from very low amounts of material 

(Giessing and Kirpekar 2012; Jora et al. 2019). In this set up, the RNA sample is separated by 

reverse-phase high-performance liquid chromatography (RP-HPLC) and the eluting species are 

directly injected into a mass spectrometer equipped with two analyzers (Thomas and Akoulitchev 

2006). An electrospray ionization (ESI) source (Kebarle and Tang 1993) evaporates and ionizes 

the analyte, and the formed (parent) ions are separated in the first analyzer according to their mass-

to-charge (m/z) ratio. Ions with a defined m/z are selected for collision-induced dissociation (CID) 

(Huang et al. 2008) and the resulting fragments (daughter ions) are resolved in the second mass 

analyzer. The recorded MS and MS/MS spectra (plot of m/z values and their relative abundance) 

are used to depict mass shifts and fragmentation profiles that evidence the presence of additional 

chemical groups attached to the canonical nucleotides (Thakur et al. 2021).  

Two types of complementary LC-MS/MS analyses are performed for complete mapping of 

modifications in S. aureus RNAs. In the first analysis, the RNA of interest is hydrolyzed to its 

nucleoside (sugar + nucleobase) building blocks to identify all resident modifications (Pomerantz 

and McCloskey 1990). In the second, the RNA is digested with a nucleobase-specific RNase, and 

the sequences of the resulting oligonucleotides including modifications are determined and placed 

within the full-length RNA sequence (available from genomic data) (Kowalak et al. 1993). Both 

analyses require previous purification of the target RNA to obtain reliable data, limiting this 

“bottom up” mapping strategy to the analysis of one RNA at a time.  

3.1 Analysis of nucleosides 

Samples for nucleoside analysis are prepared through enzymatic treatment of the RNA with 

nuclease P1, snake venom phosphodiesterase I, and bacterial alkaline phosphatase (Crain 1990). 

However, the reaction is performed under sub-optimal mildly acidic conditions (pH 5) (Wolff et 

al. 2020) to avoid alteration of labile modifications at higher pH (Jora et al. 2021; Miyauchi et al. 
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2013). Removal of phosphate groups is critical to make the nucleosides sufficiently hydrophobic 

to be separated on a reverse-phase column. Canonical nucleosides are the most abundant species 

and readily resolve into well-defined peaks, eluting according to their hydrophobicity (C < U < G 

< A) (Gehrke and Kuo 1990). Modified nucleosides are less abundant and they often appear earlier 

(e.g. D, ψ) or later (e.g. m2G, t6A) than their unmodified counterparts depending on the chemical 

nature of the modification (Su et al. 2014). Positional isomers (e.g. m1A, m6A, m2A) have the same 

mass and cannot be distinguished by tandem MS analysis; however, they exhibit different retention 

times that facilitate their identification when standards are available (Jora et al. 2018). 

RP-HPLC of nucleosides is performed with mobile phases (A: water, B: methanol) containing 

0.1% formic acid to facilitate protonation of nucleobases during ESI (Cai et al. 2015). MS analysis 

is performed in positive mode using a triple quadrupole (QQQ) instrument consisting of two 

quadrupole mass analyzers separated by a collision cell. In most cases, CID of the nucleoside ion 

occurs at the N-glycosidic bond, resulting in a nucleobase ion and an uncharged ribose moiety 

(Ross et al. 2016). The recorded m/z values of parent (MS) and daughter ions (MS/MS) as well as 

the associated neutral loss of unmodified (132 Da) or 2’-O-methylated (146 Da) ribose, enable 

identification of the modified nucleoside. Pseudouridine does not contain an N-glycosidic bond 

and shows a different but unique fragmentation profile allowing its identification (Dudley et al. 

2005). Two strategies of data acquisition can be employed depending on the aim of the experiment. 

Dynamic multiple reaction monitoring (DMRM) allows identification and quantification of a 

defined set of modifications by restraining detection to only those specific m/z values (Thuring et 

al. 2016). In contrast, neutral loss scan (NLS) is used to identify the full range of modified 

nucleosides in the sample including novel modifications, and consists in detecting all precursors 

ions that lose a mass equivalent to unmodified or methylated ribose (Kellner et al. 2014). 

3.2 Analysis of oligonucleotides 

As RNase digestion of tRNA mixtures or long rRNAs often produce fragments with the same 

sequence, purification of the target molecule is critical to unambiguously map modifications by 

oligonucleotide analysis. Most of all individual tRNAs of S. aureus can be isolated using two-

dimensional polyacrylamide gel electrophoresis (2D-PAGE), in which tRNAs are first separated 

by their length on a denaturing gel, and then by their conformation on a semi-denaturing gel 

(Figure 2A) (Antoine and Wolff 2020; Antoine et al. 2019). For rRNAs, specific sequences can 
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be obtained by RNase H cleavage using DNA probes flanking the region of interest followed by 

PAGE purification (Hansen et al. 2002; Nakai et al. 1994). In both cases, digestion is performed 

directly “in-gel” using RNase T1 (cleaving after G, m2G and I leaving a 3’ phosphate end) and the 

resulting oligonucleotides elute passively from the gel (Taoka et al. 2010). Other RNases, such as 

RNase A (cleaving after pyrimidines and ψ and leaving a 3’ phosphate end) and RNase U2 

(cleaving after purines, preferably A, leaving a 3’ phosphate end), are frequently used in separated 

analyses to increase the sequence coverage, particularly in G-rich regions (Houser et al. 2015).  

The negatively charged backbone of oligonucleotides raises some challenges for LC-MS/MS 

analysis. A concern in sample preparation is the presence of alkali cations (Na+, K+), which must 

be replaced by “volatile” NH4+ cations (Stults et al. 1991). Otherwise, multiple salt adducts are 

formed upon ESI, leading to peak broadening and interferences that complicate interpretation of 

spectra (Bleicher and Bayer 1994). In-gel digests are routinely desalted using “ZipTip” C18 

reverse phase pipette tips (Millipore), but other methods such as RNA precipitation with ethanol 

and ammonium acetate, cation exchange chromatography, and micro-dialysis can also be used 

(Castleberry et al. 2008). Due to the high hydrophilicity of phosphate groups, RP-HPLC of 

oligonucleotides requires a mobile phase containing ion-pairing agents such as triethylamine 

(TEA) and triethylammonium acetate (TEAA) (Apffel et al. 1997). The ammonium moiety of 

these molecules masks the charges in the oligonucleotide backbone, while the alkyl group provides 

hydrophobic surfaces for its interaction with the reverse phase column. Hexafluoroisopropanol 

(HFIP) is also included in the mobile phase to improve the ionization of oligonucleotides 

(McGinnis et al. 2013), which occurs in negative mode (deprotonation). Because 

TEA/TEAA/HFIP contaminations are difficult to eliminate and interfere with proteomic analyses 

performed in positive mode (Wetzel and Limbach 2016), it is better to use a dedicated LC-MS/MS 

system for oligonucleotides analysis. 

As ESI of oligonucleotides produces several multicharged anions (Potier et al. 1994), data-

dependent acquisition (DDA) is used to select the most abundant m/z species for CID, which are 

typically [M-2H+]-2 and [M-3H+]-3 ions. On high-resolution instruments, as the quadrupole time-

of-flight (Q-TOF, accuracy < 0.05 Da), the charge (and thus the mass) of the parent ion can be 

inferred by inspecting the spacing of isotope peaks in the MS/MS spectra (Polo and Limbach 

2000). If the spacing between the selected peak (usually the monoisotopic ion) and its consecutive 
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isotope peak is 1/x, the charge of the parent ion will be -x (Figure 2B). CID of oligonucleotides 

occurs along the phosphodiester backbone and generates a ladder of fragments that allow sequence 

determination (Nakayama et al. 2011; Ni et al. 1996). Among the four possible cleavage sites 

(Mcluckey et al. 1992), fragmentation of the 5’ P-O bond is the most frequent and produces a 

series of complementary c- and y-type fragment ions (Figure 2C). Deconvolution of the multi 

charge MS/MS spectrum (m/z) to mono charge spectrum (mass) simplifies the sequencing process, 

which consists in finding the known terminus (e.g. 3’ Gp end for RNase T1 digests). Then the 

masses of individual nucleotides are added to match the different peaks until the mass of the parent 

ion is reached (Figure 2C). The presence of a modified nucleotide is evidenced by a unique mass 

shift resulting from the attached chemical group. Only pseudouridine (same mass as U) cannot be 

mapped with this method. A specific chemical derivatization on pseudouridine with either 

acrylonitrile (Mengel-Jørgensen and Kirpekar 2002) or N-cyclohexyl-N’-(2-

morpholinoehyl)carbodiimide metho-p-toluene-sulfonate (CMCT) (Patteson et al. 2001) produces 

a detectable mass shift. Although oligonucleotide analysis readily locates single-methylated 

nucleotides within the RNA sequence, the position of the methyl group on the ribose or the 

nucleobase cannot be determined, and further analyses are required (Wolff et al. 2020).  

4 Biochemical analyses to easily map specific RNA modifications 

4.1 Primer extension 

RNA modifications induce changes in the physicochemical properties of the nucleobases and 

ribose rings, including changes in their polarity (Charette and Gray 2000), base stacking (Roost et 

al. 2015), and coordination with water and ions (Agris 1996). All these events have a direct impact 

on the activity of RNA-directed DNA polymerases, which are viral enzymes commonly known as 

reverse transcriptases (RTs) (Potapov et al. 2018). These effects can be exploited to assign 

modification sites using simple laboratory settings. RNA modifications at the Watson-Crick edge, 

(e.g. m1A, m1G, m22G) readily interfere with cDNA synthesis, while other modifications (e.g. 2′O-

methylation) are less problematic for primer extension, but can be detected with specific protocols. 

For example, under sub-optimal polymerization conditions, the presence of a modification at the 

nucleotide base or its ribose in the RNA template induces reverse transcription stop at the +1 

position to the modification site (or, rarely, at the neighboring nucleotide) (Figure 3A, left) 
(Rebane et al. 2002; Maden et al. 1995). Commonly used conditions include low deoxynucleotides 
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(dNTPs) concentration (Motorin et al. 2007). This stop is readily detected after separation of the 

cDNA products by PAGE, along with RNA sequencing profile. Most commonly, primer extension 

is performed with a radiolabeled DNA oligonucleotide and the radioactive products are detected 

by autoradiography (Figure 3A, right). RTs from avian myeloblastosis virus (AMV) and Moloney 

murine leukaemia virus (MMLV) are extensively used. Noteworthy, RT-signatures appear typical 

for a given modification, but they also depend on the reverse transcriptase used. A recent 

comparative study, performed on a similar RNA template using several RTs, revealed that RNA 

modifications can be distinguished by their RT-signature (Werner et al. 2020). 

Although this technique is simple and inexpensive, it is sometimes difficult to distinguish 

between modifications and other possible causes of RT stops, such as RNA accidental breaks or 

presence of stable structures (Stern et al. 1988). To overcome misinterpretations, RT reactions are 

often conducted in parallel on in vitro transcribed RNAs, devoid of modifications, or on RNA 

purified from organisms in which specific RNA modification enzymes have been deleted or 

inactivated (Deryusheva et al. 2012). 

Finally, it should be mentioned that many modifications cannot be directly detected by primer 

extension analysis, like pseudouridines, dihydrouridines or 5-methylcytosines. For these 

modifications a specific pre-treatment of the sample prior to the primer extension is necessary 

(Figure 3B, see below). 

4.2 Nucleotide derivatization coupled to primer extension analysis 

Given the specific chemical properties that modification brings to nucleotides, diverse options 

of derivatization inducing RT pauses/stops or nucleotide misincorporation have been developed 

for RT-silent modified nucleotides (Figure 3B) (Behm-Ansmant et al. 2011). To map 

pseudouridines, chemical derivatization with CMCT is commonly used (Bakin and Ofengand 

1993). CMCT modifies the N1 and N3 positions in guanosine and uridine respectively, while 

pseudouridines are modified both at N1 and N3 positions. Removal of the derivatization from 

guanosine, uridine and N1 of ψ is achieved by alkali treatment using Na2CO3 at pH 10 to 11. Only 

the N3 modification in pseudouridine is maintained due to its specific chemical environment (Ho 

and Gilham 1971) and can be easily detected by primer extension. Special attention is required at 

all steps of the labeling procedure to avoid false positive stops. Therefore, it is important to run, in 
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parallel, samples without treatment, or treated only with CMCT and Na2CO3 separately, to 

accurately discriminate stops induced by CMCT on pseudouridines from accidental cleavages of 

the RNA chain during the treatment (Adachi et al. 2019). 

The main characteristic of dihydrouridine (D) is the absence of double bond between carbon 5 

and 6 and the non-planar and non-aromatic nucleobase ring (Dalluge et al. 1996). The treatment 

under mild alkaline condition induces the disruption of the saturated nucleobase to produce beta-

ureidopropionic acid (Xing et al. 2004) (Figure 3B). This opened form of the nucleobase induces 

a specific RT stop during primer extension. Alternatively, the reduction with sodium borohydride 

(Cerutti and Miller 1967) causes also specific RT stops. Again, to avoid misinterpretation, it is 

always important to add controls with untreated samples (Igo-Kemenes and Zachau 1969; Xing et 

al. 2004). 

4.3 Affinity gels 

Affinity electrophoretic methods rely on the strong interaction of specific functional groups 

present on proteins or nucleic acids with a specific reactant contained in the gel matrix (Nakamura 

and Takeo 1998). The displacement of the sample after gel migration provides signals about the 

presence or the absence of the RNA modification. For instance, boronate and organomercurial 

affinity gel electrophoresis have been widely used to identify specific tRNA modifications in 

various organism (Tuorto et al. 2018). 

Boronate affinity electrophoresis, is based on the specific interaction between N-acryloyl-3-

aminophenylboronic acid (APB) and free cis-hydroxyls of RNA. This is particularly the case of 

the queuosine (Q) modification, which possesses a cis diol group that delays the migration of the 

tRNAs during electrophoresis (Igloi and Kössel 1985). On the same principle, an interaction 

between the sulfur-modified (S) RNA with organomercurials leads to derivatized Hg-S adducts 

(Igloi 1988). The modified RNA with cis diol or mercury-sulfur can be visualized by different 

methods. For instance, ethidium bromide staining of the gel is often used for purified tRNA species 

while Northern blot analyses using 5’end labeled oligonucleotide allows the detection of one tRNA 

species among total tRNAs samples. Although boronate affinity gels are efficient to separate Q-

containing RNA, it is noteworthy that the slower migration can also be observed for RNA species 

co-transcriptionally modified by NAD (Nübel et al. 2017). Nevertheless, this modification has not 
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yet observed in tRNAs. Finally, for organomercurial gels, different sensitivity has been reported 

for specific U modified RNA, like s4U, and s2U (Zheng et al. 2017). 

5 RNAseq to map modifications on single RNA and complexed RNA samples 

Historically, profiling of E. coli tRNA modifications was first performed using classical 

methods of RNA modification analysis (i.e., semi-denaturing 2D RNA gels and RNA 

fingerprinting), and later combined with LC-MS analysis (Chakraburtty 1980; Kiesewetter et al. 

1987; Maden et al. 1995; Mims et al. 1985). However, these analytical approaches are extremely 

laborious and require highly purified tRNAs, limiting their applicability to low-abundant tRNA 

species. Similarly, exhaustive profiling of rRNA modifications was hindered by the necessity of 

targeted rRNA fragmentation into short oligonucleotides of 50-100 nt long for further analysis 

(Yang et al. 2016). Although CMCT-RT mapping for pseudouridine (ψ) detection in the middle 

of 1980s (see paragraph 4.3) allowed precise profiling of this abundant modification in tRNAs and 

rRNAs, other RNA modifications remained understudied. 

The development and implementation of deep sequencing mapping approaches as routine 

analytical protocols for RNA modification mapping was one of the major advances in the field. 

Major breakthroughs were made for comprehensive mRNA analysis, but also for rRNA and tRNA 

modification profiling (Motorin and Helm 2019; Motorin and Marchand 2021). Some adaptations 

had to be introduced for tRNAs characterized by stable tertiary structure and small size. These 

efforts allowed rapid and simultaneous profiling of different RNAs present in the same biological 

sample, but most of these methods are still able to detect only one given modification at a time. 

Analysis of low-abundant RNA species frequently requires enrichment of the RNA of interest, but 

this limitation does not hinder rRNA and tRNA analysis, since these species are very well 

represented in total RNA. In practice, fractionation of total RNA to rRNA and tRNA fractions may 

be beneficial to limit the required sequencing depth, but this step is optional and generally may be 

omitted. As already mentioned above, the presence of tRNA isodecoders and isoacceptors, which 

frequently differ only by one of few nucleotides, render the mapping difficult. Several approaches 

were suggested to alleviate this difficulty. For instance, only unambiguously mapped reads or 

“modification-aware” alignment algorithms can be retained (Arimbasseri et al. 2015; Behrens et 

al. 2021). Another possibility is to allow ambiguous or even multiple mapping for the same tRNA 

sequencing read. Finally, identical and highly similar tRNA sequences can be collapsed into one 
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generic sequence used for reads’ alignment (Pichot et al. 2021). This approach was proven to be 

efficient to reduce ambiguous mapping, but showed modification biases in the case of rare tRNA 

species. 

In addition to single-nucleotide resolution mapping, a comprehensive analysis of RNA 

modification profiles requires appreciation and/or quantification of the modification stoichiometry 

site-by-site. This goal can be achieved by LC-MS analysis (with careful calibration of appropriate 

standards) and by deep sequencing-based methods. Quantification with Ab-based enrichment 

protocols is relatively imprecise, but many chemicals-based NGS approaches determine 

modification stoichiometry with ~5-10% error, as it was demonstrated for the RNA Bisulfite 

sequencing (RBS), RiboMethSeq and HydraPsiSeq protocols. Hence, these methods are 

extensively applied to monitor RNA modification dynamics. 

Considering the tRNA and rRNA modifications commonly found in bacterial species, the most 

relevant deep sequencing methods for analysis of these RNAs are AlkAnilineSeq to detect m7G, 

D and ho5C (Marchand et al. 2021a; Marchand et al. 2018), HydraPsiSeq for pseudouridine (ψ), 

some 5-substituted U residues (namely m5U and wobble base modifications), and lysidine (k2C) 

(Marchand et al. 2022; Marchand et al. 2020) and RiboMethSeq for 2’-O-methylated (Nm) 

nucleotides (Marchand et al. 2016; Marchand et al. 2017; Motorin and Marchand 2018). Other 

approaches include RNA bisulfite sequencing to identify m5C (and also m4C) and analysis of RT 

misincorporation signatures for Watson-Crick edge-modified nucleobases (m1A, m1G, etc). These 

methods and their applications are discussed below. 

5.1 AlkAnilineSeq 

AlkAnilineSeq protocol (Marchand et al. 2018) takes advantage of RNA scission at the abasic 

site created by specific cleavage of the fragile N-glycosidic bond formed by certain RNA 

modifications. Exposure of RNA containing D, m7G, m3C and ho5C to elevated pH at high 

temperature leads to opening and subsequent loss of the modified nucleobase exposing RNA 

abasic site. Such chemical structures are known to be readily cleaved upon aniline treatment, 

leading to phosphodiester bond scission and liberating 5’-phosphate group at the N+1 nucleotide 

relative to modification. This free 5’-phosphate is used for specific adapter ligation, providing 

unprecedented specificity of the detection. AlkAnilineSeq was successfully used for mapping all 

D and m7G residues in tRNAs, and ho5C which is a rather rare rRNA modification found in E. coli 
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and closely related bacterial species. Specificity and sensitivity of AlkAnilineSeq are very high, 

low background allows detection of even substoichiometric modifications (minimum ~ 0.05 mole 

of modification/site) (Marchand et al. 2021a; Marchand et al. 2018; Marchand et al. 2021b). 

5.2 HydraPsiSeq 

Detection of pseudouridines (ψ) and 5-substituted U residues is based on their resistance 

to hydrazine cleavage, while unmodified uridines (U) are efficiently cleaved under these 

conditions (Marchand et al. 2022; Peattie 1979). Thus, protected U residues in RNA may 

correspond to modified bases and the level of this protection is related to modification 

stoichiometry. Other bases in RNA (A, C and G) are insensitive to hydrazine and cleaved only at 

the background level allowing normalization of U signals. In addition, some other non U-derived 

modified residues show a high sensitivity towards hydrazine cleavage, as shown for lysidine (k2C) 

present in bacterial tRNAIle (CAU). A similar observation was also made for m7G, but this 

methylation can be also detected by AlkAnilineSeq. Since protection of the modified nucleotide 

may also be related to its accessibility/reactivity within the RNA structure, the proportion of false-

positive hits is substantially higher for HydraPsiSeq compared to AlkAnilineSeq. Hence, it is 

highly recommended that pseudouridine (ψ) mapping should be further validated either by 

conventional CMCT-RT primer extension (§ 4.3) or by its high-throughput variant approach 

PseudoU-Seq (Schwartz et al. 2014). Recently, direct RNA sequencing by Oxford Nanopore 

Technology (ONT) have been proposed as a new means to detect different modifications including 

pseudouridine (ψ), which produce characteristic base-calling “error” signatures (Begik et al. 2021; 

Huang et al. 2021). 

5.3 RiboMethSeq 

RiboMethSeq protocol is extensively used for mapping and quantification of Nm residues in 

rRNAs, tRNAs and mRNAs (Birkedal et al. 2015; Marchand et al. 2016). Detection of Nm residues 

is based on the resistance of the RNA phosphodiester bond following Nm residue, to cleavage 

induced by alkaline pH and high temperature. These resistant phosphodiester bonds create ‘gaps’ 

in random RNA cleavage profile. The depth of the ‘gap’ corresponds to protection, which is related 

to the level of the 2’-O-methylation, allowing precise quantification.  
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As HydraPsiSeq, RiboMethSeq is measuring protection against RNA cleavage, the number of 

false-positive signals is relatively high. Additional validation of the modified candidates can be 

done using quantitative or semi-quantitative RTL-P or primer extension at low [dNTP] in standard 

or high-throughput version (2OMe-Seq) (Incarnato et al. 2017). When applied to S. aureus RNA 

analysis we have observed high rate of false positive assignation for pseudouridines (ψ) by 

HydraPsiSeq, while Nm residues have been detected with high confidence. 

5.4 RNA BisulfiteSeq 

RNA bisulfite sequencing is derived from well-established DNA bisulfite sequencing and 

insures detection of m5C and m4C (m4Cm in rRNA) in RNAs, together with precise quantification 

of the modification stoichiometry (Khoddami et al. 2019; Schaefer et al. 2009). Bisulfite treatment 

at moderate alkaline pH (to reduce RNA degradation) leads to chemical deamination of all C to U, 

while m5C and m4C are resistant to bisulfite, and thus can be detected as non-deaminated C 

residues. Application of the method is relatively straightforward for bacterial rRNAs, while m5C 

was only rarely reported in bacterial tRNAs. Two major limitations have to be considered. First, 

only A, G, and U residues persist in RNAs after chemical deamination creating highly ambiguous 

alignment. Indeed, over 50% of RNA-derived reads may show multiple alignments to the 

reference, and thus should be excluded. Second, deamination level of C residues in highly 

structured RNA regions may be incomplete and these non-deaminated Cs show up as false-positive 

hits (Squires et al. 2012). 

5.5 Analysis of RT signatures (RT-Seq) 

Analysis of RT signatures, e.g. misincorporation/deletion and abortive cDNA synthesis was 

proposed for tentative mapping of RNA modifications having altered base-pairing properties, like 

I, m1G, m1A, m3U, m1acp3ψ, and other modifications altering Watson-Crick edge. Since RNA 

structure or even specific RNA sequences perturb cDNA synthesis by RT, these data can be used 

only as tentative assignment of potential modifications. More reliable mapping data can be 

obtained using combinations of several RT enzymes with different properties (Werner et al. 2020), 

or using specific RT conditions, e.g. in the presence of Mn2+ ions (Kristen et al. 2020). Detection 

of misincorporation and RT-arrests require adapted protocols, but simple 

misincorporation/deletion can be directly extracted from RiboMethSeq, HydraPsiSeq, and 

AlkAnilineSeq raw sequencing data sets. Misincorporation and deletion profiles need to be 
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analyzed in parallel since the signal will appear in one or another scoring system depending on the 

nature of RNA modification and of the RT enzyme used. For bacterial tRNAs, these protocols 

allow reliable detection of s4U8, m1A22, I34, m1G37, and of many D and m7G residues.  

Combination of the deep sequencing protocols cited above allows, in principle, almost 

exhaustive mapping of bacterial rRNA and tRNA modifications. Few RNA modifications (i.e., 

m2G, Q, m6A, i6A and its derivatives), which are unreactive towards chemical reagents and/or do 

not lead to particular RT signature, can be detected by LC-MSMS (§ 3) or by specific protocols 

adapted for them (i.e., NO-Seq (Werner et al. 2021) or specific RT for m6A (Aschenbrenner et al. 

2018)). 

6 Analysis of rRNA modifications using cryo-EM structural studies 

In the past decade, cryo electron microscopy (cryo-EM) has emerged as an extraordinary tool 

to resolve ribosomal structures at high resolution. The tremendous advancements in the 

development of direct electron detectors and other technical improvements including advanced 

image processing and structure sorting (Kühlbrandt 2014; Klaholz 2019) have allowed cryo-EM 

reconstructions to reach resolution levels around 3 Å and better, which permits to visualize post-

transcriptional modifications on bacterial and eukaryotic - including human – ribosomes (Cottilli 

et al. 2022; Natchiar et al. 2017; Stojković et al. 2020; Watson et al. 2020). Nevertheless, the 

presence of some rRNA elements that, more dynamic than others, limits the assignment to the 

most stable ribosomal regions. While structures cannot always identify the chemical nature of a 

modification, they provide key insights into the structural environment of a given chemical 

modification. For example, 2’-O-methylation can create a more hydrophobic environment that 

favors van der Waals contacts with hydrophobic side chains of amino acids, pseudouridines 

provide an additional possibility for hydrogen bonds through their N1 position, that classical 

uridines do not have, and some base modifications can increase π-stacking between neighboring 

nucleotide bases (Natchiar et al. 2018) (Figure 4). The structural analysis, combined with the 

various methods for chemical identification discussed above, thus provides important information 

on the structural role and function of chemical modifications. 

Structures of several bacterial ribosomes in complex with mRNA and tRNAs have shown the 

importance of conserved tRNA and rRNA modifications in functional sites of the small (30S) and 
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large ribosomal (50S) subunits. On the 30S ribosomal subunit, where the tRNA anticodon interacts 

with the mRNA codon in the decoding center, different rRNA modifications have been shown to 

kinetically regulate the initiation process and to be involved in proofreading (Demirci et al. 2010). 

For instance,  m2G966 and m4Cm1402 (E. coli numbering) both contribute to stabilize the 

interactions taking place between the tRNA, mRNA and rRNA in the P-site (Burakovsky et al. 

2012; Jenner et al. 2010; Polikanov et al. 2015). On the 50S subunit, several conserved 

modifications are located at the peptide exit tunnel or are clustered at the Peptidyl Transferase 

Center (PTC), which may indicate that they assist peptide bond formation. Interestingly, Gm2251 

in the P-loop of the 23S rRNA (E. coli numbering) directly interacts with the CCA sequence of 

the tRNA and thus is expected to contribute to the correct positioning of the tRNA acceptor end 

(Fischer et al. 2015; Golubev et al. 2020; Polikanov et al. 2015; Watson et al. 2020). 

Various strategies were used to analyze modifications from high-resolution structures of 

ribosomes. With X-ray structures, difference density mapping (between real densities and those 

artificially obtained from modification-less models) helps to indicate the position of modified 

nucleotides (Polikanov et al. 2015). With cryo-EM structures, the refinement of specific regions 

of the ribosomal subunits (focused refinement) allowed reaching better resolution to recognize 

rRNA modifications in combination with previous annotation using complementary methods 

(Watson et al. 2020; Golubev et al. 2020). Several cryo-EM structures of S. aureus ribosomes are 

now available (Belinite et al. 2021; Belousoff et al. 2017; Cimicata et al. 2022; Golubev et al. 

2020; Halfon et al. 2019; Khusainov et al. 2020; Khusainov et al. 2017; Khusainov et al. 2016; 

Matzov et al. 2017; Wright et al. 2020), and 10 different methylation sites have been mapped 

(Golubev et al. 2020) (Figure 4A and 4B), but not all modifications could be assigned. 

Dihydrouridines (D) and pseudouridines (ψ) can be mapped with good confidence at very high 

resolution, for example on the 2 Å structure of the E. coli ribosome (Watson et al. 2020). 

Dihydrouridines (D) impose a characteristic bent shape to their pyrimidine ring and can be easily 

discriminated from uridines (Figure 4C). Pseudouridines (ψ) can be assigned indirectly, by 

analyzing in which manner they change the pattern of ions or water interactions. The isomerization 

of N1 and C5 in ψ maintains the same Watson-Crick base pairing property (W-C edge) but includes 

an additional hydrogen bond donor (N1 imino proton) on the C-H edge, which is responsible for 

water or ions binding (Figure 4D) (Watson et al. 2020). Assignations of ions, water molecules and 
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other interactions are still challenging but they will certainly contribute to alleviate better density 

interpretation (Wang et al. 2021). 

To facilitate the analyses of thousands of nucleotides of the ribosome, dedicated software has 

been recently developed, which automatically calculates difference density maps. Positioning of 

the RNA modification signals, obtained at specific contour levels, offers now the possibility to 

restrict the analysis by other methods on only a subset of nucleotides (Figure 4E) (Stojković et al. 

2020). However, efforts are still needed to complete the mapping of all the modifications in S. 

aureus rRNAs and to gain an evolutionary analysis of the conserved and specific sites by 

comparing with the extensive analysis done for E. coli (Watson et al. 2020) and T. thermophilus 

(Polikanov et al. 2015). Structures at higher resolution will help overcoming uncertainty in extra 

density coming from methylations, to discriminate pseudouridines according to their specific 

interaction network, and to observe conformational changes induced by modified nucleobases. 

7 Discussion 

Global analysis of the bacterial epitranscriptome and of its variations occurring in response to 

environmental changes and to various stresses, is still a major technical challenge. Combination 

of approaches involving high resolution structures of RNA machineries, mass spectrometry, and 

next-generation sequencing is certainly one way to render this objective amenable. As discussed 

in the review, the choice of the approaches depends on the RNA species to be studied. Recent 

advances in the Nanopore technology allow now the direct sequencing of full-length native RNA 

molecules without the need of RT and PCR amplification, and the obtained data normally contain 

all the information to assign the modifications (reviewed in (Begik et al. 2021)). However, 

Nanopore sequencing is still in its infancy and further improvement in the direct RNA sequencing 

are required for routine application. In most cases, Nanopore data are used only for validation, but 

not for de novo mapping of RNA modifications. Moreover, application to non-polyadenylated 

RNA species, like rRNA and tRNA, requires the use of polyadenylation by polyA-polymerase or 

specific custom primers. The complexity of Nanopore ion current profiles also requires further 

development of appropriate interpretation informatics pipelines, frequently based on machine 

learning algorithms or artificial intelligence.  
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Another major issue is to gain more knowledge on the protein machineries that are required 

for the modification deposition (writer) or which prevent the modification to take place (eraser). 

Even if phylogeny can be used to predict the enzymes and pathways required for RNA 

modifications, little is known in S. aureus. Many questions still remained to be addressed: are 

modification enzymes regulated upon stress conditions? Are there specific modification enzymes 

for mRNAs, regulatory RNAs, tRNAs and rRNAs? What are the enzymes required for biofilm 

formation and for virulence? Are the modified mRNAs conserved among bacteria? Previous 

sensitive LCMS approach has revealed that m6A/A ratio in mRNAs was higher in Gram-negative 

than in Gram-positive bacteria including S. aureus (Deng et al. 2015). Transcriptomic analysis 

performed in E. coli and Pseudomonas aeruginosa revealed that m6A was enriched in mRNAs 

involved in energy metabolism, stress responses, and in several sRNAs (Deng et al. 2015). Due to 

the rather small genome size, the high diversity of species, and the existing tools to delete genes, 

the bacteria represent ideal model organisms to decipher the extent of the functions of RNA 

modifications and of the associated enzyme machineries. No doubt the development of innovative 

sequencing approaches will be essential to gain full understanding of the bacterial epitranscriptome 

and to monitor its impact in gene regulation. 
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