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Abstract—Quantitative Information Flow (QIF) provides a
robust information-theoretical framework for designing secure
systems with minimal information leakage. While previous
research has addressed the design of such systems under hard
constraints (e.g. application limitations) and soft constraints (e.g.
utility), scenarios often arise where the core system’s behavior
is considered fixed. In such cases, the challenge is to design a
new component for the existing system that minimizes leakage
without altering the original system.

In this work we address this problem by proposing optimal
solutions for constructing a new row, in a known and unmodifiable
information-theoretic channel, aiming at minimizing the leakage.
We first model two types of adversaries: an exact-guessing
adversary, aiming to guess the secret in one try, and a s-
distinguishing one, which tries to distinguish the secret s from all
the other secrets. Then, we discuss design strategies for both fixed
and unknown priors by offering, for each adversary, an optimal
solution under linear constraints, using Linear Programming.

We apply our approach to the problem of website fingerprinting
defense, considering a scenario where a site administrator can
modify their own site but not others. We experimentally evaluate
our proposed solutions against other natural approaches. First, we
sample real-world news websites and then, for both adversaries, we
demonstrate that the proposed solutions are effective in achieving
the least leakage. Finally, we simulate an actual attack by training
an ML classifier for the s-distinguishing adversary and show that
our approach decreases the accuracy of the attacker.

Index Terms—Quantitative Information Flow, Website Finger-
printing, Leakage, Smallest Enclosing Ball

I. INTRODUCTION

A fundamental link in the chain of secure system designing is
the quantification of the protection its users enjoy, or conversely,
determining how much information is leaked to an adversary.
A system is traditionally described by a channel C, which
is a probability distribution over its observable outputs. The
adversary is assumed to have some prior knowledge before
the system’s execution, and the goal is to determine how much
information the adversary has afterwards, due to the system’s
leakage during execution.

Quantitative Information Flow (QIF) [1] studies measures
of information leakage. The main idea is simple: it quantifies
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a system’s leakage by comparing the secret’s vulnerability or
risk before (prior) and after (posterior) executing the system.

When designing a system from scratch, one can use QIF
to create a channel that minimizes leakage. However here we
consider a different scenario where a system and its channel
are already given, and we just want to add a new component.
We assume that we can design this new component in any
way we want (or perhaps under some constraints, which we
discuss later on), but we cannot modify anything in the existing
system.

For example consider the following problem: the adminis-
trator of a website s wants to prevent Website Fingerprinting
(WF); that is, prevent an adversary from inferring which site
a user visits, over an encrypted connection, from observable
information such as the page size. To achieve this goal, the
administrator wants to make his website similar to a set S\{s}
of other websites. The behavior of those websites is completely
known: for each t ∈ S\{s}, the distribution Ct of observations
produced by a visitor of t is given. Note that t may or may not
be using obfuscation to prevent fingerprinting; this is reflected
in the distribution Ct. The administrator of s cannot possibly
modify the other websites, but he has full control over his
own. For instance, he can pad his site to make the page size
match any other known page. Moreover, this can be done
probabilistically, by constructing an arbitrary distribution q of
observations to be produced by the visitors of s.

We call this scenario self-defense, since the administrator of
the website s tries to protect his site using his own means. The
fundamental question then is: which distribution q provides the
best self-defense?

Note that, in this work, we assume that the administrator
cannot rely on the cooperation of any other websites. This is a
crucial assumption, that significantly affects the optimal solu-
tion. Indeed, it is well-known in game theory that cooperative
and non-cooperative games have very different outcomes. For
instance, employing a common defense strategy can benefit all
parties involved, while if only one site employs that particular
strategy and the others do not, that site may become more
vulnerable. Take, for instance, padding: if all administrators
pad their website to the same value v, they will generate the
same observation. However, if only one website implements
the padding to v while the others do not, the attacker will
single out that website more easily.



To state the problem formally in the language of QIF,
consider a system described by the channel C : S → D(O).
All rows Ct, t ̸= s are fixed, but we can freely choose the
row Cs. Concretely, we want to construct a new channel
Cq : S → D(O), such that Cq

t = Ct for all t ̸= s, while
the row Cq

s can be set to a new distribution q ∈ D(O). The
question now becomes: how to choose q to minimize the leakage
of C?

Of course this problem is not specific to website finger-
printing; it arises in any QIF scenario in which each secret
corresponds to a different user or entity, which has full control
over his own part of the system, but no control over the
remaining system. Note that the knowledge of Ct is vital
for choosing q; we want to make our secret as similar as
possible to the other ones.

One may think of choosing q so to replicate a specific site t′,
or to emulate the “average” website. These naive approaches,
however, fall short of providing an optimal solution. In this
work, we tackle this problem by using QIF, rather than resorting
to an ad-hoc solution. In particular, we will use the version
of QIF known as g-leakage [2], which allows us to express
the capabilities and goals of a large class of adversaries. We
consider two kinds of adversaries: one that tries to exactly
guess the secret in one try (exact-guessing) and one that
tries to distinguish the secret s from all the other secrets
(s-distinguishing).

Until now we have assumed complete freedom in designing
the new row. In some situations, however, such freedom could
be unrealistic: there may be technical constraints, which of
course will increase the complexity of the problem. For instance,
in the WF example, one can easily increase the page size by
padding but cannot reduce it (at least, not to an arbitrary value,
as infinite compression is not possible). Therefore, we also
consider the problem of finding the optimal solution in the
presence of constraints on the new row Cs.

We summarize our contributions as follows:

• For a fixed prior, we show how to optimally create q for
both the exact-guessing and s-distinguishing adversary
(Section IV).

• When the prior is unknown, we first discuss how to
optimally create q for the exact-guessing adversary, and
then explore the s-distinguishing adversary (Section V).
We demonstrate that the latter reduces to the problem
of the Smallest Enclosing Ball (Section VI), offering an
optimal solution and discussing computationally lighter
alternatives.

• In all cases we demonstrate how to incorporate the
constraints in the proposed solutions using Linear Pro-
gramming (LP).

• Finally, we evaluate our proposed solutions by simulating a
website fingerprinting attack and compare them with other
conventional approaches for both adversaries (Section VII).
The experiments confirm that our approaches offer indeed
the minimum leakage and decrease the accuracy of the
attack.

A. Related Work

The works by Simon et al. [3] and Reed et al. [4] were
motivated by a similar traffic analysis attack; they explored
how a server can efficiently pad its files in order to minimize
leakage. In their setting, a user selects a file from the server
which is padded according to some probabilistic mechanism.
Meanwhile, an adversary, observing the encrypted network,
attempts to guess the selected file. Our case differs as we strive
to make a website indistinguishable from others (which are
considered fixed), rather than making the pages of the website
indistinguishable among themselves.

On the other hand, designing a channel to minimize leakage
by being able to manipulate all it’s rows (instead of only
one, as in our case) under some constraints, has been studied
in the literature [5], [6]. In fact, by properly selecting these
constraints one can fix the value of all rows but one, essentially
mimicking our scenario. Using the techniques from [5] under
such constraints, one can arrive at optimization programs
similar to those of Prop. 2 and 4. However, studying in depth the
specific problem of single row optimization is interesting since,
first, we can give direct solutions such as Prop. 3 and second,
we can give capacity solutions for an s-distinguishing adversary,
which is outside the scope of [5] and a main contribution of
our work.

P. Malacaria et al. [7] discussed the complexity of creating a
deterministic channel aimed at minimizing leakage for a given
leakage metric and a specific prior while satisfying a set of
constraints. They first showed that this is an NP-hard problem
and then they proposed a solution for a particular class of
constraints, by introducing a greedy algorithm. The authors
show that this algorithm offers optimal leakage across most
entropy measures used in the literature.

Moreover, one could opt to explore the problem within the
popular framework of Differential Privacy (DP) [8]. DP aims to
protect the privacy of an individual within a statistical database
when queried by an analyst (considered the adversary) seeking
aggregated information. A trusted central server aggregates
users’ data and introduces noise before publishing the noisy
result to the analyst, making it hard for her to distinguish an
individual’s value. The (central) DP solution however is not
suitable in our case, because there is no central server, and
the attacker can observe directly the obfuscated version of the
secret (the output of the channel).

In contrast, Local Differential Privacy (LDP) [9] removes
the need for a central entity. Instead, users autonomously
inject noise into their data. Notably, all users employ the
same probabilistic mechanism to perturb their data without
knowledge of other users’ values and perturbations. LDP is
more suitable for the situation we are considering. However,
our scenario involves only one secret having the ability to be
modified, and assumes knowledge of how the other secrets are
treated by the system. Furthermore, LDP (as well as DP) is a
worst-case metric that, for every observable, requires a certain
level of indistinguishability between our secret s (corresponding
to the row that we want to modify) and every other secret



(row) t. This may be impossible to satisfy, as it would require
that all the rows are almost indistinguishable as well, but as
we already explained, the other rows are already given and
cannot be modified.

Another metric proposed to measure the vulnerability of a
secret is the multiplicative Bayes risk leakage β [10], which
was inspired by the cryptographic notion of advantage. β
corresponds to the (multiplicative) g-leakage in the case of
a Bayesian attacker. In [11], the authors showed that β can
also be used to quantify the risk for the two most vulnerable
secrets.

The related problem of location privacy has also been
studied in the QIF literature using game theory and LP
approaches. For instance, [12] discussed the optimal user
strategy when a desired Quality of Service (QoS) and a
target level of privacy are given, taking into account the prior
knowledge of the adversary. Moreover, [13], motivated by
DP and distortion-privacy (i.e. inference error), provided a
utility-maximizing obfuscation mechanism with formal privacy
guarantees, aiming to solve the trade-off between QoS and
privacy. Their mechanism is based on formulating a Stackelberg
game and solving it via LP, using the DP guarantee as a
constraint. They claim their approach is utility-wise superior to
DP while offering the same privacy guarantees. Furthermore,
[14] studied how to maximize the QoS while achieving a
certain level of geo-indistinguishability using LP, and discussed
methods to reduce the constraints from cubic to quadratic,
significantly reducing the required computation time. Note that
an extension of this problem, which aims to protect entire
location trajectories rather than individual locations (known
as trajectory privacy), has also been studied using similar
techniques [15].

II. PRELIMINARIES

The basic building blocks of QIF are summarized in the
following sections.

Prior vulnerability and risk: A natural framework for
expressing vulnerability is in terms of gain functions. Let
S be the set of all possible secrets (e.g. all valid passwords);
the adversary does not fully know the secret, but he possesses
some probabilistic knowledge about it, expressed as a prior
distribution π : D(S). In order to exploit this knowledge, the
adversary will perform some action (e.g. make a guess about
the password in order to access the user’s system); the set of
all available actions is denoted by W . Often we take W = S,
meaning that the adversary is trying to guess the exact secret;
however expressing certain adversaries might require a different
choice of W (see §III for an example).

A gain function g(w, s) expresses the gain obtained by
performing the action w ∈ W when the secret is s ∈ S. The
expected gain (wrt π) of action w is

∑
s πsg(w, s). Being

rational, the adversary will choose the action that maximizes
his expected gain; we naturally define g-vulnerability Vg(π)
as the expected gain of the optimal action:

Vg(π) = maxw
∑

s πsg(w, s) .

Alternatively, it is often convenient to measure the adver-
sary’s failure (instead of his success). This can be done in a
dual manner by expressing the loss ℓ(w, s) occurred by the
action w. The adversary tries to minimize his loss, hence ℓ-risk
is defined as the expected loss of the optimal w.

Rℓ(π) = minw
∑

s πsℓ(w, s) .

Note that Vg(π) is a vulnerability function, expressing the
adversary’s success in achieving his goal, while Rℓ(π) is a risk
function (also known as uncertainty or entropy), expressing
the adversary’s failure.

Posterior Vulnerability and Leakage: So far we modeled the
adversary’s success or failure a-priori, that is given only some
prior information π, before executing the system of interest.
Given an output o of a system C : S → O, the adversary
applies Bayes law to convert his prior π into a posterior
knowledge δ, which is exactly what causes information leakage.
Hence, Vg(δ) expresses the adversary’s success after observing
o (and similarly for Rℓ(δ)). Since outputs are selected randomly,
and each produces a different posterior, we can intuitively
define the posterior g-vulnerability Vg(π,C) and the posterior
ℓ-risk Rℓ(π,C),1 as the expected value of Vg(δ) and Rℓ(δ)
respectively:

Vg(π,C) = E[Vg(δ)] =
∑

o maxw
∑

s πsCs,og(w, s) ,

Rℓ(π,C) = E[Rℓ(δ)] =
∑

o minw
∑

s πsCs,oℓ(w, s) .

An adversary might succeed in his goal – say, to guess
the user’s password – due to two very distinct reasons:
either because the user is choosing weak passwords (that
is, the prior vulnerability is high), or because the system is
leaking information about the password, causing the posterior
vulnerability to increase. When studying the privacy of a system
we want to focus on the information leak caused by the system
itself. This is captured by the notion of leakage, the fundamental
quantity in QIF, which simply compares the vulnerability before
and after executing the system. The multiplicative leakage of
C wrt π and g/ℓ is defined as:

Lg(π,C) =
Vg(π,C)
Vg(π)

, Lℓ(π,C) = Rℓ(π)
Rℓ(π,C) .

A leakage of 1 means no leakage at all: the prior and posterior
vulnerability (or risk) are exactly the same. On the other hand,
a high leakage means that, after observing the output of the
channel, the adversary is more successful in achieving his goal
than he was before. Note that Vg always increases as a result
of executing the system, while Rℓ always decreases, this is
why the fractions in the definitions of Lg and Lℓ are reversed.2

We use h to denote a function that can be either a gain or a
loss function, which is useful to treat both types together

1Rℓ(π,C) in often called Bayes risk (wrt ℓ).
2In [16], Bayes security is defined as β(π,C) = 1/Lℓ(π,C); in this paper

we use leakage, which is the standard notion in the QIF literature; all results
can be trivially translated to β(π,C).



Guessing the exact secret: The simplest and arguably most
natural adversary is the one that tries to guess the exact secret
in one try. We call this adversary exact-guessing; he can be
easily expressed by setting W = S, and defining gain and loss
as follows:

gx(w, x) = 1{w}(x) , ℓx(w, x) = 1− 1{w}(x) ,

where 1S(x) is the indicator function (equal to 1 iff x ∈ S and
0 otherwise). For this adversary, vulnerability and risk reduce
to the following expressions:

Vgx(π) = max
s

πs , Vgx(π,C) =
∑

y maxs πsCs,o ,

Rgx(π) = 1− Vgx(π) , Rℓx(π,C) = 1− Vgx(π,C) .

Vgx is known as Bayes vulnerability, while Rℓx as Bayes error
or Bayes risk.3

Capacity: Finally, the notion of g/ℓ-capacity is simply the
worst-case leakage of a system wrt all priors. Bounding the
capacity of a system means that its leakage will be bounded
independently from the prior available to the adversary.

MLh(C) = maxπ Lh(π,C) , h ∈ {g, ℓ} .

Denote by u the uniform prior, and by us,t the prior that is
uniform among these two secrets, i.e. it assigns probability 1/2
to them. For an exact-guessing adversary (i.e. for gx, ℓx), the
following results are known:

Theorem 1. MLgx(C) is equal to:

MLgx(C) = Lgx(u, C) =
∑

o maxs Cs, o .

In the following, we use the L1-metric ∥q − q′∥1 as the
distance between probability distributions q, q′; note that this
is equal to twice their total variation distance, since we
only consider discrete distributions. Denote by dmax(S, T )
the maximum distance between elements of sets S, T , and by
diam(S) = dmax(S, S) the diameter of S. Finally, given a
subset of secrets P ⊆ S, we denote by CP ⊂ D(O) the set
of rows of C indexed by P (note that rows are probability
distributions); the set of all rows will be CS while the s-th row
will be denoted by Cs.

Theorem 2 ( [16]). MLℓx(C) is equal to:

MLℓx(C) = Lℓx(u
s,t, C) =

1

1− 1
2diam(CS)

.

where s, t ∈ S realize diam(CS).

III. GUESSING PREDICATES AND DISTINGUISHING A
SPECIFIC SECRET

Although systems are commonly evaluated against the exact-
guessing adversaries gx, ℓx, there are many practical scenarios
in which the adversary is not necessarily interested in guessing
the exact secret. A general class of such adversaries are those
aiming at guessing only a predicate P of the secret, for instance

3The term Bayes risk has been used in the literature to describe both Rℓx
and Rℓ (for arbitrary ℓ).

is the user located close to a hospital? or is the sender a male?.
We call this adversary P -guessing.

A predicate can be described by a subset of secrets P ⊆ S,
those that satisfy the predicate; the rest are denoted by ¬P =
S \ P . A P -guessing adversary can be easily captured using
gain/loss functions, by setting W = {P,¬P} and defining

gP (w, s) = 1w(s) , ℓP (w, s) = 1− 1w(s) ,

for w ∈ W . Then LgP and LℓP measure the system’s leakage
wrt an adversary trying to guess P .

Although this class of adversaries was discussed in [2],
it has received little attention in the QIF literature. In this
section, we first show that LgP can be expressed as the Bayes
leakage Lgx of a properly constructed pair of prior/channel
(and similarly for LℓP ). Then, we study the capacity problem
for this adversary.

Expressing LgP as Lgx: Since every secret belongs to
either P or ¬P , given a prior π ∈ D(S) we can construct
a joint distribution between secrets s and classes w, where
Pr(w, s) = πs ·1w(s) gives the probability to have both w and s
together. This joint distribution can be factored into a marginal
distribution ρπ ∈ D(W), and conditional distributions – i.e. a
channel – Qπ : W → S:4

ρπw = Pr(w) =
∑

s∈w πw , (1)

Qπ
w,s = Pr(s | w) =

πs · 1w(s)

ρπw
. (2)

In the notation we emphasize that both ρπ, Qπ depend on π.5

This construction allows us to express gP -leakage as gx-
leakage, for a different pair of prior/channel, as stated in the
following lemma.

Lemma 1. Let π ∈ S, P ⊆ S and define ρπ, Qπ as in (1),(2).
Then for all channels C it holds that:

LgP (π,C) = Lgx(ρ
π, QπC) ,

LℓP (π,C) = Lℓx(ρ
π, QπC) .

Capacity: Lem. 1 can be used to obtain capacity results for
any P -guessing adversary.

Theorem 3. For any C and P ⊆ S it holds that

MLgP (C) = LgP (u
s,t, C) = 1 +

1

2
dmax(CP , C¬P ) ,

MLℓP (C) = LℓP (u
s,t, C) =

1

1− 1
2 dmax(CP , C¬P )

,

for s ∈ P, t ∈ ¬P realizing dmax(CP , C¬P ).

A. Distinguishing a specific secret

As discussed, an adversary of particular interest is one that
tries to distinguish a secret s from all other secrets, that is
to answer the question is the secret s or not?. We call this
adversary s-distinguishing.

4In case ρπw = 0 we can define the row Qπ
w arbitrarily.

5They also depend on P , which is clear from the context hence omitted for
simplicity.



Clearly, this is a special case of a P -guessing adversary,
for P = {s}. In this case, we simply write s,¬s instead of
P,¬P respectively. Hence gs = gP , ℓs = ℓP are the gain/loss
functions modeling an s-distinguishing adversary, and Lgs ,Lℓs

measure the system’s leakage wrt this adversary.
For this choice of P , the binary channel QπC : {s,¬s} → O

(see (2)) has a clear interpretation. Its first row is simply
Qπ

sC = Cs; more interestingly, its second row Qπ
¬sC models

the behavior of an average secret other than s: choosing
randomly (wrt π) a secret t ̸= s and then executing C
on t produces outputs distributed according to Qπ

¬sC. The
usefulness of this distribution will become apparent in the
following sections.

Finally Thm. 3 provides a direct solution of the capacity
problem for s-distinguishing adversaries. The capacity will be
given by the maximum distance dmax(Cs, C¬s) between the
row Cs and all other rows of the channel.

IV. OPTIMIZING q FOR A FIXED PRIOR π

We return to the problem discussed in the introduction, that
is choosing the distribution of observations q produced by
our secret of interest s. The QIF theory gives us a clear goal
for this choice: we want to find the distribution q ∈ F that
minimizes the leakage of the channel Cq .

Here F ⊆ D(O) denotes the set of feasible solutions for
q; this set can be arbitrary, and is typically determined by
practical aspects of each application (e.g. it might be possible
to increase the page size by padding, but not to decrease it).
The only assumption we make in this paper is that F can be
expressed in terms of linear inequalities. A solution q⋆ will
be called optimal iff it is both feasible and minimizes leakage
among all feasible solutions.

We start with the case when we have a specific prior π
modeling the system’s usage profile, and we want to minimize
leakage wrt that prior. Since the behavior Ct of all secrets t ̸= s
is considered fixed, and their relative probabilities are dictated
by our fixed π, we know exactly how an “average” secret other
than s behaves: it produces observables with probability Qπ

¬sC
(see §III-A). Conventional wisdom dictates that we should try
to make s similar to an average non-s secret, that is choose

q⋆ = Qπ
¬sC

as our output distribution. Note that this q⋆ is a convex
combination of C’s rows (other than s), the elements of Qπ

¬s

being the convex coefficients.
We first show that this intuitive choice is indeed meaningful

in a precise sense: it minimizes leakage6 wrt an s-distinguishing
adversary (§III-A). In fact, for this adversary the resulting
channel has no leakage at all; the adversary is trying to
distinguish s from ¬s, but the two cases produce identical
observations.

6Note that, for fixed π, optimizing Lg ,Lℓ is equivalent to optimizing
Vg , Rℓ since the prior vulnerability/risk is constant.

Proposition 1. Let π ∈ D(S), C : S → O, s ∈ S and
let q⋆ = Qπ

¬sC. The channel Cq⋆ has no leakage wrt an
s-distinguishing adversary, that is:

Lh(π,C
q⋆) = 1 , h ∈ {gs, ℓs} .

An immediate consequence of Prop. 1 is that, if q⋆ =
Qπ

¬sC ∈ F , then it is optimal for an s-distinguishing adversary.
However, it could very well be the case that this construction is
infeasible, in which case finding the optimal feasible solution
is more challenging.

Moreover, somewhat surprisingly, it turns out that even when
q⋆ = Qπ

¬sC is feasible, it does not minimize leakage wrt an
exact-guessing adversary. Consider the following example:

π = (0.47, 0.29, 0.24) Cq =

 q1 q2
0.05 0.95
0.58 0.42


For this channel and prior we get q⋆ = Qπ

¬sC = (0.29, 0.71).
Consider also the distribution q = (0.42, 0.58). We have that

Lℓx(π,C
q⋆) ≈ 1.1 , Lℓs(π,C

q⋆) = 1 ,

Lℓx(π,C
q) = 1 , Lℓs(π,C

q) ≈ 1.01 .

We see that q⋆ does indeed minimize leakage for an s-
distinguishing adversary (in fact, the leakage becomes 1), but
it does not minimize the exact-guessing leakage; the latter is
minimized by q.

Although the simple construction q⋆ = Qπ
¬sC does not

always produce an optimal solution, as discussed above, finding
an optimal one is still possible for all adversaries and arbitrary
F , via linear programming.

Proposition 2. The optimization problem

q⋆ := argmin
q∈F

Lh(π,C
q) , h ∈ {gx, gs, ℓx, ℓs} , (3)

can be solved in polynomial time via linear programming.

For instance, the optimal solution for the gx adversary is
given by the following linear program (recall that we assumed
q ∈ F to be expressible in terms of linear inequalities):

minimize
∑

o∈Ozo

subject to q ∈ F
zo ≥ max

t∈S\{s}
πtCt,o ∀o ∈ O

zo ≥ πsqo ∀o ∈ O

While for gs, the program is similar:

minimize
∑

o∈Ozo

subject to q ∈ F
zo ≥

∑
t∈S\{s} πtCt,o ∀o ∈ O

zo ≥ πsqo ∀o ∈ O



V. OPTIMIZING q FOR AN UNKNOWN PRIOR

In the previous section we discussed finding the optimal
q then the prior π (i.e. the user profile) is fixed. In practice,
however, we often do not know π or we do not want to
restrict to a specific one. The natural goal then is to design our
system wrt the worst possible prior. The QIF theory will again
offer guidance in selecting q; this time we choose the one
that minimizes Cq’s capacity, i.e. we minimize its maximum
leakage wrt all priors.

A. Exact-guessing adversary

Starting with the problem of optimizing q wrt an exact-
guessing adversary, in this section we make two observations.
First, we show that finding an optimal q is possible either
via simple convex combinations of rows (provided that such
solutions are feasible), or via linear programming. Second,
and more important, we show that selecting q solely wrt
this adversary is a poor design choice, since many values
are simultaneously optimal, although their behavior is not
equivalent for other adversaries.

Recall that the natural choice of q for a fixed prior (§IV)
was q⋆ = Qπ

¬sC, which is a convex combination of the
rows C¬s. It turns out that for an unknown prior and an
exact-guessing adversary we can choose much more freely:
any convex combination of the rows C¬s minimizes capacity.
To understand this fact, consider gx-capacity and recall that
MLgx(C

q) is given by the sum of the column maxima of
the channel (Thm. 1). Adding a new row cannot decrease the
column maxima, hence MLgx(C

q) ≥ MLgx(C
q
¬s). Moreover,

achieving equality is trivial: setting q to any convex combination
of rows means that no element of q can be strictly greater than
all corresponding elements of Cq

¬s, hence Cq and Cq
¬s will

have the exact same column maxima. This brings us to the
following result:

Proposition 3. For all C, any q⋆ ∈ ch(C¬s) minimizes
capacity for exact-guessing adversaries, that is

MLh(C
q⋆) ≤ MLh(C

q) ∀q ∈ D(O), h ∈ {gx, ℓx} .

Moreover, it holds that MLh(C
q⋆) = MLh(C¬s).

A direct consequence of Prop. 3 is that any convex com-
bination of the rows C¬s that happens to be feasible, that
is any q⋆ ∈ F ∩ ch(C¬s), is an optimal solution for an
exact-guessing adversary. Note that this is a sufficient but
not necessary condition for optimality. In §V-B we see that
solutions outside the convex hull can be also optimal.

On the other hand, there is no guarantee that any such
solution exists, it could very well be the case that no convex
combination of rows is feasible. In this case, we can still
compute an optimal solution, as follows:

Proposition 4. The optimization problem

q⋆ := argmin
q∈F

MLh(C
q) , h ∈ {gx, ℓx} , (4)

can be solved in polynomial time via linear programming.

The linear program for gx is given below:

minimize
∑

o∈Ozo

subject to q ∈ F
zo ≥ maxt∈S\{s} Ct,o ∀o ∈ O
zo ≥ qo ∀o ∈ O

Prop. 3 states that a large set of choices for q are all
equivalent from the point of view of the exact-guessing capacity.
However, this is not true wrt other types of adversaries, as the
following example demonstrates:

Cq =

o1 o2
s q1 q2
s1 1 0
s2 0 1

Here C¬s is a deterministic channel with only 2 secrets that
are completely distinguishable. For instance, two websites,
without any obfuscation mechanism, having distinct page sizes.
From Thm. 1 we can compute MLgx(C

q
¬s) = 2. Since the

rows s1, s2 are already maximally distant, the choice of q is
irrelevant. For any q, the rows s1, s2 will still be maximally
distant, giving MLgx(C

q) = 2.
Although q does not affect MLgx , this does not mean

that the choice of q is irrelevant for the website s. Setting
q = (1, 0) we make s indistinguishable from s1 but completely
distinguishable from s2. Conversely, q = (0, 1) makes s
indistinguishable from s2 but completely distinguishable from
s1. Finally, q = (1/2, 1/2) makes s somewhat indistinguishable
from both s1 and s2; intuitively the latter seems to be a
preferable choice, but why?

To better understand how q affects the security of this channel
we should study the difference between an exact-guessing and
an s-distinguishing adversary. For the former, recall that MLgx

is always given by a uniform prior u. For such a prior, an
adversary who guesses the secret after observing the output will
always guess s1 after seeing o1 (because s1 always produces
o1) and s2 after seeing o2, independently from the values of q.
So intuitively q does not affect this adversary at all, which is
the reason why MLgx(C

q) = 2 for any q.
However, for an s-distinguishing adversary, the situation is

very different. When q = (1, 0) we can use Thm. 3 to compute
MLgs(C

q) = 2, given by the prior us,s2 ; for this prior the
adversary can trivially infer whether the secret is s or ¬s after
the observation. But for q′ = (1/2, 1/2) we get MLgs(C

q′) =
3/2, realized by both us,s1 and us,s2. The system provides
non-trivial privacy even in the worst case; s and ¬s can never
be fully distinguished.

The discussion above suggests that maximizing the exact-
guessing capacity by itself does not fully guide us in choosing
q; it is meaningful to also optimize wrt an s-distinguishing
adversary. In fact, in the next section we see that optimiz-
ing wrt both s-distinguishing and exact-guessing adversaries
simultaneously is sometimes possible.



B. s-distinguishing adversary

We turn our attention to optimizing q wrt an s-distinguishing
adversary for an unknown prior. We already know from Thm. 3
(for P = {s}) that both gs and ℓs-capacities depend on the
maximum distance dmax(Cs, C¬s) between the row Cs and
all other rows of the channel. In other words, the capacity is
related to the radius of the smallest L1-ball centered at Cs that
contains CS.

This gives us a direct way of optimizing q wrt gs, ℓs-capacity
by a solving a geometric problem known as the smallest
enclosing ball (SEB): find a vector that minimizes its maximal
distance to a set of known vectors, or equivalently find the
smallest ball that includes this set.

Interestingly, it turns out that in one particular case the SEB
solution is guaranteed to be simultaneously optimal wrt an
exact-guessing adversary. This happens in the unconstrained
case F = D(O), that is when any solution q is feasible, as
stated in the following result.

Theorem 4. For all C : S → O, any distribution given by

q⋆ ∈ argmin
q∈F

dmax(q, C¬s)

gives optimal capacity for s-distinguishing adversaries:

MLh(C
q⋆) ≤ MLh(C

q) , h ∈ {gs, ℓs}, q ∈ F .

Moreover, if F = D(O), then q⋆ is simultaneously optimal for
exact-guessing adversaries, i.e. for h ∈ {gx, ℓx}.

Note that the solution q⋆ obtained from the above result
might lie outside the convex hull of C¬s. So, in the uncon-
strained case, the simple optimality conditions of Prop. 3 are
not met, yet the resulting solution is still guaranteed to be
optimal also for exact-guessing adversaries.

The smallest enclosing ball problem is discussed in the next
section, showing that it can be solved in linear time on |S| for
fixed |O|, or in polynomial time on |S| · |O|.

VI. THE SEB PROBLEM

The following is known as the smallest enclosing ball (SEB)
problem [17]: given a finite subset S ⊆ M of some metric
space (M,d), find the smallest ball Br(x), x ∈ M, r ∈ R that
contains S. In this paper, the goal is to solve the problem for
M = F and d = L1 (see §V).

Euclidean norm: The problem is well-studied for (Rm, L2)
[18]. It has been shown that the solution is always unique and
belongs to the convex hull of S. For any fixed m, it can be found
in linear time on n = |S|. However, the dependence on m is
exponential7. Nonetheless, as we discuss below, approximation
algorithms also exist that can compute a ball of radius at most
(1 + ϵ)r∗, where r∗ is the optimal radius and ϵ > 0, in time
linear on both m and n.

7A sub-exponential algorithm does exist, but still its complexity is larger
than any polynomial.

Manhattan norm: For (Rm, L1) the problem is much less
studied. The solution is no longer unique, due to the fact
that L1-balls have straight-line segments in their boundary.
Moreover, somewhat surprisingly, none of the solutions is
guaranteed to be in the convex hull of S.

Similarly to the Euclidean case, for fixed m the problem can
be solved in time linear on n, using the isometric embedding
of (Rm, L1) into (R2m , L∞). In contrast to the Euclidean case,
however, the problem can be solved in polynomial time on
both n and m via linear programming.

Probability distributions: Our case of interest is (F , L1) for
F ⊆ D(O), the set of constrained probability distributions over
some set finite O, under the L1-distance. Note that D(O) is
a subset of Rm for m = |O|. However, solving the (Rm, L1)-
SEB problem does not immediately yield a solution for (F , L1)-
SEB, since the center of the optimal ball might lie outside F ,
or even outside D(O). This problem is studied in the following
sections.

A. Linear time solution for fixed m

We start from the fact that the (Rd, L∞)-SEB problem
admits a direct solution: given a set S ⊂ Rd, denote by
S⊤, S⊥ ∈ Rd the vectors of component-wise maxima and
minima:

S⊤
i = max

x∈S
xi S⊥

i = min
x∈S

xi i ∈ {1, . . . , d} . (5)

It is easy to see that the optimal radius is r∗ = 1
2∥S

⊤−S⊥∥∞,
and the (non-unique) optimal center is x∗ = 1

2 (S
⊤ + S⊥).

Moving to the (Rm, L1)-SEB problem, we use a well-known
embedding φ : Rm → R2m for which it holds that ∥φ(x) −
φ(x′)∥∞ = ∥x− x′∥1. Using the fact that φ is invertible, an
optimal solution (x∗, r∗) for (R2m , L∞)-SEB can be directly
translated to an optimal solution (φ−1(x∗), r∗) for (Rm, L1)-
SEB.

Turning our attention to our problem of interest, the (F , L1)-
SEB case is a bit more involved. We can still use the same
embedding φ, but an optimal solution (x∗, r∗) for (R2m , L∞)-
SEB cannot be translated to our problem since φ−1(x∗) is not
guaranteed to be a probability distribution; in fact no solution
of radius r∗ is guaranteed to exist at all. Writing φ(S) for
{φ(x) | x ∈ S}, essentially what we need is to solve the
(φ(F), L∞)-SEB problem; in other words to impose that the
solution is the translation of a feasible probability distribution.

The first step is to compute the vectors φ(S)⊤, φ(S)⊥ of
component-wise maxima and minima for each translated vector.
Although we cannot directly construct the solution from these
vectors (as we did for (Rd, L∞)-SEB), the key observation is
that these two vectors alone represent the maximal distance to
the whole S, because ∀y ∈ Rm:

max
x∈S

∥y − x∥1 = max
x∈S

∥φ(y)− φ(x)∥∞

= max{∥φ(y)− φ(S)⊤∥∞, ∥φ(y)− φ(S)⊥∥∞} .

Then, we exploit the fact that φ is a linear map; more
precisely

φ(x) = xΦ ,



where Φ is a m × 2m matrix, having one column for each
bitstring b of size m, defined as Φi,b = (−1)bi . This allows us
to solve the (F , L1)-SEB problem via linear programming: we
use x ∈ Rm as variables, imposing the linear constraints x ∈ F .
Moreover, we ask to minimize the L∞-distance between xΦ
and φ(S)⊤, φ(S)⊥, two vectors that we have computed in
advance. The program can be written as:

minimize z

subject to x ∈ F
z ≥ φ(S)⊤b − (xΦ)b ∀b ∈ {0, 1}m

z ≥ −φ(S)⊥b + (xΦ)b ∀b ∈ {0, 1}m

Note that φ(S)⊤, φ(S)⊥ can clearly be computed in O(n)
time. Given these vectors, the whole linear problem does not
depend on n (because it does not involve S). For fixed m,
solving the linear program takes constant time, which implies
the following result.

Theorem 5. The (D(O), L1)-SEB problem can be solved in
O(n) time for any fixed m.

B. Polynomial time solution for any dimension

In contrast to the Euclidean case, the dependence on m
for (F , L1)-SEB is polynomial. This is because the objective
function maxy∈S ∥x − y∥1, can be turned into a linear one
using auxiliary variables. We use variables wy,i to represent
|xi− yi|, and a variable z to represent maxy∈S

∑
i |xi− yi| =

maxy∈S

∑
i wy,i.

The linear program can be written as:

minimize z

subject to x ∈ F
wy,i ≥ xi − yi ∀y ∈ S, i ∈ {1, . . . ,m}
wy,i ≥ yi − xi ∀y ∈ S, i ∈ {1, . . . ,m}

z ≥
∑

i wy,i ∀y ∈ S

Theorem 6. The (F , L1)-SEB problem can be solved in
polynomial time, using a linear program with O(nm) variables
and O(nm) constraints.

C. Approximate solutions

The (F , L1)-SEB problem can be approximated by solving
the (Rm, L2)-SEB problem for which several algorithms exist,
and then projecting the solution to F .

For an exact (Euclidean) solution, there are known algorithms
claimed to handle dimensions up to several thousands [19]. Note
that an exact solution is unique and is guaranteed to lie within
the convex hull of S. Hence, when applied to distributions, the
solution is guaranteed to be a distribution. Moreover, Prop. 1
guarantees that if the solution is feasible, it will be optimal for
an exact-guessing adversary, although it will not be optimal
for an s-distinguishing one.

Furthermore, there are several approximate algorithms that
run in linear time or even better (see [20] for a recent

work which provides several references). Their solution is
not guaranteed to be a probability distribution, so a projection
to F will be needed.

In the experiments of §VII, we call SEB exact the solution of
Thm. 6, and SEB approx the solution obtained via a linear-time
approximation algorithm.

VII. USE-CASE: WEBSITE FINGERPRINTING

In this section we apply the optimization methods described
in previous sections to defend against Website Fingerprinting
(WF) attacks and evaluate their performance. In a WF attack
the adversary observes the encrypted traffic pattern between a
user and a website and tries to infer which website the user
is visiting. This is a particularly interesting attack when the
adversary cannot directly observe the sender of the intercepted
packets, for example when traffic is sent through the Tor
network [21] for which a series of WF attacks have been
proposed [22], [23].

A. Setup

Consider a news website covering “controversial” topics,
prompting an adversary to target it and attempt to identify
its readers via WF. To defend against such an attack, the
administrator of this website would like to make its responses
as indistinguishable as possible from other news sites, so that
WF becomes harder.

For simplicity, in our evaluation we consider that only one
request is intercepted by the adversary and only the size of
the encrypted response is observed. The administrator’s goal
is to try to imitate other websites by producing pages that
are similar in size. Such target websites produce responses
according to distributions which are assumed to be known both
to the administrator and to the adversary.

For our evaluation, we started by identifying the top 5 (in
traffic) news website from 40 countries8, leading to a total of
200 sites, of which one is selected as the defended site s. Then,
we crawled these sites and measured the size of the received
pages, rounded to the closest KB, creating a distribution over
the page sizes. The biggest page size is 300KB, hence the
output space of the distribution is 1KB, 2KB,.., 300KB.

Note that obtaining an accurate distribution of an average
request requires knowledge of how the traffic is distributed
across the different pages of the site. For instance, the
probability of visiting a page typically decreases as the user
navigates deeper into the site: it is more likely for users to read
the headlines on the homepage than to access a page several
links deeper.

For our evaluation, we simulate visitors by randomly
following 10 links of every page up to a maximum depth of 4.
A probability distribution over the page sizes is constructed by
assuming that a visitor access each depth with the following
probabilities:

• home page: 0.3
• 1-click depth: 0.25

8According to www.similarweb.com.

www.similarweb.com


• 2-clicks depth: 0.2
• 3-clicks depth: 0.15
• 4-clicks depth: 0.1

while the probability of accessing pages within the same layer
is uniform.

Note that defending against WF when we can control only a
single site is quite challenging: the selected 200 sites are quite
different from each other, so we cannot imitate all of them
simultaneously. Instead, we assume that the administrator of
s selects a moderate subset of 19 sites close in distance to s,
leading to a system of 20 secrets that we try to minimize its
leakage.9

To successfully hide s among the other 19 sites, the
administrator needs to find q (i.e. a distribution over the page
sizes) in order to reduce the leakage (or capacity) of C. Then,
he needs to modify his site so that the served pages follow
this distribution.

Note, however, that not all distributions q are feasible for
the defended site since the administrator still needs to respect
the site’s existing content. While increasing a page size is
usually straightforward via padding [24], decreasing it may
not be feasible without affecting the content. In the following
experiments we take this issue into account by enforcing a
non-negative padding constraint F , which is discussed below.

Priors: Let us first describe the priors that we are about to
use in the following experiments:

• Uniform: u, that is probability 1/20 for each site.
• Traffic: Based on the monthly visits of each website.
In practice, the adversary may have suspicions regarding the

user’s location. For example, a user living in the EU would
probably not have a regular interest in reading the daily news
from Brazil. Instead, she may frequently visit news websites
from their own country or neighboring countries.

To simulate this, considering that s is a Romanian site, we
create the following priors:

• Eastern: Proportional to the country’s population if the
country is in the Eastern Bloc of EU, 0 otherwise

• Ro-Slo: Uniform if the site is hosted in either Romania
or Slovakia, 0 otherwise.

• Ro-Hu: Uniform if the site is hosted in either Romania
or Hungary, 0 otherwise.

Baseline Methods: We are about to compare our proposed
solutions with the following natural approaches:

• No Defense: Setting q = Cs.
• Average: For each page size, calculate the average probabil-

ity across all the other sites. Used only in the experiments
for unknown prior.

• Weighted Average on prior π: Similar to Average, but now
assign weights to each row based on the prior.

• Copy: Emulates another site, i.e. setting q = Ct′ for some
site t′. If π is known choose the t′ with the biggest πt′ .
Otherwise, choose the t′ that offers the minimum capacity.

• Pad: Pad each page size deterministically to the next
multiple of 5KB.

9The selected sites can be found in the Appendix D.

Feasible Solutions: As previously discussed, when searching
for an optimal distribution q of page sizes, we need to take
into account that not all distributions are feasible in practice,
which is expressed by enforcing feasibility constraints F . In
our use case, the constraints arise from the fact that page size
can be easily increased via padding, but not decreased. For
example, say that q dictates that we should produce a page
size of 5KB with probability 0.2. If all actual pages of our
site are 10KB or larger, then producing a page of 5KB with
non-zero probability is impossible.

To apply the optimization methods of previous sections we
need to express F in terms of linear inequalities, which is
done as follows. Let q̂ be the site’s original size distribution,
without applying any defense. To express our non-negative
padding constraint, we create a matrix To,o′ , denoting the
probability that we move from o to o′ for all pairs o, o′ ∈
O. Then, a solution q is feasible iff it can obtained from q̂
via a transformation table T that only moves probabilities
from smaller to larger observables, which is expressed by the
following linear constraints:

To,o′ ≥ 0 ∀o, o′

To,o′ = 0 ∀o > o′

q̂o =
∑

o′ To,o′ ∀o
qo =

∑
o′ To′,o ∀o

This approach not only expresses the feasibility of q, but also
provides the matrix T which can be directly used as a padding
strategy. When we receive a request for a page with size o, we
can use the row To,· (after normalizing it), as a distribution
to produce a padded page. The constraints guarantee that all
sizes produces by that distribution will not be smaller than o.

B. Experiments for a fixed prior π

This section evaluates the solutions discussed in Section IV.
Starting from the s-distinguishing adversary, recall that the

weighted (by the prior) average of the other rows q = Qπ
¬sC

is guaranteed to have no leakage (Prop. 1). In our experiment,
however, this simple solution cannot be directly applied since
it violates the feasibility constraints. Still, we can use the LP
solution of Prop. 2 to obtain the optimal feasible solution.
The results are shown in Table I; we can see that, although
q = Qπ

¬sC itself is not feasible, we can actually find a feasible
solution with no leakage at all in all cases, except from Ro-Hu
in which the leakage is slightly larger than 1.

Moving to the exact-guessing adversary, we again use the
LP of Prop. 2 to find the optimal solution (since the weighted

TABLE I: Leakages for each prior using Proposition 2 (known
π, s-distinguishing adversary)

Prior Leakage

Uniform 1
Traffic 1
Eastern 1
Ro-Slo 1
Ro-Hu 1.03



TABLE II: Leakage and posterior vulnerability (in parenthesis) for each method and prior (known π, exact-guessing adversary)

Method Uniform prior Traffic prior Eastern prior Ro-Slo prior Ro-Hu prior

Optimal (Prop. 2) 8.78 (0.44) 2.29 (0.61) 1.01 (0.44) 1.75 (0.58) 1.04 (0.52)
No Defense 9.16 (0.46) 2.29 (0.61) 1.69 (0.74) 2.40 (0.80) 1.76 (0.88)

Weighted Average 9.02 (0.45) 2.29 (0.62) 1.21 (0.53) 1.90 (0.63) 1.04 (0.52)
Copy 8.8 (0.44) 2.29 (0.61) 1.43 (0.63) 1.78 (0.59) 1.04 (0.52)
Pad 9.26 (0.46) 2.29 (0.61) 1.86 (0.81) 2.55 (0.85) 1.89 (0.94)

average q = Qπ
¬sC is neither feasible nor optimal). Table II

shows the leakage for each prior and method, as well as the
posterior vulnerability (in parenthesis) which is helpful to
interpret the results. For instance, the optimal solution for the
Ro-Slo prior gives a leakage of 1.75 and posterior vulnerability
of 0.58, meaning that the adversary can guess the secret with
probability 0.58/1.75 = 0.33 a priori, and his success probability
increases to 0.58 after observing the output of the system. Note
that this adversary is much harder to address (by controlling
only a single row of the channel) than the s-distinguishing,
hence it is impossible to completely eliminate leakage in most
cases, but we can still hope for a substantial improvement
compared to having no defense at all.

The results show that our approach offers the least leakage
and the smallest posterior vulnerability across all priors. Among
the other options, the natural choice of (projected) Weighted
Average offers comparable results for some priors (Traffic, Ro-
Hu) , but notably worse for others (for example ≈ 20% more
leakage on the Eastern prior and ≈ 10% more leakage on the
Ro-Slo prior).

Copy seems to be an interesting alternative for some priors
but offers a solution with increased leakage on the case of the
Eastern prior (1.43 over 1.01 of Proposition 2). This prior is
the only one in which s has a significantly larger probability
(0.43) than any other site t; in this case, if we can make the
evidence of any observation o smaller than our a priori belief,
that is Ct,o/Cs,o ≤ πs/πt, then the rational choice would be to
guess s for any observation o, and the system would have no
leakage at all. This is indeed achieved by the optimal solution.
If we choose to Copy, however, the site t with the largest (other
than s) prior, we might not necessarily achieve this goal. This
solution does make s and t indistinguishable, but we might
now produce certain observations with very small probabilities,
making s and t distinguishable from some of the the remaining
sites, which explains why Copy performs worse than Optimal
for this prior.

Another somewhat surprising observation is that padding
turns out to be more harmful than no defense at all. The reason
is that padding relies on every site using it simultaneously, so
that different size observations become identical when mapped
to the same padded value. However, if only s pads, then its
observations can become even more distinguishable than before,
since only that site will always report sizes that are multiples
of 5KB.

C. Experiments for an unknown prior π

This section aims to assess the solutions presented in Section
V.

exact-guessing adversary: We discussed that any convex
combination of the remaining rows of C will yield the same
capacity, provided that the solution is feasible, since each
column maximum is being retained. But a convex combination
that complies with the constraint might not exist at all. To
overcome the hurdle, we can use LP (Proposition 4).

Table III shows that the Optimal (Prop. 4) offers the
best capacity of 8.78. In fact, any other method that is a
convex combination of the remaining rows (i.e. Average, Copy)
would have had the same result, but the constraints led to a
slightly increased capacity. Observe that for the exact guessing
adversary this capacity is the same as the leakage on the
uniform prior (Table II), which is the worst prior (for the
defender) for the exact guessing adversary, as discussed in
Section II.

Nonetheless, Section V-B discussed that we could also use
the solution of SEB (for the unconstrained case). Even though
constraints do exist in this experiment, Table III shows that we
get the same capacity as the Optimal (Prop. 4). Interestingly,
neither SEB nor Proposition 4 provide a solution that belongs
to the convex hull of C.

TABLE III: Capacity for each method (unknown π, exact-
guessing adversary)

Method Capacity

Optimal (Prop. 4) 8.78
SEB exact 8.78

No Defense 9.14
Average 9.02

Copy 8.8
Pad 9.25

s-distinguishing adversary: Recall that we discussed why
the problem reduces to SEB, offering two solutions, an exact
but slow one (SEB exact) and a faster approximation (SEB
approx.) resp. in Section VI-B and Section VI-C.

Table IV shows that SEB exact offers the best capacity:
it decreases the capacity from ≈ 1.8 (No Defense) to 1.56.
Average does show some improvement over No Defense, while
Pad yields results that are too easily distinguishable. On the
other hand, SEB approx. is technically the second-best choice,
although the result is nearly identical to Average.

D. Attack Simulation

In this section we simulate an actual attack, to estimate the
attacker’s accuracy, using the s-distinguishing adversary, as it
is directly applicable in the WF scenario. In a real-world attack



TABLE IV: Capacity for each method (unknown π, s-
distinguishing adversary)

Method Capacity

SEB exact 1.56
SEB approx. 1.653
No Defense 1.79

Average 1.659
Copy 1.79
Pad 1.9

the defender will probably be oblivious for the attacker’s π
and hence we use the solutions for the unknown prior.

We train a Random Forest classifier to estimate the target site
among the others based on the observed page size, sampling
pages from each site t according to Ct. While this scenario
involves an unknown prior, it is essential to establish one solely
for the attacker, in order to decide how many pages to sample
from each site. In other words, for each site t the number of
sampled pages depends on πt. For s, we set πs = 0.5 for all
the following experiments, to capture the boolean nature of
this adversary. Note that π is only known to the adversary;
it is not disclosed to the defender, who for that reason uses
prior-agnostic methods.

In order to train the classifier for s, we begin by requesting
page sizes according to Cs and record the actually reported
page sizes from the server (derived from T ), which are then
used in the training process. Essentially, this simulates the
behavior of the server of s; a user requests a page (selecting
not uniformly randomly, but according to Cs), then the server
calculates the page size i, pads it according to Ti, and finally
sends the padded page back to the user.

Finally, as per standard procedure, 80% of the data is used
for training and the remaining 20% for testing.

Note that having a prior where πs > 0.5 would essentially
decrease the attacker’s gains in information. In that case, the
leakage of the system is not particularly interesting to the
attacker, who already has enough information (as an example,
consider the extreme πs = 1).

Let us first examine the worst possible case, involving
the highest possible posterior vulnerability, derived from the
capacity. Intuitively, the worst case will be when the prior is
evenly divided between two sites: s and the one that differs
the most from s.

For this omnipotent adversary equipped with the worst (for

TABLE V: Accuracy of the WF attack, for each method,
when an s-distinguishing adversary possesses the worst (for
the defender) possible π

Method Accuracy Recall F1 score

SEB exact 0.78 0.8 0.8
SEB approx. 0.83 0.78 0.82
No Defense 0.89 0.88 0.89

Average 0.83 0.8 0.83
Copy 0.89 0.89 0.9
Pad 0.95 0.99 0.95

the defender) prior, Table V shows his accuracy 10. The No
Defense gives a 89% accuracy while SEB exact offers an 11%
decrease in accuracy. All other methods offer at best only about
half of that, with the best possible alternative to be Average
with an accuracy of 83%. Pad is again worse than No Defense,
offering a staggering 95% accuracy to the attack.

While in this first experiment we allocated the remaining
50% of the prior to the most different site to capture the worst
possible case, it will also be interesting to explore other ways
to distribute it. We examine two cases in Figure 3 where we
also include as a baseline the optimal solution for a particular
prior (Proposition 2) but recall that it cannot be used in this
scenario by the defender who does not have access to π.

First, we do a 1-on-1 comparison for each site t ∈ C \ {s}
by creating a prior us,t (i.e. we split the prior evenly between
s and t). Figure 1a shows that SEB exact offers worse accuracy
for the attacker compared to the Average on every such 1-on-1
comparison. Copy is close to No Defense while Pad is again the
worst option in every case; the classifier can easily distinguish
a site that produces page sizes that are multiples of 5KB.

It will also be interesting to keep πs = 0.5 and split
the remaining 50% to some other n sites, not uniformly
but according to their traffic, making a 1-on-n comparison.
Figure 1b shows that SEB exact performs better in the worst
case. Note that when n = 13, the site with the most visits
comes into play, notably affecting the prior 11.

On the other hand, Figure 1b shows that Average performs
slightly better than SEB exact when n is increased. To
understand this, recall that in this scenario the optimal choice
would be a Weighted Average based on the specific prior. But
Average essentially assigns the same weight to each row of C,
regardless of n, as it is prior-agnostic. However, as n increases,
more rows have a non-zero prior, favoring Average since its
uniform weights happen to work well with this particular prior.
Also, keep in mind that the same heuristics were used to sample
each site as discussed in Section VII-A. This gives another
advantage to Average; consider, informally, that it attempts to
find the average of similar-looking items. In reality, the way
a user explores a site might differ for each site, making it
difficult to generalize the performance of Average, in contrast
to SEB exact which we proved to be the best option for the
worst possible prior.

E. Comparison of SEB exact and SEB approx.

Previously, we discussed the trade-off between the two
methods: the first offers optimal results at a high computational
cost, while the latter provides approximated results quickly.

To illustrate the comparison, we conduct an experiment to
measure the performance and runtime of the two methods as
the size of the channel increases 12. In this experiment, we

10Note that the accuracy could have also been calculated directly from
Table IV by simply multiplying the capacity by πs = 0.5, as the capacity
captures the worst possible leakage.

11That is because the entire prior is normalized each time to ensure that its
sum is 1.

12The system specifications used in the experiments can be found in
Appendix C.
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Fig. 2: Comparison of SEB exact and SEB approx.

employ all 200 sampled sites, instead of only the 20 sites used
in the previous experiments.

Figure 2a shows that SEB approx. always completes almost
instantly. On the contrary, Figure 2b shows that as the channel
size increases, SEB approx. achieves a capacity near 1.7,
compared to 1.6 for SEB exact. On the other hand, the runtime
of SEB exact scales polynomially, even taking more than 3
minutes to complete when all the 200 sites are featured.

For smaller channel sizes, such as the one used in the pre-
vious experiments, choosing SEB exact seems rather obvious;
the runtime delay is insignificant while the improvement in
capacity is remarkable.

F. Scalability of Proposed Solutions

After showing the better scalability of SEB approx. (com-
pared to SEB exact), the next natural question is how the

other proposed solutions scale. Indeed, this might be a primary
concern for the defender if they wish to apply these solutions
in a scenario with more observables.

Figure 3a shows the computation time of the corresponding
LPs of Proposition 2, Proposition 4, and SEB approx.; the
latter is scaling much better than the first two, which behave
similarly.

Recall, however, that SEB approx. consists of two steps:
a) finding the approximated solution and b) projecting it into
F via LP. Intuitively, the second step is more costly, which
raises the question about the performance of SEB approx. in
the unconstrained case. Figure 3b shows that not computing the
projection makes SEB approx. scale even better, as it computes
a solution in less than a minute for even 120.000 observables.

This can be useful to the defender if they are completely
free to design their own row (e.g. creating a website from
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scratch). Moreover, if the defender can sacrifice some level of
protection, they can boost their performance by computing
the unconstrained case (i.e. without performing the costly
projection) and then produce a result by sampling iteratively
from the distribution until the constraints are met. For instance,
if the defender has a page that is 100KB, they can iteratively
sample until they get a number larger than 100, since everything
less than 100 should be discarded (assuming that the page
cannot be further compressed).

VIII. DISCUSSION AND CONCLUSIONS

In this work, we explored methods for adding a new row
to an existing information channel under two distinct types of
adversaries for both known and unknown priors.

When the prior is known, we discussed that the natural
approach for an s-distinguishing adversary, namely an adversary
that tries to distinguish if the secret is s or not, falls short
of achieving optimal results for the exact-guessing adversary
(which tries to guess the exact secret in one try). In that case,
LP can be used to provide an optimal solution.

We argued however that in real-world applications, the
prior information available to an adversary is often difficult to
estimate. Thus, when designing secure systems, one should also
consider the worst-case scenario, or equivalently, in QIF terms,
one should seek to minimize the capacity. Note that, when we
use capacity for the comparison, the improvement is usually
smaller than in the case of the leakage for a known prior. This
is because the capacity represents the maximum leakage over
all priors. Hence the capacities of the other approaches are
“squeezed” between our capacity and the maximum possible
capacity of a channel (system) with the same number of secrets
and observables as the given one.

Therefore, guided by minimizing capacity, we showed that
for an unknown prior, any convex combination of the remaining
rows is sufficient for the exact-guessing adversary. However,
for the s-distinguishing adversary, solving the SEB (Smallest

Enclosing Ball) problem is necessary to find a solution with
optimal capacity, although it requires polynomial time.

Furthermore, we explained how our techniques can be
applied to defend against website fingerprinting, specifically by
discussing how a site can pad its responses to comply with our
proposed solutions. We conducted experiments demonstrating
that our approach can significantly reduce the leakage, com-
pared to other natural methods. Then, we simulated an actual
attack by training an ML classifier for the s-distinguishing
adversary and an unknown prior.

Our experiments confirm that solving the SEB problem
ensures the lowest accuracy for the s-distinguishing adversary
in the worst-case scenario compared to all the other prior-
agnostic methods. Still the accuracy appears to be high because
we considered an attacker who already knows that s has a
probability of 0.5 to be the secret, in order to capture the
capacity. This type of attacker is arguably uncommon in real-
world situations. Although the abundance of information in
today’s information age makes it nearly impossible to know
the attacker’s prior knowledge, with our approach the defender
can be prepared for the worst-case scenario.

We remark, however, that the results presented in Section VII
depend on the assumptions taken during the design of the WF
(Website Fingerprinting) attack simulation. The probability of
each page at a given click-depth determines the behavior of
each site. Informally, the more distinguishable the sites are, the
harder it is to find a solution, and the benefit of the optimal
solution, compared to other naive methods, may be reduced.
Consider, for example, the extreme case where each website
contains only a single page (e.g. appears with probability 1),
which is unique in size. In this scenario, hiding s among a
set of completely distinguishable sites becomes even more
challenging.

Another practical aspect of the problem is the constraints
faced when designing a defense against WF attacks. In this
work, we considered only the page size, showing how linear



constraints can be used. These constraints can similarly be
applied to the packet size, which has been shown to be the
most valuable information for a WF attack [25]. However
in real-world applications, one might want to include other
parameters as well to increase the level of protection. Some
natural choices are packet numbers, timing, and burst sizes,
but an adversary can boost their WF attack by gathering
information from other attributes, which can be as many as
35683 [25]. This plethora of attributes raises the question of
whether all of them can be expressed via linear constraints. In
cases where this is not possible, one potential approach would
be to first find an unrestricted solution and then try to project
it into the subspace of L1 where the constraints are met. This
approach was discussed in the ”Feasible Solutions” paragraph
of Section VII-A and we intend to explore it formally in future
research.

Future work should also continue by measuring the efficiency
of our approaches in complex real-world WF attacks, such as
those studied in the literature for the Tor Network. Additional
use cases could also be explored, as the scope of applications
extends to any scenario in which a new user joins a fixed system
and seeks privacy by designing their own responses based
on the (fixed) responses of others. Finally, another potential
research direction involves searching for a solution that is
simultaneously optimal for both adversaries in the unknown
prior setting while respecting any class of constraints.
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APPENDIX

A. Proofs of Section III

We start with two auxiliary lemmas.

Lemma 2. For any S, T ⊆ Rn, it holds that

dmax(ch(S), ch(T )) = dmax(S, T ) ,

where distances are measured wrt any norm ∥ · ∥.

Proof. Let d = dmax(S, T ). Since S ⊆ ch(S) and T ⊆ ch(T )
we clearly have d ≤ dmax(ch(S), ch(T )), the non-trivial part
is to show that d ≥ dmax(ch(S), ch(T )).

We first show that

∀s ∈ S, t ∈ ch(T ) : ∥s− t∥ ≤ d . (6)
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Let s ∈ S, t ∈ ch(T ) and denote by Bd[s] the closed ball of
radius d centered at s. Since d ≥ ∥s′−t′∥ for all s′ ∈ S, t′ ∈ T
it holds that

Bd[s] ⊇ T ,

and since balls induced by a norm are convex:

Bd[s] = ch(Bd[s]) ⊇ ch(T ) ,

which implies ∥s− t∥ ≤ d, concluding the proof of (6).
Finally we show that

∀s ∈ ch(S), t ∈ ch(T ) : ∥s− t∥ ≤ d .

Let s ∈ ch(S), t ∈ ch(T ), from (6) we know that Bd[t] ⊇ S,
and since balls are convex we have that Bd[t] = ch(Bd[t]) ⊇
ch(S), which implies ∥s− t∥ ≤ d.

Note that diam(S) = dmax(S, S), hence Lem. 2 directly
implies that diam(S) = diam(ch(S)).

Lemma 3. Let C : S → O be a binary channel, with S =
{s1, s2}.

MLgx(C) = Lgx(u, C) = 1 +
1

2
∥Cs1 − Cs2∥1 ,

MLℓx(C) = Lℓx(u, C) =
1

1− 1
2∥Cs1 − Cs2∥1

.

Proof. The result for MLℓx(C) follows directly from Thm. 2.
Define

Σ⊤ =
∑

o maxs Cs,o , Σ⊥ =
∑

o mins Cs,o .

We obtain the following equalities:

Σ⊤ = MLgx(C) , (Thm. 1)
Σ⊤ +Σ⊥ = 2 , (Rows sum to 1)
Σ⊤ − Σ⊥ = ∥Cs1 − Cs2∥1 . (Def. of ∥ · ∥1)

Adding the last two and substituting in the first gives the
required result.

Theorem 3. For any C and P ⊆ S it holds that

MLgP (C) = LgP (u
s,t, C) = 1 +

1

2
dmax(CP , C¬P ) ,

MLℓP (C) = LℓP (u
s,t, C) =

1

1− 1
2 dmax(CP , C¬P )

,

for s ∈ P, t ∈ ¬P realizing dmax(CP , C¬P ).

Proof. Starting from MLgP (C), let π ∈ D(S), define ρπ, Qπ

as in (1),(2) and let

A = QπC .

Note that A : {P,¬P} → O is a binary channel; its rows AP

and A¬P express the behavior of an “average” (wrt π) secret
of C among those in P and ¬P respectively.

Note that P represents a set of secrets of C : S → O, but a
single secret of A : {P,¬P} → O. Hence, with a slight abuse
of notation, CP denotes a set of rows of C, while AP denotes
a single row of A.

We have that

LgP (π,C)
= Lgx(ρ

π, A) “Lem. 1”
≤ MLgx(A) “Def. of MLgx”

= 1 +
1

2
∥AP −A¬P ∥1 “Lem. 3, A is binary”

Notice that since Qπ is a channel, the rows of A are
convex combinations of those of C. More precisely, since
Qπ

w,s = 0 whenever s ̸∈ w, the rows AP and A¬P are convex
combinations of the sets of rows CP and C¬P respectively.
Continuing the previous equational reasoning:

1 +
1

2
∥AP −A¬P ∥1

≤
1 +

1

2
dmax(ch(CP ), ch(C¬P ))

“AP ∈ ch(CP ), A¬P ∈ ch(C¬P )”

= 1 +
1

2
dmax(CP , C¬P ) “Lem. 2”

=

1 +
1

2
∥Cs − Ct∥1 .

“Let s ∈ P, t ∈ ¬P be those realizing dmax(CP , C¬P )”

This holds for all π, hence MLgP (C) ≤ 1 + 1
2∥Cs − Ct∥1.

Taking π = us,t we get ρπ = u, AP = Cs and A¬P = Ct,
hence

LgP (u
s,t, C) = 1 +

1

2
∥Cs − Ct∥1 .

So the upper bound of MLgP (C) is attained, concluding the
proof.

For MLℓP (C) the proof is similar.

B. Proofs of Section V

Proposition 3. For all C, any q⋆ ∈ ch(C¬s) minimizes
capacity for exact-guessing adversaries, that is

MLh(C
q⋆) ≤ MLh(C

q) ∀q ∈ D(O), h ∈ {gx, ℓx} .

Moreover, it holds that MLh(C
q⋆) = MLh(C¬s).

Proof. Starting from ℓx, note that diam(S) = dmax(S, S).
Hence Lem. 2 directly implies that diam(S) = diam(ch(S)),
that is taking convex combinations does not affect the diameter
of a set. As a consequence diam(Cq⋆) = diam(C¬s). Then
MLℓx(C

q⋆) = MLℓx(C¬s) follows from Thm. 2.
Similarly, for gx the result follows from Thm. 1 and the fact

that convex combinations do not affect the column maxima.

Recall the notation S⊥, S⊤ from (5). We also denote by ≼
the partial order on Rn defied as x ≼ y iff xi ≤ yi for all
i ∈ 1..n.

Lemma 4. Let S ⊆ D(O) and let

q⋆ ∈ argmin
q∈D(O)

dmax(q,Q)

be a solution to the (D(O), L1)-SEB problem for S. Then

S⊥ ≼ q⋆ ≼ S⊤ .



Proof. We show that q⋆ ≼ S⊤, the proof of S⊥ ≼ q⋆ is
similar. Assume that q⋆o1 > S⊤

o1 for some o1, that is q⋆o1 > xo1

for all x ∈ S. Select some

0 < ϵ < min
o∈O,x∈S
q⋆o ̸=xo

|q⋆o − xo|

and define q ∈ D(O) as

qo =

{
q⋆o − ϵ o = o1

q⋆o + ϵ
|O|−1 otherwise

.

In the following, we show that this construction moves q⋆

strictly closer to all elements x ∈ S simultaneously.
Fix some arbitrary x ∈ S; the choice of ϵ is such that

the relative order of q⋆o and xo is not affected by adding or
subtracting ϵ. Since q⋆o1 > xo1 it follows that qo1 > xo1 which
it turn implies that in the o1 component we moved q⋆ closer
to x by exactly ϵ:

|qo1 − xo1 | = |q⋆o1 − xo1 | − ϵ . (7)

From the triangle inequality we get that in all other components,
we moved q⋆ away from x by at most ϵ

|O|−1 :

|qo − xo| ≤ |q⋆o − xo|+ ϵ
|O|−1 , ∀o ̸= o1 . (8)

Moreover, since both vectors sum to 1 and q⋆o1 > xo1 there
must by some o2 such that q⋆o2 < xo2 . By the choice of ϵ we
get that qo2 < xo2 , hence:

|qo2 − xo2 | < |q⋆o2 − xo2 |+ ϵ
|O|−1 . (9)

Summing over all o using (7), (8) and (9) we get that

∥q − x∥1 < ∥q⋆ − x∥1 .

Since this happens for all x ∈ S, it contradicts the fact that q⋆

is a solution to the SEB problem, concluding the proof.

Theorem 4. For all C : S → O, any distribution given by

q⋆ ∈ argmin
q∈F

dmax(q, C¬s)

gives optimal capacity for s-distinguishing adversaries:

MLh(C
q⋆) ≤ MLh(C

q) , h ∈ {gs, ℓs}, q ∈ F .

Moreover, if F = D(O), then q⋆ is simultaneously optimal for
exact-guessing adversaries, i.e. for h ∈ {gx, ℓx}.

Proof. The minimization of MLgs ,MLℓs is a direct conse-
quence of Thm. 3, since both capacities are increasing functions
of dmax(C

q
s , C

q
¬s) = dmax(q, C¬s).

For MLℓx , let t ̸= s. Since q = q⋆ is a better choice than
q = Ct (and q = Ct is feasible since F = D(O)) we have
that:

dmax(q
⋆, C¬s) ≤ dmax(Ct, C¬s) ≤ diam(C¬s) . (10)

As a consequence, for any q ∈ D(O) it holds that

diam(C
q⋆

S )
= max{diam(C¬s), dmax(q

⋆, C¬s)}
= diam(C¬s)

≤ diam(Cq
S ) .

The result follows from Thm. 2, since MLℓx is an increasing
function of diam(CS).

The last case MLgx . From Lem. 4 (which is applicable
since F = D(O)) we get that the elements of q⋆ cannot be
greater than the column maxima of C¬s. As a consequence,
Cq⋆ and C¬s have exactly the same column maxima, which
from Thm. 1 implies that for any q:

MLgx(C
q⋆) = MLgx(C¬s) ≤ MLgx(C

q) .

The last inequality comes from the fact that adding a row can
only increase the column maxima.

C. System Specifications used in the experiments

The system specifications are crucial for determining the
runtime of SEB exact and SEB approx. and the scalability of
the proposed solutions.

We implemented the experiments in Python 3.6.9 using the
qif library and run them in the following system:

• CPU: 2 Quad core Intel Xeon E5-2623
• GPU: NVIDIA GP102 GeForce GTX 1080 Ti
• RAM: 16x 16GB DDR4

D. Selected Sites

In our experiments, out of the 200 sites we selected the 20
closest (in total variation distance) to the one we defend. The
list is shown Table VI.

TABLE VI: Monthly Visits (in millions) of the selected sites
(source: similarweb.com)

Site Name Visits
mediafax.ro (s) 1.145
wort.lu 0.177
sapo.pt 13.6
sabah.com.tr 61.4
lavanguardia.com 41.5
e24.no 0.8
cbc.na 17.4
news.com.au 8.3
cnnbrasil.com.br 32.3
slobodnadalmacija.hr 1.3
primicia.com.ve 7.6
sme.sk 7.4
topky.sk 4.8
oe24.at 1.2
ilfattoquotidiano.it 12.7
meinbezirk.at 2.6
voxeurop.eu 0.019
the-european-times.com 0.004
index.hu 9.09
hespress.com 5.4
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