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SIZE OF MULTIPARTITIONS THROUGH LEVEL-RANK DUALITY

NICOLAS JACON

Abstract. We give short purely combinatorial proofs for certain formulae relating the size of an l-partition
with the one of its e-quotient in the sense of Uglov. We deduce a way to compute the size of the e-core
of multipartitions and the e-weight of a multipartition. All these multipartitions naturally appear in the
context of level-rank duality for Ariki-Koike algebras and Cherednik algebras.

1. Introduction

It is well-known that the combinatorics of partitions play an important role in the context of the ordinary
and modular representation theory of the symmetric group Sn. The simple modules of Sn in characteristic
zero are naturally labeled by these objects whereas they are indexed by certain subset of partitions called
p-regular partitions in characteristic p. One usual way to study the modular representation theory of the
symmetric group is to consider the associated decomposition matrix. This matrix, whose rows are indexed
by the partitions of n, controls the representation theory of Sn over a field of characteristic p > 0 by a
process of modular reduction.

The decomposition matrix of the symmetric group is in fact a block diagonal matrix and one may study
the blocks of this matrix independently. It is thus an important problem to understand how these blocks
are distributed. To do this, one can associate to any partition by a purely combinatorial way, a couple given
by a certain partition, called the p-core, and a p-tuple of partitions called the p-quotient. Two partitions
indexing two rows of the matrix are in the same block if and only if they have the same p-core partitions
(this is known and the Nakayama’s conjecture, which is in fact a Theorem). In addition, the size of the
p-quotient is an invariant for the block, the p-weight, which gives a good approximation of how the block is
complicated.

Recently, there have been progresses on understanding these problems in the more general context of
Ariki-Koike algebras at an e-root of unity and associated with a l-tuple s

l in Z
l (called a multicharge), see

[5, 3] There is also a notion of decomposition matrix for these algebras, whose rows are this time indexed

by the l-tuples of partitions (called l-partitions). One can associate to each l-partition λl an e-partition λe

associated with a multicharge se in Z
e. This datum then allows to define an analogue of the e-core in this

context.
The map sending (λl, sl) to (λe, se) has been originally defined by Uglov in the context of quantum

groups. This map not only permits the generalization of the notion of core: it plays an important role in
the representation theory of rational Cherednik algebras and Fock spaces for quantum groups.

(1) It is a cornerstone for the definition of the canonical basis for Fock spaces in higher level [6] in affine
type A.

(2) It gives an equivalence (the level-rank duality) between the categoryO of different Cherednik algebras
[1, 7, 8].

The aim of this note is to show several properties of this map. We relate the size of λl with λe and we
show by a purely combinatorial argument that the size of the e-partitions associated with l-partitions of
the same size and with the same core, have the same size (see Theorem 5). We give an explicit formula for
this size (see Proposition 2). Then, generalizing results of [4], we give a formula for the size of the e-core
l-partitions. We deduce a way to compute the size of any e-partition, given the datum of its core. This in
particular gives a way to compute the e-weight of an l-partition (see Corollary 2).
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2. Multipartitions, cores and quotients

We first quickly recall the main combinatorial notions we need to state our results. For more details,
we refer to [2]. For s ∈ Z and l ∈ N, we denote by Z

l[s] the set of s = (s0, . . . , sl−1) ∈ Z
l such that∑

0≤i≤l−1
si = s.

2.1. Partitions. A partition λ := (λ1, . . . , λr) of size n ∈ Z>0 is a sequence of non increasing integers of
total sum |λ| := n. If l ∈ N, an l-partition (or multipartition) λ is a sequence of partitions (λ0, . . . , λl−1) such
that |λ| :=

∑
0≤i≤l−1

|λi| = n.. The integer n is called the size of the l-partition λ. The set of l-partitions

of size n is denoted by Πl(n) and the set of l-partitions by Πl.

2.2. Symbols. By definition, a symbol of charge s ∈ Z is an infinite sequence of integers X = (βi)i<s such
that:

(1) For all i < m, we have βi−1 < βi (that is X is a strictly increasing sequence)
(2) There exists N < m such that for all j ≤ N , we have βj = j.

We denote by Symb(s) the set of symbols of charge m. If m ∈ Z then the symbol X = (βi)i<s such that
βi = i for all i < m is called the trivial symbol of charge m.

A symbol may be conveniently represented using its abacus configuration and we will use this configuration
intensively in this paper. We associate to a symbol X an horizontal runner full of (an infinite number of )
beads numbered in Z. A bead numbered by a ∈ Z is colored in black if and only if a ∈ Xj (we will say that
the position of the bead is a). The others are written in white.

Example 1. The abacus associated to the symbol X = (. . . ,−3,−2,−1, 3, 5, 6) of charge 3 is

1817161514131211109876543210-1-2

. . .

The charge of a symbol X may be conveniently read in the associated abacus as follows. For each black
bead, if there exists a white bead at its left then replace the leftmost one with a black bead and the black
bead itself with a white bead. We obtain the abacus of a trivial symbol. The charge of X is then the charge
of the trivial symbol, that is the number associated with the leftmost white bead.

As for the notion of l-partition, one can now generalize this: an l-symbol is a collection of l symbols:

X = (X0, . . . , Xl−1).

The multicharge (or l-charge) of the symbol is the l-tuple (s0, . . . , sl−1) ∈ Z
l where for all j = 0, . . . , l − 1,

the number sj is the charge of Xj = (βj
i )i<sj . An l-symbol X = (X0, . . . , Xl−1) can be represented using its

abacus configuration. In this way, we associate to each Xj from j = 0 to l − 1 an abacus as above and we
write them from bottom to top so that the beads in the same column are numbered by the same integer.
We call the associated object an l-abacus.

Example 2. Let l = 3 and let us consider the following 3-symbol:

X = ((. . . ,−1, 0, 2, 4, 6), (. . . ,−1, 0, 3, 4), (. . . ,−1, 0, 2, 5)).

The associated 3-abacus is:

20191817161514131211109876543210. . .

. . .

. . .

. . .

We can recover the multicharge by moving the black beads at the left in each runner. To each symbol X =
(βi)i<s (and thus to each abacus) of charge s we can canonically associate a partition λ(X) = (λ1, . . . , λr)
such that for all i ≥ 1, we have λi = βs−i + i− s. Note that if k >> 1 then λk = 0. Regarding the abacus
associated to the set of β-numbers, the parts of the partition are easily obtained by counting the numbers
of white beads at the left of each black bead. Conversely, to any partition (λ1, . . . , λr), we can associate a
set of β-numbers (and thus an abacus). Let m ∈ Z. Then we define:

Xs(λ) = (βi)i<s
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where for all i = 1, . . . ,m, we have βm−i = λi − i +m.
To each l-symbol X = (X0, . . . , Xl−1), we can associate an l-partition attached to this symbol together

with a multicharge which is the multicharge of the symbol. Reciprocally, to each multipartition λl =

(λ0, . . . , λl−1) and multicharge sl = (s0, . . . , sl−1), one can attach an l-symbolXs
l

(λl) = (Xs0(λ0), . . . , Xsl−1(λl−1)).

2.3. Core and quotient. Assume that s ∈ Z. We fix s
l ∈ Z

l[s], e ∈ N and let n ∈ N. Let λl ∈ Πl(n).
We associate to this datum an e-partition λe together with a multicharge se ∈ Z

e[s] as follows. To do that,

start with the abacus associated to (λl, sl):

• We define a rectangle on the l-abacus, containing e beads in each abacus. This rectangle starts with
the beads numbered with 0 and finishes with the beads numbered with e − 1. We get a rectangle
with el beads, then again define a second rectangle with the beads numbered with e to the beads
numbered by 2e− 1 an so on, even with the beads marked with negative integers.

• Rotate each rectangle 90 degree anticlockwise.
• We get a new e-abacus, which is the e-abacus of (λe, se).

Example 3. Assume that l = 2, λ
l = ((3, 1), (2, 1)) and e = 3 with s

l = (0, 0) ∈ Z
2[0]. The l-abacus

associated with (λl, sl):

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .. . .. . .

and then after rotation, the e-abacus associated to (λe, se)

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .

. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .

So we have λe = (∅, (2), (1)) and se = (0,−1, 1).

It is clear that we have here a bijection

ϕ : Πl × Z
l[s] → Πe × Z

e[s]

(λl, sl) 7→ (λe, se)

• The e-partition λe is the e-quotient of (λl, sl).

• The pair (νl, s′
l
) ∈ Πl×Z

l[s] such that ϕ(νl, s′
l
) = (∅, se) is called the e-core of (λ, sl). It is uniquely

determined by se which is called the e-core multicharge of (λl, sl) (in the following, we will often

says that the e-core (λl, sl) is associated to se).

We say that a pair (νl, s′
l
) ∈ Πl ∈ Z

l[s] is an e-core if ϕ(νl, s′
l
) = (∅, se) for an e-tuple se ∈ Z

e[s]. One

can easily see if a pair (νl, s′
l
) ∈ Πl ∈ Z

l[s] is an e-core looking at its l-abacus. In this l-abacus, for each
black bead in position i, there must be a black bead at the top of it (that is in the abacus juste above) in
the same position and in the same abacus at the position i− e.

If l = 1, the e-quotient defined above agrees with the usual notion of quotient. The e-core of a pair (λ, s)
is always of the form (ν, s). We denote λ◦e := ν. This is the usual e-core partition associated to λ.

Example 4. Keeping the above example the e-core of (λl, sl) have the following l-abacus:

109876543210-1-2-3-4-5-6-7-8-9-10. . .

. . .

. . .. . .. . .

The e-core is (((1), (2)), (−1, 1)) and the e-core multicharge is (0,−1, 1).
3



3. Comparing the size of the l-partition with the one of its e-quotient

The first main result of this note is the following Theorem:

Theorem 5. Let s ∈ Z, λ
l ∈ Πl, µl ∈ Πl and s

l ∈ Z
l[s]. Denote (λe, se) := ϕ(λl, sl) and (µe, se) :=

ϕ(µl, sl). Assume that |µl| = |λl|. Then we have |µe| = |λe|.

This theorem is in fact a direct consequence of the following lemma:

Lemma 6. Let s ∈ Z, λl ∈ Πl, µl ∈ Πl and s
l ∈ Z

l[s]. Denote λl = (λ1, . . . , λl) and λe = (ν1, . . . , νe).

Then the integer l|λl| − e|λe| only depends on the multicharges se and s
l (where se is the e-core multicharge

of (λl, sl)).

Proof. Assume that λl 6= µl and take the two l-abacus associated with the same multicharge s
l. Assume in

addition that the e-core multicharge se is the same in both case. As λl 6= µl, this means that there exists a
runner i1 and a position i+ k1e with i ∈ {0, . . . , e− 1} such that :

• There is a black bead in this position in the l-abacus of λl,
• There is a white bead in this position in the l-abacus of µl.

As a consequence, as the l-multicharges are the same in both cases, there exists a position j + k2e in runner
i1 with j ∈ {0, . . . , e− 1} such that :

• There is a black bead in this position in the l-abacus of µl,
• There is a white bead in this position in the l-abacus of λl.

Now, as the e-multicharges are the same in both cases, there are two cases to consider : i = j, or i 6= j. In
this later case there must exists (k3, k4) ∈ Z

2 such that :

• There is a black bead in runner i2 position j + k4e in λl and white bead in the same position in µ.
• There is a black bead in runner i2 position i+ k3e in µl and white bead in λl.

So we have the following picture:

• for the l-abacus associated to λl and s
l:

j + k4ei + k3ej + k2ei + k1e

. . .. . .. . .. . .
i2

i1 . . .. . .

. . .. . .

• for the l-abacus associated to µl and s
l:

j + k4ei + k3ej + k2ei + k1e

. . .. . .. . .. . .
i2

i1 . . .. . .

. . .. . .

Now, taking the l-abacus of λl, we exchange the beads :

(1) in runner i1 position i+ k1e with the one in runner i2, position i+ k3e,
(2) in runner i1 position j + k2e with the one in runner i2, position j + k2e.

We obtain the l-abacus of a new l-partition νl. Now, in a l-abacus, if we switch a black bead with a white
one from a runner i to a runner i + 1, the size of the associated l-partition is modified by the addition of
si − si+1 − 1. If we slide a black bead in position i to a position i + e in the same runner, the size of the
associated l-partition is increased by e. We have that:

|νl| = |λl|+ (si1 − si2) + (i1 − i2) + (si2 − si1) + (i2 − i1) + (k3 − k1)e − (k2 − k4)e

= |λl|+ (k3 − k1 − k2 + k4)e

whereas,

|νe| = |λl|+ (i1 − i2) + (i2 − i1) + (k3 − k1)l − (k2 − k4)l
= |λe|+ (k3 − k1 − k2 + k4)l
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We have that:

l|νl| − e|νe| = l|λl| − e|λe|

and we may conclude by induction on the number of black beads which are in different position in λ
l and

νl. �

One easy consequence is the following proposition.

Proposition 1. Let λl = (λ0, . . . , λl−1) be an l-partition and s
l ∈ Z

l[s]. Set (λe, se) := ϕ(λl, sl) and denote
(ν0, . . . , νl−1) = λe. Then we have:

|λe| =
∑

0≤i≤e−1

|(νi)◦l |+
l

e


|λl| −

∑

0≤i≤l−1

|(λi)◦e |




Proof. Set µl := ((λ0)◦e , . . . , (λl−1)◦e) where for each i = 0, . . . , l − 1, (λi)◦e denotes the e-core of λi. Then
it is easy to see that the e-core multicharge of (µl, sl) is still se. In addition, in the associated l-abacus, for
each black bead in position x in a given runner, we have a black bead in the same runner in position x− e.
As a consequence, by construction, in the e-abacus associated to (µe, se), for each black bead in position x
in a given runner, we have a black bead in the same runner in position x− l. Thus we have that:

µe := ((ν1)◦l , . . . , (νe)◦l).

Thus by our proposition we must have

l|µl| − e|µe| = l|λl| − e|λe|

which is what we wanted. �

We give a more conceptual proof of the above proposition which is independant of the above Theorem.
Write the l-abacus of λl as follows:

X3
0X2

0X1
0X0

0X−1

0X−2

0

. . .

. . .

. . .
X3

1X2
1X1

1X0
1X−1

1X−2

1

. . .. . .. . .. . .. . .. . .

X3
l−1X2

l−1X1
l−1X0

l−1X−1

l−1
X−2

l−1
. . .. . .. . .. . .. . .. . .. . .

Each Xk
j corresponds to a serie of e beads in the kth abacus numerated by i + k.e with i = 1, . . . , e. The

abacus of λ then writes:

. . .X1
l−1X0

0
. . .X0

l−2X0
l−1

. . .. . .. . .. . .. . .. . .. . .

Let us now consider the el-abacus given as follows (the notation t denotes the transpose)

tX3
0

tX2
0

tX1
0

tX0
0

tX−1

0
tX−2

0

. . .

. . .

. . .

tX3
1

tX2
1

tX1
1

tX0
1

tX−1

1
tX−2

1

. . .. . .. . .. . .. . .. . .

tX3
l−1

tX2
l−1

tX1
l−1

tX0
l−1

tX−1

l−1
tX−2

l−1
. . .. . .. . .. . .. . .. . .. . .

Then for each i = 0, . . . , l − 1, the e-partition associated to the e-abacus:

tXk
i

. . .tX2
i

tX1
i

tX0
i

tXi−1. . .. . .. . .. . .. . .. . .. . .

is the e-quotient of λi. We denote it by Qi := (λi[0], . . . , λi[e− 1]). We have that

|λi| = |(λi)◦e |+ e|Qi|

and thus, summing on all 0 ≤ i ≤ l− 1, we obtain:

|λl| =
∑

0≤i≤l−1

|(λi)◦e |+ e
∑

0≤i≤l−1

|Qi|

On the other hand, we know that λe is the e-quotient of λ with associated e-abacus:
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. . .tX1
l

tX0
1

. . .tX0
l−1

tX0
l

. . .. . .. . .. . .. . .. . .. . .

Thus for each 0 ≤ i ≤ e− 1, the l-quotient of νi is Q′
i := (λl−1[i], . . . , λ0[i]). Thus we obtain

|νi| = |(νi)◦l |+ |Q′
i|.

Summing over all 0 ≤ i ≤ e − 1, we get:

|λe| =
∑

0≤i≤e−1

|(νi)◦l |+ l
∑

0≤i≤e−1

|Q′
i|.

Now we have that ∑

0≤i≤l−1

|Qi| =
∑

0≤i≤e−1

|Q′
i|

So we obtain
λe −

∑
0≤i≤e−1

|(νi)◦l |

l
=

λl −
∑

0≤i≤l−1
|(λi)◦e |

e
as desired.

4. Explicit computation

Given s ∈ Z, λl ∈ Πl and s
l ∈ Z

l[s], we now want to compute explicitly the number l|λl| − e|λe|. To do
this, we will first use the following result from [4, Bijection 2] which allows to compute the size of the e-core
partition from the datum of its e-core multicharge when s = 0.

Theorem 1 (Garvan-Kim-Stanton). Assume that λ is an e-core with associated multicharge se = (s0, . . . , se−1).
Assume that s =

∑
0≤i≤e−1

si = 0. Then we have

|λ| =
e

2

∑

0≤i≤e−1

s2i +
∑

0≤i≤e−1

isi.

We will begin by slightly generalize this result to an arbitrary multicharge with possible non zero sum.

Corollary 1. Assume that λ is an e-core with associated multicharge se = (s0, . . . , se−1). Assume that
s =

∑
0≤i≤e−1

si = s. Then we have

|λ| =
e

2

∑

0≤i≤e−1

s2i +
∑

0≤i≤e−1

isi −
s

2
(e− 1)−

s2

2

Proof. Denote by:

N(se) :=
e

2

∑

0≤i≤e−1

s2i +
∑

0≤i≤e−1

isi.

Then, from the definition of the e-core multicharge, we have that the e-core partition associated to se or
s̃e = (s1, s2, . . . , se−1, s0 − 1) is the same. Now we have that

N(s̃e) =
e

2

∑

0≤i≤e−1

s2i − s0e+
e

2
+ s2 + 2s3 + . . .+ (e− 2)se−1 + (e − 1)(s0 − 1).

We obtain

N(s̃e) = N(se) + 1−
e

2
+ s.

We can now perform this procedure s times and use the above Theorem 1:

N(s̃e) = |λ|+ s(1−
e

2
) +

∑

0≤i≤s

i.

We obtain the desired result. �

Proposition 2. Let λl ∈ Πl and s
l = (s0, . . . , sl−1) ∈ Z

l[s]. Denote (λe, se) = ϕ(λl, sl). Then we have:

l|λl| − e|λe| = l(
∑

0≤i≤e−1

iti −
1

2

∑

0≤i≤l−1

s2i )− e(
∑

0≤i≤l−1

isl−1−i −
1

2

∑

0≤i≤e−1

t2i ) +
s

2
(l − e)
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Proof. By Proposition 1, we know one can assume that λl = (λ0, . . . , λl−1) and that each λk is an e-core.
In this case, if we denote λe = (µ0, . . . , µe−1) then each µk is also an l-core. We can now use the last result.
For each 0 ≤ i ≤ e − 1, one can associate to the e-core partition λi, its e-core multicharge (ti0, . . . , t

i
e−1),

which is of sum si and we thus have:

|λi| =
e

2

∑

0≤j≤e−1

(tij)
2 +

∑

0≤j≤e−1

itij −
si
2
(e − 1)−

s2i
2

and we can do the same for the l-cores µj : there exist l-core multicharges (sj0, . . . , s
j
l−1

) for j = 0, . . . , e− 1
such that:

|µi| =
l

2

∑

0≤j≤l−1

(sij)
2 +

∑

0≤j≤l−1

isij −
ti
2
(l − 1)−

t2i
2

We have that

l|λl| − e|λe| = l
∑

0≤i≤l−1

|λi| − e
∑

0≤i≤e−1

|µi|

Now we have that for all 0 ≤ j ≤ l − 1 and 0 ≤ i ≤ e − 1, tji = sil−1−j , so when summing, the quadrating

terms in the sij and tij vanish and we obtain:

l|λl| − e|λe| = l.(
∑

0≤j≤e−1

jtj −
s

2
(e− 1)−

1

2

∑

0≤i≤l−1

s2i )− e(
∑

0≤j≤l−1

jsl−1−j −
s

2
(l − 1)−

1

2

∑

0≤i≤e−1

t2i )

which gives the desired result. �

Last, one can deduce a generalization of Theorem 1 for the set of e-core multipartitions associated with a
multicharge se. First note that the l-multicharge s

l := (s0, . . . , sl−1) of the e-core multipartition associated
to se = (t0, . . . , te−1) may be easily deduced, we have for each j = 0, . . . , l − 1:

si := ♯{0 ≤ j ≤ e− 1 | tj ≡ e− i}

Now, if (λl, sl) is an e-core, then λe = ∅ and we thus have:

|λl| = (
∑

0≤i≤e−1

iti −
1

2

∑

0≤i≤l−1

s2i )− (e/l)(
∑

0≤i≤l−1

isl−1−i −
1

2

∑

0≤i≤e−1

t2i ) +
s

2l
(l − e)

Assume that λl is an l-partition and that the associated e-core is (ν, s′). Then we known that:

|λe| = (1/e)(l|λl| − l(
∑

0≤i≤e−1

iti −
1

2

∑

0≤i≤l−1

s2i ) + e(
∑

0≤i≤l−1

isl−1−i −
1

2

∑

0≤i≤e−1

t2i )−
s

2
(l − e))

But we also have

|νl| = (
∑

0≤i≤e−1

iti −
1

2

∑

0≤i≤l−1

s′i
2
)− (e/l)(

∑

0≤i≤l−1

is′l−1−i −
1

2

∑

0≤i≤e−1

t2i ) +
s

2l
(l − e)

so we have

|νl|+
1

2

∑

0≤i≤l−1

s′i
2
+

e

l

∑

0≤i≤l−1

is′l−1−i =
∑

0≤i≤e−1

iti +
e

2l

∑

0≤i≤e−1

t2i +
s

2l
(l − e)

So we deduce:

Corollary 2. Assume that λl ∈ Πl and s
l = (s0, . . . , sl−1) ∈ Z

l[s]. Let (ν, s′l) be the associated e-core. Then
we have:

|λe| =
1

e
(l|λl| − l|νl|+

l

2

∑

0≤i≤l−1

(s2i − s′i
2
) + e

∑

0≤i≤l−1

i(sl−1−i − s′l−1−i))

If l = 1, that is if λ is a partition with e-quotient λe and e-core λ◦ we obtain:

|λe| =
1

e
(l|λ| − lλ◦|)

which is indeed a welle known formula.
7



In the general case, |λe| is nothing but the e-weight in the sense of [3] so the above formula permits to
compute the e-weight of an l-partition with a multicharge from the datum of its e-core in the sense of [5].

Example 7. We come back with the datum of Example 3. We have that the second term of the above
corollary is:

(1/3)(2× 7− 2× 3 +
2

2
(0 − 1 + 0− 1) + 3× (0− (−1)) = 3

which is indeed the size of λe.
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