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Abstract—This paper provides a novel perspective on the model
development of the ComBat method. Two sets of parameter
constraints were introduced to help identify parameters during
the parameter estimation process. And Maximum Likelihood
Estimation (MLE) was employed to solve the re-formulated
ComBat using each set of constraints. The simpler and faster
solution was selected as the proposed ComBat-MLE harmo-
nization method. A series of experiments were conducted to
evaluate the effectiveness of various ComBat variants, both
quantitatively and qualitatively. The experiments validated the
effectiveness of the proposed ComBat-MLE method in removing
non-biological scanner effects while at the same time preserving
intrinsic biological information. Although the proposed ComBat-
MLE method did not significantly outperform existing ComBat
variants, it aids in understanding the ComBat method and offers
valuable insights into the development of new harmonization
methods.

Index Terms—Harmonization method, ComBat, Radiomics,
Scanner effects, Maximum Likelihood Estimation (MLE)

I. INTRODUCTION

In medical studies, medical images are often collected from
multiple institutions, with different image acquisition devices
or protocols. During this image acquisition process, some
unwanted variations are introduced. Fortin [1] termed these
unwanted non-biological variations associated with different
image acquisition scanners or parameter configurations as
“scanner effects”. In radiomic studies, scanner effects should
be carefully considered, because it may hinder the detection
of useful biological information, limit the capabilities of the
radiomic models, even lead to unreliable or wrong conclusions.
It may also influence the generalizability of the radiomic
models when they are applied to new data set collected
with different settings. Under this circumstance, harmonization
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methods have been proposed and can be treated as very
effective ways to handle the scanner effects.

The most popular harmonization method in radiomic studies
is ComBat [2], a method originally proposed to remove the
batch effects present in microarray expression data. In 2017,
Fortin et al. [1], [3] firstly adapted ComBat for removing
scanner effects in multi-site studies on diffusion tensor imag-
ing and cortical thickness measurements in MRI, reporting
that ComBat can remove the unwanted variations associated
with sites and preserve the useful biological information at the
same time. They also published their codes of ComBat method
in github https://github.com/Jfortin1/ComBatHarmonization,
including R, Matlab and Python versions so far. Subsequently,
other researchers adopted their public ComBat codes and
further verified the effectiveness of ComBat to remove scanner
effects in different kinds of medical image modalities and
in different kinds of radiomic models [4]–[9]. For example,
Orlhac and her colleagues have validated ComBat as an
effective harmonization method in PET radiomics [4], in CT
radiomics [5], and in MRI radiomics [6], [7].

In 2022, Orlhac et al. [10] systematically explained and
illustrated the use of ComBat method, and reported some cases
where ComBat may not work. Among these mentioned failure
cases, there is one kind of cases we also met in our radiomics
experiments. That is, when ComBat is applied separately
for each of the pattern classes, the scanner effects can be
successfully removed. However, when ComBat is applied for
data comprising all pattern classes, it fails to realign the
features correctly. The intrinsic reason lies in that, different
pattern classes may suffer from different scanner effects. That
is to say, the imaging of different tissues, organs, or tumors
is affected in a different way by scanner effects introduced
through different image protocols, scanners, or reconstruction
methods. So determining a single transform by ComBat for
data from different pattern classes can not provide satisfactory
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data harmonization results.
In this context, we explored developing new harmonization

methods based on a different assumption from ComBat: that
scanner effects vary across different pattern classes (such as
tumors and normal tissues), even if they originate from the
same scanner settings. We modeled this case as a Gaussian
Mixture Model (GMM) and solved it using the Expectation
Maximization (EM) algorithm. Unfortunately, the developed
model failed to provide the expected harmonization results
due to insufficient parameter constraints needed for parameter
identification. The details can be found in the Supplementary
Materials at https://github.com/Yingping-LI/Harmonization
methods. However, during this process, we found that ComBat
can be considered as a special case of the proposed GMM
model. This insight offers us a new perspective on developing
and solving the ComBat harmonization method, leading to the
creation of this paper.

We summarize our main contributions as: (1) we provide
a new perspective on developing the ComBat model, and
solve it using Maximum Likelihood Estimation (MLE) with
two different sets of parameter constraints. This part aids in
understanding the ComBat method and provides valuable in-
sights into the development of new harmonization methods. (2)
We make our radiomic features extracted from the phantoms
publicly available, thus assisting researchers in testing their
harmonization methods.

II. RELATED WORK

A. ComBat Method

ComBat method [2] was originally proposed to remove
batch effects in microarray expression data. The model as-
sumes the expression value Yijg for gene g for sample j from
batch i to be as follows:

Yijg = αg +Xβg + γig + δigεijg, (1)

where αg is the mean expression value for gene g, X is a
designed covariates of interest matrix and βg is the vector
of regression coefficients corresponding to X , εijg is the
error term which is assumed to follow a normal distribution
N (0, σ2

g), rig and δig represent the additive and multiplicative
batch effects of batch i for gene g, respectively.

Assuming the knowledge of the estimated values
α̂g, β̂g, γ̂ig, δ̂ig for the parameters αg, βg, γig, δig , the
batch-adjusted data Y ∗

ijg would be given by

Y ∗
ijg = α̂g +Xβ̂g +

Yijg − α̂g −Xβ̂g − γ̂ig

δ̂ig
. (2)

So the problem remains to how to estimate these parameters
in model (1). ComBat uses empirical Bayes (EB) method to
estimate parameters, with detail steps listed as below.

1) Standardize the data: First, one uses a gene-wise ordi-
nary least-squares approach to estimate the model parameters
αg, βg, γig as α̂g, β̂g, γ̂ig for i = 1, ...,m and g = 1, ..., G,
constraining

∑
i niγ̂ig = 0 for g = 1, ..., G to ensure the

identifiability of the parameters, and estimate σ̂2
g as σ̂2

g =

1
N

∑
ij(Yijg − α̂g − Xβ̂g − γ̂ig)

2 (N is the total number of
samples). Then the standardized data Zijg is

Zijg =
Yijg − α̂g −Xβ̂g

σ̂g
. (3)

The Empirical Bayes (EB) method will be designed to borrow
information across genes in order to robustly handle high-
dimensional data with small sample size, so standardization
is essential here to reduce gene-to-gene variation in the data.

2) Empirical Bayes (EB) method to estimate batch effect pa-
rameters: Suppose the standardized data Zijg ∼ N (γig, δ

2
ig),

the parameters γig and δ2ig can be simply estimated from the
standardized data using method of moments:

γ∗
ig =

1

ni

∑
j

Zijg,

δ2∗ig =
1

ni − 1

∑
j

(Zijg − γ̂ig)
2,

(4)

where γ∗
ig and δ2∗ig correspond to the batch i sample mean and

variance for gene g, respectively. Then two formats of EB
methods can be further applied to more robustly estimate the
parameters γig and δ2ig .

• Parametric EB method:
Using parametric empirical priors and suppose

γig ∼ N (γi, τ
2
i ) and δ2ig ∼ IG(λi, θi), (5)

where IG represents the Inverse Gamma distribution.
Then γ∗

ig and δ2∗ig are estimated as the expectation of the
posterior distributions of γig and δ2ig , respectively.

• Non-parametric EB method:
The parametric empirical priors may not be appropriate
for some data sets, so the author proposes non-parametric
empirical priors as a more flexible option. γ∗

ig, δ2∗ig
are estimated as the posterior expectations of γig, δ2ig ,
respectively. Note that Monte Carlo integration method is
used to simulate the integration values when calculating
the posterior expectations.

3) Adjust the data for batch effects: With the estimated
parameters γ∗

ig and δ2∗ig by Step 2, now the batch-adjusted data
Y ∗
ijg can be calculated by

Y ∗
ijg = α̂g +Xβ̂g +

σ̂g

δ̂∗ig
(Zijg − γ̂∗

ig) (6)

in a similar fashion than in the batch-adjust equation (2).
We can summarize the three variants of ComBat as ComBat-

MoM, non-parametric ComBat, and parametric ComBat, each
corresponding to a different parameter estimation method: the
Method of Moments (MoM), non-parametric empirical Bayes,
and parametric empirical Bayes, respectively.

B. Other Harmonization Methods

There are also some other harmonization methods proposed
in recent years. Beer at al. [11] proposed the Longitudinal
ComBat method for harmonizing longitudinal multi-scanner

https://github.com/Yingping-LI/Harmonization_methods
https://github.com/Yingping-LI/Harmonization_methods


imaging data. Chen et al. [12] proposed the CovComBat
method for removing not only the scanner effects in mean
and variance, but also the scanner effects in the covariance
between multivariate measurements. Da-Ano et al. [13] pro-
posed three versions of modified ComBat, namely M-ComBat
for transforming the features to a chosen reference instead of
the overall mean, the B-ComBat using bootstrap and Monte
Carlo for improved robustness, and the BM-ComBat adopting
the modifications of both M-ComBat and B-ComBat. Radua
and his colleagues [14] modified the ComBat method so that
it can be used for the missing data, and in addition, the
processes of fitting and application of ComBat are separated.
Neuroharmony method [15] is another harmonization method
which could even harmonize a single image from an unseen
scanner, by training a model to learn the correlations between
the image quality metrics and the relative volume corrections
for each region of the brain standardized by ComBat.

Most of these harmonization methods are built upon the
ComBat method and act on radiomic features, but there are
also some exceptions. For instance, Chatterjee et al. [16]
applied feature standardization separately for each independent
set using imbalance adjustments, instead of applying the
feature standardization for the overall pooling datasets, as a
relatively simple harmonization method. Dewey et al. [17]
used deep learning method and proposed a U-Net-based ar-
chitecture called DeepHarmony for the contrast harmonization
across scanner changes in MRI images.

Despite the availability of various harmonization methods,
ComBat remains the state-of-the-art and most commonly used
approach in radiomics studies.

III. THE PROPOSED METHOD

In this section, we will redescribe the ComBat model
without considering the covariates, and then use a MLE-based
method to estimate the model parameters, with two different
sets of parameter constraints considered.

A. Build the Model

Let Y ∈ Rp be a random variable representing the clear
feature data without scanner effects, and Xs ∈ Rp be a random
variable representing the observed feature data with scanner
effects from scanner setting s ∈ {1, 2, ..., S}. Suppose for each
scanner setting s ∈ {1, 2, ..., S}, we have Ns observations
{x(s)

1 , ...,x
(s)
Ns

} of variable Xs , and denote the Ns×p matrix
Xs as the set of all observations from scanner setting s, where
the n-th row represents (x

(s)
n )⊤.

Now we will build the model to simulate the scanner effects
in the observed feature data. Suppose that clear feature data
variable Y ∈ Rp follows a multivariate Gaussian distribution

Y ∼ N (µ,Σ), (7)

where µ ∈ Rp and Σ ∈ Rp×p are the mean and covariance
matrix of the clear data, respectively. Then the variable Xs ∈
Rp, s ∈ {1, 2, ..., S} , which represents the observed feature
data variable with scanner effects from scanner setting s ,

can be assumed to follow the following multivariate Gaussian
distribution

Xs ∼ N (µ+ γs,∆sΣ), (8)

where γs ∈ Rp and ∆s ∈ Rp×p represent the additive
and multiplicative scanner effects, respectively. We suppose
the parameters Σ ∈ Rp×p and ∆s ∈ Rp×p to be diagonal
matrices.

Let θ represent all the model parameters, that is,

θ = {µ ∈ Rp, Σ ∈ Rp×p, γs ∈ Rp, ∆s ∈ Rp×p | s = 1, ...S}.
(9)

If we could get an estimation θ∗ = {µ∗, Σ∗, γ∗
s , ∆∗

s | s =
1, ...S} of θ, then for each observation x of variable Xs

which represents the observed feature data from scanner s, the
corresponding clear feature data y (an observation of variable
Y ) would be

y = µ∗ + (Ω∗
s)

−1(x− µ∗ − γ∗
s ), (10)

where Ω∗
s = (∆∗

s)
1
2 . So the problem becomes to how to

estimate the model parameters θ.
Note that the parameters (such as µ and γs, Σ and ∆s)

are unidentifiable, so proper constraints should be imposed to
help identify the parameters. It is very flexible to choose the
parameter constraints as long as they are reasonable. For our
model, as listed below, we can either impose constraints on
γs and ∆s, or impose constraints on µ and Σ.

Optional constraints 1: impose constraints on γs and ∆s.
• additive constraint:

S∑
s=1

wsγs = 0. (11)

• multiplicative constraint:
S∏

s=1

(∆s)
ws = I. (12)

Optional constraints 2: impose constraints on µ and Σ.
• additive constraint:

µ =

S∑
s=1

wsµs, (13)

where µs =
1
Ns

∑Ns

n=1 x
(s)
n , s = 1, 2, ..., S.

• multiplicative constraint:

Σ =

S∑
s=1

wsΣs, (14)

where Σs = diag(Γs), where Γs =
1

Ns−1

∑Ns

n=1(x
(s)
n −

µs)◦ (x(s)
n −µs) and ◦ represents the Hadamard product

(also known as element-wise product).
In essence, no matter imposing constraints on γs, ∆s, or

on µ, Σ, these constraints always aim to adjust the mean
and variance of the harmonized data to be the weighted
center and weighted variance of the clusters from all scanner



settings, where ws = Ns∑S
s=1 Ns

, s = 1, 2, ..., S are the weight
coefficients.

We will estimate the model parameters using the two sets
of constraints: constraints on γs and ∆s in subsection III-B,
and constraints on µ and Σ in subsection III-C.

B. Estimate model parameters with constraints on γs and ∆s

In this subsection, we will use the MLE method to estimate
the model parameters θ defined by Equation (9), with con-
straints imposed on γs and ∆s by Equation (11) and (12).
Consider the data set Xs from scanner setting s , our goal is
to maximize the likelihood function ps(Xs|θ) with respect to
θ, where

ps(Xs|θ) =
Ns∏
n=1

f(x(s)
n ; µ+ γs,∆sΣ), (15)

and the corresponding logarithm likelihood function is

ln ps(Xs|θ) =
Ns∑
n=1

ln f(x(s)
n ; µ+ γs,∆sΣ). (16)

We have S objective functions ln ps(Xs|θ), s = 1, 2, ..., S to
be optimized, and they share the same parameters µ and Σ,
so it is natural that we design our final objective function to be
the weighted sum of these S logarithm likelihood functions,
that is,

L0(θ) =

S∑
s=1

ws ln ps(Xs|θ)

=

S∑
s=1

ws

Ns∑
n=1

ln f(x(s)
n ; µ+ γs,∆sΣ),

(17)

where

f(x(s)
n ; µ+ γs,∆sΣ) =

1

(2π)
p
2 |∆sΣ| 12

· exp
{
− 1

2
(x(s)

n − µ− γs)
⊤(∆sΣ)−1(x(s)

n − µ− γs)
}

(18)

and ws =
Ns∑S

s=1 Ns
. Our objective is to maximize the logarithm

likelihood function L0(θ) under the constraints (11) and (12)
with respect to the set of model parameters, which is defined
as θ in Equation (9). So our problems becomes

θ∗ = argmax
θ

L0(θ),

s.t.
S∑

s=1

wsγs = 0,

S∏
s=1

(∆s)
ws = I.

(19)

Suppose ∆s, s = 1, 2, ..., S are diagonal matrices
and can be represented as ∆s = diag(Λs), where
Λs = (δ1s, ..., δps)

⊤, s = 1, 2, ..., S. Then the constraint∏S
s=1(∆s)

ws = I can be re-written as
∑S

s=1 ws lnΛs = 0.

By applying the method of Lagrange multipliers, we can define
the final Lagrange function to be maximized as follows:

L(θ) = L0(θ) +

p∑
i=1

λ̃i

( S∑
s=1

wsγis
)
+

p∑
i=1

λ̂i(

S∑
s=1

ws ln δis)

=

S∑
s=1

ws

Ns∑
n=1

ln f(x(s)
n ; µ+ γs,∆sΣ)

+

p∑
i=1

λ̃i

( S∑
s=1

wsγis
)
+

p∑
i=1

λ̂i(

S∑
s=1

ws ln δis).

(20)

where λ̃ = (λ̃1, λ̃2, ..., λ̃p)
⊤ ∈ Rp and λ̂ =

(λ̂1, λ̂2, ..., λ̂p)
⊤ ∈ Rp are the Lagrange multipliers corre-

sponding to the two constraints. Now we will update the
parameters iteratively to maximize the Lagrange function
L(θ), following a coordinate descent optimization strategy.

Update µ ∈ Rp: We start with updating µ by calculating
the derivatives of L(θ) with respect to µ, and set it to zero as
follows:

∂L(θ)
∂µ

=

S∑
s=1

ws

Ns∑
n=1

∂ ln f(x
(s)
n ; µ+ γs,∆sΣ)

∂µ

=

S∑
s=1

ws

Ns∑
n=1

(∆sΣ)−1(x(s)
n − µ− γs) = 0.

(21)

Multiply Σ on both sides and rearrange the equation, we get

µ =
[ S∑
s=1

wsNs∆
−1
s

]−1

·
[ S∑
s=1

ws

Ns∑
n=1

∆−1
s (x(s)

n − γs)
]
.

(22)

Update γs ∈ Rp, s = 1, 2, ..., S: Calculate the derivatives
of L(θ) with respect to γs, we have

∂L(θ)
∂γs

= ws

Ns∑
n=1

∂ ln f(x
(s)
n ; µ+ γs,∆sΣ)

∂γs
+ wsλ̃

= ws

Ns∑
n=1

(∆sΣ)−1(x(s)
n − µ− γs) + wsλ̃,

(23)

then set the derivative to zero, we can get

γs =
1

Ns
(∆sΣ) ·

[
(∆sΣ)−1

Ns∑
n=1

(x(s)
n − µ) + λ̃

]
. (24)

Note that the additive constraint
∑S

s=1 wsγs = 0 holds, where
ws =

Ns

N , so by taking equation (24) to the additive constraint
and then rearranging the equations, we can get the expression
of λ̃ as follows:

λ̃ = −
[ S∑
s=1

(∆sΣ)
]−1 ·

[ S∑
s=1

Ns∑
n=1

(x(s)
n − µ)

]
. (25)

So parameter γs can be updated by Equation (24), where λ̃
is calculated by Equation (25).



Update Σ ∈ Rp×p: Now let us provide the way to
update ∆s and Σ. Suppose ∆s and Σ are diagonal ma-
trices, and can be denoted by Σ = diag(σ1, ..., σp) and
∆s = diag(δ1s, ..., δps). If we take the derivatives of L(θ)
with respect to Σ and ∆s directly, we cannot ensure that
their update matrices are still diagonal. In order to solve this
problem, we introduce Γ and Λs as

Γ = (σ1, ..., σp)
⊤, Λs = (δ1s, ..., δps)

⊤, (26)

which obviously satisfy

Σ = diag(Γ), Σe = Γ,

∆s = diag(Λs), ∆se = Λs,
(27)

where e = (1, 1, ..., 1)⊤ ∈ Rp. We will update Γ and Λs by
calculating the derivatives of L(θ) with respect to Γ and Λs,
respectively, and then update Σ and ∆s by Equation (27).

The derivatives of L(θ) with respect to Γ takes the form

∂L(θ)
∂Γ

=

S∑
s=1

ws

Ns∑
n=1

∂ ln f(x
(s)
n ; µ+ γs,∆sΣ)

∂Γ

=

S∑
s=1

ws

Ns∑
n=1

{
∂ ln |∆sΣ|− 1

2

∂Γ

− 1

2

∂
{
(x

(s)
n − µ− γs)

⊤(∆sΣ)−1(x
(s)
n − µ− γs)

}
∂Γ

}
,

(28)

where

∂ ln |∆sΣ|− 1
2

∂Γ
= −1

2
|∆sΣ|−1 · ∂|∆sΣ|

∂Γ
= −1

2
Σ−1e,

(29)

and

∂
{
(x

(s)
n − µ− γs)

⊤(∆sΣ)−1(x
(s)
n − µ− γs)

}
∂Γ

= −Σ−2∆−1
s (x(s)

n − µ− γs) ◦ (x(s)
n − µ− γs),

(30)

and ◦ represents the Hadamard product. Taking Equation (29)
and Equation (30) into Equation (28), and setting the derivative
to zero, we have

∂L(θ)
∂Γ

=

S∑
s=1

ws

Ns∑
n=1

[
− 1

2
Σ−1 · e

+
1

2
Σ−2∆−1

s (x(s)
n − µ− γs) ◦ (x(s)

n − µ− γs)
]
= 0.

(31)

Multiplying Σ2 on both sides, and rearranging the equation
with noticing that Σe = Γ, we get

Γ =
[ S∑
s=1

wsNs

]−1

·
[ S∑
s=1

ws

Ns∑
n=1

∆−1
s (x(s)

n − µ− γs) ◦ (x(s)
n − µ− γs)

]
,

(32)

then Σ can be updated by Σ = diag(Γ).

Update ∆s ∈ Rp×p, s = 1, 2, ..., S: Similarly, calculate the
derivatives of L(θ) with respect to Λs ∈ Rp, we have

∂L(θ)
∂Λs

= ws

Ns∑
n=1

∂ ln f(x
(s)
n ; µ+ γs,∆sΣ)

∂Λs
+ ws∆

−1
s λ̂

= ws

Ns∑
n=1

{
∂ ln |∆sΣ|− 1

2

∂Λs

− 1

2

∂
{
(x

(s)
n − µ− γs)

⊤(∆sΣ)−1(x
(s)
n − µ− γs)

}
∂Λs

}
+ ws∆

−1
s λ̂,

(33)

where

∂ ln |∆sΣ|− 1
2

∂Λs
= −1

2
|∆sΣ|−1 · ∂|∆sΣ|

∂Λs
= −1

2
∆−1

s e (34)

and

∂
{
(x

(s)
n − µ− γs)

⊤(∆sΣ)−1(x
(s)
n − µ− γs)

}
∂Λs

= −∆−2
s Σ−1(x(s)

n − µ− γs) ◦ (x(s)
n − µ− γs).

(35)

Taking Equation (34) and (35) into Equation (33), we can get
the derivatives of L(θ) with respect to Λs as follows:

∂L(θ)
∂Λs

= ws∆
−1
s λ̂+ ws

Ns∑
n=1

[
− 1

2
∆−1

s e

+
1

2
∆−2

s Σ−1(x(s)
n − µ− γs) ◦ (x(s)

n − µ− γs)
]
.

(36)

Setting this derivative to zero, multiplying ∆2
s on both sides

and then rearranging the equation, we can get

Λs = ∆s · e =
1

Ns · e− 2λ̂

◦
[
Σ−1

Ns∑
n=1

(x(s)
n − µ− γs) ◦ (x(s)

n − µ− γs)
]
.

(37)

Since
∏S

s=1(∆s)
ws = I, and λ̂ can’t be solved in a closed

form, so we will use the Newton method to solve λ̂ numeri-
cally. For each item λ̂i of λ̂ = (λ̂1, λ̂2, ..., λ̂p)

⊤ ∈ Rp, define

Ais = (Ns − 2λ̂i)
ws ,

Bis =
[
σ−1
i

Ns∑
n=1

(x
(s)
in − µi − γis)

2
]ws

,
(38)

then we need to find λ̂i s.t.
∏S

s=1(δis)
ws =

∏S
s=1

Bis

Ais
= 1.

Define

h(λ̂i) =

S∏
s=1

Bis −
S∏

s=1

Ais, (39)

then the derivative of h(λ̂i) with respect to λ̂i is

h
′
(λ̂i) = 2

( S∏
s=1

Ais

)( S∑
s=1

ws

Ns − 2λ̂i

)
. (40)



Then λ̂i, i = 1, 2, ..., p can be numerically calculated by
Newton method as described in Algorithm 1 as below.

Algorithm 1 Newton method to solve λ s.t. h(λ) = 0.
Input: a positive number ϵ which is small enough, and the

initialization value of λ denoted by λ(1).
Output: numerical solution λ∗ s.t. h(λ∗) ≈ 0, namely,

∥h(λ∗)∥ < ϵ.

1: for t=1,2,... do
2: λ(t+1) = λ(t) − h(λ(t))

h′ (λ(t))

3: if ∥h(λ(t+1))∥ ≤ ϵ then
4: λ∗ = λ(t+1)

5: break
6: end if
7: end for

8: return λ∗

In conclusion, we can update ∆s = diag(Λs), where
Λs can be calculated by Equation (37), and the Lagrange
multiplier parameters λ̂i, i = 1, 2, ..., p in Equation (37) can
be numerically calculated by Algorithm 1.

So far, we have finished the derivation of the formulas to
update the parameters in model (8) with constraints on γs and
∆s following a coordinate descent optimization strategy. The
algorithm can be summarized as below in Algorithm 2.

Algorithm 2 Estimate the parameters of model (8) with
constraints on γs and ∆s.

Input: For each setting class s ∈ {1, 2, ..., S}, we have Ns

observed data {x(s)
1 , ...,x

(s)
Ns

}. Let ϵ be a positive number
that is small enough.

Output: Estimated value θ∗ of the set of model parameters
θ defined by Equation (9) to maximize the logarithm
likelihood function (17) under the following constraints:

S∑
s=1

wsγs = 0,
S∏

s=1

(∆s)
ws = I, where ws =

Ns∑S
s=1 Ns

.

1: Initialization. Initialize the parameters ∆
(0)
s ,µ(0),Σ(0)

as below, and initialize the logarithm likelihood function
L0(θ)

(0) = −∞.

∆(0)
s = I, s = 1, 2, ..., S.

µ(0) =

S∑
s=1

wsµs, where µs =
1

Ns

Ns∑
n=1

x(s)
n .

Σ(0) =

S∑
s=1

wsΣs,

where Σs = diag(Γs)

and Γs =
1

Ns − 1

Ns∑
n=1

(x(s)
n − µs) ◦ (x(s)

n − µs).

(41)

2: for k=1,2,... do
3: update the parameters γ

(k)
s ,∆

(k)
s ,µ(k),Σ(k) by

γ
(k−1)
s ,∆

(k−1)
s ,µ(k−1),Σ(k−1) as follows:

• update γ
(k)
s ∈ Rp, s = 1, 2, ..., S:

γ(k)
s =

1

Ns
(∆(k−1)

s Σ(k−1))

·
[ Ns∑
n=1

(∆(k−1)
s Σ(k−1))−1(x(s)

n − µ(k−1)) + λ̃
]
,

(42)

where

λ̃ = −
[ S∑
s=1

∆(k−1)
s Σ(k−1)

]−1 ·
[ S∑
s=1

Ns∑
n=1

(x(s)
n − µ(k−1))

]
.

(43)

• update ∆
(k)
s ∈ Rp×p, s = 1, 2, ..., S by ∆

(k)
s =

diag(Λ(k)
s ), where

Λ(k)
s =

1

Ns · e− 2λ̂
◦
[
(Σ(k−1))−1

·
Ns∑
n=1

(x(s)
n − µ(k−1) − γ(k)

s ) ◦ (x(s)
n − µ(k−1) − γ(k)

s )
]
,

(44)

and each element of λ̂ = (λ̂1, λ̂2, ..., λ̂p)
⊤ can be

solved numerically by Algorithm 1.
• update µ(k) ∈ Rp:

µ(k) =
[ S∑
s=1

wsNs(∆
(k)
s )−1

]−1

·
[ S∑
s=1

ws

Ns∑
n=1

(∆(k)
s )−1(x(s)

n − γ(k)
s )

]
.

(45)

• update Σ(k) ∈ Rp×p by Σ(k) = diag(Γ(k)), where

Γ(k) =
[ S∑
s=1

wsNs

]−1

·
[ S∑
s=1

ws

Ns∑
n=1

(∆(k)
s )−1(x(s)

n − µ(k) − γ(k)
s )

◦ (x(s)
n − µ(k) − γ(k)

s )
]
.

(46)

4: calculate the logarithm likelihood function

L0(θ)
(k) =

S∑
s=1

ws

Ns∑
n=1

ln f(x(s)
n ; µ(k)+γ(k)

s ,∆(k)
s Σ(k)),

(47)
5: if L0(θ)

(k) − L0(θ)
(k−1) ≤ ϵ, then

6: θ∗ = {µ(k), Σ(k), γ
(k)
s , ∆

(k)
s | s = 1, ...S},

7: break
8: end if
9: end for

10: return θ∗



C. Estimate model parameters with constraints on µ and Σ

Similar to subsection III-B, in this subsection, we will use
the MLE method to estimate the parameters of model (8), but
with constraints imposed on parameters µ and Σ by Equation
(13) and (14). The set of the model parameters is defined as
θ by Equation (9).

To begin with, we consider the case when there is no
parameter constraints, and calculate the formulas to maximize
the logarithm likelihood function L0(θ) expressed by (17)
following the coordinate descent optimization strategy. The
results are listed as below.

• Update µ ∈ Rp:

µ =
[ S∑
s=1

wsNs∆
−1
s

]−1

·
[ S∑
s=1

ws

Ns∑
n=1

∆−1
s (x(s)

n − γs)
]
.

(48)

• Update γs ∈ Rp, s = 1, 2, ..., S:

γs =
1

Ns

Ns∑
n=1

(x(s)
n − µ). (49)

• Update Σ ∈ Rp×p by Σ = diag(Γ):

Γ =
[ S∑
s=1

wsNs

]−1

·
[ S∑
s=1

ws

Ns∑
n=1

∆−1
s (x(s)

n − µ− γs) ◦ (x(s)
n − µ− γs)

]
.

(50)

• Update ∆s ∈ Rp×p, s = 1, 2, ..., S by ∆s = diag(Λs):

Λs =
1

Ns
·
[
Σ−1

Ns∑
n=1

(x(s)
n − µ− γs) ◦ (x(s)

n − µ− γs)
]
.

(51)

In general, in the same spirit than a coordinate descent op-
timization method, the parameters will be updated iteratively
by the above equations to maximize the logarithm likelihood
function L0(θ) expressed by Equation (17). But in our case,
we can prove that the lograithm function L0(θ) will stop
change and reach its local maxima after one iteration. The
detail proof is given by first initializing µ and Σ as µold and
Σold, then γs and ∆s can be updated as updated as γnew

s and
∆new

s as follows:

γnew
s =

1

Ns

Ns∑
n=1

(x(s)
n − µold), ∆new

s = diag(Λnew
s ), (52)

where

Λnew
s =

1

Ns
·
[
(Σold)−1

·
Ns∑
n=1

(x(s)
n − µold − γnew

s ) ◦ (x(s)
n − µold − γnew

s )
]
.

(53)

Re-update µ and Γ as µnew and Γnew as follows:

µnew =
[ S∑
s=1

wsNs(∆
new
s )−1

]−1

·
[ S∑
s=1

ws(∆
new
s )−1

Ns∑
n=1

(x(s)
n − γnew

s )
]

=
[ S∑
s=1

wsNs(∆
new
s )−1

]−1

·
[ S∑
s=1

ws(∆
new
s )−1 ·Ns · µold

]
= µold,

(54)

and

Γnew =
[ S∑
s=1

wsNs

]−1

·
[ S∑
s=1

ws(∆
new
s )−1

·
Ns∑
n=1

(xn − µnew − γnew
s ) ◦ (x(s)

n − µnew − γnew
s )

]
=

[ S∑
s=1

wsNs

]−1

·
[ S∑
s=1

wsNs · Γold
]

= Γold,

(55)

then we can conclude that µnew = µold and Σnew = Σold.
So the logarithm likelihood function L0(θ) will stop change
and reach its local maxima after one iteration. In this case,
we don’t need to use the Lagrange maximize L0(θ) with
constraints on µ and Σ, and the constraints can be imposed
directly by initializing the values of µ and Σ as additive
and multiplicative constraints. To conclude, the algorithm to
estimate the parameters of model model (8) with constraints
on µ and Σ can be summarized as below.

Algorithm 3 Estimate the parameters of model (8) with
constraints on µ and Σ.

Input: For each setting class s ∈ {1, 2, ..., S}, we have Ns

observed data {x(s)
1 , ...,x

(s)
Ns

}.

Output: Estimated value θ∗ of the set of model parameters
θ defined by Equation (9) to maximize the logarithm
likelihood function (17) under the constraints (13) and
(14).

1: The set of the estimated model parameters denoted by
θ∗ = {µ∗, Σ∗, γ∗

s , ∆∗
s | s = 1, ...S} would be

calculated directly by the following formulas.
• Calculate µ∗ ∈ Rp:

µ∗ =

S∑
s=1

wsµs, (56)

where

µs =
1

Ns

Ns∑
n=1

x(s)
n , ws =

Ns∑S
s=1 Ns

, s = 1, 2, ..., S.

(57)



• Calculate Σ∗ ∈ Rp×p:

Σ∗ =

S∑
s=1

wsΣs, (58)

where

Σs = diag(Γs),

Γs =
1

Ns − 1

Ns∑
n=1

(x(s)
n − µs) ◦ (x(s)

n − µs).
(59)

• Calculate γ∗
s ∈ Rp, s = 1, 2, ..., S:

γ∗
s =

1

Ns

Ns∑
n=1

(x(s)
n − µ∗). (60)

• Calculate ∆∗
s ∈ Rp×p, s = 1, 2, ..., S:

∆∗
s = diag(Λ∗

s) (61)

where

Λ∗
s =

1

Ns
·
[
(Σ∗)−1

·
Ns∑
n=1

(x(s)
n − µ∗ − γ∗

s ) ◦ (x(s)
n − µ∗ − γ∗

s )
]
.

(62)

2: return θ∗ = {µ∗, Σ∗, γ∗
s , ∆∗

s | s = 1, ...S}.

D. Summary of the Proposed Method

As described above, we used two ways to estimate the
parameters of model (8), namely, 1) with constraints on γs,
∆s, and 2) with constraints on µ, Σ. In essence, these two
ways of imposing parameter constraints are similar, and they
all aim to adjust the mean and variance of the harmonized
data to be the weighted center and weighted variance of the
clusters from all scanner settings. But, obviously, imposing
constraints on µ and Σ is much simpler and faster than
imposing constraints on γs and ∆s. So we choose to impose
constraints on µ and Σ and use Algorithm 3 as our finally
proposed method. We name it ComBat-MLE, as it follows
the ComBat method’s principle of modeling scanner effects
additively and multiplicatively, albeit with a different model
development method.

IV. EXPERIMENTS

A. Dataset

Ammari et al. [18] designed a homogeneous phantom to
mimic cerebrospinal fluid and opacified blood vessels, and a
heterogeneous phantom to mimic brain white matter. These
phantoms underwent MRI scanning under ten distinct scanner
configurations, employing two MRI scanners with varying
FOVs and matrices, to acquire their T1 sequences [18], [19].
Nyúl normalization [20], [21] was used to normalize these
MRI images [19]. Subsequently, we extracted nine circular
Region of Interests (ROIs) from 70 continuous slices of

the homogeneous phantom, and six circular ROIs from 30
continuous slices of the heterogeneous phantom. 92 radiomic
features were then extracted from each 2D ROI in the MRI
images using PyRadiomics.

Notably, these ROIs correspond to the same phantom tubes,
ensuring that any observed differences in radiomic features
between scanner settings are solely due to variations in image
acquisition parameters, such as magnetic field strengths, FOVs,
and matrices. These features are used to assess the presence
and elimination of scanner effects. We made these extracted
features publicly available to support researchers in testing
their harmonization methods. More details can be found at
https://github.com/Yingping-LI/Harmonization methods.

B. Existence of scanner effects and effectiveness of our pro-
posed ComBat-MLE

We successfully extracted 92 radiomic features from each
ROI collected under different scanner settings. To investigate
the presence of scanner effects, we visualized these features
using box plots. Fig. 1(a) displays the box plots of an example
feature from the heterogeneous phantom. Obviously, the same
phantom scanned by different scanner settings shows distinct
mean and variance differences for the extracted features,
indicating the existence of scanner effects.

After applying our ComBat-MLE method to each pattern
class, most scanner effects were effectively removed. Fig. 1(b)
shows the box plots of the harmonized features corresponding
to those in Fig. 1(a). After harmonization, the mean and
variance of the features are similar across all scanner settings,
confirming the effectiveness of our proposed ComBat-MLE
method in removing scanner effects.

(a) Before harmonization

(b) After harmonization by our proposed ComBat-MLE

Fig. 1. Box plots to demonstrate the effectiveness of our ComBat-MLE
method to remove scanner effects.

https://github.com/Yingping-LI/Harmonization_methods


TABLE I
STATISTICS ON RATIO OF FEATURES WITH DIFFERENT

DISTRIBUTIONS.

Harmonization method Ratio of features with different distributions
homogeneous phantom heterogeneous phantom

Before harmonization 78.73% 59.49%
Non-parametric ComBat 13.84% 6.88%

Parametric ComBat 0.73% 0.36%
ComBat-MoM ComBat 0.25% 0.15%

Our proposed ComBat-MLE 0.25% 0.15%

C. Quantitative Comparison Results

1) Statistics on features with different distributions: To
quantitatively assess the effectiveness of these harmonization
methods to remove scanner effects, statistic tests were applied
to see whether the features extracted from the same phantom
but scanned with different scanner settings have the same
distribution. In detail, a Friedman test [22] was used for the
comparison between three feature distributions (for example,
features from matrix 256 × 256, 256 × 128 and 128 × 128
pixels), whereas the Wilcoxon test [23] was used for the
comparison between two distributions (for example, features
from 1.5T and 3T MRI). Then Bonferroni correction [24]–[26]
was then used for multiple testing corrections. In our study, a
P value less than 0.05 indicates significantly different feature
distributions, while a P value greater than 0.05 suggests the
absence of scanner effects.

TABLE I displays the statistical results on the ratio of
features which have different distributions across different
scanner settings among the 92 features. A smaller ratio
indicates fewer scanner effects. For homogeneous phantom,
78.73% features have different distributions between different
scanner settings, and after harmonization by our ComBat-
MLE, only 0.25% features are left to have different distri-
butions, demonstrating that most of the scanner effects have
been removed. For heterogeneous phantom, only 0.15% fea-
tures have different distributions compared to 59.49% before
harmonization. The results by other harmonization methods
are also listed, and we can see that our proposed ComBat-
MLE method works similar with ComBat-MoM, and works
better than non-parametric ComBat and parametric ComBat.

2) Classification of different pattern classes: For harmo-
nization methods, we not only care about their ability to
remove the non-biological scanner effects, but also care about
whether they retain the intrinsic biological information, thus to
help the downstream analysis. So we use a supervised classifi-
cation task as an example to further explain the power of these
harmonization methods. Linear discriminant analysis (LDA)
[27], [28], a popular supervised dimension reduction method
that maximizes the projection coordinates to predict the data
classes, was used. The classification results of different pattern
classes (i.e. phantom tubes) are listed in TABLE II. Evidently,
the classification accuracy improves significantly for both the
homogeneous and heterogeneous phantom after applying these
harmonization methods.

TABLE II
CLASSIFICATION ACCURACY BY LDA WITH FEATURE DATA

HARMONIZED BY DIFFERENT METHODS.

Harmonization methods Classification accuracy
homogeneous phantom heterogeneous phantom

Before harmonization 70.78% 91.83%
Non-parametric ComBat 91.78% 98.33%

Parametric ComBat 87.14% 97.56%
ComBat-MoM 88.70% 99.83%

Our proposed ComBat-MLE 88.38% 99.72%

D. Qualitative Comparison Results

1) Toy Examples: A toy example is given to verify the
effectiveness of our proposed ComBat-MLE method. In Fig.
2, different colors correspond to data from different classes,
and different clusters with the same color correspond to data
from the same class but from different scanner settings. As
shown in Fig. 2, our proposed ComBat-MLE can successfully
remove the variations caused by different scanner settings,
and at the same time preserve the intrinsic data information
which helps to distinguish different classes. For this toy
example, our proposed method works similar to the ComBat-
MoM method, and performs better than parametric and non-
parametric ComBat.

2) Visualizing two example features in a 2D plane: Fig. 3
visually illustrates the harmonization results by plotting two
example radiomic features from the homogeneous phantom
in a 2D plane. As depicted, the four harmonization methods
exhibit similar results. That is, after harmonization, each
texture pattern (represented by different colors) is no longer
composed of several separate and different clusters, while at
the same time better distinguishable between texture patterns.
These findings underscore the efficacy of these harmonization
methods in removing non-biological scanner effects while
preserving the intrinsic biological information.

3) Visualizing LDA-transformed features in a 2D plane:
LDA was applied to transform the features into a two-
dimensional subspace while maximizing the separation be-
tween classes. Fig. 4 visualizes the LDA-transformed data to
help compare the separability of pattern classes for homoge-
neous phantom. As shown, after applying these harmonization
methods, the different pattern classes (represented by different
colors) become more clearly distinguishable.

V. DISCUSSION

A. Summary

In this paper, we re-describe the state-of-the-art data har-
monization method ComBat in another perspective and then
discuss two different sets of parameter constraints to help
identify the parameters. That is, one with constraints on the
additive (γs) and multiplicative (∆s) scanner effects, and
another with constraints on the mean (µ) and covariance (Σ)
of the clear data without scanner effects. In essence, both of
these two sets of parameter constraints aim to adjust the mean



(a) Before harmonization

(b) Harmonized by non-parametric
ComBat

(c) Harmonized by parametric
ComBat

(d) Harmonized by ComBat-MoM (e) Harmonized by our proposed
ComBat-MLE

Fig. 2. Toy examples to test different harmonization methods. The data, which
is generated by scikit-learn data generator ’make blobs’ in Python, consists of
data from 5 scanner settings. For each scanner setting, 100 samples composed
of 5 feature attributes and 3 clusters are randomly generated. Then additive
(randomly chosen between 0 and 10) and multiplicative (randomly chosen
between 0.05 and 1.95) scanner effects are generated for each scanner setting
and then attached to all the generated data in this scanner setting. The 2D plots
show the first two features. Different colors correspond to data from different
classes, and different clusters with the same color correspond to data from
the same class but from different scanner settings.

and variance of the harmonized data to the weighted center
and variance of the clusters from all scanner settings. Then
we solved the model using MLE with each set of constraints.
The latter constraints proved simpler and faster, leading us to
propose our ComBat-MLE harmonization method.

Then, experiments were conducted to compare the efficacy
of different ComBat variants, including the proposed ComBat-
MLE. In some cases, ComBat-MLE and ComBat-MoM out-
performed the widely used non-parametric and parametric
ComBat methods. This may be because both ComBat-MoM
and ComBat-MLE assume that features undergo independent
scanner effects. In contrast, the parametric and non-parametric
ComBat methods make a stricter assumption to borrow infor-
mation across features, which is helpful for high-dimensional
data with a small sample size. However, this stricter as-
sumption—that after standardization, the scanner effects of all
features follow a certain distribution—may contradict the real
data and lead to worse harmonization results.

(a) Before harmonization

(b) Harmonized by non-parametric
ComBat

(c) Harmonized by parametric
ComBat

(d) Harmonized by ComBat-MoM (e) Harmonized by our proposed
ComBat-MLE

Fig. 3. Visualizing two example features in a 2D plane before and after
harmonized by different harmonization methods.

B. Future work

These ComBat variants, including our proposed ComBat-
MLE, assume that scanner effects are consistent for features
extracted from the same scanner setting, regardless of the
pattern class. However, this assumption does not always hold
true. In such cases, it becomes impossible to completely
remove the scanner effects. Orlhac et al. also mention this
type of failure case in their paper [10].

Future work could concentrate on constructing a model
under a new assumption – that scanner effects vary across
different pattern classes (like tumors and normal tissues),
even when scanned with the same scanner setting. While our
proposed ComBat-MLE may not exhibit a significant improve-
ment over existing ComBat variants, it offers valuable insights
for harmonization model development. Based on ComBat-
MLE and this new assumption, we can reformulate the model
as a Gaussian Mixture Model (GMM). Namely, the observed
data Xs ∈ Rp suffering scanner effects from scanner setting
s can be assumed to follow the following Gaussian mixture
distribution:

p(Xs) =

C∑
c=1

πsc N (Xs|µc + γsc,∆scΣc), (63)

where µc ∈ Rp and Σc ∈ Rp×p correspond to the mean and
variance matrix of the c-th pattern class. The terms γsc ∈ Rp
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(d) Harmonized by ComBat-MoM
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(e) Harmonized by our proposed
ComBat-MLE

Fig. 4. Visualizing LDA-transformed features in a 2D plane before and after
harmonized by different harmonization methods.

and ∆sc ∈ Rp×p represent the additive and multiplicative
scanner effects, respectively. Additionally,

0 ≤ πsc ≤ 1,

C∑
c=1

πsc = 1 (64)

holds for s=1,2,...,S.
The model (63) can be solved by the Expectation Max-

imization (EM) algorithm [29], [30]. Note that, parameter
constraints are essential to help identify between the parame-
ters. For example, for model (63), we propose the following
additive and multiplicative constraints:

• additive constraints:
S∑

s=1

wsγsc = 0, c = 1, 2, ..., C. (65)

• multiplicative constraints:

S∏
s=1

(∆sc)
ws = I, c = 1, 2, ..., C. (66)

With these additive and multiplicative constraints, after
removing scanner effects, the mean (variance) of pattern class
c will be the weighted center (variance) of predicted pattern
classes of c in all scanner settings, where ws =

Ns∑S
s=1 Ns

, s =

1, 2, ..., S are the weight coefficients.

(a) Before Harmonization (b) After harmonization (without con-
straints)

(c) After harmonization (with additive
constraints only)

(d) After harmonization (with additive and
multiplicative constraints)

Fig. 5. Effects of the additive and multiplicative parameter constraints.

We highlight the significance of the parameter constraints.
Taking model (63) as an example, when considering only one
pattern class, the model simplifies to our proposed ComBat-
MLE model, with constraints (65) and (66) adequate for its
resolution. By applying model (63) with C = 1 to each pattern
class separately, as shown in Fig. 5, we can conclude that the
additive and multiplicative constraints are essential, as they
enhance parameter identifiability and ensure the adjusted data
exhibit reasonable means and variances.

However, these constraints are not sufficient for model (63)
with pattern class C > 1. More specifically, in model (63),
we can see that for a given scanner setting s, the mean of
the c-th Gaussian distribution is µc + γsc, but µc and γsc

can not be identified. In other words, each point from scanner
setting s can be classified to an arbitrary pattern class just
by defining a different additive scanner effects γsc. Similar
problem exists for identify the variance Σc of pattern class c
and the multiplicative scanner effects ∆sc. As a future work,
more proper constraints on parameters can be investigated.

VI. CONCLUSION

This paper provides a concise re-description of the Com-
Bat method and discusses two sets of parameter constraints
to help identify the parameters in the parameter estimation
process. Then we solved the re-described ComBat method
using Maximum Likelihood Estimation (MLE) with each set
of constraints. The simpler and faster solution was chosen
as our proposed ComBat-MLE harmonization method. Our
experiments validated the power of the proposed ComBat-
MLE harmonization method in removing non-biological scan-
ner effects while keeping the intrinsic biological information.
Although our method did not significantly outperform exist-
ing ComBat variants, it enhances the understanding of the
ComBat method and serves as a foundation for developing



new harmonization methods, offering valuable insights into
harmonization model development.
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