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1. Introduction  
Thoracic aortic aneurysm (TAA) is a pathology of the 
aortic wall leading to an abnormal increase in arterial 
lumen diameter. Several clinical questions still remain 
regarding its optimal management especially in 
prediction of evolution. Biomechanical studies can 
provide some relevant insights to help move forward 
on these issues. To this end, numerical studies remain 
a means of assessing biomechanical parameters known 
to be linked to long-term remodeling, such as wall 
shear stress (WSS). Numerical modelling actually 
provides sufficient spatial and temporal resolution to 
correctly access these variables of interest. The 
greatest difficulty is to be able to propose a patient-
specific model that is compatible with clinical practice 
in terms of calculation time. The most advanced 
numerical simulations include fluid-structure 
interactions (FSI) between the blood flow and the 
aortic wall (Vignali et al. 2022). However, in addition 
to the high computational times required, the aortic 
wall behavior is rarely patient-specific. Magnetic 
resonance imaging (MRI) gives access to information 
about the aorta motion that can be used to overcome 
these hindrances. The objective of our study is thus to 
propose a way to combine all patient-specific 
information from MRI in an efficient and relevant 
numerical modelling with minimal computational 

costs. The key point of this work is the integration of 
the aortic wall motion as fluid boundary conditions of 
a patient-specific numerical model. 
 
2. Methods 
4D flow MRI, 2D steady-state free precession cine 
MRI and 2D flow MRI were performed on 3 patients 
with TAA, through a specific protocol defined in 
concertation with radiologists. The overall method 
consists in reconstructing aortic displacement from a 
segmentation of a 3D geometry of reference, and 6 
specific 2D contours segmented both in space and time 
with the highest resolution that could be reached. 
 
2.1 Extraction of reference geometry and centerline 
From the velocity magnitude map computed from 4D 
flow MRI data, the lumen of the thoracic aorta at peak 
flow time was segmented in GTFlow software with a 
region-growing method. Sub-segmented zones due to 
low velocities were manually rectified to ensure a 
correct reconstruction. Spatial resolution of 4D flow 
MRI was about 2.1mm. Pre-processing included noise 
masking, corrections for phase aliasing and 
concomitant gradients. The obtained 3D segmentation 
constituted the reference geometry, from which the 
CenterLine of reference (CLref) was extracted. 
 
2.2 Segmentation of specific contours  
2D cine MRI allowed to obtain 6 contours chosen in 
concertation with clinicians to be representative of the 
overall patient specific morphology and especially 
his/her aneurysmal zone. Spatio-temporal resolutions 
were 1.1mm and about 25ms. Contours were 
segmented using active contours in MatLab software 
(Figure 1A). 
 
2.3 Spatial and temporal aortic displacement 
reconstruction 
From the CLref and segmented contours, MatLab code 
was developed to reconstruct the aortic displacement 
in space and time. Point of intersection between CLref 
and contour plane was identified as center of contours 
at peak flow time. The cyclic displacement of the 
contours’ centers is spatially interpolated (piecewise 
cubic hermite interpolating polynomial) along the arc 
length of the CLref to obtain the complete CL 
displacement for all time phases. For each time phase, 
an initial cylindrical envelope of contours around 
corresponding CL was formed and then deformed to 
match the true vessel contours at imaging planes 
recorded at this time. Displacement of the envelopes 
allows to compute the spatio-temporal displacement 
field, which is applied to the reference geometry to 
obtain a geometry for all time phases (Figure 1B). 
 
2.4 Numerical modelling 
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Finally, to propose a relevant numerical modelling, 
inlet and outlet velocities were obtained from 2D flow 
MRI on the specific planes. Processing treatment was 
performed to respect mass conservation all along the 
cycle regarding the volume evolution defined through 
aortic displacement reconstruction. In the descending 
aorta, outlet velocities were injected into 3 element 
Windkessel equation to get a pressure profile over 
time. Fluid was modelled with a Carreau-Yasuda law. 
Flow is laminar and unsteady. Patient-specific period 
of the cardiac cycle was taken to set up a mesh whose 
element size was small enough to capture the viscous 
layer. 
 
3. Results and discussion  
For each patient, we obtain a spatial and temporal 
evolution of the aortic wall all along the cardiac cycle. 
Ranges of distension (variation of diameter) that we 
found are consistent with some previous observations: 
in Weber et al. (2009), distension in ascending aorta 
was 2.8 ± 0.7 mm and we found a maximum distension 
of 2.3mm at the same level in this study. 

 
Figure 1. Illustration of results for patient 1: A) 

Aortic reconstruction from CLref, and 6 2D cine MRI 
segmented contours. B) Displacement of the aorta at 

the maximum volume. C) Example of a velocity vector 
field. D) Example of WSS map 

 
Thanks to 4D flow MRI exploitation of planes 
specifically defined midway between vessel contours 
and far from CLref phase, we validate our method: 
mean deviation on wall position between the validation 
contours and the reconstruction was always below 1.1 
mm which is smaller than the 4D flow MRI resolution. 
Even if some further investigations have to be done to 
generalize the method, the protocol used to choose 
planes of interest appears correct for the patients 
included. Few previous works already proposed 

similar methods, but they were either limited to the 
ascending aorta (Calo et al. 2023) or the spatial 
resolution was higher (1.7mm for Lantz et al. 2014) 
and applied on heathy aorta. However, for patients 
and/or aged persons whose distension may be lower 
than for young healthy aorta, such a spatial resolution 
of 1.7mm is too small and thus unsuitable. Considering 
uncertainty due to spatial resolution, we found that the 
lowest significant distension that could be measured in 
this study was about 1.5mm. 
A computational fluid dynamics model has then been 
built using patient-specific boundary conditions 
including wall motion, showing the feasibility of the 
method to be used to dedicated biomechanical study 
(Figure 1C and 1D). In addition to being patient-
specific, the method offers drastic time savings 
compared to FSI simulation with a reduction factor of 
at least 2. Our method also allows to consider the 
global motion of the aortic root whereas in FSI at least 
one point of the aortic inlet face must be fixed.  
 
4. Conclusions 
Through specific developed MatLab code and with 
GTFlow software, we were able to propose an 
innovative method to reconstruct aortic displacement 
with the best spatio-temporal compromise obtained 
with clinical MRI sequences. This method has led us 
to propose patient-specific models for more in-depth 
biomechanical studies. 
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