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Orientational order is a common feature of many biological and synthetic materials. Topological
defects are discontinuities in this order that are often coupled to geometric features of the materials.
Here, we study the equilibrium shapes of fluid membranes featuring a +1 topological defect as a
model for morphogenesis. We show, through simulation and analytic calculation, that the membrane
can spontaneously deform toward a conical shape with a defect at its apex. We show that the relative
stability of the deformation is controlled by the balance of the elastic parameters. When boundary
constraints are introduced, we observe three distinct modes of deformation. These deformation
modes take advantage of the way in which splay, twist and bend distortions of the director field
can be exchanged on a curved surface. Finally we demonstrate inverted solutions. Our findings
demonstrate a mechanism for passive defect driven morphogenesis as well as the fusion of +1/2
topological defect pairs on deformable surfaces.

The study of shape shifting materials is often inspired
by biological systems and has a broad range of applica-
tions. For example, deformable solids that have a pre-
scribed orientational field, such as elastomers [1–3] or
inflatable structures [4, 5], can achieve families of mor-
phologies by differential growth [6–10] and have applica-
tions in soft robotics[11]. Here, we focus on fluid mem-
branes with nematic order. Unlike the previous cases,
these membranes can, in addition, flow, remodel and
adapt both their orientational field and shape.

Fluid membranes achieve their shapes by minimizing
a free-energy subjected to physical constraints [12–15].
When orientational order is included, the stresses gener-
ated by topological defects can render a flat surface un-
stable to out-of-plane perturbations [16]. In addition, the
geometrical properties of the surface, such as the extrin-
sic curvature, can in turn influence the dynamics of the
orientational field and its equilibrium configurations [17–
24]. Indeed, for prescribed geometries, couplings between
the nematic field and the intrinsic or the extrinsic geom-
etry have been shown to induce symmetry-breaking of
orientational configurations, or influence topological de-
fect dynamics, [17–19, 25–27]. Recent studies extended
these works by, for instance, including out-of-equilibrium
processes, such as active stresses or active torques, or
varying surface geometry and topology [28–36].

We study rotationally symmetric systems, which there-
fore feature a +1 topological defect at their center; +1
topological defects have been associated with geometri-
cal changes in natural and synthetic systems [37–40]. We
use cylindrical coordinates to define these shapes, where
r is the radial coordinate, θ is the azimuthal coordinate
and ζ is the axial coordinate, Fig. 1a. The outer circular
boundary is placed at r = R; without loss of generality,
we set the vertical offset by ζ(R) = 0 and R = 1. The
orientation of the nematic field is described by a director
field n̂ that represents the averaged local orientation on
the surface. We consider that the director field is tangen-

tial to the surface. In addition, we consider that the sys-
tem is deep into the nematic phase and impose |n̂| = 1.
This allows the director field to be defined by a scalar
phase ψ(r), which corresponds to the angle between the
director field and the curvilinear radial direction. The
cases ψ = 0 corresponds to the aster, 0 < ψ < π/2 to a
spiral, and ψ = π/2 to the vortex.

The two-dimensional free-energy of a fluid membrane
with nematic order is given by

F =

∫
A

{
kBH

2 + σ + k1(∇ · n̂)2

+ k2(n̂ · (∇× n̂))2 + k3(n̂× (∇× n̂))2
}

da. (1)

The first term is the bending energy with mean curvature
H, and the second term represents surface tension. We
disregard anisotropies in bending energy dependent on
n̂. The other terms are the Frank free-energy associated
respectively with splay, twist and bend distortions of the
director field n̂ [41, 42]. The corresponding elastic coef-
ficients are: the bending rigidity kB , the surface tension
σ, and the reduced Frank constants k1, k2, and k3 that
are proportional to the membrane thickness. Because the
director field is parallel to the surface, the effects of the
saddle-splay distortions with elastic constant k24 can be
absorbed in a redefinition of the other Frank constants,
[18]. As shown in Refs. [17, 18] and subsequently ex-
tended for more general cases in [43], the thin-film limit
of the Frank free-energy results in contributions that cou-
ple the director field with both the intrinsic and the ex-
trinsic geometry. In our case, Eq. (S2) takes the form
derived in Refs. [17, 18] and the expression of the free-
energy (S2) for the special case of a surface of revolution
is derived in Sec. 1.1 [44]. Other descriptions for fluid
surfaces with orientational order neglected the couplings
with the extrinsic geometry [16, 25, 26]. For a discussion
on the thin-film approximation of liquid crystals, we refer
to Ref. [43].
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FIG. 1. (a) Geometrical setup. The red line shows the height
profile, ζ(r), and black dashes show the orientation of the di-
rector, ψ(r). (b) The height of a membrane featuring a single
aster defect with equal Frank constants k1=k2=k3=k/3 as a
function of k, surface tension σ and bending rigidity kB with
the constraint σ+ kB + k = 1. The magenta line corresponds
to Eq. S5. From this point forward we fix σ = kB = 1/10
and k1+k2+k3 = 1 in all results unless otherwise stated. (c)
Height of a membrane as a function of the prescribed uniform
phase, ψ, and ratio between the splay and bend coefficients,
(k2 = 0). The green line corresponds to the predicted transi-
tion to conical surfaces, see SI. (d)&(e) Examples of equilib-
rium surfaces with parameters given by: white star (k1 = k3,
ψ = 0), red star (k3 = 1, ψ = π/8). (d) An aster on a conical
surface, and (e) a spiral on a concave surface. Blue (red) re-
gions: negative (positive) Gaussian curvature.

We combine analytical and numerical approaches to
study equilibrium configurations of the free-energy (S2).
The former approach is restricted to director fields with
a uniform phase ψ, see Sec. 1 and 2 in [44]. The latter
approach discretizes the functions ζ(r) and ψ(r), Fig. 1a,
and uses a Monte-Carlo algorithm, see Sec. 3 [44].

We first consider the case where all the reduced Frank
constants are equal, i.e. the one-constant approximation
k1 = k2 = k3 = k/3. The energy scale is set by the con-
straint k+kB +σ = 1. Fig. 1b shows the height at the
center ζ(0) of the equilibrium states that were found for
varying elastic parameters. When kB or σ dominate,
the minimal states are flat discs which minimize surface
area and curvature. Because the Frank constants are
equal, k1 = k3, all director configurations with a con-
stant phase ψ have equal energy, and thus are minimal
states, [42]. However, when k dominates, the minimal
state changes to an approximately conical surface with
phase ψ = 0, Fig. 1d. The morphological transition oc-
curs via a symmetry-breaking process during which the
director adopts an aster configuration.

To better understand this spontaneous transition from
flat to conical surfaces, we derived analytically the nor-
mal force balance equation for a surface of revolution

with an embedded director field with uniform phase ψ,
see Sec. 1.2 in [44] (see [27] for a general case). In the
special case σ = 0, this nonlinear ODE has a set of exact
non-trivial solutions corresponding to conical surfaces of
varying heights; this is valid even when the one-constant
approximation is relaxed, see Sec. 1.3 in [44]. This gives
us a subset of shapes described by ζ(r) = ±m(r − 1),
with m the vertical distance of the tip of the cone from
the base, that allow us to move continuously from a flat
disk to a cone of varying height. Minimizing Eq. (S2)
with respect to the height m and for a fix phase ψ, one
obtains the non-trivial condition

m2 =
A(1 − 2 sin(ψ)2) − 2 −B

1 +A sin (ψ)
2

+B
, (2)

where A = 4k/3kB and B = (4σ/kB)(1 − ∆2)/ log(1/∆)
are dimensionless parameters and ∆ is a dimensionless
cut-off lengthscale. The logarithmic divergence at ∆ = 0
is commonly found in the context of topological defects
[42] and also describes the divergence in curvature at the
tip of the conical surface. We explore the effect of ∆ on
our results in Sec. 2 in [44]. Eq. (S3) leads to the existence
condition for conical shapes A(1−2 sin(ψ)2) > 2+B. As
observed, Eq. (S3) shows that as k/kB or k/σ increase,
the minimal surface varies from a flat disc (m = 0) to
a cylinder (m → ∞). The total free-energy associated
with this minimal surface reads

Fc

πkB
=

√
(1 +A sin (ψ)

2
+B)(A cos (ψ)

2 − 1) log(1/∆).

(3)
In addition, Eq. (S4) shows that the minimal phase corre-
sponds to ψ = 0, even when the Frank constants k1 =k3
are equal. The selection mechanism for the phase arises
from the coupling between the director field and the ex-
trinsic curvature, which tend to align the director field
with the minimal principal curvature [18]. In the case of
conical surfaces, the aster is favoured because it features
only splay distortions, and vanishing twist and bend dis-
tortions. Furthermore, the total Frank free-energy for
the aster decreases as the height of the cone increases,
leading to the spontaneous out-of-plane deformation of a
surface. This is balanced by the increased curvature and
area of the surface. The threshold for a flat disc with an
aster topological defect to become unstable is set when
its energy (i.e. 2πk/3 log(1/∆) + σπ(1−∆2)) equals the
energy (S4) for ψ = 0, that is when

k/3 =
kB
2

+ σ
(1 − ∆2)

log(1/∆),
(4)

shown with the magenta line, Fig. 1b. This condition
equals the existence condition of conical shapes for σ = 0,
Sec. 1.3 in [44]. A similar approach is used with varying
elastic coefficients and defect phase to generate the green
line in Fig. 1c.
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FIG. 2. (a) Height at the center and (b) phase at the bound-
ary of the surface as a function of the three Frank constants
with the constraint k1+k2+k3 = 1. Magenta line is Eq. (S5)
and red line is Eq. (S6). (c)&(d) Example surfaces with pa-
rameters: green star (k1 = 1/2, k2 = 1/10, k3 = 4/10) blue
star (k1 = 13/20, k2 = 1/10, k3 = 1/4). (c) shows a coni-
cal aster surface while (d) features a concave surface with an
aster at the center and spiral at the boundary. Blue (red) re-
gions: negative (positive) Gaussian curvature. In all panels,
kB = σ = 1/10.

According to Eq. S3, the height of the surface is also
controlled by the phase of the defect. For equal Frank
constants, the existence condition for conical shapes can
be satisfied when ψ < π/4. Beyond this point, the in-
creased energy associated with twist and bend distortions
of the director field on a conical surface is too great and
a flat surface is favoured. To further explore this effect,
we numerically studied the equilibrium shapes of surfaces
with a prescribed uniform phase, ψ, and a varying ratio of
bend and splay elastic constants, k1/(k1+k3), Fig. 1c. In
general, we find that vortices cannot deform a surface. In
most cases, the aster generates the maximal out-of-plane
deformation, except when k3 ≫ k1 and the maximal de-
formation occurs near ψ ∼ π/8, see Fig. 1e. This result
is also predicted by the conical surface approximation,
which is given by the green line in Fig. 1c.

To further explore these results, we now focus on the
effects of varying all three Frank elastic constants; we
also relax the constraint that ψ is constant. Both ζ ′ and
ψ are only constrained by the rotational symmetry at the
boundary. Figs. 2a and 2b show respectively the height
at the center, ζ(0), and the phase at the outer boundary,
ψ(R), of the energy minimizing states for varying Frank
coefficients. We found that the height of the deformed
membrane is determined by the magnitude of k1. Two
transitions from flat to deformed surfaces were identified,
which are primarily dependent on the relative values of k1
and k3. The transition from a flat to a deformed surface
with an aster is determined by the threshold (S5) with
k1 = k/3 (magenta line in Figs. 2a-b). A flat disc with a

FIG. 3. (a) Height and (b) phase of the director field at
the center of the membrane as a function of the phase at
the boundary, ψ(R) = ψR, and the ratio between bend and
splay coefficients (k2 = 1/3) for surfaces with fix boundaries
ζ′(R) = 0. (c-e) Example of the three modes of out-of-plane
deformation with fix boundary conditions: (c) pointy with
an aster, (d) domed with an aster-to-vortex transition and
(e) pointy with a vortex-to-aster transition. The states in (c-
e) correspond to the black (k1 = 1/2, k3 = 1/6, ψR = 0),
turquoise (k1 = 2/3, k3 = 0, ψR = 0) and pink (k1 = 0,
k3 = 2/3, ψR = π/2) stars in (a) respectively. Blue (red)
regions: negative (positive) Gaussian curvature. In all panels,
kB = σ = 1/10.

vortex is linearly stable to out-of-plane deformations, see
Sec. 1.4 in [44]. The red line in Fig. 2a-b can be found
by comparing the energy of a flat disc with a vortex (i.e.
2πk3 log(1/∆)+πσ(1−∆2)) to the energy (S4) for ψ = 0,
that is when

k1
kB

=
(k3/kB +B/4)2

(1 +B)
+

1

4
. (5)

On a flat surface, if k1>k3 (k1<k3), the director field
assumes a vortex (aster) configuration [42]. On a curved
surface, however, an aster can be energetically favoured
for values of k1 > k3; indeed all deformed surfaces here
feature an aster at their core. In most cases, this is a
conical aster deformation with constant phase, Fig. 2c.
However, when k2 ≪ k3 < k1 we observe a new state
with a spatially varying phase which features a conical
aster close to the core combined with a negative Gaus-
sian curvature spiral region near the boundary, Fig. 2d.
The spiral region reduces splay at the cost of additional
bend, however the bend is then exchanged for twist on
the negative Gaussian curvature surface when ψ has an
intermediate value, which significantly reduces the free-
energy density when k2 is small.

Now, we consider the system under boundary condi-
tions that might be found in biological systems. Hence,
we fix ψ(R) = ψR as the phase at the boundary of the
membrane and fix ζ ′(R) = 0, implying that the surface
must be flat at its boundary [45]. Figs. 3a&b show the
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FIG. 4. (a) Height at the apex as a function of the magni-
tude of k2 for the three modes of out-of-plane deformation in
Fig. 3c-e. The values of k1, k3 and ψR are as outlined previ-
ously in caption Fig. 3. Here the constraint k1 + k2 + k3 = 1
has been relaxed to allow k2 to vary. (d-e) Examples of in-
verted versions for the three main deformation modes with
ζ′(R) = 1. Blue (red) regions: negative (positive) Gaussian
curvature. In all panels, kB = σ = 1/10.

height and the phase at the center of the surface for a full
range of the bend and splay constants (k2 = 1/3) and
the boundary phase ψR. On a flat surface, the value of
k1/(k1+k3) controls the phase at the core of the topolog-
ical defect. By varying ψR, we can explore regimes where
the preferred phase at the center is frustrated with the
boundary. We observe five distinct states. First, when
the boundary phase ψR is compatible with the dominant
elastic coefficient, we observe flat asters and flat vortices.
In addition to this there are three deformed configura-
tions.

When k1≈k3 and ψR≈ 0 we find pointy surfaces fea-
turing an aster, where the core and boundary of the de-
fect are broadly in phase, see Fig. 3c. As in Fig. 2, the
deformation here reduces splay distortions and hence sta-
bilizes an aster, even in some cases when k1 > k3.

In the bend dominated regime k1 < k3 and for ψR ≈
π/2, we observe pointy deformations on which the phase
transitions from a vortex at the boundary to an aster at
the center, Fig. 3e. In this configuration, the transition
in the phase is localized to a ring of negative Gaussian
curvature where bend distortions can be reduced at the
cost of twist through the previously highlighted mecha-
nism highlighted in Fig. 2d.

In the splay dominated regime k1>k3 and for ψR≈ 0
we observe domed deformation on which the phase tran-
sitions from aster at the boundary to vortex at the center,
Fig. 3d. Close to the boundary, the surface sharply de-
forms toward a cylindrical shape, abruptly reducing the
splay at the cost of bend. On the cylindrical surface, the
director field transitions from an aster to a vortex, fur-
ther reducing splay and introducing additional twist and

bend distortions. The surface flattens toward the top
featuring a vortex. Overall, this buckling mode is able to
achieve the highest degree of deformation.

Twist distortions are only possible in spiral regions of
the defect when ψ has an intermediate value, this is only
observed in the deformation modes that feature a transi-
tion in the phase. Therefore the value of k2 can be used
to mediate the deformation of these surfaces. The splay
dominated deformation mode, Fig. 3d, features twist on
an extended cylindrical section of the surface. When k2 is
increased the cylindrical area is reduced and the spiral is
pushed into the positive Gaussian curvature, Fig. 4a&c.
This reduces the induced twist and the height of the de-
formation reduces asymptotically toward a finite value,
cyan curve Fig. 4a. The radial transition in the phase
of the bend dominated deformation, Fig. 3e, is entirely
within the negative Gaussian curvature region, which in-
troduces increased twist. When k2 is increased, the only
way to reduce the twist is to reduce the negative Gaus-
sian curvature, which in turn reduces the magnitude of
the deformation and eventually suppress this mode, ma-
genta curve Fig. 4a. Conversely, the conical aster defor-
mation, Fig. 3c, features no transition in the phase, hence
no twist, and is approximately unaffected by increasing
k2, black curve Fig. 4a. In fact, when k2 is reduced to
near zero, the director will locally distort to reduce splay
and introduce twist, Fig. 4b.

We additionally observe bistability for these solutions.
All surfaces shown thus far are identical under the reflec-
tion ζ → −ζ. This symmetry can be broken by setting
the boundary conditions ζ ′(R) ̸= 0. All three previously
identified buckling modes have a stable configuration in
which ζ ′ changes sign closer to the center suggesting a
similar mechanism could play a role in driving invagina-
tion, see Figs. 4d-f.

Finally, this study reveals a novel mechanism for the
spontaneous fusion of half-integer topological defects on
fluid membranes. Consider the special case σ = 0 and
k1 = k2 = k3 = k/3. It is known that the energy min-
imizing nematic field with a total charge of +1 on a
flat disc has two +1/2 defects. In this case, the en-
ergy scales, up to numerical pre-factors of order 1, as
Ff ∼ πk/3 log(1/∆) [46]. However, the free-energy of
a conical surface with an aster at the apex scales sub-
linearly with k, (i.e Fc ∼ πkB

√
(4k/3kB − 1)) log(1/∆)).

Therefore, a critical threshold (k/3kB)c = O(1) arises
from the balance between the energies of these two states.
Thus, if (k/3kB) > (k/3kB)c, the pair of +1/2 topologi-
cal defects can spontaneously fuse by deforming the sur-
face out of plane. Indeed, past works have shown that
this process can occur for prescribed conical surfaces [25].

This mechanism for spontaneous deformation of fluid
membranes can drive out-of-plane deformations of bio-
logical system, such as a film of cytoskeletal filaments on
a supported lipid bilayer or a cell monolayer on a sup-
ported elastic substrate, see Sec. 6 in [44]. For instance,
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actin and microtubule films can exhibit nematic phases
[47–49]. The measured reduced Frank constant is in the
range of k = 10−8 − 10−7 µNµm for actin filament films
[50, 51] and is k = 10−3 µNµm for microtubule films [52].
Using typical values for the bending rigidity and surface
tension of lipid bilayers and ignoring other possible elas-
tic contributions, allows one to evaluate the proximity to
the instability threshold (S5). In particular, in the bend-
ing dominate regime kB ≫ σR2, the critical threshold is
of order of (k/kB)c ∼ 1, and the ratio is k/kB = 1 for
a film of actin filaments and is k/kB = 104 − 105 for a
film of microtubules. In the tension dominated regime
kB ≪ σR2, the critical threshold is (k/σR2)c ∼ 1 and
therefore it can vary with the disc radius R. One can de-
termine an upper bound by replacing the radius R with
the layer thickness h, which is the smallest lengthscale.
This bound is k/σh2 < 10 for a film of both types of
cytoskeletal filaments. These estimations suggest that in
low-tension regimes, biological system can induce out-of-
plane deformation by relieving elastic stresses at integer
topological defects. In fact, this phenomenon may have
been observed in Ref. [38] that studied a film of micro-
tubules encapsulated on a vesicle. In this work, the au-
thors reported that lowering the surface tension leads to
spindle-like vesicles with two +1 defects localized at the
spindle poles.

Shape dynamics driven by out-of-equilibrium processes
could also be influenced by this mechanism. For instance,
because the aster tends to facilitate surface deformations,
it can be a nucleation point for out-of-plane deformations
on active fluid membranes, like bacterial biofilms or cell
monolayers [29, 37, 38, 40, 53].
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Q.C acknowledges funding from Institut Curie EuReCa
PhD Programme. This publication reflects only the au-
thor’s view and that the European Research Agency is
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formation it contains.
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[33] G. Salbreux, F. Jülicher, J. Prost, and A. Callan-Jones,
Theory of nematic and polar active fluid surfaces, Phys-
ical Review Research 4, 033158 (2022).

[34] S. Bell, S.-Z. Lin, J.-F. Rupprecht, and J. Prost, Active
nematic flows over curved surfaces, Physical Review Let-
ters 129, 118001 (2022).

[35] F. Vafa, D. R. Nelson, and A. Doostmohammadi, Peri-
odic orbits, pair nucleation, and unbinding of active ne-
matic defects on cones, arXiv preprint arXiv:2310.06022
(2023).

[36] T. Singha, A. Polley, and M. Barma, Clustering of lipids
driven by integrin, Soft Matter 19, 6814 (2023).

[37] Y. Maroudas-Sacks, L. Garion, L. Shani-Zerbib,
A. Livshits, E. Braun, and K. Keren, Topological de-
fects in the nematic order of actin fibres as organization
centres of hydra morphogenesis, Nature Physics 17, 251
(2021).

[38] F. C. Keber, E. Loiseau, T. Sanchez, S. J. DeCamp,
L. Giomi, M. J. Bowick, M. C. Marchetti, Z. Dogic, and
A. R. Bausch, Topology and dynamics of active nematic
vesicles, Science 345, 1135 (2014).

[39] C. Blanch-Mercader, P. Guillamat, A. Roux, and
K. Kruse, Quantifying material properties of cell mono-
layers by analyzing integer topological defects, Physical
Review Letters 126, 028101 (2021).

[40] Y. Ravichandran, M. Vogg, K. Kruse, D. J. Pearce, and
A. Roux, Topology changes of the regenerating hydra
define actin nematic defects as mechanical organizers of

morphogenesis, bioRxiv , 2024 (2024).
[41] F. C. Frank, I. liquid crystals. on the theory of liquid crys-

tals, Discussions of the Faraday Society 25, 19 (1958).
[42] P. De Gennes and J. Prost, The physics of liquid crystals,

1993, Oxford University Press, New York, Olbrich E.,
Marinov O., Davidov D., Phys. Rev. E 2713, 48 (1993).

[43] M. Nestler, I. Nitschke, and A. Voigt, A finite element ap-
proach for vector-and tensor-valued surface pdes, Journal
of Computational Physics 389, 48 (2019).

[44] Supplementary material, URL_will_be_inserted_by_

publisher.
[45] Note that the boundary condition ζ′(R)=0 enforces that

the total Gaussian curvature, including the tip, is zero.
[46] G. Duclos, C. Erlenkämper, J.-F. Joanny, and P. Sil-

berzan, Topological defects in confined populations of
spindle-shaped cells, Nature Physics 13, 58 (2017).

[47] T. Sanchez, D. T. Chen, S. J. DeCamp, M. Heymann,
and Z. Dogic, Spontaneous motion in hierarchically as-
sembled active matter, Nature 491, 431 (2012).

[48] A. Sciortino and A. R. Bausch, Pattern formation and
polarity sorting of driven actin filaments on lipid mem-
branes, Proceedings of the National Academy of Sciences
118, e2017047118 (2021).

[49] F. L. Memarian, J. D. Lopes, F. J. Schwarzendahl, M. G.
Athani, N. Sarpangala, A. Gopinathan, D. A. Beller,
K. Dasbiswas, and L. S. Hirst, Active nematic order
and dynamic lane formation of microtubules driven by
membrane-bound diffusing motors, Proceedings of the
National Academy of Sciences 118, e2117107118 (2021).

[50] R. Zhang, N. Kumar, J. L. Ross, M. L. Gardel, and J. J.
De Pablo, Interplay of structure, elasticity, and dynam-
ics in actin-based nematic materials, Proceedings of the
National Academy of Sciences 115, E124 (2018).

[51] V. Yadav, D. S. Banerjee, A. P. Tabatabai, D. R. Ko-
var, T. Kim, S. Banerjee, and M. P. Murrell, Filament
nucleation tunes mechanical memory in active polymer
networks, Advanced functional materials 29, 1905243
(2019).
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SUPPLEMENTAL MATERIAL:

SECTION 1: THEORETICAL DESCRIPTION

We consider a surface with the following free-energy

F =

∫
A

{
kBH

2 + k1(∇ · n̂)2 + k2(n̂ · (∇× n̂))2 + k3(n̂× (∇× n̂))2 + σ
}
da. (S1)

The first term is the bending energy with mean curvature H, the second, third and fourth terms are the Frank
free-energy associated respectively with splay, twist and bend distortions of the director field n̂ and the fifth term is
the compressional energy. In the same order, the corresponding elastic coefficients are: the bending rigidity kB , the
reduced Frank constant k1, k2, and k3 and the surface tension σ. In the following, we assume that the system is deep
into the nematic phase and impose that |n̂| = 1.

Section 1.1: Lagrangian equations for surfaces of revolution with an integer topological defect

In this subsection, we derive the Lagrangian equations for a surface of revolution with an integer topological defect
at the axis of rotation.

Being r the position vector, the surface is parametrised as follows,

r = (r(s) cos(θ), r(s) sin(θ), ζ(s)) (S2)

where θ is the azimuthal angle and s is the arc-length and it satisfies the constrain |∂sr| = 1. Because of the previous
constrain, one can define ∂sr = cos(ϕ(s)) and ∂sζ = − sin(ϕ(s)), where ϕ(s) is minus the angle of the tangent vector
of the generatrix with respect to the radial direction. In addition, because of the symmetries of surfaces of revolution,
we ignore variations in the θ coordinate. Hence, from now on, we denote by primes the derivatives with respect to
the arclength s. The variation of the position vector (S2) with respect to θ and s defines an orthogonal base on the
tangent plane given by

∂sr = (r′(s) cos(θ), r′(s) sin(θ), ζ ′(s)) (S3a)

∂θr = r(s)(− sin(θ), cos(θ), 0) (S3b)

which can be normalised as ês = ∂sr and êθ = ∂θr/r(s). A normal to the tangent plane reads

N̂ =(−ζ ′(s) cos(θ),−ζ ′(s) sin(θ), r′(s)) (S4)

The components of the metric tensor gαβ read

gss = ∂sr · ∂sr = 1 gθθ = r2 gsθ = gθs = 0 (S5)

and the differential of area on the surface reads da =
√
det(gαβ)dsdθ = rdsdθ.

The components of the curvature tensor read

Css = −∂2ssr · N̂ = ϕ′ Cθθ = −∂2θθr · N̂ = −ζ ′r Csθ = Cθs = −∂2sθr · N̂ = 0 (S6)

and the mean curvature as H = (Css/gss + Cθθ/gθθ)/2 = (ϕ′ − ζ ′/r)/2.

The variation of our tangent plane basis with respect to the parameters θ and s reads

∂sês = −ϕ′N̂ ∂θ ês = r′êθ ∂sêθ = 0 ∂θ êθ = ζ ′N̂ − r′ês (S7)

which allow one to compute the tensor of distortions of the director field ∂αn̂β . We assume that the director field is
prescribed and corresponds to that of an integer defect at the axis of rotation. In addition, we assume that the director
field is constrained to be parallel to the surface of revolution (i.e. n̂ ·N̂ = 0). Therefore n̂ = cos (ψ)ês+sin (ψ)êθ, where
ψ is the angle of the director field with respect to the direction ês. For simplicity, ψ is considered uniform. In this
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case, ψ = 0 corresponds to an aster, 0 < ψ < π/2 to a spiral, and ψ = π/2 to a vortex. Under these approximations
and using the relations (S7), the divergence and the curl of the director field reads

∇ · n̂ = (ês∂s +
êθ
r
∂θ) · (cos (ψ)ês + sin (ψ)êθ) (S8a)

= cos (ψ)ês · ∂sês + sin (ψ)ês · ∂sêθ +
cos (ψ)

r
êθ · ∂θ ês +

sin (ψ)

r
êθ · ∂θ êθ (S8b)

=
cos (ψ)r′

r
(S8c)

∇× n̂ = (ês∂s +
êθ
r
∂r) × (cos (ψ)ês + sin (ψ)êθ) (S8d)

= cos (ψ)ês × ∂sês + sin (ψ)ês × ∂sêθ +
cos (ψ)

r
êθ × ∂θ ês +

sin (ψ)

r
êθ × ∂θ êθ (S8e)

= ϕ′ cos (ψ)êθ +
sin (ψ)ζ ′

r
ês +

sin (ψ)r′

r
N̂ (S8f)

Therefore the splay, twist and bend distortions of the director field in the free-energy (S1) read,

k1(∇ · n̂)2 = k1

(
cos (ψ)r′

r

)2

(S9a)

k2(n̂ · (∇× n̂))2 = k2

((
ϕ′ +

ζ ′

r

)
cos (ψ) sin (ψ)

)2

(S9b)

k3(n̂× (∇× n̂))2 = k3

( sin (ψ)r′

r

)2

+

(
ϕ′ cos (ψ)

2 − sin (ψ)
2
ζ ′

r

)2
 (S9c)

In this case, the free-energy (S1) takes the form

F =

∫
A

{kB
4

(
ϕ′ − ζ ′

r

)2

+ k1

(
cos (ψ)r′

r

)2

+ k2

((
ϕ′ +

ζ ′

r

)
cos (ψ) sin (ψ)

)2

+ k3

( sin (ψ)r′

r

)2

+

(
ϕ′ cos (ψ)

2 − sin (ψ)
2
ζ ′

r

)2
+ σ

}
rdθds

+

∫
A

γ(r′ − cos (ϕ)) + η(ζ ′ + sin (ϕ))dsdθ = 2π

∫
A

L[ϕ, ϕ′, ζ ′, r, r′]ds (S10)

where γ and η are two Lagrange multipliers to enforce the constraints associated with the arclength parametrisation.
From Eq. (S10), one can identify a Lagrangian L. Then the Lagrangian equations for variations of ϕ, r and ζ are

given by

δϕ :
∂L

∂ϕ
− d

ds

(
∂L

∂ϕ′

)
= 0 (S11a)

δr :
∂L

∂r
− d

ds

(
∂L

∂r′

)
= 0 (S11b)

δζ :
∂L

∂ζ
− d

ds

(
∂L

∂ζ ′

)
= 0 (S11c)

with the boundary contributions

δϕ :
∂L

∂ϕ′
= 0 (S12a)

δr :
∂L

∂r′
= 0 (S12b)

δζ :
∂L

∂ζ ′
= 0 (S12c)

Because the Lagrangian (S10) is independent on the arclength parameter s, one can identify a Hamiltonian H, which
is equal to a constant. When the total length is allowed to vary during the energy minimisation process, then this
constant is zero. We provide the explicit forms of Eqs. (S11), (S12) and the Hamiltonian in Appendix 1.
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Section 1.2: Normal force balance

In this section, we compute the normal force balance equation for a surface of revolution with a prescribed integer
topological defect as describe in Section .

To obtain the normal force balance equation, we combine Eqs. (S30) and (S32). First, using Eq. (S30b) and
Eq. (S32), one can obtain

(η̄r′ − γζ ′)′ = −γ′ζ ′ + ϕ′(η̄ζ ′ + γr′)

= −
{kB

4

(
ϕ′2 −

(
ζ ′

r

)2
)

+ (ϕ′ cos (ψ))2(k2 sin (ψ)
2

+ k3 cos (ψ)
2
)

−
(
ζ ′ sin (ψ)

r

)2

(k2 cos (ψ)
2

+ k3 sin (ψ)
2
) − (k1 cos (ψ)

2
+ k3 sin (ψ)

2
)

(
r′

r

)2 }(
ϕ′ +

ζ ′

r

)
r

+ σr

(
ϕ′ − ζ ′

r

)
+ 2(k1 cos (ψ)

2
+ k3 sin (ψ)

2
)

(
r′ζ ′

r

)′

(S13a)

where we used the condition η̄′ = 0 given by Eq. (S30c). This expression allows one to re-express the derivative with
respect to the arclength of Eq. (S30a) as

0 = −
{kB

4

(
ϕ′2 −

(
ζ ′

r

)2
)

+ (ϕ′ cos (ψ))2(k2 sin (ψ)
2

+ k3 cos (ψ)
2
)

−
(
ζ ′ sin (ψ)

r

)2

(k2 cos (ψ)
2

+ k3 sin (ψ)
2
) − (k1 cos (ψ)

2
+ k3 sin (ψ)

2
)

(
r′

r

)2 }(
ϕ′ +

ζ ′

r

)
r

+ σr

(
ϕ′ − ζ ′

r

)
−
(
r′ζ ′

r

)′(
kB
2

+ 2 sin (ψ)
2
(k2 cos (ψ)

2
+ k3 sin (ψ)

2
) − 2(k1 cos (ψ)

2
+ k3 sin (ψ)

2
)

)
− (ϕ′r)

′′
(
kB
2

+ 2 cos (ψ)
2
(k2 sin (ψ)

2
+ k3 cos (ψ)

2
)

)
(S14)

Up to a scaling factor r, Eq. (S14) is the normal force balance. Indeed, the terms proportional to the bending rigidity
kB and the terms proportional to the surface tension σ are equivalent to the normal forces found by O-Y Zhong-can
and W. Helfrich. Similarly, the terms proportional to the splay, twist and bend Frank elastic constant k1, k2, and k3
are equivalent to the normal force found by J.A. Santiago etal (2019).

Section 1.3: Exact solutions of the normal force balance equation

In this section, we compute exact solution of the normal force balance equation and analyse their stability conditions.
In the special case where ϕ = ϕ0 is constant and σ = 0, equation (S14) reduces to

0 = −r
(

sin (ϕ0)

r

){( sin (ϕ0)

r

)2(
kB
4

+ sin (ψ)
2
(k2 cos (ψ)

2
+ k3 sin (ψ)

2
)

)
+(

cos (ϕ0)

r

)2(
kB
2

+ 2 sin (ψ)
2
(k2 cos (ψ)

2
+ k3 sin (ψ)

2
) − (k1 cos (ψ)

2
+ k3 sin (ψ)

2
)

)}
(S15)

which admits three solutions: the trivial solution ϕ0 = 0 corresponding to a flat disc, and two non-trivial solutions
corresponding to cones with an inclination angle (complementary to the opening angle) given by

tan (ϕ0)
2

=
(k1 cos (ψ)

2
+ k3 sin (ψ)

2
) − kB

2 − 2 sin (ψ)
2
(k2 cos (ψ)

2
+ k3 sin (ψ)

2
)

kB

4 + sin (ψ)
2
(k2 cos (ψ)

2
+ k3 sin (ψ)

2
)

(S16)

The existence condition for these non-trivial solutions is that

(k1 cos (ψ)
2

+ k3 sin (ψ)
2
) >

kB
2

+ 2 sin (ψ)
2
(k2 cos (ψ)

2
+ k3 sin (ψ)

2
) (S17)
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For an aster ψ = 0, steady-state cones exists when k1 > kB/2, whereas for a vortex ψ = π/2, no steady-state cone are
expected. The existence of steady-state conical surfaces, for intermediate spirals 0 < ψ < π/2, depends on the values
of the elastic constants.

Next we analyse the stability of these steady-state solutions by computing their total free-energy. Considering that
ϕ = ϕ0 is constant and σ = 0, Eq. (S10) reduces to

F = 2π
{

(ζ ′)2
(
kB
4

+ sin (ψ)
2
(k2 cos (ψ)

2
+ k3 sin (ψ)

2
)

)
+ (r′)2

(
k1 cos (ψ)

2
+ k3 sin (ψ)

2
)} log(R/a)

r′
(S18)

where we used that dr = r′ds, ζ ′ = − sin (ϕ0) and r′ = cos (ϕ0), and considered as boundary conditions that r(s2) = R
and r(s1) = a, where R is the radius of the disc and a is a microscopic length. Eq. (S18) corresponds to the total
free-energy of a integer defect with a constant angle ψ at the tip of a conical surface with an inclination angle ϕ0.

Minimization of Eq. (S18) with respect to ϕ0 leads to same three solutions found by solving the force balance
equation. Minimization of Eq. (S18) with respect to ψ leads to three types of topological defects: an aster ψ = 0, a
vortex ψ = π/2, and a spiral with an angle that satisfies

tan (ϕ0)
2

=
k1 − k3

2k3 sin (ψ)
2

+ k2(cos (ψ)
2 − sin (ψ)

2
)

(S19)

The minimal surfaces with an aster defect are the flat disc with total free-energy

F/2π = k1 log(R/a) (S20)

and the conical surface with elevation angle and total free-energy

tan (ϕ0)
2

=
k1 − kB/2

kB/4
> 0 (S21)

F/2π = 2
√

(k1 − kB/4)kB/4 log(R/a) (S22)

The minimal surface with a vortex defect is a flat disc with total free-energy

F/2π = k3 log(R/a) (S23)

Finally, the minimal surface with the spiral defect that satisfies (S19) is a conical surface (except for k1 = k3) with
the elevation angle (S16) and total free-energy (S18).

Stability conditions can be identified by comparing the energies of an aster on a minimal conical surface, an aster
on a flat disc and a vortex on a flat disc. Respectively, these conditions read

k1
kB

=
1

2
(S24)

k1
kB

=

(
k3
kB

)2

+
1

4
with

k1
kB

>
1

2
(S25)

k1
kB

=
k3
kB

(S26)

Section 1.4: Linear stability of a flat disc with an integer topological defect to shape fluctuations

In this section, we perform a linear stability analysis of a flat disc with an integer topological defect. Next, we
discuss the parametric conditions whereby this state can become unstable as a function of the type of topological
defect.

As shown above, the flat configuration is a steady state solution of the normal force balance equation (S14). Here,
we study its stability to small amplitude shape fluctuations. Therefore we consider ϕ = δϕ≪ 1 and its derivatives to
be small. Note that r′ = 1 + O(δϕ2), and ζ ′ = −δϕ+ O(δϕ2).
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To linear order in perturbations δϕ, the Lagrangian equations (S30b) and (S30c) provide a solution for the Lagrange
multipliers γ and η̄. We enforce that their integration constant vanish. Inserting their expression into (S30a), one
obtains the equation

0 = A(r)
ϕ

r
−B (ϕ′r)

′
(S27)

where A = −(k1 cos (ψ)
2

+ k3 sin (ψ)
2
) + σr2 + kB/2 + 2 sin (ψ)

2
(k2 cos (ψ)

2
+ k3 sin (ψ)

2
) and B = kB/2 +

2 cos (ψ)
2
(k2 sin (ψ)

2
+ k3 cos (ψ)

2
) > 0 is a positive coefficient.

In the special case σ = 0, the general solution of Eq. (S27) reads

ϕ = C cosh
(√

A/B log(r) +D)
)

(S28)

where C and D are integration constants to be determined. Note that the solution (S28) has a logarithmic divergence
at r → 0 that can not be eliminated by a specific choice of the integration constants. When A < 0, the solution (S28)
becomes oscillatory which is a signature of an instability. Therefore, we identify the threshold whereby a flat disc
with an integer topological defect can become unstable as A = 0, or equivalently

k1 cos (ψ)
2

+ k3(sin (ψ)
2 − 2 sin (ψ)

4
) = 2k2 sin (ψ)

2
cos (ψ)

2
+ kB/2 (S29)

Note that this condition matches with the existence condition of conical surfaces (S17) found for σ = 0. Equation (S29)
reveals two linear mechanisms for generating out-of-plane deformations. On the one hand, in the splay dominated
regime k1 ≫ k2, k3, the first term on the left hand side of the stability condition (S29) dominates. The critical splay
Frank constant at which the flat disc becomes linearly unstable increase as the phase of the defect ψ increases, and
diverges for a vortex with ψ = π/2. On the other hand, in the bend dominated regime k3 ≫ k1, k2, the stability
condition (S29) can be satisfied for a range of phase ψ from 0 to π/4. Therefore, topological defects with a phase
ψ > π/4 are unable to linearly destabilize a flat disc by decreasing bend distortions. Finally, in the twist dominated
regime k2 ≫ k1, k3, flat discs are linearly stable irrespective of the type of topological defect. Therefore, we conclude
that the aster and all spirals, except for the vortex, are able to generate spontaneous out-of-plane deformations on
a flat disc via two linear mechanisms that reduce the energy associated with either splay or bend distortions by
deforming the surface in the out-of-plane direction.

In the general case σ ̸= 0, we estimated an approximate instability threshold by comparing the total energies of a
conical surface surfaces with an aster to the total energy of a flat disc with either an aster or a vortex. In this case,
we find that the instability threshold is increased by the stabilization of flat geometries by surface tension.

Appendix 1: Lagrangian equations and Hamiltonian

Then the equilibrium equations for variations of ϕ, r and ζ are given by

δϕ : 0 = η̄r′ − γζ ′ − ζ ′r′

r

(
kB
2

+ 2 sin (ψ)
2
(k2 cos (ψ)

2
+ k3 sin (ψ)

2
)

)
− (ϕ′r)

′
(
kB
2

+ 2 cos (ψ)
2
(k2 sin (ψ)

2
+ k3 cos (ψ)

2
)

)
(S30a)

δr : 0 = ϕ′2
(
kB
4

+ cos (ψ)
2
(k2 sin (ψ)

2
+ k3 cos (ψ)

2
)

)
+

((
r′

r

)2

− 2r′′

r

)
(k1 cos (ψ)

2
+ k3 sin (ψ)

2
)

− γ′ + σ −
(
ζ ′

r

)2(
kB
4

+ sin (ψ)
2
(k2 cos (ψ)

2
+ k3 sin (ψ)

2
)

)
(S30b)

δζ : 0 = (η̄)′ (S30c)

with the boundary conditions

δϕ : 0 = ϕ′r

(
kB
2

+ 2 cos (ψ)
2
(k2 sin (ψ)

2
+ k3 cos (ψ)

2
)

)
− ζ ′

(
kB
2

+ 2(k3 − k2) cos (ψ)
2

sin (ψ)
2

)
(S31a)

δr : 0 =
2r′

r

(
k1 cos (ψ)

2
+ k3 sin (ψ)

2
)

+ γ (S31b)

δζ : 0 = η̄ (S31c)
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where we defined η̄ = η − ϕ′(kB/2 + 2(k3 − k2) sin (ψ)
2

cos (ψ)
2
) + ζ ′(kB/2 + 2 sin (ψ)

2
(k2 cos (ψ)

2
+ k3 sin (ψ)

2
))/r.

The Hamiltonian reads

H = −L + ϕ′
∂L

∂ϕ′
+ r′

∂L

∂r′
+ ζ ′

∂L

∂ζ ′

=
rkB

4

(
ϕ′2 −

(
ζ ′

r

)2
)

+ rk1

(
r′ cos (ψ)

r

)2

+ rk2 cos (ψ)
2

sin (ψ)
2

(
ϕ′2 −

(
ζ ′

r

)2
)

+ rk3

(r′ sin (ψ)

r

)2

+ (ϕ′ cos (ψ)
2
)2 −

(
ζ ′ sin (ψ)

2

r

)2
− σr + η̄ζ ′ + γr′ (S32)

SECTION 2: HEIGHT OF A CONICAL SURFACE WITH ARBITRARY PHASE

Section 2.1: Energy of a conical surface

We assume a cylindrical Monge gauge with ζ = mr and ψ constant. The mean curvature of such a surface is given
by H = m

2r
√
1+m2

, the area element of the surface is given by r
√

1 +m2. We take the radius of the membrane to be

R = 1.

With this we can write down the free-energy associated with the shape of the surface as

Fs = 2π

∫ 1

∆

[kBH
2 + σ]r

√
1 +m2dr (S33)

=
πkBm

2

2
√

1 +m2
log(1/∆) + σπ

√
1 +m2[1 − ∆2], (S34)

where we have introduced ∆ as the inner radius of the surface. This is to account for the fact that on a cone H

diverges at r = 0. For comparison with numerical results, ∆ = 1/N , where N is the number of discretization bins
used to evaluate the functions.

The energy associated with distortions in the nematic director is given by

FLC = 2π

∫ 1

∆

k1 cos2(ψ)

r
√

1 +m2
+
k2m

2 sin2(ψ) cos2(ψ)

r
√

1 +m2
+
k3 sin2(ψ)(1 +m2 sin2(ψ))

r
√

1 +m2
dr (S35)

=
2π log(1/∆)√

1 +m2

[
k1 cos2(ψ) + k2m

2 sin2(ψ) cos2(ψ) + k3 sin2(ψ)(1 +m2 sin2(ψ))
]

(S36)

We introduce L = 2π log(1/∆) and M = π[1 − ∆2]. We now write the total free-energy of a conical surface with a
defect of constant phase ψ as

F = L
[
k1 cos2(ψ) + k3 sin2(ψ)

]
/
√

1 +m2

+ L
[
k2 sin2(ψ) cos2(ψ) + k3 sin4(ψ) + kB/4

]
m2/

√
1 +m2 +Mσ

√
1 +m2 (S37)

Section 2.2: Equilibrium height of a conical surface

Taking the derivative with respect to m and setting it to zero, we arrive at an expression for the height of the cone
given by

m2 =
L
[
k1 cos2(ψ) + k3 sin2(ψ) − 2k2 sin2(ψ) cos2(ψ) − 2k3 sin4(ψ) − kB/2

]
−Mσ

L
[
k2 sin2(ψ) cos2(ψ) + k3 sin4(ψ) + kB/4

]
+Mσ

(S38)
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2.3: Transitions between deformations

Transition to conical surface in single elastic constant limit
In the single constant limit, we set k1 = k2 = k3 = k/3 and we can re-write Eq. S38 as

m2 =
(4k/3kB)

[
1 − 2 sin2(ψ)

]
− 2 − 4Mσ/LkB

(4k/3kB) sin2(ψ) + 1 + 4Mσ/kBL
(S39)

The results of this are shown in Fig. S1a, which is comparable to Fig 1b in the main text.
If we set A = 4k/3kB and B = 4Mσ/LkB we arrive at Eq. 3 in the main text. If we consider an aster, ψ = 0, and

set m = 0 we identify the point at which the conical surface becomes stable in the single constant limit, which gives
Eq. 4 and the red line on Fig. 1b in the main text.

Transition to conical surface with variable elastic constants and predetermined phase
For a given set of elastic coefficients and phase we calculate m2 from Eq. S38 (if m2 < 0 we set m = 0). This is

plotted in Fig. S1b. The green line on Fig. 1c shows where m2 = 0 according to Eq. S38.
Transition to conical surface with variable elastic constants and variable phase
We assume a conical aster configuration, ψ = 0, thus Eq. S38 becomes

m2 =
L [k1 − kB/2] −Mσ

LkB/4 +Mσ
(S40)

The results of this equation are plotted in Fig. S1c. To obtain the transition curves to either an aster or a vortex on a
flat disc. We then substitute the solution of Eq. S40 into Eq. S37 to get the energy of a conical surface with an aster.

The conical aster energy is then compared to the energy of an aster or vortex on a flat disc, which are given by:

Faster,flat = Lk1 +Mσ (S41)

Fvortex,flat = Lk3 +Mσ (S42)

This gives the transition curves in Fig. S1c, which correspond to Eq. 4 and Eq. 5 in the main text, respectively.

FIG. S1. Result of Eq. S38 for three sets of variables. (a) Single Frank elastic constant (k1 = k2 = k3 = k/3) with and aster
(ψ = 0) varying σ, k and kB under the constraint k + kB + σ = 1. This is analogous to Fig.1b (main text). (b) Varying Frank
elastic constants and predetermined phase with kB = σ = 1/10, k2 = 0, k1 + k3 = 1. This is analogous to Fig.1c (main text).
(c) Varying Frank elastic constants with aster defect ψ = 0 with kB = σ = 1/10, k1 + k2 + k3 = 1. This is analogous to Fig.2a
(main text).

Section 2.4: The limit ∆ → 0

We describe the elastic energy of the nematic field to be given by the Frank free energy, which diverges at the core
of the defect. Since we do not model the physics of the core of the defect, this necessitates a finite defect core radius,
∆. Thus, we restrict our view to systems which are much bigger than the defect core radius, i.e. lim ∆ → 0.

In the conical calculation above, Eq. S37, ∆ modulates the relative importance of the surface tension, σ. We can
see this by rescaling the energy by the defect core energy, L = 2π log(1/∆). In the limit ∆ → 0, the surface tension
becomes insignificant relative to the other contributing energies. This allows us to evaluate all transitions in the ∆ = 0
limit by considering the case where σ = 0. This shows very little change with respect to our previous calculations,
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see Fig. S2. There are two noticeable differences: first, the transition between buckled and flat asters in the single
Frank constant limit is now independent of the value of σ. Second, the magnitude of the buckled surfaces is generally
higher, this is because there is more energy available to drive the deformation.

FIG. S2. Result of Eq. S38 for three sets of variables evaluated for ∆ = 0. (a) Single Frank elastic constant (k1 = k2 = k3 = k/3)
with and aster (ψ = 0) varying σ, k and kB under the constraint k + kB + σ = 1. This is analogous to Fig.1b (main text).
(b) Varying Frank elastic constants and predetermined phase with kB = σ = 1/10, k2 = 0, k1 + k3 = 1. This is analogous to
Fig.1c (main text). (c) Varying Frank elastic constants with aster defect ψ = 0 with kB = σ = 1/10, k1 + k2 + k3 = 1. This is
analogous to Fig.2a (main text).

Section 2.5: Effect of non-zero ∆

We use a value of ∆ = 10−2R in our numerical calculations, as a balance between accuracy and computational
feasibility. To assess the validity of this choice, we recreate the results from Fig. S1 for a large range of ∆.

Fig. S3 shows how the boundaries between buckled and flat sheets varies as ∆ is varied over 7 orders of magnitude.
It is clear here that the effect is small as ∆ decreases and that our value of ∆ = 10−2R does not introduce significant
in the transitions present.

FIG. S3. Position of the boundaries between buckled and flat sheets according to Eq. S37 for values of ∆ that vary over 7
orders of magnitude for three sets of variables. (a) Single Frank elastic constant (k1 = k2 = k3 = k/3) with and aster (ψ = 0)
varying σ, k and kB under the constraint k + kB + σ = 1. This is analogous to Fig.1b (main text). (b) Varying Frank elastic
constants and predetermined phase with kB = σ = 1/10, k2 = 0, k1 + k3 = 1. This is analogous to Fig.1c (main text). (c)
Varying Frank elastic constants with aster defect ψ = 0 with kB = σ = 1/10, k1 + k2 + k3 = 1. This is analogous to Fig.2a
(main text).
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SECTION 3: MINIMIZING THE ENERGY THROUGH MONTE-CARLO METHOD

Section 3.1: Evaluating the energy

To solve using Monte-Carlo methods, the equations are recast using a cylindrical Monge gauge. The surface is given
by the equations

X = rcos(θ), (S43)

Y = rsin(θ), (S44)

Z = ζ(r) (S45)

and the director field is given by the function ψ(r). To fully evaluate all terms of the free-energy density on the
surface, we need to know the function ψ and its first derivative and ζ and its first two derivatives.

We do this by discretizing the functions in the radial direction and set the radius of the patch R = 1 in all
simulations. The space is divided into N discretized points, and the locations of the center of the first and last bins
are at ϵ = 1/2N and 1 − ϵ, respectively. There are two boundaries that we need to accommodate.

Section 3.1.1: Center of the surface

The center of the surface we assume is given by a spherical cap. At this point the energy associated with the
director field diverges, and we consider the spherical cap to include no orientational order. Thus the only terms we
need to calculate are those associated with the bending energy and tension of the surface. These are given by

Ftip =

∫
kBH

2 + σdA (S46)

The surface area of a spherical cap is given by A = 2πL2(1 − cos(α)), where α is the angular size of the spherical
cap and L is its radius. The spherical cap extends to a radius ϵ in the cylindrical radial coordinate, which is the
position of the first discretization point, at which point it must smoothly transition into the function ζ. After some
trigonometry, we can arrive at

Ftip = 2πkB

[
1 − 1√

ζ ′2(ϵ) + 1

]
+ 2πσϵ2

[
1 − 1√

ζ ′2(ϵ) + 1

]
(1 + ζ ′2(ϵ))

ζ ′2(ϵ)
(S47)

Section 3.1.2: Edge of the surface

The boundary conditions at the edge of the patch are that ζ ′(r ≥ 1) = M . This is accommodated within the liquid
crystal energy and surface tension by including an imaginary point beyond the boundary with the correct boundary
conditions. However, for the curvature terms, which rely specifically on the second derivative of the height function,
more care is required. This is to prevent a diverging value of ζ ′′ below the lengthscale of the discretization of the
surface.

We define the second derivative of the height as

ζ ′′(1) = (M − ζ ′(1 − ϵ))/ϵ (S48)

Here ϵ = 1
2N where N is the number of discretized points in r. Thus ζ ′(1 − ϵ) is the evaluated at the last grid point,

which is a distance ϵ from the boundary.
The area element at this point is given by J =

√
1 +M2 thus we can write the mean curvature at this point as

H =
M +M3 + (M − ζ ′(1 − ϵ))/ϵ

2J3
(S49)

We consider H to be constant in this small region close to the boundary which has an area equal to 2πϵJ . Which
results in an additional energy given by

Fedge = 2πkBϵ
(M +M3 + (M − ζ ′(1 − ϵ))/ϵ)2

4J5
(S50)
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Section 3.2: Minimizing the energy through Monte Carlo approach

We assume that the radial height profile of the surface can be approximated by an infinite series of Gaussian
functions. This is true for any L1 function (see Yves Myers’ ”Wavelents and Operators” for a proof). Thus we assume
that the function ζ can be written

ζ(r) =
∑
i

Ai exp[−(r − µi)
2/2σ2

i ]. (S51)

Where Ai, σ
2
i and µi are the amplitude, variance and mean of the constituent Gaussian functions, respectively.

From this we introduce the perturbation

∆ζ(r) = A exp[−(r − µ)2/2σ2] −A exp[−(1 − µ)2/2σ2]. (S52)

We have introduced a constant here that fixes ζ(1) = 0.
In the case where the gradient at the boundary is fixed such that ζ ′(r ≥ 1) = M we modify the perturbation to

satisfy this boundary condition

∆ζ(r) = A exp[−(r−µ)2/2σ2] +A exp[−(r− 2 +µ)2/2σ2]−A exp[−(1−µ)2/2σ2]−A exp[−(1− 2 +µ)2/2σ2]. (S53)

This perturbation has both ∆ζ(1) = 0 and ∆ζ ′(1) = 0, thus when combined with the initial condition ζ(r) = Mr,
the boundary conditions are preserved. It should be noted that this form does not strictly enforce the boundary
conditions due to the discretized nature of the computational approach, it is merely used to speed up the Monte Carlo
algorithm. The boundary is constrained by the additional edge energy introduced above.

We take a similar approach with the orientation field. We assume the orientation field can be expressed

ψ(r) = ψ1 +
∑
i

Bi exp[−(r − ρi)
2/2Σ2

i ]. (S54)

We use the following perturbation ∆ψ

∆ψ(r) = B exp[−(r − ρ)2/2Σ2]. (S55)

Similar to previous, when the boundary conditions on the director field are given by ψ(r ≥ 1) = ψ1 we use the
perturbation

∆ψ(r) = B exp[−(r−ρ)2/2Σ2]+B exp[−(r−2+ρ)2/2Σ2]−B exp[−(1−ρ)2/2Σ2]−B exp[−(1−2+ρ)2/2Σ2]. (S56)

This additionally fixes ∆ψ(1) = ∆ψ′(1) = 0. As before, this is not strictly necessary but is used to increase the speed
of the Monte Carlo algorithm.

These perturbations are applied sequentially to the functions ζ and ψ and are accepted or rejected according to a
Boltzmann factor with a gradually reducing temperature in a standard simulated annealing process to find minima
in the total free-energy. The parameters are sampled with a uniform distribution with the following limits.

A ∈ [−0.1, 0.1] (S57)

µ ∈ [−1, 1] (S58)

σ2 ∈ [0.1, 2] (S59)

B ∈ [−0.1, 0.1] (S60)

ρ ∈ [−1, 1] (S61)

Σ2 ∈ [0.1, 2] (S62)

SECTION 4: DISCUSSION ON BOUNDARY CONDITIONS AND TOPOLOGICAL CONSTRAINTS.

In this work, we studied patches with rotational symmetry, which enforce the existence of a charge +1 topological
defect at their core. This is to reflect topological defects that have been associated with morphological changes in
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experimental systems [37–40, 54]. Here, we address the question of how these patches can be tiled together to represent
a closed surface, such as those often observed in naturally occurring biological systems.

The total topological charge of a vector field on a closed surface is constrained according to the Poincaré-Hopf
Theorem, which states that the sum of the topological charges of a vector field is equal to the Euler characteristic of
the surface on which they lie. Therefore a simple surface with a spherical topology can be tiled with two +1 defects
as the Euler characteristic of a spherical surface is +2. More generally, if we want to tile a spherical surface with
many patches containing +1 topological defects, additional negative charges are required to meet the constraints of
the Poincaré-Hopf Theorem. This is observed in regenerating freshwater Hydra, on which morphogenesis appears to
be driven by +1 defects which are placed according to chemical morphogens, and the remaining −1/2 defects arise
as a result of the Poincaré-Hopf Theorem and the nematic nature of the interactions between the filaments [37, 40].

Interestingly, a similar statement can be made about the Gaussian curvature, the integral of which is also pro-
portional to the Euler characteristic of the surface (for a closed surface) via the Gauss-Bonnet Theorem. Thus the
total topological charge on a surface and the total Gaussian curvature are equal [55]. Therefore topological defects on
closed surfaces merely redistribute the Gaussian curvature that is already present on the surface. In this scenario, the
additional negative defects necessitated by the Poincaré-Hopf Theorem can simply be placed in the negative Gaussian
curvature regions of the surface necessitated by the Gauss-Bonnet Theorem; which reduces their internal energy.
This is again consistent with observations on freshwater Hydra, on which the −1/2 defects occur in the regions of
maximally negative Gaussian curvature [29, 37, 40].

SECTION 5: PARAMETERS AND BOUNDARY CONDITIONS FOR ALL NUMERICAL RESULTS

All simulations are performed on a discretized line of N = 100 points. Parameter values and boundary conditions
for all numerical work is provided in the tables below.

Figure Parameters Constraints

Fig. 1b
k1 = k2 = k3 = k/3 ζ ′′(R) = 0
σ + k + kB = 1 ψ′′(R) = 0

Fig. 1c
k1 + k3 = 1 ζ ′′(R) = 0

σ = kB = 1/10 ψ′(r) = 0
k2 = 0

Fig. 1d
k1 = k3 = 1/2 ζ ′′(R) = 0
σ = kB = 1/10 ψ(r) = 0

k2 = 0 ψ′(r) = 0

Fig. 1e
k3 = 1 ζ ′′(R) = 0

σ = kB = 1/10 ψ(r) = π/8
k1 = k2 = 0 ψ′(r) = 0

Figure Parameters Constraints
Fig. 2a
Fig. 2b

k1 + k2 + k3 = 1 ζ ′′(R) = 0
σ = kB = 1/10 ψ′′(R) = 0

Fig. 2c

k1 = 1/2 ζ ′′(R) = 0
k2 = 1/10 ψ′′(R) = 0
k3 = 4/10

σ = kB = 1/10

Fig. 2d

k1 = 13/20 ζ ′′(R) = 0
k2 = 1/10 ψ′′(R) = 0
k3 = 1/4

σ = kB = 1/10
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Figure Parameters Constraints
Fig. 3a
Fig. 3b

k1 + k2 + k3 = 1 ζ ′(R) = 0
k2 = 1/3 ψ(R) = ψR

σ = kB = 1/10 ψ′(R) = 0

Fig. 3c
Fig. 4b

k1 = 1/2 ζ ′(R) = 0
k2 = 1/3 ψ(R) = 0
k3 = 1/6 ψ′(R) = 0

σ = kB = 1/10

Fig. 3d
Fig. 4c

k1 = 2/3 ζ ′(R) = 0
k2 = 1/3 ψ(R) = 0
k3 = 0 ψ′(R) = 0

σ = kB = 1/10

Fig. 3e

k1 = 0 ζ ′(R) = 0
k2 = 1/3 ψ(R) = π/2
k3 = 2/3 ψ′(R) = 0

σ = kB = 1/10

Figure Parameters Constraints
Fig. 4a
Black

k1 = 1/2 ζ ′(R) = 0
k3 = 1/6 ψ(R) = 0

σ = kB = 1/10 ψ′(R) = 0

Fig. 4a
Cyan

k1 = 2/3 ζ ′(R) = 0
k3 = 0 ψ(R) = 0

σ = kB = 1/10 ψ′(R) = 0

Fig. 4a
Magenta

k1 = 0 ζ ′(R) = 0
k3 = 2/3 ψ(R) = π/2

σ = kB = 1/10 ψ′(R) = 0

Figure Parameters Constraints

Fig. 4d

k1 = 1/2 ζ ′(R) = 1
k2 = 1/3 ψ(R) = 0
k3 = 1/6 ψ′(R) = 0

σ = kB = 1/10

Fig. 4e

k1 = 2/3 ζ ′(R) = 1
k2 = 1/3 ψ(R) = 0
k3 = 0 ψ′(R) = 0

σ = kB = 1/10

Fig. 4f

k1 = 0 ζ ′(R) = 1
k2 = 1/3 ψ(R) = π/2
k3 = 2/3 ψ′(R) = 0

σ = kB = 1/10

Figure Parameters

Fig. S1a

k1 = k2 = k3 = k/3
k + σ + kB = 1

ψ = 0
∆ = 1/100

Fig. S1b

k1 + k3 = 1
k2 = 0

σ = kB = 1/10
∆ = 1/100

Fig. S1c

k1 + k2 + k3 = 1
σ = kB = 1/10

ψ = 0
∆ = 1/100
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SECTION 6: QUANTITATIVE COMPARISON TO BIOLOGICAL SYSTEMS

In this section, we summarise the main arguments to make a comparison with biological systems. The values of
the material and geometrical parameters can be found in Table S1. Due to the complexity of the systems considered
and the simplifications required for our theoretical treatment, we consider only orders of magnitude.

Several biological systems share the main characteristics of a fluid membrane with nematic order. In particular,
a quasi-two dimensional geometry, a fluid-like behaviour in the experimental time scale, and nematic orientational
order over macroscopic time and length scales. In the following, we focus on two special cases: films of cytoskeletal
filaments and thin tissues.

First, let us consider a thin layer made of cytoskeletal filaments, like actin or microtubules, on top of a supported
lipid bilayer, [47–49]. For a lipid bilayer, the bending rigidity ranges from kB = 10−8 − 10−7 µNµm, and the surface
tension ranges from σ = 10−6 − 10−3 N/m [56–59]. Actin and microtubule films exhibit nematic phases [47–49], and
the Frank constant K for both filament types has been measured. Specifically, a thin film of actin filaments on an
oil-water interface has a Frank constant ranging from K = 10−1−1 pN , [50, 51]. The reduced Frank constant k = Kh
depends also on the thickness of the layer h. Taking h = 0.1 µm, which is typical thickness of an actin cortex in cells
[60–62], leads to k = 10−8 − 10−7 µNµm. For thin films of microtubules on an oil-water interface, the reduced Frank
constant was k = 10−3 µNµm and the layer thickness was h = 10 µm [52]. The corresponding Frank constant for the
latter case is compatible with that found in spindles of Xenopus egg [63].

Next, let us consider a monolayer (or thin multilayer) of cells that can be supported by a thin elastic substrate,
[37, 64, 65]. For epithelial cells, the bending rigidity is measured as kB = 10−1 − 1 µNµm, and the tension can vary
from σ = 10−3 − 10−1 N/m [64, 66–69]. Several types of cells, including epithelial or fibroblast, can exhibit nematic
phases, [70–72]. At time of writing, neither the Frank constant nor the reduced Frank constant has been directly
measured in tissues, but several works estimated their values from indirect experimental measurements. The value of
the Frank constant depends on the cell type, being on the range of K = 103 − 104 pN for epithelial cells [73, 74] and
on the scale of K = 105 pN for fibroblast cells [46, 75]. Taking h = 10 µm, which is the typical thickness of a cell
monolayer, leads to the values of the reduce Frank constant on the range of k = 10−2 − 10−1 µNµm for epithelial
cells and on the scale of K = 1 µNµm for fibroblast cells.

We show that the instability threshold of a flat disc with an aster at its center is found to depend on the elastic
parameters of the fluid membrane and embedded nematic field, in particular the surface tension σ, the bending
rigidity kB , and the reduced Frank constant k, as well as, geomtrical parameters, such as the radius of the disc R.
For simplicity, we consider that all the reduced Frank constants are of the same order of magnitude, thus we take
the one-constant approximation (i.e. k1 = k2 = k3 ∼ k). Next, we evaluate this threshold for the previous biological
systems in two limiting cases controlled by the ratio kB/σR

2.
In the bending dominated regime, kB ≫ σR2, the instability threshold is dependent on the ratio k/kB and the

critical magnitude is of order of (k/kB)c ∼ 1, see Eq. (4) in the main text. For a film of actin filaments, we expect
that this ratio is k/kB = 1. If the film is made of microtubules, then the ratio ranges from k/kB = 104 − 105, which

Surface tension Bending rigidity Length Scale Reference

σ[N/m] kB [µNµm]
√
kB/σ[µm]

Lipid vesicles 10−6 − 10−3 10−8 − 10−7 10−2 − 10−1 (∗) [56–59]

Epithelial cell monolayer 10−3 − 10−1 10−1 − 1 1− 10 (∗) [64, 66–69]

Frank constant Thickness Reduced Frank constant Reference
K[pN ] h[µm] k[µNµm]

F-actin film 10−1 − 1 10−1 10−8 − 10−7 (∗) [50, 51]
at the oil-water interface

Microtubule film 102 (∗) 10 10−3 [52, 76]
at the oil-water interface

Xenopus egg 102 - - [63]
extract spindles

Epithelial cell monolayer 103 − 104 (∗) 10 10−2 − 10−1 (∗) [73, 74]

Fibroblast cell monolayer 105 (∗) 10 1 (∗) [46, 75]

TABLE S1. Table of material parameters and geometrical parameters of some biological systems. The symbol ∗ denotes the
values that were estimated. For a thin layer, the reduced Frank constant k = K ∗ h depends on the Frank constant K and the
thickness of the layer h.
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is above the instability threshold. In microtubule films the thickness of the layer can be modulated and may allow to
control the value of this ratio k/kB [52, 76]. For tissues and ignoring the elasticity of the underlying substrate, the
ratio is expected to be k/kB = 10−1 − 1.

In the tension dominated regime, kB ≪ σR2, the instability threshold of a flat interface is controlled by the ratio
k/σR2, and the critical value is of order (k/σR2)c ∼ 1. One can estimate an upper bound by replacing the radius R
with the layer thickness h, which is the smallest lengthscale in the problem. Depending on the surface tension σ, the
upper bound is k/σh2 = 10−3 − 10 for a film of actin filaments and k/σh2 = 10−2 − 10 for a film of microtubules.
Ignoring the elasticity of the underlying substrate, the upper bound for a cell monolayer is k/σh2 = 10−3 − 10. In all
cases, the upper bound is at most a factor 10 larger than the critical value, which suggest that in low-tension regimes,
these cases can be close to the instability threshold.

Note that because the geometry is quasi-two dimensional, the thickness of the layer h needs to be smaller than the
typical radius R. Therefore we can estimate an upper bound for the ratio kB/σR

2. For both biological examples, we
found that kB/σh

2 ≤ 1, suggesting that experimental cases are in a tension dominated regime kB/σR
2 ≪ 1.

To summarise, in this section we evaluated the proximity to the instability threshold of a flat fluid membrane with
an aster topological defect for two biological systems: films of cytoskeletal filaments on a supported lipid bilayer
and cell monolayers on a supported elastic substrate. In the bending dominated regime kB ≫ σR2, both films of
actin filaments and cell monolayers can be close to the instability threshold, and films of microtubules are above the
instability threshold. In the tension dominated regime kB ≪ σR2, we found that all these biological examples can be
close to the instability threshold. Our arguments here focus on orders of magnitude, to know whether a flat membrane
can be rendered unstable for the cases that are close to the instability threshold would depend on the precise values of
the elastic and geometrical parameters. Two possible ways to cross the instability threshold in these cases is to either
operate in the bending dominated regime, by for instance reducing the surface tension of the supporting substrates,
or to increase the reduced Frank constant by for instance increasing the number density of cytoskeletal filaments or
cells.
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