
HAL Id: hal-04780905
https://hal.science/hal-04780905v1

Submitted on 13 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning Effect and Compound Activities in High
Multiplicity RCPSP: Application to Satellite Production

Anh Duc, Stéphanie Roussel, Christophe Lecoutre, Anouck Chan

To cite this version:
Anh Duc, Stéphanie Roussel, Christophe Lecoutre, Anouck Chan. Learning Effect and Compound
Activities in High Multiplicity RCPSP: Application to Satellite Production. CP 2024, Sep 2024,
Gérone, Spain. �hal-04780905�

https://hal.science/hal-04780905v1
https://hal.archives-ouvertes.fr


Learning Effect and Compound Activities in High
Multiplicity RCPSP: Application to Satellite
Production
Duc Anh Le1 #

DTIS, ONERA, Université de Toulouse, France

Stéphanie Roussel #

DTIS, ONERA, Université de Toulouse, France

Christophe Lecoutre #

CRIL, Université d’Artois & CNRS, France

Anouck Chan #

DTIS, ONERA, Université de Toulouse, France

Abstract
This paper addresses the High Multiplicity Resource-Constrained Project Scheduling Problem (HM-
RCPSP), in which multiple projects are performed iteratively while sharing limited resources. We
extend this problem by integrating the learning effect, which makes the duration of some activities
decrease when they are repeated. Learning effect can be represented by any decreasing function,
allowing us to get flexibility in modeling various scenarios. Additionally, we take composition
of activities into consideration for reasoning about precedence and resources in a more abstract
way. A Constraint Programming model is proposed for this richer problem, including a symmetry-
breaking technique applied to some activities. We also present a heuristic-based search strategy. The
effectiveness of these solving approaches is evaluated through an experimentation conducted on data
concerning real-world satellite assembly lines, as well as on some adapted literature benchmarks.
Obtained results demonstrate that our methods serve as robust baselines for addressing this novel
problem (denoted by HM-RCPSP/L-C).
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1 Introduction

In numerous industries, especially in manufacturing, a frequent challenge is to schedule
several projects, each demanding multiple executions, within an environment of limited
resources. This scheduling problem is known as the High Multiplicity Resource-Constrained
Project Scheduling Problem (HM-RCPSP) [8].
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This problem arises, for example, when planning the assembly of complex products such
as satellites. Traditional satellite manufacturing tends to be handcrafted, and only a few
units are produced over a long time horizon. Recently, there has been a growing interest in
satellite constellations and large-scale satellite production is now essential to meet demand as
highlighted in [7, 9]. We have been working on the production of Earth observation satellites,
where most of the activities require human operators. In this case, satellite manufacturers
have to adapt their industrial system to cope with very different numbers of units to be
produced (from one to dozens) and different deadlines for these satellites. For example, it
may be necessary to produce an Earth observation satellite every two months to keep up
with constellation development, but a highly specialised sensor satellite can be produced in a
dozen months. While each type of satellite has its own assembly process, the resources and
machinery used to perform tasks are sometimes identical for satellites of different types. For
instance, an Earth observation satellite and a highly dedicated sensor satellite both require
aseismic areas in order to install instruments without any interference from the other tasks.
As most of these resources and machines are generally very expensive, they are only available
in limited quantities in the factory and are shared between the production of all satellite
types.

Two features of the satellite assembly line scheduling problem cannot be modelled within
the HM-RCPSP frame. Firstly, in addition to the classical precedence relationship over
activities, one has also to deal with a composition relationship, which makes possible to
express that an activity encompasses other ones (therefore starting and ending with the
earliest and latest encompassed activity, respectively). Such an activity, called compound,
can for instance be used for representing the “installation of a mirror on the satellite”,
which is decomposed into several atomic activities such as “fixing the mirror”, “verifying the
mirror alignment”, etc. The interest for composition is twofold. It allows us to express the
precedence relationship in a more compact way, and to indicate that a resource is consumed
globally (the resource becoming unavailable for the whole duration of the compound activity).
For instance, a bench test may be required for the overall mirror installation, expressing not
only that each activity encompassed in this activity may use the bench test but also that the
latter cannot be used by any other activity until the mirror installation is finished.

Secondly, in some manufacturing environments, the time required to perform an operation
usually fluctuates over time. As a production system operates, workers acquire expertise or
improve the manufacturing process, become proficient in required actions, learn tool utiliza-
tion, and enhance their interaction with the supply chain, among other factors. Consequently,
the overall system becomes more efficient. For example, the time needed to assemble the
10th iteration of a product may be only half of the time taken for the initial one. This
phenomenon is recognized as the learning effect, and the variation in duration based on
the repetition of the same operation is called a learning curve [25]. In the case of complex
products such as satellites or aircrafts, such a phenomenon can have a significant impact on
the medium and long-term production planning of the factory. Interestingly, taking learning
effect into account permits a more realistic estimation of the dates at which products will be
ready. It can also be useful to predict potential additional investment in terms of resources
to meet delivery goals. However, incorporating learning effect makes HM-RCPSP more
intricated because projects are inter-dependent in terms of activities duration.

The objective of this paper is to address the High Multiplicity RCPSP with Learning
effect and Compound activities, denoted HM-RCPSP/L-C. More precisely, the contributions
of this paper are:
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HM-RCPSP/L-C is formally defined, notably by introducing a generic learning effect
component;
a symmetry-breaking method is proposed, while proving its correctness;
a Constraint Programming (CP) model and a heuristic-based search strategy are intro-
duced;
new academic benchmarks are proposed (and made publicly available);
an experimentation is conducted on these benchmarks as well as on industrial satellite
assembly line benchmarks, showing the potential of the CP approach (with and without
symmetric-breaking constraints) which is compared to some other approaches.

The paper is structured as follows. After presenting some related works in Section 2,
HM-RCPSP/L-C is formally introduced in Section 3. Then, symmetry breaking is addressed
in Section 4. Two main solving approaches for HM-RCPSP/L-C are introduced in Section 5,
and the results of the experiments we have performed are presented in Section 6. Finally, we
conclude and discuss some perspectives in Section 7.

2 Related Works

The RCPSP problem is a classical problem in combinatorial optimization, for which plenty
of solving approaches have been proposed in the literature [2]. As described in [12], many
extensions have been proposed over the years. In this section, we first focus on extensions
that address either the presence of several projects or their repetition in a context of
shared resources. Then, we present some works in which scheduling and learning effects are
simultaneously handled.

Multi Project and Repetition in Scheduling. In a recent survey [22], the authors present
several extensions of the Resource-Constrained Multi-Project Scheduling Problem (RCMPSP).
Such extensions can address activities features (e.g. preemption or uncertainty), activities
relationships (e.g. concurrency or time lags), projects and resource features (e.g. renewability
or availability). Because of the learning effect, the projects we consider in this study are
inter-dependent, which prevents the HM-RCPSP/L-C to be seen as a special case of RCMPSP.

In [6], the authors address the cyclic RCPSP (a single project is repeated infinitely)
through a Discrete Time Constraint Programming (DT-CP) approach. The objective is to
find a pattern that interleaves several repetitions of the project in order to use resources
optimally. In the context of construction projects [10], identical activities are repeated a given
number of times. In [8], the authors address the HM-RCPSP/max in which several projects
are repeated and share common resources. Projects can be linked through a generalized
precedence relationship which specifies maximum time-lags between activities. They propose
a symmetry breaking method for identical projects of the same class.

Learning Effect and Scheduling. The learning effect phenomenon was initially reported
in [23]. The author defines a log-linear learning model that we use in our experiments.
Various learning curves have been proposed since then [25].

There are two different approaches to learning in scheduling environments: (i) position-
based approach, meaning that learning is effected by the pure number of times an activity
has been completed; and (ii) sum-of-processing-time approach which takes into account
the processing time of all same activities processed so far [5]. Some works have studied
under which conditions the problem becomes polynomial [4, 3, 26]. In [1], a position-based
scheduling problem with repetitive projects is studied using a two-stage approximation

CP 2024
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approach. It consists of identical projects that can be executed in parallel while respecting
the resource capacity, and each activity requires exactly one unit of one specific resource
type.

Staff allocation has been studied in [24] and [21], respectively with a position based and
a sum-of-processing based learning effect modelling. Learning effect has also been studied in
the case of Discrete Time/Resource Trade-off Problem (DTRTP), as presented in [20, 19].
DTRTP is a sub-problem of the multi-mode RCPSP, where the duration of each activity
depends on the amount of workers or resources assigned to it. Finally, in [13], the authors
introduce four DT-CP formulations for the RCPSP with position-based learning effect, and
provide an empirical comparison of their scheduling and lower bounding performance. In
their study, the effect of learning is modeled by having two duration values for each activity:
a nominal and a reduced one, and there is no repetition factor.

To conclude this section, to the best of our knowledge, there is no work in the literature
addressing simultaneously multi-projects sharing resources, with compound activities and
whose activity duration depends on learning effect.

3 HM-RCPSP/L-C

The components (data) required to define an instance of the high-multiplicity resource-
constrained project scheduling problem with compound activities and learning effect (HM-
RCPSP/L-C) are formally described in this section.

3.1 Problem Inputs
An instance of HM-RCPSP/L-C is a tuple composed of the following elements:

C is the set of project classes (or categories);
for each class c ∈ C, Ic is the set of projects (or instances) of c that have to be realized.
For each project p ∈ Ic, duep represents its due date, i.e. the date at which it should be
finished;
for each class c ∈ C, Ac represents the set of non-preemptive activities that have to be
realized for each project of c. Activities Ac can be partitioned into two sets AA

c and
AC

c that respectively represent atomic activities and compound activities. Intuitively, a
compound activity can be seen as a group of activities. Such an activity spans over all
activities in the group;
for each class c ∈ C, Hc ⊆ AC

c × Ac is the composition relation of c. If a is a compound
activity and b an activity, then (a, b) ∈ Hc expresses that b is encompassed by a (or a
child activity of a). Note that it is possible to have (a, b) if b is a compound activity;
for each class c ∈ C and for each atomic activity a ∈ AA

c , we assume the existence of a
monotonically decreasing duration function, denoted as dura : N+ → N+, which returns
the duration of the activity based on the number of times it has been completely executed
before;
for each class c ∈ C, Pc is a precedence relationship between activities in Ac. If (a, b) ∈ Pc,
then activity a must be finished before the start of activity b;
R is the set of cumulative and renewable resources. For each resource r ∈ R, capar

denotes its capacity.
for each resource r ∈ R, for each class c ∈ C, for each activity a ∈ Ac, consr,a denotes
the amount of resource r consumed by a;
H ∈ N+ is the maximum time horizon.
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We denote ap the instance of activity a ∈ Ac that has to be realized for project p ∈ Ic

and c ∈ C.

Assumptions. An instance of HM-RCPSP/L-C is said to be well-formed if and only if the
following assumptions hold. Note that unless said otherwise, all instances considered in the
paper are supposed to be well-formed.
1. Projects and activities are associated with exactly one class.
2. The duration function associated with each activity is monotonically decreasing. Formally,

∀c ∈ C, ∀a ∈ AA
c , ∀n ≥ 0, dura(n + 1) ≤ dura(n).

3. For each class c ∈ C, we suppose that the set of atomic activities AA
c contains two virtual

activities αc and ωc that respectively represent the start and end activities for a project.
Such activities do not consume any resource, they are not encompassed by any compound
activity and their duration is null. Moreover, αc precedes (resp. ωc follows) all other
activities in Ac.

4. For each class c ∈ C, the graph induced by the compound/atomic activities relationship
is a forest, i.e. each node has at most one parent and there is no cycle. Formally, such a
graph GH

c is composed of a set of nodes N H
c and a set of arcs ArcsH

c that are defined as
follows. N H

c is composed of one node na for each activity a in Ac. ArcsH
c is composed of

one arc (na, nb) for each pair of activities (a, b) ∈ Hc.
5. For each class c ∈ C, for each tree in the forest GH

c , and for each path from the root to an
arbitrary leaf, the resource capacities are sufficient to execute all activities on this path
simultaneously.

6. For each class c ∈ C, the graph GP
c induced by the precedence relationship is acyclic.

To build such a graph, we first define an atomic version of the precedence relationship,
denoted PA

c , in which all precedences of Pc are transposed to atomic activities. Formally,
for all a, b in AA

c , (a, b) belongs to PA
c if and only if there exist two activities d and e in

Ac such that: 1. (d, e) ∈ Pc, 2. there exists a path in GH
c from nd to na and 3. a path

from ne to nb. Then, the set of nodes for GP
c is N P

c = {va | a ∈ AA
c }, that contains one

node for each atomic activity. The set of arcs is ArcsP
c = {(va, vb) | (a, b) ∈ PA

c } and
contains one arc for each pair in the atomic precedence relationship.

▶ Example 1. Figure 1 illustrates a toy example instance of HM-RCPSP/L-C. There are
two classes, c1 and c2. The activities of each class are described on the left table of Figure 1a.
For each project of class c1, 4 activities (+2 dummy activities α1 and ω1) must be performed.
Activities a, b, c, α1 and ω1 are atomic (AA

c1
= {α1, ω1, a, b, c}). Activity a’s duration is

given by function δ1 described in the lower right corner: if no instance of activity a has
been completed yet (i.e. n = 0), then its duration is 3, if one execution has been fully
completed before starting a then its duration is equal to 2, and so on. Activity d is compound
(AC

c1
= {d}) and its children are b and c, as represented on the upper graph of Figure 1b.

This graph also represents the precedence relationship Pc1 . For instance, (α1, d) and (b, c)
both belong to Pc1 . r1 and r2 are the two resources and respectively have a capacity equal
to 3 and 2. Both atomic and compound activities can consume these resources. For instance,
consr1,d = 1 and consr2,b = 1. Two projects, p1 and p2, of class c1 and one project, q, for
class c2 must be realized. Due dates for these projects are respectively equal to 7, 8 and 6.

3.2 Schedule, Solution and Optimality
Schedule. A schedule σ for an HM-RCPSP/L-C instance is defined through the assignment
of a start date to each atomic activity of each project of each class. Formally, if a is an
atomic activity, the start date of ap in σ is denoted startσ(ap).

CP 2024
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C Ic duep

c1
p1 7
p2 8

c2 q 6

R capar

r1 3
r2 2

C Ac dura r1 r2

c1

a δ1 1 0
b δ2 0 1
c δ1 0 1
d - 1 0

c2

e δ2 0 1
f δ1 1 0
g - 1 0 n

δ1(n)
δ2(n)

0
1
2
3

0 1 2 3 4

(a) Example of classes, projects, activities and resources.

c1 :

α1

a

b c

ω1d

c2 :

α2 e f ω2

g

(b) Composition and precedence relation-
ships.

Figure 1 Toy example of a HM-RCPSP/L-C instance.

The end date of ap, where a is an atomic activity and p a project, is denoted endσ(ap).
Because of the learning effect, ap’s duration depends on the number of times activity a has
already been completed for other projects in the same class at the start of ap. The function
ncσ, applied to activity a and time step t, returns the number of times that a has been
completed at t. Formally,

endσ(ap) = startσ(ap) + dura(ncσ(a, startσ(ap))).
ncσ(a, t) =

∑
q∈Ic\{p}(endσ(aq) ≤ t)

In practice, the value of these functions can be determined for a given schedule σ by
ordering the activities executions using their start dates. The start dates of two virtual
activities αc and ωc can be then defined as follows:

startσ(αp
c) = mina∈AA

c
startσ(ap)

startσ(ωp
c ) = maxa∈AA

c
endσ(ap)

Start and end dates of compound activities can be deduced from those of atomic ones:
the start date of a compound activity a (resp. the end date) is equal to the minimum start
date (resp. maximum end date) of activities encompassed by a. For readability, we also use
functions startσ(ap) and endσ(ap) for denoting start and end dates of compound activities.

Solution. A schedule σ is a solution for an HM-RCPSP/L-C instance if and only if the
precedence constraints (Equation 1) are satisfied and the resources capacity is respected
through the entire time horizon (Equation 2).

∀c ∈ C, ∀(a, b) ∈ Pc, ∀p ∈ Ic, endσ(ap) ≤ startσ(bp) (1)

∀r ∈ R, ∀t ∈ J0, H K,
( ∑

c∈C,a∈Ac,p∈Ic

startσ(ap)≤t<endσ(ap)

consr,a

)
≤ capar (2)

Optimal Solution. A solution σ is said to be optimal if it minimizes (in lexicographic order)
the two following optimization criteria: (1) the sum of tardiness for projects (Equation 3),
and (2) the makespan (Equation 4).∑

c∈C,p∈Ic

max{0, endσ(ωp
c ) − duep} (3)

max
c∈C,p∈Ic

endσ(ωp
c ) (4)
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▶ Example 2. Figures 2a and 2b respectively illustrate two solutions σ1 and σ2. We have
startσ(cp1) = 2, i.e. the execution of c in project p1, starts at time 2 in solution σ1. As
δ1(0) = 3, cp1 lasts 3 time units and endσ(cp1) = 5. Still in σ1, at the start of cp2 (time step
6), one execution of c is completed so duration of cp2 is equal to 2. Note that in σ2, when
starting activity cp2 , the execution of cp1 is not completed yet, so the duration of cp2 is equal
to 3.
As the compound activity gq spans activities eq and fq, in solution σ1, this makes gq start
at time 0 and end at time 6. However, in σ2, gq ends at time 3. In both cases, the resource
r1 is consumed all over gq’s duration.
Both solutions satisfy projects due dates. For instance, endσ1(ωp1

c1
) is equal to 5, which is

less than 7. However, the makespan of σ2 is lower than the makespan of σ1, which makes σ2
a better solution.

t

r1

ap1

dp1

fq

gq

dp2

ap2

0 1 2 3 4 5 6 7 8 9

t

r2
bp1 cp1

eq

bp2 cp2

0 1 2 3 4 5 6 7 8 9

ωp1
c1

ωq
c2

ωp2
c1

(a) Solution σ1 with a makespan equal to 8.

t

r1

ap1

dp1

fq

gq
dp2

ap2

0 1 2 3 4 5 6 7 8 9

t

r2
bp1 cp1

eq bp2 cp2

0 1 2 3 4 5 6 7 8 9

ωp1
c1

ωq
c2

ωp2
c1

(b) Solution σ2 with a makespan equal to 7.

Figure 2 Illustration of Example 2 – Due dates are satisfied in both solutions.

4 Symmetry Breaking

In this section, we establish the existence of symmetries between identical activities from
different projects within the same class.

First, because of the learning effect, an activity a that starts in project q later than in
project p can finish earlier in q. This is illustrated on the left part of Figure 3.

t

ap

aq

Solution σ
t

ap

aq

Solution υ

Figure 3 Illustration of Lemma 4’s proof:
σ is not start-end-consistent but υ is.

t

ap

aq

bp

bq

Solution σ
t

ap

aq

bp

bq

(p − q)-permutation of σ

Figure 4 Illustration of a (p − q)-permutation: ap

and aq are swapped.

We address that particular case through Definition 3 and Lemma 4.

▶ Definition 3 (Start-end-consistency). A solution σ is start-end-consistent if for any class
c ∈ C, any atomic activity a ∈ AA

c , and any two projects p, q ∈ Ic, we have:

startσ(ap) < startσ(aq) ⇐⇒ endσ(ap) < endσ(aq)

▶ Lemma 4. If a solution σ is not start-end-consistent then there exists a start-end-consistent
solution υ that is equivalent or better than σ with respect to the two optimization criteria.

CP 2024
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Sketch of proof. Let a be an atomic activity and p and q be two projects for which a solution
σ is not start-end-consistent as in Figure 3. We can build a schedule υ that is equal to σ

except that the start date of ap is delayed until the start date of aq. All precedence and
resource consumption constraints will be naturally satisfied in υ (they are relaxed). ◀

Note that the transformation for obtaining a start-end consistent solution (proof of
Lemma 4) can delay some activities. However, as any activity delayed by the transformation
also ends earlier, criteria can only be improved. From this point onward, we only consider
start-end-consistent solutions. In the following, we define specific moves on schedules, that
we call permutations, and show that they preserve the satisfaction of precedence and resource
constraints.

▶ Definition 5 ((p, q)-permutation). For any solution σ, any class c ∈ C and any two projects
p, q ∈ Ic, a schedule π is a (p, q)-permutation of σ if for all atomic activities a ∈ AA

c \{αc, ωc},
we have:

∀o ∈ Ic \ {p, q}, startπ(ao) = startσ(ao),
if startσ(ap) > startσ(aq), then startπ(aq) = startσ(ap) and startπ(ap) = startσ(aq),
else startπ(ap) = startσ(ap) and startπ(aq) = startσ(aq).

The operation that consists in swapping start dates of a specific atomic activity, excluding the
source and the sink, between two projects is called a swap.

As illustrated in Figure 4, a (p, q)-permutation consists in swapping all atomic activities
of p that start after their counterpart activities in q. Because the start date of compound
activities and source and sink depend only on the start dates of atomic activities, a corollary
of Definition 5 is that all activities in p start before their counterpart activities in q. Note
also that swapping the start dates of atomic activities ap and aq also swaps their duration
and their end dates.

t

ap

aq

bp

bq

a. no swap t

ap

aq

bp

bq

b. ap and aq swapped

t

ap

aq

bp

bq

c. bp and bq swapped
t

ap

aq

bp

bq

d. ap and aq swapped,
bp and bq swapped

Figure 5 Four precedence cases considered
in the proof of Lemma 6.

σ

0
1
2

ap

aq

t

co
ns

r
,a π

0
1
2

ap

aq

t

co
n

s r
,a

(a) Usage of resource r at time t: from 0 to consr,a.
σ

0
1
2

ap

aq

t

co
ns

r
,a π

0
1
2

ap

aq

t

co
ns

r
,a

(b) Usage of resource r at time t: from consr,a to
2consr,a.

Figure 6 Two impossible cases considered in proof
of Lemma 7 when a ∈ AC

c .

▶ Lemma 6. Given a start-end-consistent solution σ, for any class c ∈ C and any two projects
p, q ∈ Ic, the (p, q)-permutation π of σ is precedence-feasible, i.e. it satisfies Equation 1.

Sketch of proof. As inferred by Assumption 5, we consider only precedence on atomic
activities. If π is not precedence-feasible, there exist two atomic activities a and b such
that a precedes b and such that endπ(ap) > startπ(bp) or endπ(aq) > startπ(bq) hold.
As σ is precedence-feasible, then endσ(ap) ≤ startσ(bp) and endσ(aq) ≤ startσ(bq) both
hold. We then consider all possible cases in terms of exchange, as illustrated in Figure 5,
where the dashed lines correspond to an exchange of activities in π. In all cases, if σ is
precedence-feasible, then so is π. ◀
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▶ Lemma 7. Given a start-end-consistent solution σ, for any class c ∈ C and any two projects
p, q ∈ Ic, the (p, q)-permutation π of σ is resource-feasible, i.e. it satisfies Equation 2.

Sketch of proof. The resource feasibility is easy to prove in the case of atomic activities. In
fact, when swapping activities, the consumption of resources does not change. However, in
the case of compound activities, it is possible that some children activities are swapped and
some other not, meaning that duration of compound activities can change when performing
a (p, q)-permutation. In the following, we consider all the cases and show that even with
compound activities, the permutation stays resource-feasible.

We define a function γr,a,t(p, σ) that represents how much the activity a executed for
project p consumes a resource r at a given time step t in σ, i.e. γr,a,t(p, σ) = consr,a if
t ∈ T σ

p,a, 0 otherwise. The consumption of a resource r at each time step t in a schedule σ is
given by the formula

∑
c∈C,p∈Ic,a∈Ac

γr,a,t(p, σ). The proof is divided into several steps.
1. We show that if π is not-resource feasible, there exists a time-step t and a resource r

such that
∑

c∈C,p∈Ic,a∈Ac
γr,a,t(p, π) − γr,a,t(p, σ) > 0. We consider this specific resource

r and this time step t.
2. We prove that the resource capacity violation in π comes only from projects p and q.
3. Let c be the class associated with p and q and a an activity in Ac, we show that the

consumption of r induced by both activities ap and aq is equivalent in π and σ. Formally,
γr,a,t(p, π) − γr,a,t(p, σ) + γr,a,t(q, π) − γr,a,t(q, σ) = 0.
a. If a is an activity atomic, the usage of r unchanged.
b. If a is a compound activity then we consider two cases (Figure 6): (i) if activities ap

and aq do not use r at time t in σ, but at least one of them uses it in π, then we have
γr,a,t(p, σ) = γr,a,t(q, σ) = 0 and γr,a,t(p, π) + γr,a,t(q, π) ≥ consr,a (Figure 5a) ; (ii) if
exactly one activity (ap or aq) uses r at time t in σ and they both use it in π, then
γr,a,t(p, σ) + γr,a,t(q, σ) = consr,a and γr,a,t(p, π) + γr,a,t(q, π) = 2consr,a(Figure 5b).
We show that both cases lead to a contradiction.

All cases imply a contradiction, meaning that π is resource-feasible. ◀

▶ Lemma 8. Given a start-end-consistent schedule σ, for any class c ∈ C and any two
projects p, q ∈ Ic, the makespan of the (p, q)-permutation π of σ is equivalent to that of σ.

Complete proof. Let ϵσ
p,q = maxa∈Ac

(endσ(ap), endσ(aq)) be the date at which both projects
p and q are finished in σ. In π, even if there is a swap between activities, the date when p

and q are both finished does not change, i.e. ϵπ
p,q = ϵσ

p,q. As the timing of all other projects
in π remains the same as in σ, the makespan of π must be equivalent to that of σ. ◀

For the tardiness, only some (p, q)-permutation such that duep < dueq allows to get a
lower or equal tardiness. Therefore, we define a preorder on projects consistent with due
dates and show that it preserves or improves tardiness. Note that we do not define a unique
preorder ≺ based on uniquely considering p ≺c q when duep < dueq, as we allow the user
to set arbitrarily p ≺c q when duep = dueq, provided that the relation remains well-formed.
This is somewhat distantly related to the arbitrary choices made when posting the global
constraint Precedence [17] (for example, between identical projects, you can choose one to
precede the other, as done in [8]).

▶ Definition 9 (Due-date consistent strict preorder). For any class c ∈ C, a strict order ≺c is
due-date consistent for c if ∀p, q ∈ Ic such that duep < dueq, then p ≺c q.
A relation ≺ is a due-date consistent strict preorder if it is the union of due-date consistent
strict preorders ≺c for each class c ∈ C.
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▶ Example 10. Let us consider an instance with two classes, c1 and c2, and for which
projects p1, p2 and p3, and q1 and q2 are respectively associated, and such that duep1 = 7,
duep2 = duep3 = 10, dueq1 = 8 and dueq2 = 6. Then ≺c1= {(p1, p2), (p1, p3), (p3, p2)} is a
due-date consistent strict preorder for c1. Considering (p2, p3) instead of (p3, p2) would also
result in a due-date consistent strict preorder. ≺c2= {(q2, q1)} is the only due-date consistent
strict preorder for c2. ≺ = ≺c1 ∪ ≺c2 is a due-date consistent strict preorder for this instance.

In the following, for a class c ∈ C, a project p ∈ Ic and a schedule σ, let τσ
p denote the

tardiness of project p. Formally, τσ
p = max{0, endσ(ωp

c ) − duep}. τσ denotes the sum of
tardiness of all projects, as expressed in Equation 3.

▶ Lemma 11. Given a start-end-consistent solution σ, a due-date consistent strict preorder
≺, a class c ∈ C and two projects p, q ∈ Ic. If p ≺ q and π is the (p, q)-permutation of σ,
then τπ ≤ τσ, i.e. the tardiness of π is less than or equal to the tardiness of σ.

Sketch of proof. Except from projects p and q, all other projects activities remain the
same in σ and π. Thus, the difference between tardiness of both schedules comes from the
difference tardiness of projects p and q in σ and in π. Intuitively, p always ends earlier
(its tardiness is reduced) but q might end later in π than in σ. We therefore have to show
that τπ

p + τπ
q ≤ τσ

p + τσ
q or τπ

q ≤ τσ
q . We suppose that ap and bq are respectively the latest

activities for p and q in σ. Cases considered in the following are illustrated in Figure 7.
1. If both activities a and b are not swapped between projects p and q in π, so bq still

concludes q in π, which implies τπ
q = τσ

q .
2. If ap and aq are swapped, but bp and bq are not then τπ

p ≤ τσ
p .

a. If endσ(ap) ≤ endσ(bq) then we can show that bq still concludes q in π, so τπ
q = τσ

q .
b. Else, aq concludes q in π and we have to consider several following situations.

i. If endσ(ap) ≤ dueq, then τπ
q = τσ

q = 0.
ii. If endσ(ap) > dueq, then τπ

q = endσ(ap) − dueq and τσ
p = endσ(ap) − duep.

Regardless of the relative positions of endσ(bq), duep and dueq, we show that
τπ

p + τπ
q ≤ τσ

p + τσ
q .

3. It is impossible to have bp and bq being swapped but not ap and aq, because ap and bq

are respectively the latest activities for p and q in σ.
4. If both ap and aq are swapped, and so are bp and bq, then endσ(aq) ≤ endσ(bq) <

endσ(bp) ≤ endσ(ap) then bp and aq are respectively the latest activities for p and q in π.
We prove that τπ

p + τπ
q ≤ τσ

p + τσ
q in several cases: a. both p and q are late in σ, b. p is

late and q is early in σ and c. both p and q are early in σ.
In those all cases, τπ

p + τπ
q ≤ τσ

p + τσ
q , which proves that τπ ≤ τσ. ◀
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Figure 7 Illustration of cases considered in Lemma 11’s proof.
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We now define a ≺-permutation of σ in which (p, q)-permutations are done for all p, q

such that p ≺ q and show that if σ is a solution then the ≺-permutation is also a solution
better or equivalent to σ.

▶ Definition 12 (≺-permutation). Given a solution σ and a due-date consistent strict preorder
≺, a schedule π is a ≺-permutation of σ if, for any class c ∈ C, and any two projects p, q in
Ic such that p ≺ q, π is a (p, q)-permutation of σ.

▶ Lemma 13. Given a start-end-consistent solution σ and a due-date consistent strict
preorder ≺, the ≺-permutation π of σ is a solution with a makespan equivalent to that of σ

and a tardiness as least as good as that of σ.

Complete proof. Let π be a ≺-permutation of a schedule σ. π can be built from σ through
several schedules υ0, . . . , υn where υ0 = σ, υn = π and ∀i ∈ J1, nK, υi is a (p, q)-permutation
of υi−1 with p and q two projects such that p ≺ q. According to Lemmas 6, 7, 8 and 11, each
of these permutations is a solution with an equivalent makespan and equivalent or lesser
tardiness. ◀

This result means that for finding a solution σ to an HM-RCPSP/L-C instance, one may
consider a due date consistent preorder ≺ and look for solutions in which for all p and q such
that p ≺ q, for all activity a ∈ Ac, startσ(ap) ≤ startσ(aq).

5 Solving HM-RCPSP/L-C

In this section we present the two main approaches we have developed for solving HM-
RCPSP/L-C, namely a CP approach and a heuristic-based search approach. They can be
combined, but the exact description of these combinations is left to Section 6.

5.1 Building a CP Model
Regarding the CP approach, in this paper, we use the interval based variable formulation
of Optimization Programming Language (OPL) associated with CP Optimizer [16]. An
interval variable allows us to represent an activity along with its variable starting date, its
variable duration, its mandatory or optional presence in the computed schedule, its earliest
start and latest end dates. The start date, end date and duration of an interval variable are
respectively accessible through functions startOf, endOf and lengthOf. For each class c ∈ C,
for each project p ∈ Ic, for each activity a ∈ Ac, we consider the following variables:

itva,p ∈ J0, H K is an interval variable for the execution of activity ap;
na,p ∈ J0, |Ic|K is an integer variable representing the number of times activity a of class
c was completed before the start of this instance of a, corresponding to ncσ(a, startσ(ap))
defined in Section 3.

Constraints and criteria are encoded as follows:

minimize
( ∑

c∈C,p∈Ic

a∈Ac

max(0, endOf(itva,p) − duep), max
c∈C,p∈Ic

a∈Ac

endOf(itva,p)
)

(5)

such that:

∀r ∈ R,
∑

c∈C,p∈Ic,
a∈Ac

pulse(itva,p, consr,a) ≤ capar (6)

∀c ∈ C, ∀p ∈ Ic, ∀(a, b) ∈ Pc, endBeforeStart(itva,p, itvb,p) (7)
∀c ∈ C, ∀p ∈ Ic, ∀a ∈ AC

c , span(itva,p, {itvb,p|(a, b) ∈ Hc}) (8)
∀c ∈ C, ∀p ∈ Ic, ∀a ∈ AA

c , na,p =
∑

q∈Ic
(endOf(itva,q) ≤ startOf(itva,p)) (9)

∀c ∈ C, ∀p ∈ Ic, ∀a ∈ AA
c , lengthOf(itva,p) = dura(na,p) (10)
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The lexicographic order of criteria is formalized in Equation (5). Constraints (6) are
cumulative global constraints with respect to resource capacities, expressed through the
OPL pulse function. Constraints (7) guarantee that the precedence relationships are satisfied
(OPL function endBeforeStart). Constraints (8) enforce compound activities to span over
their children. Constraints (9) encode the computation of ncσ(a,) at the time the atomic
activity ap starts. The duration with learning effect are pre-computed and atomic activities
are assigned their duration through Element Constraints (10). In addition to the original
constraints mentioned above, symmetry breaking constraints are defined as follows:

∀c ∈ C, ∀p, q ∈ Ic s.t. p ≺c q, ∀a ∈ AA
c , startBeforeStart(itva,p, itva,q) (11)

5.2 Using Squeaky Wheel Optimization
The second main approach we use to address HM-RCPSP/L-C is called Squeaky Wheel
Optimisation (SWO) [14]. This technique consists of constructing an initial solution using
a greedy algorithm. It is followed by an analysis to identify areas for improvement, i.e.
parts of the solution that might improve the objective function score if they are modified.
From this analysis, new priorities are generated, which modifies the sequence in which the
greedy algorithm constructs subsequent solutions. This iterative process is repeated until a
predefined limit is reached.

More precisely, the greedy approach for constructing a solution of HM-RCPSP/L-C
consists in a Parallel Schedule Generation Scheme. Starting with an empty schedule, it
iterates chronologically over the time horizon and fills the schedule with eligible activities.
For a given time step t, an atomic activity a is eligible if Equations (1) and (2) are satisfied
when a starts at time t (taking the compound activity of a into account). Using a choice
heuristic, an eligible activity is inserted at time t and the set of eligible activities is updated.
When this set becomes empty, the process is repeated for the next time step t + 1. The
schedule is complete when all activities have been inserted. Given a set of eligible activities
E , the choice heuristic follows several steps.
1. Because of the symmetry proof, we first remove from E all the activities aq for which there

exists a project p of the same class as q such that p precedes q in the due-date consistent
strict preorder (p ≺ q) and ap has not been inserted yet (ap ∈ E). The resulting set of
eligible activities is denoted ESB .

2. There are two possible cases: a) if there is no late project at the moment, all available
projects with activities in ESB will be considered as candidates; b) otherwise, only the late
projects will be considered as candidates. For each candidate project p of a class c, the
remaining-graph of p is defined as follows: i) for each a ∈ AA

c which is already inserted,
we remove from PA

c the vertex a and all the arcs related to a; ii) the weight of an arc
(a, b) in the remaining-graph is the duration of activity a. Each candidate project p is
assigned a probability based on the ratio CPL′

p/(duep−t) if p is early and 1/CPL′
p otherwise,

where CPL′
p is the critical path length of the remaining-graph of p. One project is then

selected according to the resulting probability distribution. The set of eligible activities
is reduced to Ep

SB by considering only activities from the selected project p.
3. An activity is randomly selected in Ep

SB using a uniform probability distribution.

As the heuristic choice is stochastic, the greedy algorithm is run several times until a
given number of solutions have been constructed without improvement. At each step, the
tardiness of the projects in the best-constructed solution is analysed to modify the probability
of projects for the next cycle. To achieve that, we increase (resp. decrease) the due date
of the most advanced (resp. the tardiest) project: this corresponds to a random portion of
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the smallest amount between the earliness of the most advanced project and the due date
of the tardiest project (in our datasets, we do not have the case in which all projects are
late). Note that these modified due dates are only used to calculate the project selection
probability, not the tardiness objective. This iterative cycle continues until a given timeout
condition is reached, and the best-found solution is returned.

6 Experimentation

In this section, we present the results of some experiments conducted on real-world and
synthetic benchmarks. Before presenting the experimental results, we describe the benchmarks
and the solving approaches tested, including the main ones and their combinations or
derivations.

6.1 Benchmarks
Learning Curves. In this research, we use the log-linear learning curve with a steady learning
state [23, 25, 11]2. Formally, for each class c ∈ C, each atomic activity a ∈ AA

c and each
integer n, we consider the following elements: (i) the duration for the first execution, denoted
dur0

a; (ii) the steady state of learning, denoted dur∞
a , that represents the ultimate duration

of a; (iii) the learning effect la ∈ ]0, 1], that impacts the duration curve slope. Then, for all
n ≥ 0, dura(n) = dur∞

a +
⌈
(dur0

a − dur∞
a ) · (n + 1)log2la

⌉
. In our experiments, we consider

that dur∞
a = 1

2 dur0
a.

Table 1 Features of instances per dataset: number of classes, atomic activities, compound
activities, projects, resources, capacity of resources, and learning rate.

Instances |C| |Ac| |AC
c | |Ic| |R| capar la

PSP-based
small J2, 4K {30, 60}

0 J5, 10K 4
∑
iLIB

capaiLIB
r [0.45, 0.95]

large J5, 7K {60, 90, 120}

Satellite
original 3

≤ 30 ≤ 3
≤ 5

40 ≤ 16
[0.05, 0.95]

extended 6 ≤ 14 0.85

Datasets. We tested our approaches on two datasets presented in Table 1. First, we
created the PSP-based dataset (50 instances), where each class is an RCPSP instance from
PSPLIB [15]. The due dates are computed as follows: a project has a due date equal to the
maximum due date d in the original PSPLIB instance, then for each other project’s due date,
we iteratively add k × d, where k is a random value in [0.3, 0.8]. The time horizon is equal
to 40 (resp. 70) times the largest due dates among the involved PSPLIB instances in small
(resp. large) instances. The capacity of each resource is the sum of the capacities of that
resource from the involved PSPLIB instances. This dataset does not include any compound
activity. This dataset is publicly available ([18]).

The satellite dataset contains 24 instances updated from a satellite manufacturer. The
original set of instances, described in Table 1, covers a time horizon of more than one year
with activities lasting from a few hours to a few days. We only vary the learning rate in these
instances. We have created larger instances by increasing the number of classes, projects,

2 This curve was not provided by our industrial partner but is classically used in the aerospace domain.
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and the horizon from the original data while maintaining the resource capacities. The due
dates for the additional projects have been randomly selected with good diversity: the due
dates are distributed so that there are at most two satellites in every thousand time unit.

6.2 Solving Approaches
We have compared various approaches, based on the main techniques presented in Section 5.

CP-based Approaches. Two CP (variants of) models of HM-RCPSP/L-C are defined as
follows: i) LC, Learning Curve, corresponding to Constraints (5) to (10), and ii) LCSB,
Learning Curve and Symmetry Breaking, including Constraints (11) as well.

SWO Approach. In our implementation, the greedy algorithm is run until the solution has
not been improved 150 times in a row.

Hybrid Approach. SWO is able to produce solutions in a very short time, whereas CP-based
approaches can take longer to find a first “good” solution. Therefore, we have tested an
hybrid approach, denoted HYB, which consists of computing a solution with SWO in a short
time (5 seconds in the experiments) and then using that solution as a starting point for
LCSB (that tries to improve it for the rest of the time).

Constant then Learning Curve Approach. The Constant then Learning Curve approach,
denoted CLC, aims to adress the complexity of dealing with varying durations (due to learning
curves). Such an approach consists of the following steps:
1. we consider the Constant Duration variant of LCSB, denoted CD, in which Constraints (10)

are replaced by constraints imposing a constant duration for all activities (actually solving
HM-RCPSP/C);

2. we extract the resource-accessing order of activities from the CD solution, i.e. the
execution order of all activities;

3. using a Parallel Generation Scheme, we chronologically compute the start date of each
activity using the fixed execution order of step 2., considering that the durations of
activities follow the specified learning curves.

We have tested three variations of this approach, denoted CLC0, CLCmid and CLC∞, depending
on the value chosen as constant duration in CD: this value is respectively dur0

a, 1/2(dur0
a +

dur∞
a ) and dur∞

a . For each dataset, only the results of the variation with the best performance
will be presented in the main paper result tables (complete results for the PSPLib-based
dataset are available online [18]).

6.3 Experimental Results
The tests have been launched using IBM CP Optimizer 22.1.1 through the DOcplex API for
the CP-based approaches and Julia v1.10.2 for the SWO-based approaches, on Intel® Xeon®

CPU E5-2660v3 2.60-3.30 GHz with 62 GB of RAM. All approaches have been launched
twice, to compare them over a short timeout (15 seconds) and a long timeout (2 hours).

Satellite Dataset. For the original satellite instances, all approaches achieve zero tardiness
within 15 seconds, except CLCmid and CLC∞. The final solutions obtained by CP-based
approaches after 2 hours are the same as those obtained after 15 seconds. Interestingly,
LCSB and HYB have successfully proved the optimality of 2 instances after 2 hours (whereas
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SWO has the worst makespan values). For the five extended satellite instances, the tardiness
values are much higher as showed in Table 2. In the 2-hour test, LCSB clearly outperforms
the others in 4 instances out of 5. LC falls behind and struggles to order projects in a way
that minimizes tardiness. LCSB also provides the best makespan values in all instances but
one (not visible in Table 2). Note that the optimality was not proved by any approach. In
the 15-second test, HYB achieves the best tardiness in more than half of the instances, but
CLCmid surprisingly performs best overall.

Table 2 Tardiness values obtained by all solving approaches on the extended satellite dataset.

∑
c,p

|Ac| 2 hours 15 seconds

LC LCSB SWO HYB CLCmid LC LCSB SWO HYB CLCmid

637 1, 341 1, 318 4, 566 1,243 1, 668 5, 516 3, 286 6, 979 2,021 2, 033
913 1, 267 1,210 5, 963 1,210 2, 443 9, 906 9, 981 6, 734 2,544 2, 582

1, 217 2, 004 1,786 13, 174 2, 626 4, 372 48, 099 22, 121 21, 854 12,510 13, 893
1, 526 10, 993 2,135 23, 530 2, 149 5, 132 126, 012 41, 409 33, 228 41, 204 17,430
1, 832 13, 372 3,040 39, 440 4, 403 8, 268 210, 673 30, 827 54, 347 54, 266 26,979

PSP-based Dataset. In Table 3, we present for each criterion and each approach the
number of times the best value is computed (obtained) compared to others, and also the
average difference from the best value found by all approaches, denoted ADBV, which can
be calculated by: ADBV(obj, λ) =

∑
i∈I

(objλ
i − objbest

i )/
∑

i∈I
(objλ

i ̸= objbest
i ), where I is the set of

instances, objλ
i is the final value of the objective obj (either tardiness or makespan) found by

approach λ in instance i, and objbest
i is the best-found value of the objective obj for instance

i by all approaches.

Table 3 Number of times the best value (#Best) is obtained and ADBV values for all solving
approaches on the PSP-based dataset.

Timeout Dataset Objective #Best ADBV

LC LCSB SWO HYB CLC0 LC LCSB SWO HYB CLC0

2h
small Tardiness 21 21 0 21 15 13 27 144 28 113

Makespan 18 19 0 14 0 3 1 14 2 31

large Tardiness 17 16 0 16 7 66 109 629 72 451
Makespan 14 15 4 16 0 7 6 10 7 62

15s
small Tardiness 22 16 0 19 15 48 40 126 38 115

Makespan 16 15 2 10 0 4 3 12 5 33

large Tardiness 15 4 6 3 5 5, 494 – 386 307 2, 011
Makespan 8 2 6 12 0 23 – 7 10 96

In the 2-hour test, for the PSP-based instances, LC, LCSB, and HYB performed best,
successfully meeting all due dates in 31 to 33 out of 50 instances (not visible in Table 3).
Nevertheless, LCSB has a slight advantage when considering the second criterion (makespan).
CLC0 performs satisfactorily but it has a poor ADBV value of tardiness. Clearly, SWO has
the worst performance since it never reaches the best value. Note that the optimality was
not proved by any solving approach regardless the dataset (small or large).
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In the 15-second test, the three approaches LC, LCSB, and HYB keep taking the lead
for the small PSP-based dataset, with a slight advantage for LC. However, for the large
dataset, the pure CP-based approach LC sometimes struggles to find a good solution in time,
resulting in a large ADBV value, even though it achieves the best tardiness in 15 out of 24
instances. SWO showcases its strengths when dealing with big-size instances in a low-timeout
condition, while LCSB cannot find a solution for half of the instances. The hybrid approach
HYB shows the best overall performance in the 15-second test, with the lowest ADBV value
across both small and large PSP-based datasets.

7 Conclusion

In this paper, we have i) formally defined the High Multiplicity RCPSP with Compound
activities and Learning effect, ii) proposed a CP model for this problem, iii) proved the
existence of symmetric projects within each class, and iv) adapted a heuristic-based search
(SWO) using the proof of symmetric projects. Additionally, we compared the performance of
various solving approaches using an industrial satellite dataset and a PSP-based one.

On satellite assembly instances, the approaches presented in this paper can generate a
schedule within a reasonable amount of time. Interestingly enough, we have observed that
the performance of the CP-based approaches was boosted by breaking symmetries on these
industrial instances. Importantly, built schedules allow satellite engineers to effectively scale
resources, particularly human means, and anticipate potential delays. Besides, industrial
partners will be able to fine-tune the schedules according to their environment learning effect
features, as our approach is completely generic on that point.

For future research, it would be beneficial to explore cases where learning effect is shared
among similar activities across different classes, which will render projects from different
classes interdependent. Additionally, considering the uncertainty in learning efficiency could
be explored to enhance the robustness of the schedule.
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Appendix

In this appendix, we provide the complete proofs of lemmas in Section 4 for breaking the
symmetry. Note that we believe that sketches of proof provided in the paper are sufficient
for understanding and reproducing the complete ones.

Note that the complete result tables of the tests in Section 6 are available at the datasets
URL.

A Lemma 4

Complete proof. Let σ be a solution that is not start-end-consistent. There exists a class
c ∈ C, an atomic activity a ∈ AA

c , two projects p and q in Ic such that startσ(ap) < startσ(aq)
and endσ(ap) ≥ endσ(aq). We create a new solution υa,p,q such that for all activities b in
AA

c , for all projects u ∈ Ic such that bu ̸= ap, startσ(bu) = startυa,p,q (bu). Then, for activity
a and project p, we delay the start of activity ap in order to make it start at the same
time as aq. Formally, we have startυa,p,q (ap) = startυa,p,q (aq) = startσ(aq). We also have
endυa,p,q (ap) = endυa,p,q (aq) = endσ(aq).

As ap starts later and finishes earlier in υa,p,q, all precedence that are satisfied in
σ are also satisfied in υa,p,q. The same holds for the resource consumption. If ap is
the activity which concludes project p in σ (i.e. endσ(ωp

c ) = endσ(ap)), then we have
endυa,p,q (ap) ≤ endυa,p,q (ωp

c ) ≤ endσ(ωp
c ). The end date of project p in υa,p,q either becomes

earlier or remains the same as in σ. As the timing for all other projects remains the same as
in σ, the values of both criteria for υa,p,q are either better than or equivalent to σ.

We perform the solution modification iteratively for each tuple (a, p, q) that is not start-
end-consistent. The resulting solution υ is start-end-consistent and at least as good as σ for
both criteria. ◀

t

ap

aq

Solution σ
t

ap

aq

Solution υ

Figure 8 Illustration of Lemma 4’s proof:
σ is not start-end-consistent but υ is.

t

ap

aq

bp

bq

a. no swap t

ap

aq

bp

bq

b. ap and aq swapped

t

ap

aq

bp

bq

c. bp and bq swapped
t

ap

aq

bp

bq

d. ap and aq swapped,
bp and bq swapped

Figure 9 Four precedence cases considered in
the proof of Lemma 6.

B Lemma 6

Complete proof. We assume that π is not precedence-feasible. Since all precedence relations
in Pc can be transposed into PA

c (see Assumption 5), which is concerned only with atomic
activities, this implies the existence of two atomic activities a, b ∈ AA

c such that (a, b) ∈ PA
c

and such that at least one of the following equations hold:

endπ(ap) > startπ(bp) (12)
endπ(aq) > startπ(bq) (13)
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Due to the definition of the start dates for the two virtual activities αc and ωc (see Schedule),
these activities never contribute to a precedence violation and they are not considered in the
following.

Case 1. startσ(ap) ≤ startσ(aq) and startσ(bp) ≤ startσ(bq) (Figure 9a). This means that
there is no swap of activities, and the start dates of ap, aq, bp, bq in π remain the same as in
σ. In this case, end dates are not modified and we have:

endπ(ap) = endσ(ap), startπ(bp) = startσ(bp)
endπ(aq) = endσ(aq), startπ(bq) = startσ(bq)

If any of the conditions 12 and 13 is met, then it means that σ is not be precedence-feasible.
This leads to a contradiction.

Case 2. startσ(ap) > startσ(aq) and startσ(bp) ≤ startσ(bq) (Figure 9b). This means that
in the schedule π, the start dates of ap and aq are swapped, but bp and bq remain the same
as in σ. In this case, we have:

endπ(ap) = endσ(aq) ; startπ(bp) = startσ(bp)
endπ(aq) = endσ(ap) ; startπ(bq) = startσ(bq)

If Cond. 12 is true, then we have endσ(aq) > startσ(bp). Since startσ(ap) > startσ(aq)
from hypothesis, then endσ(ap) > endσ(aq) by the Definition 3. Therefore, we have
endσ(ap) > endσ(aq) > startσ(bp). As a result, σ is not precedence-feasible, leading to
a contradiction.

If Cond. 13 is true, then we have endσ(ap) > startσ(bq). Since startσ(bq) ≥ startσ(bp)
from hypothesis, then we have endσ(ap) > startσ(bp). As a result, σ is not precedence-feasible,
leading to a contradiction.

Case 3. startσ(ap) ≤ startσ(aq) and startσ(bp) > startσ(bq) (Figure 9c). This means that
in the schedule π, the positions of ap and aq remain the same as in σ, but bp and bq are
swapped. In this case, we have:

endπ(ap) = endσ(ap) ; startπ(bp) = startσ(bq)
endπ(aq) = endσ(aq) ; startπ(bq) = startσ(bp)

If Cond. 12 is true, then we have endσ(ap) > startσ(bq). Since startσ(aq) ≥ startσ(ap)
from hypothesis, then endσ(aq) ≥ endσ(ap) by the Definition 3. Therefore, we have
endσ(aq) ≥ endσ(ap) > startσ(bq). As a result, σ is not precedence-feasible, leading to
a contradiction.

If Cond. 13 is true, then we have endσ(aq) > startσ(bp). Since we have startσ(bp) >

startσ(bq), then endσ(aq) > startσ(bp) > startσ(bq). As a result, σ is not precedence-feasible,
leading to a contradiction.

Case 4. startσ(ap) > startσ(aq) and startσ(bp) > startσ(bq) (Figure 9d). This means that
in the schedule π, the positions between ap and aq, and between bp and bq are swapped. In
this case, we have:

endπ(ap) = endσ(aq) ; startπ(bp) = startσ(bq)
endπ(aq) = endσ(ap) ; startπ(bq) = startσ(bp)

If any of the conditions 12 and 13 is met, σ will not be precedence-feasible, leading to a
contradiction.

Every possible cases are leading to a contradiction, so π is precedence-feasible and lemma 6
is proved. ◀
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C Lemma 7

Complete proof. We first define several elements for the proof.
Let T σ

p,a denote the time interval during which the activity a ∈ Ac of project p of a class
c is active in a schedule σ, i.e. Tσ

p,a = {t ∈ J0, H K|startσ(ap) ≤ t < endσ(ap)}.
We then define a function representing the resource consumption of an activity within a

project at a given time step in a schedule.
For any resource r ∈ R, any time step t ∈ J0, H K, any class c ∈ C and any activity a ∈ Ac,

we define a function γ that takes in parameter a schedule σ and a project p ∈ Ic and that
has the following value:

γr,a,t(p, σ) =
{

consr,a if t ∈ Tσ
p,a

0 otherwise
(14)

The consumption of a resource r at each time step t in a schedule σ is given by the
formula

∑
c∈C,p∈Ic,a∈Ac

γr,a,t(p, σ).
Then, we define a function ∆r,a,t(p, σ, π) representing the difference in resource consump-

tion of resource r by activity a in project p between two schedules σ and π, at time step t.
Formally,

∆r,a,t(p, σ, π) = γr,a,t(p, π) − γr,a,t(p, σ)

We now consider a solution σ, a class c ∈ C and two projects p, q ∈ Ic. We suppose the
(p, q)-permutation π of σ is not resource-feasible. This means there exists a time moment
t ∈ J0, H K and a resource r ∈ R such that

∑
d∈C,u∈Id,a∈Ad

γr,a,t(u, π) > capar. Since σ is
resource-feasible, we have

∑
d∈C,u∈Id,a∈Ad

γr,a,t(u, σ) ≤ capar. This implies:∑
d∈C,u∈Id,a∈Ad

(
γr,a,t(u, π) − γr,a,t(u, σ)

)
> 0

and then:∑
d∈C,u∈Id,a∈Ad

∆r,a,t(u, σ, π) > 0 (15)

Following the definition of π (Definition 5), any class d ∈ C, any project u ∈ Id such
that u ̸= p and u ≠ q, and any activity a ∈ Ad, startπ(au) = startσ(au) and endπ(au) =
endσ(au). This means that for any time moment t ∈ J0, H K, γr,a,t(u, σ) = γr,a,t(u, π) and
then ∆r,a,t(u, σ, π) = 0, i.e. the consumption of resource r by activity au does not change.
Equation 15 can be simplified by only considering activities of projects p and q as:∑

a∈Ac

(
∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π)

)
> 0 (16)

Case 1. Consider an arbitrary atomic activity a ∈ AA
c . The two virtual activities αc and

ωc are not considered in the following as they do not consume resources (see Assumption 3).
The two activities ap and aq are positioned in π according to the condition in Definition 5,
that is:

startσ(ap) ≤ startσ(aq) =⇒ startπ(ap) = startσ(ap) and startπ(aq) = startσ(aq)
startσ(ap) > startσ(aq) =⇒ startπ(ap) = startσ(aq) and startπ(aq) = startσ(ap)

In this case, we have Tπ
p,a ∪ Tπ

q,a = Tσ
p,a ∪ Tσ

q,a and Tπ
p,a ∩ Tπ

q,a = Tσ
p,a ∩ Tσ

q,a because:
If startσ(ap) ≤ startσ(aq) then Tπ

p,a = Tσ
p,a and Tπ

q,a = Tσ
q,a

If startσ(ap) > startσ(aq) then Tπ
p,a = Tσ

q,a and Tπ
q,a = Tσ

p,a
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Case 1.1. If there is no swap between ap and aq, then Tπ
p,a = Tσ

p,a and Tπ
q,a = Tσ

q,a. Con-
sumption of resource r is not modified at time t and we have ∆r,a,t(p, σ, π) = ∆r,a,t(q, σ, π) =
0.

Case 1.2. If there is a swap between ap and aq, then Tπ
p,a = Tσ

q,a and Tπ
q,a = Tσ

p,a.
1. If t /∈ T σ

p,a ∪ T σ
q,a, then t /∈ T π

p,a ∪ T π
q,a. Both ap and aq are not being executed at time t

in π, so

γr,a,t(p, σ) = γr,a,t(q, σ) = γr,a,t(p, π) = γr,a,t(q, π) = 0

This implies ∆r,a,t(p, σ, π) = ∆r,a,t(q, σ, π) = 0.
2. If t ∈ (T σ

p,a ∪ T σ
q,a) \ (T σ

p,a ∩ T σ
q,a), then t ∈ (T π

p,a ∪ T π
q,a) \ (T π

p,a ∩ T π
q,a). In both schedules

σ and π, either ap or aq is being executed at time t.
a. If t ∈ Tσ

p,a, t /∈ Tσ
q,a, then we have t ∈ Tπ

q,a and t /∈ Tπ
p,a. This implies:

γr,a,t(p, σ) = γr,a,t(q, π) = consr,a ; γr,a,t(q, σ) = γr,a,t(p, π) = 0

and then:

∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) = −consr,a + consr,a = 0

b. Similarly, if t /∈ Tσ
p,a, t ∈ Tσ

q,a then:

γr,a,t(p, σ) = γr,a,t(q, π) = 0 ; γr,a,t(q, σ) = γr,a,t(p, π) = consr,a

This implies:

∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) = consr,a − consr,a = 0

3. If t ∈ T σ
p,a ∩ T σ

q,a, then t ∈ T π
p,a ∩ T π

q,a. Both ap and aq are being executed at time t in π,
so

γr,a,t(p, σ) = γr,a,t(q, σ) = γr,a,t(p, π) = γr,a,t(q, π) = consr,a

This implies ∆r,a,t(p, σ, π) = ∆r,a,t(q, σ, π) = 0.

From the above, we can conclude that the swap between two atomic activities never violates
the resource constraint as ∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) = 0. Therefore, Equation 16 can be
rewritten as:∑

a∈AC
c

∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) > 0 (17)

Case 2. Consider an arbitrary compound activity a ∈ AC
c . There are two ways for making

∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) strictly positive.
1. If activities ap and aq do not use r at time t in σ, but at least one of them uses it in π,

then we have γr,a,t(p, σ) = γr,a,t(q, σ) = 0 and γr,a,t(p, π) + γr,a,t(q, π) ≥ consr,a. This is
expressed through the following condition.

(t /∈ Tσ
p,a ∪ Tσ

q,a) ∧ (t ∈ Tπ
p,a ∪ Tπ

q,a) (18)

2. if exactly one activity (ap or aq) uses r at time t in σ and they both use it in π, then
γr,a,t(p, σ)+γr,a,t(q, σ) = consr,a and γr,a,t(p, π)+γr,a,t(q, π) = 2consr,a. This is expressed
by

(t ∈ (Tσ
p,a ∪ Tσ

q,a) \ (Tσ
p,a ∩ Tσ

q,a)) ∧ (t ∈ Tπ
p,a ∩ Tπ

q,a) (19)
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(b) Usage of resource r at time t: from consr,a to 2consr,a.

Figure 10 Two impossible cases considered in proof of Lemma 7 when a ∈ AC
c .

Case 2.1. Let the condition 18 be true.
1. If t < startσ(ap) and t < startσ(aq) then for all b ∈ Ac with (a, b) ∈ Hc, we have

t < startσ(bp) and t < startσ(bq). We then have t < startπ(bp) and t < startπ(bq) and
this implies t /∈ Tπ

p,a ∪ Tπ
q,a, leading to a contradiction.

2. If t ≥ endσ(ap) and t ≥ endσ(aq) then for all b ∈ Ac such that (a, b) ∈ Hc, we have
t ≥ endσ(bp) and t ≥ endσ(bq). We then have t ≥ endπ(bp) and t ≥ endπ(bq) and this
implies t /∈ Tπ

p,a ∪ Tπ
q,a, leading to a contradiction.

3. If endσ(ap) ≤ t < startσ(aq) then for all b ∈ Ac such that (a, b) ∈ Hc, we have
startσ(bp) ≤ endσ(bp) ≤ t < startσ(bq). This implies that zero swap operations were
performed. Thus, t /∈ Tπ

p,a ∪ Tπ
q,a, leading to a contradiction.

4. If endσ(aq) ≤ t < startσ(ap) then for all b ∈ Ac such that (a, b) ∈ Hc, we have startσ(bq) ≤
endσ(bq) ≤ t < startσ(bp). We then have startπ(bp) ≤ endπ(bp) ≤ t < startπ(bq) and this
implies t /∈ Tπ

p,a ∪ Tπ
q,a, leading to a contradiction.

All possible situations lead to a contradiction, so condition 18 is never satisfied.

Case 2.2. Let the condition 19 be true.
1. If Tσ

p,a ∩ Tσ
q,a = ∅, then for all t′ ∈ Tσ

p,a, either t′ < startσ(aq) or t′ ≥ endσ(aq). In
the first case, none activities from p and q are swapped, meaning that Tπ

p,a = Tσ
p,a and

Tπ
q,a = Tσ

q,a. In the second case, all activities from p and q are swapped, meaning that
Tπ

p,a = Tσ
q,a and Tπ

q,a = Tσ
p,a. In both cases, Tπ

p,a ∩ Tπ
q,a = Tσ

p,a ∩ Tσ
q,a = ∅, leading to a

contradiction.
2. If Tσ

p,a ∩ Tσ
q,a ̸= ∅, there are four possible situations (see Figure 11):

a. We suppose that startσ(ap) ≤ t < startσ(aq). Because π is a (p, q)-permutation of
σ, for all activity b ∈ Ac such that (a, b) ∈ Hc, we have startσ(bq) ≤ startπ(bq). In
particular, for each b such that (a, b) ∈ Hc, we have t < startσ(bq) ≤ startπ(bq). As
startπ(aq) is the minimum value of start dates of bq, we have t < startπ(aq). This
implies that t /∈ Tπ

q,a, which contradicts Condition 19.
b. We suppose that startσ(aq) ≤ t < startσ(ap). Let b be a child activity of a. Because

startσ(ap) ≤ startσ(bp), we have t < startσ(bp).
Suppose that startσ(bq) < startσ(ap). As startσ(ap) ≤ startσ(bp), we have
startσ(bq) < startσ(bp). Therefore, bq and bp are swapped in π, which means
that startπ(bq) = startσ(bp). We therefore have t < startπ(bq).
Suppose that startσ(bq) ≥ startσ(ap). Because start dates of activities of q in π are
always greater or equal to those in σ, we have startπ(bq) ≥ startσ(bq) ≥ startσ(ap).
This means that t < startπ(bq).

We have t < startπ(bq) for all b ∈ Ac such that (a, b) ∈ Hc, so t < startπ(aq) and then
t /∈ Tπ

q,a, leading to a contradiction.
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Figure 11 Four possible situation if Tσ
p,a ∩ Tσ

q,a ̸= ∅ (Case 2.2.2 – Lemma 7).

c. Let suppose that endσ(ap) ≤ t < endσ(aq). Let b be a child activity of a. Because
endσ(bp) ≤ endσ(ap), we have endσ(bp) ≤ t. π is a (p, q)-permutation so endπ(bp) ≤
endσ(bp). So, endπ(bp) ≤ t.
This means that endπ(ap) ≤ t, which implies that t /∈ T π

p,a, leading to a contradiction.
d. Let suppose that endσ(aq) ≤ t < endσ(ap). Let b be a child activity of a. Because

endσ(bq) ≤ endσ(aq), we have endσ(bq) ≤ t.
Let suppose that endσ(aq) < endσ(bp). Then, endσ(bq) < endσ(bp). With defini-
tion 3, this means that startσ(bq) < startσ(bp). This condition implies that bq and
bp are swapped in π. Therefore, endπ(bp) = endσ(bq). So endπ(bp) ≤ t.
Now suppose that endσ(aq) ≥ endσ(bp). We have endσ(bp) ≥ endπ(bp) (end dates
of activities of p in σ are greater or equal to those in π). Therefore, t ≥ endπ(bp).

We have t ≥ endπ(bp) for all child b of a so t ≥ endπ(ap). This means that t /∈ Tπ
p,a,

leading to a contradiction.

All possible situations lead to a contradiction, so condition 19 is never satisfied. Both
conditions 18 and 19 are never satisfied, so the sum ∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) is never
positive.

In all cases, we have
∑

a∈AC
c

∆r,a,t(p, σ, π) + ∆r,a,t(q, σ, π) ≤ 0 so the (p, q)-permutation
π of σ is resource-feasible. ◀

D Lemma 11

Complete Proof. As all compound activities start and conclude with at least one atomic
activity among their children, the end date of a project only depends on the end date of
its atomic activities. Since σ is start-end-consistent, π is also start-end-consistent because
the swap operation does not change the duration of atomic activities. Thus, we have
startπ(ap) ≤ startπ(aq) and endπ(ap) ≤ endπ(aq), ∀a ∈ AA

c . Because p ≺ q, then for each
activity a ∈ AA

c that is swapped, we have endπ(ap) = endσ(aq) < endσ(ap). This implies
that the statement τπ

p ≤ τσ
p is always true.

Let a, b ∈ AA
c such that ap concludes project p and bq concludes project q in the schedule σ.

There are four possible situations:
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Figure 12 Illustration of cases considered in Lemma 11’s proof.

1. Both a and b are not swapped in π then for each activity i ∈ AA
c , we have endσ(ip) ≤

endσ(ap) ≤ endσ(aq) ≤ endσ(bq) and endσ(iq) ≤ endσ(bq). Whether activity i is swapped
or not, we always have endπ(iq) ≤ endσ(bq) = endπ(bq), so bq is still the activity that
concludes q in π and τπ

q = τσ
q . Since τπ

p ≤ τσ
p is always true, π is at least as good as σ in

this criterion.
2. a is swapped but b is not swapped in π.

a. If endσ(ap) ≤ endσ(bq) then for each activity i ∈ AA
c , we have endσ(ip) ≤ endσ(ap) ≤

endσ(bq) and endσ(iq) ≤ endσ(bq). Whether activity i is swapped or not, we always
have endπ(iq) ≤ endσ(bq) = endπ(bq), so bq is still the activity that concludes q in π

and τπ
q = τσ

q . Since τπ
p ≤ τσ

p is always true, π is at least as good as σ in this criterion.
b. If endσ(ap) > endσ(bq) then for each activity i ∈ AA

c , we have endσ(iq) ≤ endσ(bq) <

endσ(ap) and endσ(ip) ≤ endσ(ap). Whether activity i is swapped or not, we always
have endπ(iq) ≤ endσ(ap) = endπ(aq), so aq is the activity that concludes q in π.
i. If endσ(ap) ≤ dueq then endπ(aq) ≤ dueq. This implies τπ

q = 0 and since τπ
p ≤ τσ

p

is always true, π is at least as good as σ in this criterion.
ii. If endσ(ap) > dueq ≥ duep, then τπ

q = endσ(ap) − dueq and τσ
p = endσ(ap) − duep.

For each activity i ∈ AA
c , there exists iq such that endσ(iq) ≤ endσ(bq). Whether

i is swapped or not in π, we always have endπ(ip) ≤ endσ(bq). Thus we have
τπ

p ≤ max(0, endσ(bq) − duep).
We also have τσ

q = max(0, endσ(bq) − dueq). We next consider three cases for the
relative values for endσ(bq), duep and dueq.

A. If endσ(bq) ≥ dueq, then endσ(bq) ≥ duep. So τπ
p ≤ endσ(bq) − duep. We also

have τσ
q = endσ(bq) − dueq.

Therefore, τπ
p + τπ

q ≤ endσ(bq) − duep + endσ(ap) − dueq. The right member of
that inequality is exactly equal to τσ

p + τσ
q so τπ

p + τπ
q ≤ τσ

p + τσ
q .

B. If duep ≤ endσ(bq) ≤ dueq, then τσ
q = 0 and τπ

p ≤ endσ(bq) − duep. Then, we
have: τπ

p + τπ
q ≤ endσ(bq) − duep + endσ(ap) − dueq. The right part is equal

to endσ(bq) − dueq + τσ
p . Because endσ(bq) ≤ dueq, we have τπ

p + τπ
q ≤ τσ

p . As
τσ

q = 0, we have τπ
p + τπ

q ≤ τσ
p + τσ

q .
C. If endσ(bq) ≤ duep, then endσ(bq) ≤ dueq. This means that τπ

p = τσ
q = 0.

Therefore, τπ
p + τπ

q = endσ(ap) − dueq. Because duep ≤ dueq, τπ
p + τπ

q ≤
endσ(ap) − duep, where the left part is equal to τσ

p . As τσ
q = 0, then τπ

p + τπ
q ≤

τσ
p + τσ

q .
We have shown that in this case, τπ

p + τπ
q ≤ τσ

p + τσ
q so π is at least as good as σ for

the tardiness criterion.
3. a is not swapped but b is swapped in π. This means endσ(ap) ≤ endσ(aq) and endσ(bq) <

endσ(bp). As ap concludes p in σ, we have endσ(bq) < endσ(bp) ≤ endσ(ap) ≤ endσ(aq).
This violates the condition that bq concludes q in σ, so this situation never happen.
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4. Both a and b are swapped in π. We have endσ(aq) < endσ(ap) and endσ(bq) < endσ(bp).
Because ap concludes p and bq concludes q in σ, then:
endσ(aq) ≤ endσ(bq) < endσ(bp) ≤ endσ(ap)
For each activity i ∈ AA

c , iq and ip are such that endσ(iq) ≤ endσ(bq) and endσ(ip) ≤
endσ(ap). Whether i is swapped or not in π, we always have endπ(ip) ≤ endσ(bq) =
endπ(bp) and endπ(iq) ≤ endσ(ap) = endπ(aq). Thus, we have bp concludes p and aq

concludes q in π. If:
a. q is late in σ then p is also late in σ because duep ≤ dueq and endσ(bq) < endσ(ap).

We have:
duep ≤ dueq < endσ(bq) = endπ(bp) < endσ(ap) = endπ(aq)
So both p and q are late in π. We have:
τπ

p + τπ
q = endπ(bp) − duep + endπ(aq) − dueq

= endσ(bq) − duep + endσ(ap) − dueq

= τσ
p + τσ

q

So π and σ are equivalent in this criterion.
b. q is early and p is late in σ then τσ

p = endσ(ap) − duep and τσ
q = 0. Since ap is the last

finished activity for both projects in σ and duep ≤ dueq, the value endσ(ap) − duep

is the maximal possible tardiness of both projects in both schedules, i.e., we have
τπ

p < endσ(ap) − duep and τπ
q < endσ(ap) − duep. If:

i. At least one between p and q is early in π, then at lease one between τπ
p and τπ

q is
equal to zero. Thus, τπ

p + τπ
q < endσ(ap) − duep = τσ

p + τσ
q , so π is better than σ in

this criterion.
ii. Both p and q are late in π, then we have τπ

p = endπ(bp) − duep = endσ(bq) − duep

and τπ
q = endπ(aq) − dueq = endσ(ap) − dueq. We have:

τπ
p + τπ

q = endσ(bq) − duep + endσ(ap) − dueq

= τσ
p + endσ(bq) − dueq

As q is early in σ then endσ(bq) − dueq < 0. This implies τπ
p + τπ

q < τσ
p = τσ

p + τσ
q ,

so π is better than σ in this criterion.
c. Both p and q are early in σ, then we have:

endσ(bq) < endσ(ap) ≤ duep ≤ dueq

and then:
endπ(bp) < endπ(aq) ≤ duep ≤ dueq

This implies that both p and q are early in π, so π and σ are equivalent in this criterion.
From the above, we can conclude that π is at least as good as σ in this criterion. ◀
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