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Abstract

This paper addresses the feedback stabilization problem for a gantry crane system with input constraints. Such a system
is described by a wave equation interconnected at the boundary conditions with a double integrator, which represents the
top cart’s position and its speed. We propose a simple nested-saturation proportional derivative feedback which ensures
that the control inputs remain within certain given limits. Global asymptotic stability of the origin of the closed-loop
system is established. To this end, a new weak Lyapunov functional and a new methodology to study pre-compactness
of solutions are introduced. Numerical simulations are presented to illustrate the effectiveness of the proposed control
method.
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1. Introduction

The gantry crane system consists of three elements: a
top cart, a flexible cable, and a bottom payload. This sys-
tem is practical for transporting the bottom payload to
the desired position and is widely used in various indus-
trial settings. Due to the flexibility of the cable, this sys-
tem is more accurately modeled by PDEs. For a complete
analysis of the full dynamics of the gantry crane system,
see, for example, [1]. The development of effective con-
trol strategies for this system has been extensively studied
in many research papers over the years, see, e.g., [2–7]
and various properties under different setting and condi-
tions have been studied. However, none of these work
studied the problem of feedback design in the presence of
control input limitations. As a matter of fact, in practi-
cal gantry crane systems, actuators often operate within
physical limits, meaning the control input signals are nat-
urally constrained. These limitations, known as actuator
saturation, are critical to account for in control design to
prevent excessive forces or torques that could cause insta-
bility, equipment damage, or even accidents. By consid-
ering the saturation problem, we can ensure that control
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inputs remain within safe boundaries, ultimately improv-
ing the reliability and safety of the system. The gantry
crane control problem in the presence of input saturation
remains, to the best of author’s knowledge, an open prob-
lem. Among the articles which tried to achieve some pro-
gresses in such a direction, we acknowledge the following:
the recent article [8], in which a PID-like controller is em-
ployed, where the cable-dynamics is modeled as an ODE,
thus simplifying the problem from a mathematical point
of view; the work [9, 10] where a nonlinear function is used
to constrain the speed of the top cart but neglecting the
dynamics of the top cart or of the payload; and [11], in
which only the speed signal is used in the feedback, and as
a result, the cart can only stop at a position determined
by the initial conditions (i.e., is not controlled).

We highlight that in recent decades, the control prob-
lem of PDEs and abstract systems in the presence of input
saturation and nonlinearities has done significant progress.
See, for instance, the following (non exhaustive) list of
works: [12–21]. The main strategies rely on leveraging
the dissipativity property of the open-loop system [12–15],
or forwarding-based approach [19–21]. However, we em-
phasize that none of those approaches directly apply to
the particular context of gantry crane at hand. The main
reason lies in the presence of a double integrator dynamics
coupled with a conservative PDE. We remark that it is not
even clear if a simple linear feedback can stabilize the over-
all dynamics due to the presence of multiple eigenvalues on
the imaginary axes, as well known in the finite-dimensional
literature, see, e.g., [22, 23].

In this paper, we suppose to measure the position and
speed of the top cart and propose a simple boundary pro-
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portional derivative feedback within a nested saturation
framework. With this boundary controller, the cart can
be stopped at a prescribed position. Furthermore, we in-
troduce a new weak Lyapunov functional and an innova-
tive approach to study the pre-compactness of solutions.
These elements allow to apply LaSalle’s Invariance Princi-
ple to analyze the stability properties of the origin of the
closed-loop dynamics.

The paper is structured as follows. In Section 2 we
present the main new ideas of this article. To this end,
the discussion is developed in the more general context of
conservative PDE-ODE interconnected systems. The de-
velopments are formal but allow to easily convey the new
key elements and insights characterizing this article. As
a matter of fact, we believe that the proposed principles
may be useful to solve stabilization problems for a class
of systems of physical interest that goes beyond the prob-
lem of gantry crane systems. We refer, in particular, to
impedance passive or Port-Hamiltonian systems (see, e.g.,
[24–26]). In Section 3, we study the gantry crane system
and present the main results of this article: its model, the
new feedback law, and the statement of the main theorems
concerning well-posedness and stability properties. The
proofs of the main results are outlined in Sections 4 and
5. Simulation results are presented in Section 6, followed
by conclusions and perspectives in Section 7.

Notation: In this article, we set R+ = [0,∞) and | · |
denotes the standard Euclidean norm in Rn. For a real-
valued function w defined over R+ × [0, 1], wt (resp. wx)
denotes the partial derivative of w with respect to t (resp.
with respect to x). Let L2(0, 1) be the Hilbert space of
real-valued square-integrable (classes of) functions over
the interval (0, 1). Let H1(0, 1) ⊂ L2(0, 1) be the Hilbert
space of real-valued absolutely continuous functions over
[0, 1] with square-integrable derivative. The symbols ⟨·, ·⟩
and ∥ · ∥ indicate inner products and norms respectively.
Finally, given γ > 0, we define the standard saturation
function satγ : R → R as

satγ(s) =


s, |s| ≤ γ,

γ, s ≥ γ,

− γ, s ≤ −γ,

(1)

for any s ∈ R. We say that α : R+ → R+ is a class-
K∞ function if it is strictly increasing, α(0) = 0 and
lims→∞ α(s) = ∞.

2. General methodology

In this section, we formally present a general methodol-
ogy for stabilizing systems that involve ODE-PDE in an
abstract framework, highlighting the main novelties and
ideas of this article. This approach provides essential in-
sights for addressing the stabilization challenges specific
to the gantry crane system. The general abstract form

of the conservative ODE-PDE interconnected systems we
consider is given as follows:

ż1 = z2,

ż2 = satγ0
(u) + Cy,

ẏ = Ay +Bz2,

(2)

where z = (z1, z2) ∈ R2 is the state of the ODE system,
u ∈ R is the control input, γ0 > 0 is the saturation level of
the control, and y ∈ H is the state of a conservative PDE
living in a Hilbert space H with associated norm ∥ · ∥ and
scalar product ⟨·, ·⟩ satisfying the following passivity con-
dition: for some strictly positive operator P , the following
conditions hold

⟨PAy, y⟩ = 0, ⟨Py,Bz2⟩+ z2Cy = 0,

for any y ∈ H and z2 ∈ R. Such a class of systems nat-
urally appears in many mechanical systems, in which z1,
resp. z2, describes the position (or an angle), resp. the
speed (an angular speed) and y represents some vibra-
tional mode, see, e.g., [24, 27, 28]. Typically, the energy
is used as a Lyapunov function for y, namely P coincides
with the identity element of the Hilbert space H, and the
y-dynamics with input operator B and output operator C
satisfies an input-output passivity property. This has been
well studied in the context of impedance passive systems
(e.g., [25]) or Port-Hamiltonian systems (e.g., [26, Page
22]). As a matter of fact, one can verify the derivative of
the function

2E(y, z2) = ⟨Py, y⟩+ z22 (3)

along solutions to (2) verifies

Ė = z2 satγ0(u).

It is immediately seen that a feedback law u = −kz2 with
positive controller gain k guarantees the function E to con-
verge to zero, but without any guarantee on the asymp-
totic equilibrium of the variable z1.
Our goal is to design a feedback law in order to stabilize

the origin of the system (2). To this end, relying on the
conservative properties of the y-dynamics the main idea
is to use a feedback that depends only on z and ignore
the effect of y. In particular, the proposed control law, in-
spired by the nested saturation approaches and forwarding
approaches (see, e.g., [22, 23]), is selected as

u = −kdz2 − satγ1
(kpz1), (4)

where the proportional and derivative gains kd and kp are
any positive constants and γ1 is a saturation level satisfy-
ing 0 < γ1 < γ0. Formally, we can show that the origin
of the system (2) with controller (4) is globally asymp-
totically stable under an observability assumption of the
pair (A,C). However, we highlight that the presence of
the saturation function concerning the proportional action
satγ1

(kpz1) is crucial; without it, it is not clear if the ori-
gin of the closed-loop dynamics is asymptotically stable.
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Furthermore, if the y-dynamics was an ODE, the result
would directly follows by application of [23, Proposition 1].
In the more general PDE context, however, this approach
cannot be applied because constructing an ISS-Lyapunov
function for the subsystem (z2, y) with feedback u = −kz2
is challenging. For instance, in the case of a gantry-crane
system, it is not even clear whether such a function exists.

As a consequence, in order to develop the stability anal-
ysis, we first modify the function E defined in (3) by con-
structing a new Lyapunov functional as follows:

V (z, y) = E(y, z2) + U(z1),

U(z1) =
1

kp

∫ −kpz1

0

satγ1
(s)ds.

(5)

Such a Lyapunov functional V (5) is inspired by a Lure-
type Lyapunov function in which the integral of the non-
linear function is summed to a quadratic function, see, e.g.,
[29, Page 403], and, to the best of our knowledge, is new
also in the context of finite-dimensional systems (compare,
for instance, to [22, 23]). With some computations (that
will be better developed in Section 5), it can be shown
that V̇ ≤ −α(|z2|) where α is a class-K∞ function. As
a consequence, the Lyapunov functional V is not strict,
namely its derivative is negative only in z2 and not in the
full state (y, z). For this reason, in order to conclude the
asymptotic stability of the origin, LaSalle’s like arguments
need to be employed.

We highlight, however, that in order to use such argu-
ments, typically, pre-compactness of solutions is required.
However, because of the presence of a double integrator
and saturated control, the overall closed-loop dynamics
don’t satisfy typical contraction and monotonicity con-
ditions, that is m-disipativite, see, e.g., [30]. As a con-
sequence, we follow here a different route. In partic-
ular, we first observe that it is possible to prove pre-
compactness of solutions by showing that not only the
state (y, z) is bounded for any initial condition in some
considered Hilbert space, but also its derivative, that is,
(ẏ, ż). Formally, the main idea we follow in this article
is to look for a Lyapunov functional W that depends on
(y, z, satγ0

(u) + Cy,Ay + Bz2), that is, a Lyapunov func-
tional W satisfying

α(∥ẏ∥+ |ż|) ≤ W (z, y, ż2, ẏ), Ẇ ≤ 0

with α being a class-K∞ function, allowing to conclude the
desired result of pre-compactness. We highlight that for-
mally, the energy function E in (3) is also a good candidate
for (ẏ, ż2) when u = 0. Indeed, some simple computations
show that taking

Ed = ⟨P (Ay +Bz2), (Ay +Bz2)⟩+ (Cy)2

its derivative satisfies Ėd = 0. In the context of the gantry
crane system, we will consider a Lyapunov functional of
the form W = V + ż22 + ⟨P ẏ, ẏ⟩. Note, however, that the

resulting Lyapunov functional is not continuously differ-
entiable (i.e., it is not C1), which prevents the direct ap-
plication of standard Lyapunov stability arguments. Con-
sequently, alternative techniques are required to demon-
strate that the functional W is indeed decreasing along
system trajectories.

In conclusion, the main contributions of this article can
be summarized as follows:

1. the use of a simple Proportional Derivative controller
with nested saturation for the class of conservative
PDE-ODE systems (2);

2. the construction of a new (non-quadratic) weak Lya-
punov functional (5) for the overall closed-loop dy-
namics;

3. the use of non smooth Lyapunov functional of the
state and its derivative to study pre-compactness of
solutions.

All these items will be developed for the particular problem
of control of gantry crane. Nonetheless, we believe that
the same principles and ideas can be used in many other
contexts, as formally shown in this section.

3. The gantry crane system: main results

3.1. Problem statement

The gantry crane system is represented by a coupled
PDE-ODE system, as detailed in [1, Page 12] and given
by the following equation:

ρytt(x, t) =
(
S(x)yx(x, t)

)
x
, (x, t) ∈ (0, L)× R+,

yt(0, t) = v(t) ,

Mv̇(t) = satγ0
(u(t)) + S(0)yx(0, t),

yt(L, t) = w(t) ,

mẇ(t) = −S(L)yx(L, t),

(6)

with initial conditions

(y(·, 0), yt(·, 0)) = (y0, yt0) ∈ H1(0, L)× L2(0, L),

(v(0), w(0)) = (yt0(0), yt0(L)).

In the above system, y : (0, L)×R+ → R is the transversal
displacement of the cable, M is the mass of the top cart,
ρ is the mass per unit length of the flexible cable with
length L, and u : R+ → R is the control force applied
to the top cart to guide its motion. The tension S that
distributes through the cable is given by S(x) = mg +
ρg(L − x), where m represents the mass of the bottom
payload and g is the gravitational acceleration. Based on
the physical parameters, we know that S(x) ≥ a0 > 0
for some constant a0. Finally, γ0 is the level of the input
saturation which represents the physical force limits which
have to be satisfied.
The first key aspect to consider is the system’s energy

function E, which represents the total mechanical energy
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of the gantry crane system, excluding the cart’s position
y(0, t), and defined as

E(y, yt, v, w) =

1

2

∫ L

0

(
S(x)yx(·, x)2+ρyt(·, x)2

)
dx+

M

2
v2+

m

2
w2, (7)

which is the sum of the elastic potential energy stored in
the flexible cable, and kinetic energies. With some abuse of
notation, for a fixed state trajectory we define the energy
at time t as E(t) := E(y(·, t), yt(·, t), v(t), w(t)). The same
convention will be used in the sequel for other Lyapunov-
type functions.

When the control input is zero, u(t) = 0, the energy
function E(t) remains constant, meaning that the total
energy is conserved along the trajectories of the system
(6). However, when the control input is nonzero, the rate
of change of the energy E(t) for solutions of system (6) is
given by:

Ė(t) = v(t) satγ0
(u(t)).

A simple feedback law u(t) = −kdv(t), where kd > 0 is a
feedback gain, could be used to stabilize the cart’s veloc-
ity by dissipating energy. This control law would reduce
the kinetic energy over time, driving E(t) → 0. However,
this approach alone does not guarantee stabilization of the
cart’s position y(0, t) at a desired equilibrium point. The
cart may stop, but its final position would depend on the
initial conditions. This limitation is highlighted in [11],
where a boundary controller that only uses the velocity
feedback is unable to fully control the position of the cart.

To address this issue and ensure that the cart stabi-
lizes at a prescribed position, a more sophisticated control
strategy is required. In particular, we propose employ-
ing a nested saturation approach, inspired by the methods
developed in finite-dimensional systems in [22, 23].

3.2. Feedback design

We propose a feedback law given by the equation:

u(t) = −kdv(t)− satγ1
(kpy(0, t)), (8)

where kd, kp and γ1 are positive values to be chosen.

Remark 1. For a small reference value yr, the term
kpy(0, t) can be replaced by kp(y(0, t) − yr), allowing the
cart to be guided to the desired position yr. Without loss
of generality, we consider yr = 0. Additionally, because
the controller is constrained by a saturation function, the
reference yr should relate to the first saturation level γ0.

We now define the Hilbert spaces H as

H = {(y, yt, v, w) ∈ H1(0, L)× L2(0, L)× R2}.

Then, we also define the inner product in H as follows:〈
(y, yt, v, w), (ỹ, ỹt, ṽ, w̃)

〉
H =∫ L

0

(yxSỹx + ρytỹt) dx+Mvṽ +mww̃ + kpy(0)ỹ(0), (9)

that is equivalent to the standard inner product in H.
With the controller (8), the closed-loop control system

is given as follows:

η̇(t) = Aη(t) + B(η(t)) , η = (y, yt, v, w), (10)

with A : D(A) ⊂ H → H and B : H → H are defined as

Aη=


yt

1
ρ (Syx)x

S(0)
M yx(0)− 1

M (kdv + kpy(0))

−S(L)yx(L)
m

,B(η)=


0
0

b(y(0), v)
0

,

with b : R2 → R such that

b(y(0), v) = 1
M (kdv+kpy(0))

+ 1
M satγ0

(
− kdv−satγ1

(kpy(0))
)
. (11)

with the domain of the operator A as

D(A) =
{
(y, yt, v, w) ∈ H2(0, L)×H1(0, L)× R2;(

v
w

)
=

(
yt(0)
yt(L)

)}
,

and with initial condition η(0) = η0 ∈ H.

3.3. Statement of the main results

First, we show that the solution of the closed-loop sys-
tem are well posed.

Theorem 1 (Well-posedness). Consider the closed-
loop system (10) and let the controller gains in (8) sat-
isfy kp > 0, kd > 0, γ0 > 0 and γ1 > 0. For any ini-
tial condition η0 ∈ H (resp., η0 ∈ D(A)), there exists
a unique mild (resp., classical) solution η ∈ C0(R+;H)
(resp., η ∈ C1(R+;H) ∩ C0(R+;D(A))).

To establish the well-posedness of the closed-loop system
(10), we first show that the operator A is m-dissipative.
The existence and uniqueness of solutions are then guar-
anteed by applying a perturbation theorem, which takes
advantage of the fact that the operator B is Lipschitz con-
tinuous. The proof is deferred to Section 4.

Next, we show that if the saturation levels γ0 and γ1 are
correctly chosen, one obtains also asymptotic stability of
the origin of system (10).

Theorem 2 (Lyapunov Stability and Attractivity).
Consider the closed-loop system (10) and let the controller
gains in (8) satisfy kp > 0 and kd > 0 and the saturation
levels satisfy γ0 > γ1 > 0. Then, there exists a class-K∞
function αV such that for all η0 ∈ H,

∥η(t)∥H ≤ αV (∥η0∥H), ∀t ≥ 0. (12)

Moreover, the origin of the closed-loop system (10) is glob-
ally attractive in H for classical solutions. Specifically, for
any initial condition η0 ∈ D(A), the solution satisfies

lim
t→+∞

∥η(t)∥H = 0.
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To establish both Lyapunov stability and asymptotic
stability of the closed-loop system (10), we first define a
weak Lyapunov functional, which will allow us to prove
Lyapunov stability. We then introduce a second Lyapunov
functional to show the pre-compactness of the solution. Fi-
nally, by applying LaSalle’s Invariance Principle and uti-
lizing an observability property, we conclude the proof of
global attractivity of the origin. Details of the proof are
deferred to Section 5.

Remark 2. The result of Theorem 2 guarantees conver-
gence to the origin only for initial conditions in D(A),
which corresponds to classical solutions. In the absence of
contractivity or (more generally) uniform Lipschitz conti-
nuity of the feedback semigroup, it remains unclear whether
the same holds for weak solutions.

4. Proof of Theorem 1 (well-posedness)

Before providing the elements of the proof of Theorem 1,
we need a preliminary result establishing that the operator
A is m-dissipative.

Lemma 1. The operator A generates a C0-semigroup of
contractions on H.

Proof. According to the Lumer-Phillips theorem [30], es-
tablishing that the operator A is m-dissipative requires
verifying two conditions: the dissipativity property and
the range condition, i.e., Ran(IH −A) = H.

For all η in D(A), we have

⟨Aη, η⟩H =

∫ L

0

(
(yt)xSyx + yt(Syx)x

)
dx

+ S(0)yx(0)v − wS(L)yx(L)− kdv
2

≤ −kdv
2 ≤ 0,

(13)

demonstrating that the operator A is dissipative.

To verify the range condition, one needs to ensure that,
pick any η̄ ∈ H, there exists η ∈ D(A) such that η−Aη =
η̄. To this end one can follow very similar arguments as in
[11, Lemma 2.2]. 2

We are now ready to draw our proof of the first result re-
garding the well-posedness of the closed-loop system (10).

Proof of Theorem 1 According to Lemma 1, we have
already established that the operator A is the infinites-
imal generator of a C0-semigroup of contractions on H.
Now, we need to demonstrate that B : H → H is globally
Lipschitz.

First, note that with the notation v̄ = kdv, ȳ = kpy(0),
the function b in (11), can be expressed as

b(y(0), v) = 1
M

(
v̄ + ȳ + satγ0(−v̄ − satγ1(ȳ))

)
.

Recalling the Lipschitz condition for the saturation func-
tion | satγ(x)− satγ(y)| ≤ |x−y|, for any γ > 0, and using
triangular inequality, we obtain

|b(y(0), v)− b(ŷ(0), v̂)| ≤ 3
kd+kp

M |(y(0), v)− (ŷ(0), v̂)|

for any pair of elements (y(0), v) and (ŷ(0), v̂). Hence,
given any vector η = (y, yt, v, w) and η̂ = (ŷ, ŷt, v̂, ŵ), we
obtain

M∥B(η)− B(η̂)∥2H = M |b(y(0), v)− b(ŷ(0), v̂)|2

≤ ℓ∥η − η̂∥2H,

for some ℓ > 0. Thus, according to [31, Theorem 11.1.5],
equation (10) possesses a unique global mild solution in
H for every initial condition in H, and for each η0 in
D(A), it is a classical solution. This completes the proof
of Theorem 1. 2

5. Proof of Theorem 2 (stability)

In this proof, the following steps are employed to show
the deired result.

Step 1. Introduce a weak Lyapunov functional, as de-
scribed in Section 5.1, ensuring it is a coercive func-
tional. Establish the Lyapunov stability of the system
(10).

Step 2. Based on this weak Lyapunov functional, intro-
duce a new Lyapunov functional in Section 5.2 and
prove that the solution of the system (10) is precom-
pact.

Step 3. In Section 5.3, use LaSalle’s Invariance Princi-
ple along with an observability argument to prove the
asymptotic stability of the system (10).

5.1. Weak Lyapunov functional

In this section, we investigate the stability properties
of the closed-loop system (10). Drawing inspiration from
Lyapunov functions commonly used in Lur’e systems (e.g.,
[32]), by setting E(η) = E(y, yt, v, w) as defined in (7) we
define the following Lyapunov functional:

V (η) = E(η) + U(y(0)),

U(p) =
1

kp

∫ −kpp

0

satγ1
(s)ds.

(14)

The function U : R → R+ can be expressed explicitly as:

U(p) =


γ1

kp
(kpp− γ1

2 ), if kpp ≥ γ1,
kp

2 p2, if |kpp| ≤ γ1,
γ1

kp
(−γ1

2 − kpp), if kpp ≤ −γ1.

(15)

Thus, U is a positive definite and proper function. More-
over, there exist class-K∞ functions αU and αU such that:

αU (|p|) ≤ U(p) ≤ αU (|p|), ∀p ∈ R,
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by [29, Lemma 4.3]. Next, we define two class-K∞ func-
tions, αV and αV , for the Lyapunov function V as follows:

αV (s) = min
(s1,s2)∈R2

+, s1+kps22=s
s1 + αU (s2), (16)

αV (s) = max
(s1,s2)∈R2

+,s1+kps22=s
s1 + αU (s2). (17)

For all η ∈ H the following inequalities hold:

V (η) = E(η) + U(y(0)) ≥ E(η) + αU (|y(0)|)
≥ αV (E(η) + kp|y(0)|2) = αV (∥η∥H).

Similarly, we have V (η) ≤ αV (∥η∥H), showing that

αV (∥η∥H) ≤ V (η) ≤ αV (∥η∥H).

To demonstrate Lyapunov stability, let η0 ∈ D(A). The
energy function E is differentiable, and by using the con-
trol law (8), we obtain, for all t ≥ 0:

Ė(t) = v(t) satγ0 (−kdv(t) + satγ1(−kpy(0, t))) . (18)

Similarly, the time derivative of U is given by:

U̇(t) = −v(t) satγ1
(−kpy(0, t)). (19)

To analyze V̇ (t), we consider two cases based on the value
of the control input u(t):

Case 1: |u(t)| ≥ γ0
In this case, since γ0 > γ1 and kd > 0, we have
satγ0

(u(t)) = − sign(v(t))γ0 and | satγ1
(−kpy(0, t))| ≤

γ1. Therefore, recalling (18) and (19), we obtain

V̇ (t) ≤ |v(t)|(−γ0 + γ1). (20)

Case 2: |u(t)| < γ0
In this case, the control input operates in the
linear region, implying that u(t) = −kdv(t) +
satγ1

(−kpy(0, t)). Since | satγ1
(−kpy(0, t))| ≤ γ1, we

have:

V̇ (t) = −kdv
2(t). (21)

As a result, for any initial condition η0 ∈ D(A), the time
derivative V̇ (t) is nonpositive for all t. Hence, V is a non-
increasing function of time. Consequently, for all t ≥ 0,
we have

αV (∥η(t)∥H) ≤ V (t) ≤ V (0) ≤ αV (∥η0∥H),

which further implies:

∥η(t)∥H ≤ α−1
V (αV (∥η0∥H)) .

This property is also valid for weak solutions. Thus, the
origin of the system (10) is Lyapunov stable, completing
the first part of Theorem 2.

5.2. Precompactness of solution

To establish the global asymptotic stability of the origin
of (10), we need to employ Lasalle’s Invariance Principle.
This requires verifying that the set of solutions is precom-
pact, as detailed in [10, 33]. Therefore, we first establish
the following lemma.

Lemma 2. The canonical embedding from D(A) equipped
with the graph norm, into H is compact.

Proof. Let’s recall the definition of the graph norm asso-
ciated to the operator A

∥η∥2gr := ∥η∥2H + ∥Aη∥2H

=

∫ L

0

(
S(x)y2x + ρy2t

)
dx+Mv2 +mw2 + kpy(0)

2

+

∫ L

0

(
S(x)(yt)

2
x + 1

ρ (S(x)yx)
2
x

)
dx

+M
(S(0)

M yx(0)− 1
M (kdv + kpy(0))

)2
+ 1

m (S(L)yx(L))
2 + kpv

2.

To prove the lemma, we need to establish the following
two results: first, there exists a positive scalar C̄ such that
∥η∥2D(A) ≤ C̄∥η∥2gr, for all η ∈ D(A); second, each bounded

sequence in D(A) is precompact in H.
Observing the right-hand side of the above equation, we

can see that
∥η∥2D(A) ≤ C̄∥η∥2gr. (22)

Now, considering a sequence {ηk}k∈N in D(A) bounded
with the graph norm. Based on (22), we find that the se-
quence {ηk = (yk, ytk, vk, wk)}k∈N is bounded in the space
D(A) and therefore in H2(0, L)×H1(0, L)×R2. Further-
more, by [34, Theorem 9.16], we know that the canonical
embedding from H2 to H1 (resp. H1 to L2) is compact.
As a result, {ηk}k∈N possesses a sublimit that converges
in H = H1(0, L)× L2(0, L)× R2, as required. 2

Given that the operator η ∈ D(A) 7→ Aη + B(η) ∈ H
is not m-dissipative operator, unlike the situation in [10],
it is not straightforward to establish boundedness of the
solution in the graph norm associated to this operator.
This is however established in the following result.

Lemma 3. For all initial condition η0 in D(A), the func-
tion t ∈ R+ 7→ ∥Aη(t) + B(η(t))∥H is bounded.

Proof. To begin with, we define the new function W as
follows:

W (t, s) = cV (t) + E

(
η(t+ s)− η(t)

s

)
, (23)

for all t ≥ 0, s is a positive parameter and E is defined in
(7) and c is a positive real number. For each t, note that

W (t)= lim
s→0+

W (t, s)=cV (t) + E (Aη(t) + B(η(t))) , (24)
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(recall that classical solutions are C1) and it can be
checked similarly as before that there exists a class-K∞
function such that

W (t) ≥ αW (∥Aη(t) + B(η(t))∥H) , ∀t ≥ 0. (25)

We take the time derivative along the trajectories of sys-
tem (10) and get

∂W

∂t
(t, s) = cV̇ (t)

+

∫ L

0

S(x)
yx(x, t+ s)− yx(x, t)

s

yxt(x, t+ s)− yxt(x, t)

s
dx

+

∫ L

0

yt(x,t+s)−yt(x,t)
s

(
S(x)

yxt(x, t+ s)− yxt(x, t)

s

)
x

dx

+ S(0)
yx(0, t+ s)− yx(0, t)

s

v(t+ s)− v(t)

s

+
v(t+ s)− v(t)

s

satγ0
(u(t+ s))− satγ0

(u(t))

s

− S(L)
w(t+ s)− w(t)

s

yx(L, t+ s)− yx(L, s)

s
.

By using integration by parts for the above equality, we
further obtain that the time derivative of this function is

∂W

∂t
(t, s) = R(t, s), (26)

where

R(t, s) = cV̇ (t) +

(
v(t+ s)− v(t)

s

)
×
(
satγ0

(u(t+ s))− satγ0
(u(t))

s

)
.

From (26), we know that W (·, s) is C1 and (26) can be
rewritten as

W (t, s)−W (0, s) =

∫ t

0

R(r, s)dr. (27)

Let us first show that for each fixed r in [0, t), R is upper
bounded. Several cases may be distinguished.

If (|u(r)| > γ0): By continuity of the function u, there
exists s∗ such that for all s in (0, s∗). Since
satγ0(u(r)) = satγ0(u(r+s)) = γ0, from (26), we have

R(r, s) = cV̇ (r) ≤ 0 ,∀s ∈ (0, s∗).

If (|u(r)| < γ0): There exists s∗ such that for all s in
(0, s∗), u(r + s) < γ0 and r + s∗ < t. In this case,
both u(r) and u(r+ s) lie in the linear region. There-

fore, R satisfies

R(r, s)

≤ cV̇ (r)− kd

(
v(r + s)− v(r)

s2

)2

+

∣∣∣∣v(r + s)− v(r)

s

∣∣∣∣×∣∣∣∣min{|kpy(0, r + s)|, γ1} −min{|kpy(0, r)|, γ1}
s

∣∣∣∣
≤ −ckdv

2(r)

+
1

4kd

∣∣∣∣min{|kpy(0, r + s)|, γ1} −min{|kpy(0, r)|, γ1}
s

∣∣∣∣2
≤ −ckdv

2(r) +
k2p
4kd

(
y(0, r)− y(0, r + s)

s

)2

.

However, we have from equation (12)∣∣∣∣y(0, r)− y(0, r + s)

s

∣∣∣∣ ≤ max
τ∈[0,t]

|v(τ)| < ∞.

This implies that

R(r, s) ≤
k2p
4kd

( max
τ∈[0,t]

|v(τ)|)2, ∀s ∈ (0, s∗). (28)

If (|u(r)| = γ0): Let s∗ be such that r+ s∗ < t. For each
s in [0, s∗), depending on the value of u(r+ s), one of
the former two case may be considered and it yields

R(r, s) ≤
k2p
4kd

( max
τ∈[0,t]

|v(τ)|)2, ∀s ∈ (0, s∗). (29)

Hence, for each r, R(r, s) is upper bounded for s small
enough, the bound being independent on r. With (reverse)
Fatou’s lemma, we have

lim
s→0+

∫ t

0

R(r, s)dr ≤
∫ t

0

lim sup
s→0+

R(r, s)dr.

Again, we can distinguish several cases,

Case 1 (|u(r)| > γ0):
From the former computation,

lim sup
s→0+

R(r, s) = cV̇ (r) ≤ 0 ,∀s ∈ [0, s∗).

Case 2 (|u(r)| < γ0): We obtain the bound

lim sup
s→0

R(r, s) =

(
−ckd +

k2p
4kd

)
v2(r).

Hence, picking c sufficiently large such that −ckd +
k2
p

4kd
< 0, it yields

lim sup
s→0

R(r, s) ≤ 0.
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Case 3 (|u(r)| = γ0): This simply gives the max of the
former two possibilities which is negative.

And consequently, for each t, we showed that

lim
s→0+

∫ t

0

R(r, s)dr ≤ 0.

This yields with (24) and (27)

W (t) ≤ W (0).

and consequently, from (25), we get the result. 2

Lemma 4. Given η0 in D(A), the trajectory {η(t), t ≥ 0}
is a precompact subset of H.

Proof. First of all, given η0 in D(A) the following in-
equality holds:

∥Aη(t)∥H ≤ ∥Aη(t) + B(η(t))∥H + ∥B(η(t))∥H ,∀t ≥ 0.

By Lemma 3, t ∈ R+ 7→ ∥Aη(t) + B(η(t))∥H is bounded.
Moreover, B is Lipschitz in H and by Equation (12),
t ∈ R+ 7→ ∥η(t)∥H is bounded, we get that t ∈ R+ 7→
∥Aη(t)∥H is bounded. According to Lemma 2 it yields
that the trajectory {η(t), t ≥ 0} is precompact in H. 2

5.3. Asymptotic stability

In this part of the proof we show the asymptotic con-
vergence to the equilibrium as stated in the Theorem. Ac-
cording to [35, Théorème 1.1.8] or [36, Proposition 2.1], the
ω-limit set ω(η0) is a nonempty invariant subset of H that
attracts (in the norm of H) the state trajectory η originat-
ing from η0. Furthermore, as seen in the proof of Lemma 4,
the D(A)-norm of η remains bounded, which implies with
a closedness argument that ω(η0) ⊂ D(A). Now, following
LaSalle’s Invariance Principle, proving asymptotic conver-
gence to the origin amounts to showing that ω(η0) = {0}.
To do so, we consider a classical solution (with an abuse
of notation, denoted by the same symbols) such that
V̇ (t) = 0 for all t ≥ 0. This implies v(t) = 0 for all
t ≥ 0 and yields the following conditions:

ρytt(x, t)− (S(x)yx(x, t))x = 0,

yt(0, t) = 0 , S(0)yx(0, t) + satγ1
(−kpy(0, t)) = 0,

yt(L, t) = w(t) , mẇ(t) + S(L)yx(L, t) = 0.

(30)

We now show that the only possible solution to (30) is
y(x, t) = 0.

From yt(0, t) = 0 of (30), we know that y(0, t) is a con-
stant. We integrate the first line of (30) with respect to x
from 0 to L and t from 0 to τ :

ρ

∫ τ

0

∫ L

0

ytt(x, t) dxdτ =

∫ τ

0

∫ L

0

(S(x)yx(x, t))x dx dτ.

(31)

Furthermore, using integration by parts, the left-hand side
of (31) becomes

ρ

∫ τ

0

∫ L

0

ytt(x, t) dx dτ = ρ

∫ L

0

(
yt(x, τ)− yt(x, 0)

)
dx.

(32)
By substituting the two boundary conditions in (30), the
right-hand side of (31) becomes∫ τ

0

[S(x)yx(x, t)]
L
0 dt

=

∫ τ

0

(
S(L)yx(L, t)− S(0)yx(0, t)

)
dt

=

∫ τ

0

(
−mytt(L, t) + satγ1

(−kpy(0, t))
)
dt

= [−myt(L, t)]
τ
0 +

∫ τ

0

satγ1(−kpy(0, t))dt

= −mw(τ) +mw(0) + τ × constant,

(33)

where in the last step, we use the fact that y(0, t) does not
depend on time t. Combining (32) and (33), we get

τ × constant = ρ

∫ L

0

(
yt(x, τ)− yt(x, 0)

)
dx

+mw(τ)−mw(0). (34)

By applying Young’s inequality, one gets that

ρ

∫ L

0

yt(x, τ)dx+mw(τ)

≤

∣∣∣∣∣ρ
∫ L

0

yt(x, τ)dx+mw(τ)

∣∣∣∣∣
≤ ρ

∫ L

0

|yt(x, τ)|dx+ |mw(τ)|

≤ ρL
2 + ρ

2

∫ L

0

|yt(x, τ)|2dx+
m

2
+ m

2 w(τ)
2

≤ 1
2 (m+ ρL) + V (τ).

Similarly, we can get

−ρ

∫ L

0

yt(x, 0)dx−mw(0) ≤

∣∣∣∣∣−ρ

∫ L

0

yt(x, 0)dx−mw(0)

∣∣∣∣∣
≤ 1

2 (m+ ρL) + V (0).

Then, it gives that, for all τ ∈ R+,

τ × constant ≤ (m+ ρL) + 2V (0), (35)

which means that this constant should be 0 and yields
y(0, t) = 0. The end of the proof follows [37, Lemma 2.3]
or [38, Lemma 3.2]. Finally, we can get the only triv-
ial solution to system (30). Hence, by LaSalle Invariance
Principle, the conclusion of the Theorem holds.

8



6. Simulations

In this section, we demonstrate the effectiveness of the
proposed boundary controller (8) for the system described
by (6), subjected to control constraints. The parameters
of the gantry crane system are specified as follows: M =
2.1 kg, m = 10 kg, ρ = 0.2 kg/m, g = 9.8 m/s2, and
L = 1 m. The two saturation levels are γ0 = 1, and
γ1 = 0.5, and the controller gains are kp = 0.5 and kd = 3.
In the numerical simulation part, we primarily utilize the
finite difference method to approximate the solution to
the closed loop system (10). We discretize both the space
and time domains using grid spaces of ∆x = 0.01 and
∆t = 0.0001, respectively. The initial conditions are given
as y(x, 0) = 1 + 0.1 sin(π2x) and yt(x, 0) = 0.
Figure 1(a) illustrates the evolution of the displacement

y(x, t) over time. The cart’s position y(0, t) stabilizes at
zero around t = 30, as shown in 1(b). The saturation con-
troller response, which saturates at γ1 = 0.2, is depicted in
Figure 1(c), while the L2-norm ∥y(·, t)∥L2 is presented in
Figure 1(d). These simulation results demonstrate the ef-
ficacy of the proposed control method for the gantry crane
system.

(a) The position y(x, t).
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(b) The position y(0, t).
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(c) Evolution of controller
satγ0 (u(t)).
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(d) Evolution of ∥y(·, t)∥L2 .

Figure 1: The transient dynamics of the gantry crane system with
controller (8).

7. Conclusions

This paper addresses the stabilization problem of a
gantry crane system modeled by a PDE-ODE, constrained
by input saturation. The controller is a simple propor-
tional derivative controller with a nested saturation, us-
ing the displacement and speed of the cart. The well-
posedness of the problem is resolved using Lipschitz per-

turbations, and the stability of the origin is demonstrated
through Lyapunov theory and LaSalle-like arguments.

For future work, it would be worthwhile to explore the
addition of an integral action so that to obtain a PID-like
controller to improve system’s performance and robustness
against disturbances and model uncertainties.
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