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Acousto-optics consists of launching acoustic waves in a medium (usually a crystal) in order to
modulate its refractive index and create a tunable optical grating. In this article, we present the
theoretical basis of a new scheme to generate acousto-optics in a gas, where the acoustic waves are
initiated by the localized absorption (and thus gas heating) of spatially-modulated UV light, as was
demonstrated in Y. Michine and H. Yoneda, Commun. Phys. 3, 24 (2020). We identify the chemical
reactions initiated by the absorption of UV light via the photodissociation of ozone molecules present
in the gas, and calculate the resulting temperature increase in the gas as a function of space and
time. Solving the Euler fluid equations shows that the modulated, isochoric heating initiates a
mixed acoustic/entropy wave in the gas, whose high-amplitude density (and thus refractive index)
modulation can be used to manipulate a high-power laser. We calculate that diffraction efficiencies
near 100% can be obtained using only a few millimeters of gas containing a few percent ozone fraction
at room temperature, with UV fluences of less than 100 mJ/cm2—consistent with the experimental
measurements. Our analysis suggests possible ways to optimize the diffraction efficiency by changing
the buffer gas composition. Gases have optics damage thresholds two to three times beyond those
of solids; these optical elements should therefore be able to manipulate kJ-class lasers.

I. INTRODUCTION

Acousto-optics is a well-known method used to control
and shape lasers pulses [1]. It consists of launching a
sound wave in a medium (usually a crystal), for example
using a piezo-electric transducer; the pressure from the
wave modulates the refractive index in the crystal, cre-
ating a tunable optical grating. The same process can be
achieved in a gas. While acousto-optics effects in gases
have been known for a long time [2], their potential for
high-power lasers and their applications was only recently
outlined [3, 4]. The key benefit of using gases is their
higher optics damage threshold compared to solids, typ-
ically by two to three orders of magnitude; for example,
a damage threshold of 1.6 kJ/cm2 was measured in Ref.
[3]. Since optics damage is what dictates the physical
size (and in large part the cost) of high-power laser fa-
cilities, gas optics could be transformational for the area
of high-power lasers and their applications, including in-
ertial confinement fusion (ICF) or inertial fusion energy
(IFE). Compared to plasma optics, which also aim at ma-
nipulating high-power lasers beyond the damage thresh-
old of solids [5–11], gases offer the advantage of being
generally easier to control; like plasma optics, they can
also be transient and re-created at high repetition rate.
This makes them a potentially very attractive solution
to the problem of the final optics elements in future IFE
facilities, where they could sustain the direct exposure to
the target and the extreme levels of radiation and debris
while protecting the rest of the laser chain.

However, because the refractive index of gases is gen-
erally close to 1, the maximum index modulation achiev-
able in gases is much smaller than what is routinely done
in solids. The length of gas-based diffractive elements

must be increased to compensate the small index modu-
lation in order to reach high diffraction efficiencies, which
can be challenging for practical applications. For exam-
ple, an acousto-optic grating was recently demonstrated
in air using an ultrasound transducer [4]; achieving 50%
diffraction efficiency required propagating through a to-
tal of approximately 0.5 meters of grating length (seven
passes through a 7 cm grating). An alternative technique
consists in launching acoustic waves in a gas via the ab-
sorption of a spatially-modulated “imprint” laser beam;
the modulated absorption leads to localized heating of
the gas, which launches an acoustic/entropy wave. This
scheme, proposed by Michine and Yoneda [3], can gener-
ate waves with much larger refractive index modulation
amplitudes δn (δn ∼ 10−5–10−4, vs. ∼ 10−7 in Ref.
[4]), which then leads to higher diffraction efficiencies in
much shorter grating sizes: Ref. [3] reports a robust
96% efficiency over a 1 cm gas optics at 10 Hz opera-
tions. The larger amplitude of the index modulation also
considerably increases the bandwidth of the grating: for
volumetric transmission gratings, the spectral acceptance
(i.e., the maximum bandwidth that can be diffracted by
the grating) for a pulse incident at the Bragg angle and
assuming small incidence angle is ∆λ/λ ≈ 2δn(Λ/λ)2,
where ∆λ is the bandwidth, λ the wavelength and Λ the
grating wavelength—and the angular acceptance (max-
imum deviation from the Bragg angle) is ∆θ ≈ δnΛ/λ
[12]. Gratings with very small bandwidths can only
diffract near-perfectly collimated and narrow-band (i.e.,
long-pulse) beams; the very high gas density modulation
achievable using photochemically-induced acoustic waves
allows much higher bandwidths than using transducers,
which should expand the range of applications of these
optical elements.
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In this article, we present a comprehensive description
of the physics and chemistry of acousto-optics elements
in gases generated by the absorption of a modulated UV
“imprint” beam (cf. Fig. 1). Reviewing the large body of
work on the cycle of ozone in the atmosphere allowed us
to identify the main chemical reactions initiated by the
products of the photodissociation of ozone by UV light.
We calculate the reaction enthalpies and solve the reac-
tion rates equations coupled with the saturated absorp-
tion of the UV light; deriving the fraction of energy avail-
able as heat for each reaction based on the relevant time-
scales gives the heating rate of the gas. We then solve the
linear fluid equations using the gas heating as initial con-
ditions; we find that the isochoric heating of the gas by
the chemical reactions leads to a mixed acoustic/entropy
wave in the gas, where the density and temperature mod-
ulations oscillate out of phase. The density—thus re-
fractive index—modulation from the wave turns the gas
into a transient optical grating; the index modulation
is non-sinusoidal along the modulation direction x and
non-uniform along the longitudinal direction z due to the
saturated absorption of the UV light by ozone depletion.
We calculate the diffraction efficiency of this gas grating
and, consistent with Ref. [3], we find that using a mixed
oxygen/ozone gas with a few percent ozone fraction and
a <100 mJ UV imprint beam over 1 cm2 transverse area
can generate a Bragg grating that can in principle diffract
a kJ-class laser beam with nearly 100% efficiency over less
than 1 cm. Our theoretical diffraction model is validated
against 3D paraxial wave propagation simulations. We
also show that replacing oxygen by carbon dioxide as the
buffer gas is expected to increase the performance of the
system by almost a factor 10 (in terms of length of the
gas or fraction of ozone), due to more favorable chemical
reactions between the ozone photodissociation products
and CO2.

The rest of the article is organized as follows: in Sect.
II, we describe the saturated absorption of the UV light
by ozone, and the subsequent chemical reactions leading
to localized and isochoric gas heating. Section III de-
scribes the dynamics of the acoustic and entropy waves
initiated by the gas heating, and the resulting formation
of a spatially modulated refractive index in the gas (i.e.,
an optical grating). Section IV discusses the diffraction
efficiency of a laser beam incident onto the grating at the
Bragg angle. Finally, Sect. V describes how the scheme
can potentially be optimized by using a different buffer
gas, e.g., by using CO2 instead of O2.

II. UV ABSORPTION AND GAS HEATING

In this section we describe how the absorption of UV
light by ozone is converted into heat, both via collisional
relaxation of the dissociation products (O and O2) and
via chemical reactions between the products and the sur-
rounding buffer gas. The general setup, similar to Ref.
[3], is illustrated in Fig. 1. A spatially modulated UV
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FIG. 1. Illustration of gas optics mechanism: a) a spatially
modulated imprint laser with its wavelength λuv ∈ [200 –
300] nm gets absorbed in a gas mixture (located between the
dashed lines) containing a small fraction of ozone and a buffer
gas. The absorption dissociates the ozone molecules, lead-
ing the rapid heating of the surrounding gas in the “bright”
UV fringes. b) The gas heating initiates an acoustic/entropy
wave, whose density modulation has an associated refractive
index modulation—thus turning the gas into a transmission
grating. Using a UV laser with clean phase front and a flat-top
intensity profile can in principle achieve a high-quality grating
if the gas volume is well-contained within the UV modulation
volume along z, as illustrated here. c) A high-power laser
beam (with 527 nm wavelength in this illustration) incident
on the gas grating at the Bragg angle can be diffracted with
efficiencies near 100%.

laser (as can be generated by the interference between
two beams, or passing a single beam through a Fres-
nel biprism) whose wavelength is in the ozone Hartley
band (λ ∈ [200 – 300] nm) propagates through a gas
mixture containing a small fraction of ozone and a buffer
gas (e.g., O2). Upon absorption, each UV photon dissoci-
ates one ozone molecule into O and O2. The dissociation
products have translational energies far greater than the
background gas’ (assuming room temperature), and will
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rapidly heat the surrounding gas molecules via collisions.
The products also initiate exothermic chemical reactions
with the gas, which can contribute significantly to the
gas heating, as will be shown below.

The absorption of ultraviolet light by ozone in the
Hartley band (λ ∈ [200 – 300] nm) is a well-documented
process due to its importance in the absorption of UV
light by the atmosphere [13]. Absorption of a UV pho-
ton in the Hartley band leads to the photodissociation of
an ozone molecule into O and O2, following two channels:

hν +O3 → O2(
1∆g) + O(1D) (1)

→ O2(
3Σg) + O(3P ) . (2)

The first channel, often referred to as the “1D channel”
in the literature, occurs with 90% probability and leads
to the formation of O and O2 in electronically-excited
states, with electronic energies of 1.97 eV and 0.98 eV
for O(1D) and O2(

1∆g), respectively (cf. Table I). The
second, “3P channel”, leads to the formation of O and
O2 in their ground electronic states, with a probability
of 10% [14].

O2(
1∆g) O(1D) O2(

3Σg) O(3P)

Eel 0.98 1.97 0 0

ET 0.19 0.37 0.74 1.47

Erot 0.17 0 0.59 0

Evib 0.23 0 1.15 0

TABLE I. Energy partition of the products of the photodis-
sociation of ozone (in eV), from Refs. [15, 16]. Eel, ET , Erot

and Evib are the electronic, translational, rotational and vi-
brational energies.

Since the absorption of one UV photon leads to the
dissociation of one ozone molecule, the energy balance
for the photodissociation can be written as

hν = D0 + Eel + ET + Erot + Evib , (3)

where D0 = 1.05 eV is the photodissociation energy of
ozone, and Eel, ET , Erot and Evib are the electronic,
translational, rotational and vibrational energies of the
products, respectively (the translational and rotational
energies of the ozone molecule are ≈ 0.04 eV for room
temperature, and are thus neglected since they are typ-
ically much smaller than the energies of the products).
The energy partition for the dissociation products for a
UV wavelength of 248 nm (hν = 5 eV) was measured
in Refs. [15, 16] and is reported in Table I. Approxi-
mately 4 eV of excess energy (hν − D0) is available for
the products after the 5 eV photon has dissociated the
O3 molecule. For the 1D photodissociation channel, ap-
proximately 3 eV go into excited electronic states of the
products, leaving 1 eV available into translational, rota-
tional and vibrational energy. The 3P channel provides 4
eV available as translational, rotational and vibrational
energy.

The first (and most important) mechanism for heat-
ing the surrounding gas is the “direct” collisional re-
laxation of the photodissociation products with the gas
molecules. The collision frequency of a fast particle
against a background of slow particles (assumed station-
ary) is given by νc = π(rfast+rslow)

2vfastnbgd [17], with
rfast, rslow the kinetic radii of the fast and slow parti-
cles, vfast the fast particle velocity and nbgd the density
of the background gas. The kinetic collision diameters
of O and O2 are 2.5 Å [18] and 3.46 Å, respectively.
We obtain collision times (τc = 1/νc) for the fast dis-
sociation products against the background oxygen gas
of 100 ps and 68 ps for O2(

1∆g) and O(1D), and 51 ps
and 34 ps for O2(

3Σg) and O(3P). The mean free paths
lc = vfastτc = 1/[πnbgd(rfast + rslow)] are 0.11 µm and
0.14 µm for O2 and O (independent of the velocity for
hard sphere collisions, thus independent of the dissocia-
tion channel).

The mean free paths and collision times are thus much
shorter than the UV modulation period (Λ ∼ few tens of
µm) and the temporal scale of the subsequent acoustic
waves (τs = Λ/cs ∼100 ns, with cs the sound speed in
the gas—cf. Sect. III). We can therefore assume that all
the translational and rotational energy of the dissociation
products will contribute to heating the gas locally and
instantaneously (i.e., isochorically). On the other hand,
the dissipation of the vibrational energy is typically much
slower and is not expected to contribute to gas heating
at our time scales; the relaxation rates of O2(

3Σg) were
measured to be on the order of µs−1 at most [21].

While the direct collisional relaxation of the transla-
tional and rotational energies of the products will consti-
tute the main source of heating for the duration of the
UV pulse (10 ns in Ref. [3] and in this article), the chemi-
cal reactions between the photodissociation products and
the surrounding buffer gas, including the “quenching” of
the electronic energy for the 1D channel, will also be a
significant contributor. Table II summarizes all the reac-
tions contributing to the overall heating and energy bal-
ance over a typical 10 ns time scale. Other processes, like
the radiative de-excitation of the excited electronic states
or termolecular (three reactants) reactions, are too slow
to contribute to the localized gas heating initiating the
acoustic wave. In particular, the regeneration of ozone
via O+2O2 →O2+O3 has a reaction rate of ≈ 6× 10−34

cm6/s, which occurs over ∼ µs timescale at room tem-
perature in our conditions. In this table and throughout
the rest of the paper, the notations O, O2 and O3 with-
out specification of the electronic state configuration will
usually refer to the electronic ground state of the atoms
or molecules.

All the reactions in Table II are exothermic, with
the reaction enthalpy ∆rH

0 = Σ∆fH
0(products)

−Σ∆fH
0(reactants). The formation enthalpies ∆fH

0

for the atoms and molecules considered here are given in
Table III. For consistency with the other reactions we
defined the reaction rate for the photodissociation pro-
cess as k0 = k0a + k0b = σc, with σ = 1.1 × 10−17 cm2
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No. Reaction Rate [cm3/s] −∆rH
0 [eV] Eheat [eV] Ref.

0a hν+O3 → O2(
1∆g)+O(1D) k0a=0.9×3.3e-7 0.96 0.73

0b hν+O3 → O2+O k0b=0.1×3.3e-7 3.95 2.8
1a O(1D)+O2 → O+O2(

1Σg) k1a=0.8×3.95e-11 0.34 0.29 [19]
1b O(1D)+O2 → O+O2(

1∆g) k1b=0.2×3.95e-11 0.99 0.84 [19]
2a O(1D)+O3 → 2O2 k2a=1.2e-10 6.0 4.3 [19]
2b O(1D)+O3 → O2+2O k2b=1.2e-10 0.9 0.81 [19]
3a O2(

1Σg)+O3 → O+2O2 k3a=1.2e-11 0.53 0.42 [20]
3b O2(

1Σg)+O3 → O3+O2 k3b=1e-11 1.63 1.16 [20]

TABLE II. Summary of all the reactions contributing to the heating of the gas over the few ns timescales relevant to gas optics.
∆rH

0 is the reaction enthalpy, and Eheat is the sum of translational and rotational energies of the products, which constitutes
the energy available to heat the surrounding gas molecules over the relevant time scales for each reaction.

the ozone absorption cross-section in the center of the
Hartley band and c the speed of light.

O (∆fH
0 = 2.58) O2 (∆fH

0 = 0)

O(3P): 0 O2(
3Σg): 0

O(1D): 1.97 O2(
1∆g): 0.98

O2(
1Σg): 1.63

TABLE III. Electronic energies of the excited levels of O and
O2 considered in this paper (all numbers are expressed in eV).
The formation enthalpies ∆fH

0 are for the ground electronic
states; for ozone, ∆fH

0 =1.48 eV.

The reaction energy available to heat the gas, Eheat in
Table II, is the sum of the translational and rotational
energies. In the absence of measurements of the energy
partition of the reaction products (between translational,
rotational and vibrational modes) except for the pho-
todissociation process (reaction 0, cf. Table I), we make
the assumption of equilibrium equipartition in order to
estimate Eheat for all the other reactions, with the vi-
brational modes activated. The monoatomic O molecule
has 3 modes for translational energy, O2 (linear molecule
with 2 atoms) has 3, 2 and 2 modes for translational, ro-
tational and vibrational energies, and O3 (three atoms,
non-linear) has 3, 3, and 6 modes for translational, ro-
tational and vibrational energies. We then use conser-
vation of momentum between the reaction products (ne-
glecting the initial center of mass kinetic energy of the
reactants, since the products are generated with veloci-
ties much higher than the background gas thermal veloc-
ity) to calculate the ratio of translational energy between
the products, which ultimately gives the “weight” of each
energy mode for each of the products. We can then cal-
culate Eheat by taking the available energy from the re-
action enthalpy and removing the vibrational energy of
the polyatomic molecules. For example, for reaction 1a,
O(1D)+O2 → O+O2(

1Σg):

• conservation of momentum for the products,
mOvO = mO2vO2, yields ET (O) = 2ET (O2);

• equilibrium energy equipartition for O2, with
3, 2 and 2 modes for translational, rota-

tional and vibrational energies, respectively, leads
to Erot(O2) = Evib(O2) = 2

3ET (O2), and
thus to the relative energy “weights” [6,3,2,2]
for [ET (O), ET (O2), Erot(O2), Evib(O2)] with
ET (O)+ET (O2)+Erot(O2)+Evib(O2) = −∆rH

0;

• thus, Eheat,1a = −∆rH
0 − Evib(O2) = − 11

13∆rH
0

= 0.29 eV.

For reactions with three products, we assume equipar-
tition for the translational energies of the products [22],
such that the ratio of translational energy of one product
ET,i to the total for all the products, ET,tot, is given by

ET,i
ET,tot

=
1−mi/M

Np − 1
, (4)

where mi the mass of the product i, M is the sum
of the masses of all the products, and Np is the
number of products. For example, for reaction 2b,
O(1D)+O3 → O2+2O, we obtain the relative weights
[2,3,3] for [ET (O2), ET (O), ET (O)].

In reality the products are not at equilibrium; how-
ever, assuming equilibrium equipartition is not expected
to introduce a large error on Eheat since the only differ-
ence will be on the fraction of energy contained in the
vibrational modes. For example, assuming equipartition
for reaction 0 leads to a <10% error on Eheat compared
to the values in Table I, based on actual measurements.

To estimate the total gas heating, we must calculate
the evolution of the different species and reactions for
the duration of the UV imprint beam, coupled with the
absorption of the UV laser (which is saturated due to the
depletion of ozone via photodissociation). We solve the
following system of equations numerically, as a function
of time and propagation direction z for an arbitrary x
(we assume that the UV intensity modulation is along x,
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cf. Fig 1):

∂t[O3] = −(k0a + k0b)[hν][O3]

−(k2a + k2b)[O3][
1D]

−(k3a + k3b)[
1Σg][O3] , (5)

∂t[
1D] = k0a[hν][O3]

−(k1a + k1b)[
1D][O2]

−(k2a + k2b)[
1D][O3] , (6)

∂t[
1∆g] = k0a[hν][O3] + k1b[

1D][O2] , (7)

∂t[
1Σg] = k1a[

1D][O2]

−(k3a + k3b)[
1Σg][O3] , (8)

(∂t + c∂z)[hν] = −cσ[hν][O3] . (9)

The square brackets denote densities; we also omit the
molecule to simplify the notations, e.g., [1D] refers to the
density of O(1D), etc. Upon solving Eqs. (5)–(9), we
obtain the spatio-temporal (z, t) profiles of densities for
all the molecules, as well as the photon density [hν] =
I/chν with I the UV laser intensity and ν its photon
frequency (h is Plank’s constant).

Figure 2 shows the laser intensity profile I(z, t) and
the ozone density [O3](z, t) for typical experimental con-
ditions. The laser propagates towards z > 0 and has a
square temporal profile with 10 ns duration, and the gas
volume is assumed to have a spatial density profile for the
ozone along z following a super-Gaussian profile of order
8 and full width at half maximum of 1 cm (red lineout in
Fig. 2b—a well-contained gas density is easy to realize at
ambient pressure using a flow tube [3]). The UV modula-
tion is assumed to have a contrast of one and fill a larger
volume than the size of the diffracted beam, so that the
grating can be assumed independent of y, with a sharp
entrance boundary and Λ constant throughout. After 10
ns, the laser penetrates further into the gas (Fig. 2a) due
to the depletion of ozone (Fig. 2b) which saturates the
absorption.

Note that the laser intensity and ozone density can be
very well approximated analytically, by noticing that the
ozone depletion is largely dominated by the laser absorp-
tion in Eq. (5) and that the laser transit time through
the length of the gas (33 ps for 1 cm of gas) is typically
much shorter than the UV pulse duration, which means
that the time derivative in Eq. (9) can be neglected.
The space-time evolution of the UV intensity and ozone
density is therefore dominated by only two coupled equa-
tions, ∂t[O3] = −k0[hν][O3] and ∂z[hν] = −σ[hν][O3],
with [O3] and [hν] functions of z and t and k0 = k0a+k0b;
these coupled equations can be solved analytically—for
example, they have the same form as the equations de-
scribing nonlinear crossed-beam energy transfer in two
spatial dimensions. Following the same derivation de-
scribed in Ref. [23] (Sect. 10.1.3), we obtain the space
and time dependent solutions for the saturated absorp-
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FIG. 2. a) Laser intensity I(z, t)/I0, and b) density of ozone
[O3](z, t)/[O3]0 as a function of time and propagation direc-
tion z, for a 10 ns square UV pulse and an initial laser inten-
sity I0 = 1.2× 107 W/cm2 (fluence F0 = 120 mJ/cm2). The
gas mixture contains 2% of ozone with oxygen as the buffer
gas, at atmospheric conditions ([O3]0 = 5× 1017 cm−3). The
red dashed lineout in b) represents the spatial profile of the
initial ozone density vs. z (in arbitrary units).

tion of the UV laser and ozone density depletion:

I(z, t) = I0
et/tdep

ez/zabs − 1 + et/tdep
, (10)

[O3](z, t) = [O3]0
ez/zabs

ez/zabs − 1 + et/tdep
, (11)

where I0 = I(0, t) and [O3]0 = [O3](z, 0) are the vacuum
UV intensity and the initial ozone density, and zabs =
1/σ[O3]0 and tdep = hν/σI0 are the linear UV absorption
scale-length and ozone depletion time-scale.
We can then calculate the total heating rate by sum-

ming up the contributions from all the reactions in Table
II, according to

∂tUh = (0.73k0a + 2.8k0b)[hν][O3]

+(0.29k1a + 0.84k1b)[
1D][O2]

+(4.3k2a + 0.81k2b)[
1D][O3]

+(0.42k3a + 1.16k3b)[
1Σg][O3] , (12)

where Uh is the energy density in eV/cm3 (function of
z and t) that can be converted into heat. This rate
accounts for both the “direct” heating from collisional
relaxation of the photodissociation products discussed
above (reactions 0a and 0b), as well as all the other chem-
ical reactions between the products and the surrounding
gas.

The local temperature increase over the duration of
the UV pulse is then calculated as

∆T (x, z) =
Uh(x, z)

[O2]cv(O2)
, (13)

where Uh(x, z) =
∫ τ
0
∂tUh(x, z, t)dt is the total deposited

energy density available for heating the gas at the end
of the UV pulse (of duration τ), [O2] is the density of



6

the background oxygen and cv(O2) its isochoric heat ca-
pacity. We assumed that the ozone fraction was small
enough to neglect its contribution (and the contribution
of the other reactions’ products) to the heat capacity
of the gas. The initial modulated UV intensity profile
at z = 0 is assumed to be of the form I(x, z = 0) =
I0[1+ cos(Kx)] for 0 < t < τ , with K = 2π/Λ and Λ the
modulation wavelength (i.e., the grating spatial period).

A typical heating profile ∆T (x, z) is shown in Fig. 3,
at the end of a 10 ns UV pulse with average fluence
F0 = τI0 = 60 mJ/cm2 and a 2% ozone concentration.
Figure 3b shows lineouts at z = 1, 3 and 5 mm. The line-
outs show evidence of saturation of the gas heating due
to ozone depletion: the transverse profile at the begin-
ning of the UV propagation (z = 1 mm), where heating
is maximum (because the UV light has not been fully
absorbed yet) is non-sinusoidal; whereas the profile after
further propagation becomes sinusoidal again, like the
UV transverse intensity profile. Note that the ozone de-
pletion shown in Fig. 2 for a fluence of 1.2× 107 W/cm2

corresponds to the x = 0 location (modulo λ) on Fig. 3,
where I(x, z = 0) = I0[1 + cos(Kx)] with I0 = 6 × 106

W/cm2. Figure 3c shows the contributions of the differ-
ent reactions from Table II to the total heating under the
same UV fluence conditions. The direct heating by colli-
sional relaxation of the photodissociation products (reac-
tion 0) dominates, but the other reactions also contribute
significantly; in particular, the contribution of reactions
2 and 3 increases with higher ozone fractions, since ozone
is a reactant for these reactions.

The modulated gas heating by the UV beam then
sets the initial conditions for the acoustic/entropy wave,
as the resulting pressure modulation launches hydrody-
namic gas motion upon release, as discussed in the next
section.

III. ACOUSTIC/ENTROPY WAVE

To investigate the gas response to the modulated heat-
ing, we describe the gas by its fluid quantities ρ, v and
p (mass density, velocity and pressure). Because vari-
ations along z are dictated by the UV absorption pro-
file, which is on the order of the linear absorption length
zabs = 1/σ[O3]0, they typically occur over distances
much longer than Λ (the characteristic spatial scale along
x); for example, for 2% ozone fraction we have zabs = 1.8
mm, whereas Λ is typically on the order of a few tens
of microns. We can therefore assume that the hydrody-
namics is 1D along x. The following analysis is assumed
to be for a given z, with the initial amplitude of the tem-
perature modulation provided by the analysis from the
previous section. We start with the Euler fluid equations:

∂tρ+ ∂x(ρv) = 0 , (14)

∂tv + (v∂x)v = −∂xp
ρ

. (15)

We linearize the fluid quantities, ρ = ρ0 + ρ1 etc., and
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FIG. 3. a) Temperature increase ∆T [K] for the background
O2 gas at the end of the 10 ns UV pulse, for an average UV
fluence of 60 mJ/cm2 (average intensity I0 = 6×106 W/cm2)
and an initial fraction of ozone of 2%. b) Temperature pro-
file lineouts at z = 1, 3 and 5 mm. c) Contributions of the
reactions 0, 1, 2 and 3 from Table II to the total gas heating
(integrated in space and over the duration of the UV pulse)
as a function of ozone fraction.

expand the Euler equations to first order:

∂tρ1 + ρ0∂xv1 = 0 , (16)

∂tv1 = −∂xp1
ρ0

. (17)

The isochoric gas heating resulting from the UV laser
absorption creates an initial temperature modulation in
the gas while the density remains constant over the du-
ration of the UV pulse. Once the heating is done, the
gas is set in motion adiabatically; its response to the
initial temperature disturbance follows ρ ∝ p1/γ , with
γ the adiabatic index. Inserting into Eq. (16) gives
∂tρ1 = (ρ0/γp0)∂tp1. Taking the time derivative of Eq.
(16), spatial derivative of Eq. (17) and combining the
two gives the usual wave equation for the pressure per-
turbation:

(∂2t − c2s∂
2
x)p1 = 0 , (18)
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where cs = (γp0/ρ0)
1/2 is the sound speed. Using the

d’Alembert formula with the initial pressure perturba-
tion p1(x, t = 0) = Rsρ0T1 = Rsρ0∆T (x), with Rs the
specific gas constant and T1 = ∆T (x) the modulated
temperature increase at the end of the UV pulse calcu-
lated in the previous section, immediately gives:

p1(x, t)

p0
=

1

2

[
∆T (x+ cst)

T0
+

∆T (x− cst)

T0

]
, (19)

where T0 is the initial gas temperature (the 10 ns dura-
tion of the UV pulse is treated as an initial impulse com-
pared to the slower time scale of the wave). The pressure
perturbation forms the expected standing wave, as the
sum of two counter-propagating waves propagating at cs
towards ±x.

Next we solve for the other fluid quantities. We first
integrate Eq. (17) vs. time to get v1 = −(1/ρ0)

∫
∂xp1dt

(with v1(t = 0) = 0). Inserting into Eq. (16) and using
Eq. (18) gives ρ1 = p1/c

2
s + f(x), where f is a constant

of integration depending on the initial conditions. Since
ρ1(t = 0) = 0, we have f(x) = −p1(x, t = 0)/c2s, which
leads to the solution for the density perturbation:

ρ1(x, t)

ρ0
=

1

2γ

[
∆T (x+ cst)

T0
+

∆T (x− cst)

T0

]
− 1

γ

∆T (x)

T0
. (20)

Finally, we can derive the temperature perturbation T1
via p1 = Rsρ0T1 +Rsρ1T0, leading to

T1(x, t)

T0
=
γ − 1

2γ

[
∆T (x+ cst)

T0
+

∆T (x− cst)

T0

]
+
1

γ

∆T (x)

T0
. (21)

These expressions for the density and temperature
modulations follow a typical acoustic (standing-)wave be-
havior, except for the presence of the non-propagating
term ∆T (x) in the equations. This disturbance is as-
sociated with the initial conditions, and corresponds to
an “entropy mode”. To shed light on its meaning, we
consider the entropy s = cv ln(p) − cp ln(ρ) + cst. and
linearize it to first order like the other fluid quantities,
s = s0 + s1; the first order perturbation is:

s1 = cv

[
p1
p0

− γ
ρ1
ρ0

]
(22)

= cv
∆T (x)

T0
, (23)

where we used the definition of the adiabatic index γ =
cp/cv and substituted the expressions from Eqs. (19)–
(20) in Eq. (22).

We recognize the non-propagating term appearing in
the density and temperature equations, Eqs. (20)–(21).
Physically, this comes from the initial heating of the gas

by the chemical reactions: because the heating is iso-
choric, the entropy of the gas increases with the tem-
perature, leading to an initial entropy modulation along
x at time 0, s1(x) = cv∆T (x)/T0. Because the initial
temperature modulation is positive everywhere (the gas
is heated by the reactions), the entropy also increases
everywhere. After the heating has taken place, the adia-
batic equation of state for the evolution of the gas implies
that the entropy must stay constant, ∂ts = 0: therefore,
the initial entropy modulation introduced by the rapid
chemical heating remains throughout the subsequent evo-
lution of the gas, as a constant, non-propagating pertur-
bation of density and temperature. Note that the en-
tropy mode does not impact the pressure: indeed, defin-
ing ρ1s/ρ0 = −∆T (x)/γT0 and T1s/T0 = ∆T (x)/γT0
the density and temperature perturbations associated
with the entropy mode, and decomposing the pressure
perturbation into an acoustic and entropy components,
p = RsρT = Rs(ρ0 + ρ1ac + ρ1s)(T0 + T1ac + T1s), we see
that the pressure perturbation p1s associated with the
entropy mode is equal to p1s = Rs(ρ0T1s + T0ρ1s) = 0.

To summarize: the resulting wave, as described by
Eqs. (19)–(23), is a mixed acoustic/entropy wave, com-
prised of a standing acoustic wave (sum of two counter-
propagating waves) and a constant, non-propagating en-
tropy mode s1(x) with no associated pressure perturba-
tion. If the initial heating of the gas had been adia-
batic instead of isochoric, there would have been no ini-
tial entropy modulations, and only the standing acous-
tic wave would have been present. In a system of finite
size along x, the two counter-propagating acoustic waves
should eventually exit the system, leaving the steady-
state entropy mode behind—until the slow diffusion in
the gas eventually damps it out [24]. Because the col-
lision mean free path is much smaller than the physical
scale of the wave (i.e., its wavelength Λ), diffusion should
occur over time scales much greater than the ones we are
considering here. Our analysis is consistent with Ref.
[25] when neglecting spatial envelope effects and diffu-
sion (cf. their Eq. (18)); in that paper, the entropy mode
was described as a “thermal grating” or “thermon”; our
different nomenclature aims to avoid confusion with the
“thermal gratings” introduced in Ref. [26], where the re-
fractive index modulation is created by the temperature-
dependence of the index, which is not what we are talking
about—and could not achieve the type of index modula-
tion described here.

An example of hydrodynamic evolution of the gas is
shown in Fig. 4, for the initial temperature modulation
calculated in the previous section, taken from Fig. 3b
at z = 1 mm. The presence of the entropy mode leads
to out-of-phase oscillations between the temperature and
density modulations. This is different from a standard
standing acoustic wave, with adiabatic initial conditions
for the pressure perturbation, where density and temper-
ature oscillate in phase.

The expressions for the fluid quantities, Eqs. (19)–
(21), show that for an initial temperature disturbance
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FIG. 4. Acoustic/entropy wave dynamics initiated by an ini-
tial gas heating ∆T (x) taken from Fig. 3b at z = 1 mm, with
∆Tmax = 88 K, i.e., ∆Tmax/T0 = 0.3 for room temperature:
a) pressure perturbation p1/p0, b) entropy, s1/cv, c) temper-
ature, T1/T0, and d) density, ρ1/ρ0. Time is normalized to
the acoustic period τs = Λ/cs and space to the modulation
wavelength Λ.

∆T (x) with spatial period Λ, the maximum amplitude of
the density modulation is reached at t = τs/2+jτs(j ∈ N)
with τs = Λ/cs (cf. Fig. 4d), with

ρ1(x, τs/2)

ρ0
=

1

γ

∆T (x+ Λ/2, z)−∆T (x, z)

T0
. (24)

For a sinusoidal temperature modulation, with
∆T (x + Λ/2) = −∆T (x), we obtain ρ1,max/ρ0 =
(2/γ)T1,max/T0. The coefficient 2/γ is due to the pres-
ence of the entropy mode: for a pure acoustic mode,
the proportionality coefficient would be 1/(γ − 1). For
oxygen, with γ = 7/5, the peak density modulation is
therefore equal to 10/7 times the initial peak tempera-
ture modulation introduced by the UV laser. The density

modulation amplitudes generated by this technique can
be up to tens of percents—e.g., it is ± 21% in Fig. 4, with
∆Tmax/T0 = 0.3. This very large amplitude is consistent
with the measurements from Ref. [3]; it corresponds to
an equivalent sound level of about 180 dB, far beyond
what piezoelectric transducers can deliver.
Finally, since the index of refraction n of the gas obeys

n − 1 ∝ ρ (with n − 1 ≪ 1), we obtain the refractive
index modulation at t = τs/2 as a function of the initial
temperature modulation from Eq. (20):

∆n(x, z,
τs
2
) = (n0 − 1)

ρ1(x, z, τs/2)

ρ0
(25)

=
n0 − 1

γ

∆T (x+ Λ/2, z)−∆T (x, z)

T0
,

(26)

where ∆T (x, z) is the temperature modulation derived
in the previous section, Eq. (13), and n0 the background
index of the gas. Figure 5 shows the spatial profile
of the index modulation ∆n(x, z) at t = τs/2 created
with the same conditions as the previous figures. The
maximum (peak-to-valley) index modulation amplitude
reaches ∆nmax ≈ 10−4 under these conditions. Like for
the temperature profile in Fig. 3b, the transverse re-
fractive index profile by the entrance of the gas cell (z
= 1 mm), where the UV absorption—and thus the gas
heating—is saturated, is generally non-sinusoidal. Here,
however, even at ±20% amplitude the density modula-
tions remain largely sinusoidal.
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FIG. 5. Refractive index modulation (i.e., optical grating)
created at t = τs/2 with the same conditions as the previous
figures (60 mJ/cm2 of average UV fluence and 2% ozone con-
centration). a) Index modulation ∆n(x, z); b) lineouts along
x taken at z = 1, 3 and 5 mm.
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IV. DIFFRACTION OFF THE INDEX
MODULATION

We now wish to calculate the diffraction of a laser beam
off the optical grating associated with the index modula-
tion ∆n(x, z) from acoustic/entropy waves derived in the
previous section. In general, light incident on a grating
(or any structure with a periodic index modulation) along
the wave vector ki can be diffracted into multiple orders,
along the wave-vectors km = ki − mK, with m ∈ N
and |ki| = |km| = k (K is the grating wave vector, with
|K| = K = 2π/Λ), allowing constructive interference of
the grating’s scattering centers (cf. Fig. 6). Limiting
diffraction into a single order, in order to use the grating
as a mirror, can be achieved by tailoring the shape of
the index modulation for “thin” gratings. On the other
hand, for “thick” or volumetric gratings, under certain
conditions the scattered energy can be concentrated into
the first diffraction order only (m = 1). The criteria for
defining thin vs. volumetric gratings (or “Raman-Nath”
vs. “Bragg” diffraction [1]) is often described via the pa-
rameter Q = λL/Λ2, where λ is the diffracted beam’s
wavelength, L the grating thickness (along z in our ge-
ometry) and Λ the grating wavelength (along x) [1, 27]:
for Q ≫ 1, a beam incident at the Bragg angle onto the
grating will diffract almost all of its energy in the first
order only, whereas for Q ≤ 1, the higher-order modes
will contain significant energy. A more accurate parame-
ter, taking into account the diffraction efficiency via the
index modulation amplitude n1, was later introduced by
Moharam and Young [28] as

ρ =
λ2

Λ2n0n1
, (27)

where n0 and n1 are the background index and the grat-
ing’s index modulation amplitude, respectively. For ex-
ample, for a gas optics volumetric grating like the one
calculated in the previous section and shown in Fig. 5,
we have n1 ≈ 5× 10−5, n0 ≈ 1, so ρ≫ 1 (Bragg diffrac-
tion regime) requires Λ ≪ 140λ. In other words: for
a given amplitude of the index modulation, the grating
wavelength should not be too large in order to avoid get-
ting significant energy diffracted into higher-order modes.

Estimating the diffraction efficiency of volumetric grat-
ings can be achieved with great accuracy using coupled
mode theory [29]. The calculation neglects high-order
diffraction modes, which is accurate as long as ρ ≫ 1 in
Eq. (27), and assumes that the incident and first-order
diffracted waves have slowly-varying amplitudes, leading
to the following expression for the total electric field:

E(x, y, z, t) =
1

2
Ei(z, t)e

iψi +
1

2
E1(z, t)e

iψ1 + c.c. , (28)

where c.c. denotes the complex conjugate, Ei and E1

are the slowly-varying envelopes of the incident (m = 0)
and m = 1 diffraction modes (only dependent on z and
slowly varying in time compared to the laser frequency,

z�B K
k0=ki

k–1

k1

k2

x

FIG. 6. Geometry of the diffraction of a beam with wave
vector ki incident onto a grating with wave vector K at the
Bragg angle θB = asin(K/2k) = asin(λ/2Λ). Diffraction off
the grating occurs along the directions km = ki−mK,m ∈ N,
where m is the diffraction order. If ρ ≫ 1, with ρ defined in
Eq. (27), diffraction occurs in the Bragg regime and most of
the energy can be contained in the single m = 1 diffraction
mode.

since the system is assumed infinite along y and trans-
lationally invariant along x), and the rapid phases are
ψi,1 = ki,1 · r − ωt. Inserting into the wave equation
(∇2 + n2ω2/c2)E = 0 with n = n0 + n1(z) cos(Kx),
n1 ≪ n0, taking a paraxial approximation and collecting
the terms ∝ eiψi and ∝ eiψ1 leads to the simple system
of coupled equations,

∂zEi = i
k

2

n1(z)

n0
E1 (29)

∂zE1 = i
k

2

n1(z)

n0
Ei . (30)

Here we assumed perfect phase-matching, i.e. incidence
at exactly the Bragg angle, ki − k1 = K. Introducing
the variables ζ = kn1/2n0 and u =

∫ z
0
ζ(v)dv (method

of the grating integral, cf. [12]) transforms the coupled
equations above into

Ei = Ei(0) cos(u) , (31)

E1 = iEi(0) sin(u) . (32)

The diffraction efficiency after propagation from z = 0 to
z = L, η = |E1(L)|2/|Ei(0)|2, can then be expressed as

η(z) = sin2
[
k

2n0

∫ z

0

n1(z
′)dz′

]
. (33)

For non-sinusoidal index variations along x like the
ones derived in the previous section, Eq. (26), we have to
decompose the index modulation into its Fourier series,

∆n(x, z) = ∆n0(z) +

∞∑
m=1

nm(z) cos(mKx) , (34)

nm(z) =
2

Λ

∫ Λ

0

∆n(x, z) cos(mKx)dx , (35)

where x = 0 was chosen as the location of the max-
ima of ∆T (x) in order to eliminate the sine functions
from the series and keep only the cosines, and ∆n0(z) =

(1/Λ)
∫ Λ

0
∆n(x, z)dx. Since the terms of the Fourier se-

ries decomposition correspond to harmonics of K, and
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thus to the higher-order diffraction modes discussed
above (km = ki − mK,m ∈ N), the first-order term
of the Fourier series decomposition is the only term con-
tributing to the diffraction into the m = 1 mode (Bragg
diffraction regime) with ρ≫ 1 [30].
In other words: for ρ ≫ 1, the diffraction formula Eq.

(33) is valid for arbitrary (non-sinusoidal) index modula-
tions along x, as long as one is careful to extract the first
order mode n1(z) of the Fourier series decomposition of
∆n(x, z). The other assumptions from this diffraction
model are:

• a paraxial approximation for the diffracted wave,
i.e., the diffracted beam must be near-collimated;

• the angular divergence of the incident beam (δθ ≈
1/F#, where F# is the beam’s F-number) must be
smaller than the diffraction angle from the incident
to the first-order diffracted mode θ0−1 ≈ λ/Λ, i.e.,

F# ≫ Λ

λ
; (36)

• a quasi-monochromatic diffracted wave, with a
slowly-varying pulse shape compared to the laser
frequency;

• a grating that is uniform along y and larger than
the size of the diffracted beam.

These conditions are not merely for the validity of the
theory, but also represent design constraints for achiev-
ing high diffraction efficiencies in experiments. Equation
(33) is valid for arbitrary transverse intensity profiles of
the diffracted beam, as long as the scales of the variations
remain large compared to the laser wavelength. Practi-
cally, the diffracted beam should also have a wavelength
larger than 300 nm in order to avoid absorption by ozone.

Calculations of the diffraction efficiency for conditions
similar to Ref. [3] (diffracted beam with λ = 527 nm) are
shown in Fig. 7a. Reasonable agreement is found with
the experimental measurements, considering the approx-
imations from our model and the experimental unknowns
(the exact ozone fraction is not specified in Ref. [3], apart
from mentioning it was in the 1–10% range). Figure 7b
shows the maximum amplitude, defined here as half of
peak-to-valley, vs. the average initial UV fluence. We
have performed simulations of the 1D nonlinear Euler
equations, Eqs. (14)–(15), and verified that the expres-
sion connecting the index and temperature modulations
derived in our linear analysis in Eq. (26), when consider-
ing only the first-order mode of the Fourier series of the
density ρ1, remains valid until approximately ρ1/ρ0 ≈
40–50%. Our choice of 4% as the maximum ozone frac-
tion in Fig. 7 corresponds to the maximum ozone fraction
for which our model assumptions remain valid.

The diffraction efficiency for a fixed and “low” UV flu-
ence (before the curves reach η = 1) increases rapidly
with ozone fraction up to approximately 1%, beyond
which the efficiency becomes less sensitive to the ozone
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FIG. 7. a) Diffraction efficiency of a gas optics for conditions
similar to Ref. [3], and b) Maximum amplitude of the density
modulation by the entrance of the gas optics (z = 1 mm in
Fig. 2), vs. initial average fluence of the UV laser and for an
initial ozone fraction of 1%, 2% and 4%.

fraction. This is because the near-complete absorption of
the UV light over the 1 cm of ozone occurs for an ozone
fraction around 1% for these fluences, where absorption
saturation by ozone depletion is clearly visible but not
sufficient for the laser to “burn through” the 1 cm of gas
(cf. Fig. 2). Once the laser is fully absorbed, the ef-
fective diffraction length, which is the length over which
most of the gas heating occurs (e.g., approximately 3–
4 mm for 2% ozone per Fig. 3a), keeps shrinking; the
drop in diffraction length almost exactly compensates
the increase in the index modulation from increased gas
heating—cf. Eq. (33).

The increase in efficiency vs. fluence for a fixed ozone
fraction can roll over after reaching η = 1: this is
the well-known oscillatory behavior of diffraction effi-
ciency for volumetric transmission gratings, when the
grating thickness exceeds the optimum value leading
to η = 1 (Eq. (33) for a constant n1 simply gives
η(z) = sin2(kin1z/2n0), cf. [12, 30]).

To test the validity of our diffraction model, we have
performed 3D wave propagation simulations using a
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paraxial wave solver (i.e., Fresnel propagation integral),

(2ik∂z +∇2
⊥)E(r) = −2k2E(r)

∆n(r)

n0
, (37)

where ∆n(r) is the 3D index modulation calculated in the
previous section, Eq. (26), with the parameters from Fig.
5 (also red curve in Fig. 7a, for 2% ozone fraction and
F0 = 60 mJ/cm2). The propagation is solved in Fourier
space along (x, y), performing operator splitting between
the diffraction and refraction steps along z. We calculate
the propagation of a Gaussian laser beam with waist w0

= 400 µm located at z = 0, and used Λ = 60λ = 31.6
µm for the grating wavelength. The beam is incident at
the Bragg angle onto the grating, θB ≈ K/2k = λ/2Λ ≈
0.5◦ from the z-axis in the (x, z) plane. The diffracted
beam (mode 1) leaves at an angle of −0.5◦. Since the F-
number of a Gaussian beam is given by F# = πw0/2λ ≈
1.2× 103 in our case, the condition from Eq. (36) (with
Λ/λ = 60 here) is largely satisfied.

Figure 8a shows the intensity of the diffracted beam
in the (x, z) plane at y = 0; the oxygen/ozone mixed
gas is present between the two dashed green lines on
the figure. Figure 8b shows the power in the zero and
first-order modes, from the simulations (after applying
masks in Fourier space to isolate the diffraction modes)
and from Eq. (33). The difference between the simu-
lations and theory is barely distinguishable on the plot.
The modulated pattern along x in Fig. 8a comes from
the interference between the zero and first-order modes;
the contrast of the fringes is maximum near z ≈ 3 mm,
which is where the two modes have approximately equal
powers according to Fig. 8b.

The power spectrum of the electric field along the
Fourier coordinates kx, ky is shown in Fig. 9a at z = 0
and z = 1 cm (the corresponding angles, in the small
angle limit, are given by θx ≈ kx/k, with θB ≈ K/2k),
showing the spot moving from kx = K/2 (mode 0, at
θx = θB = −0.5◦) to −K/2 (mode 1, at +0.5◦). The
line-out along ky = 0, shown on a logarithmic scale, re-
veals that almost all the incident power (in m = 0) has
been transferred into mode m = 1, with ≈ 1% of the
incident power left in m = 0. Mode m = −1 contains
≈ 0.4% of the incident power; the power in m = −1 is
the reason for the slight difference between theory and
simulations in Fig. 8b, since only m = 1 is accounted
for in the theory. This is consistent with the choice of
Λ/λ = 60, resulting in diffraction in the Bragg regime
with ρ = 4.7 per Eq. (27).

On the other hand, for ρ ≤ 1, diffraction into higher
order modes can become significant. This is illustrated in
Fig. 9b, showing results from a simulation identical to 9a
except for a larger grating period, Λ = 200λ = 105µm,
leading to ρ = 0.4.
This illustrates that designing a gas grating like the one

described here to use as a dielectric mirror (diffraction
into the first order mode only) requires a careful choice
of the grating wavelength Λ: on the one hand, shorten-
ing Λ reduces the acoustic period τs = Λ/cs, which lim-
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FIG. 8. 3D paraxial wave simulation of the propagation of
a Gaussian laser beam incident at the Bragg angle on the
index modulation from Fig. 5 with Λ/λ = 60, i.e., ρ = 4.7—
diffraction in the Bragg regime, cf. Eq. (27): a) electric field
intensity, showing the interference between the incident and
first order diffracted modes (similar to the illustration from
Fig. 1c; the oxygen/ozone gas is located between the two
dashed green lines); b) power in the incident and first order
modes vs. z, from the 3D simulation and from the coupled
wave diffraction theory formula, Eq. (33).

its the maximum diffracted pulse duration that can be
used while the density modulation is near its maximum
amplitude at t ≈ τs/2. But on the other hand, lengthen-
ing Λ can eventually lead to diffraction into higher order
modes, as shown in Fig. 9b.

V. DISCUSSION AND FUTURE DIRECTION

Table II and Fig. 3c) show that for the conditions of
these experiments when the fraction of ozone is small,
the most effective reaction besides the photodissociation
is reaction 1 where O(1D) reacts with the oxygen buffer
gas. The electronic energy of O(1D) mostly goes into
electronic energy of O2 (1Σg or 1∆g), whose quenching
rate is too slow to matter over the typical 10 ns duration
of the UV imprint beam [19].
It should be possible to optimize the gas heating by

choosing a different buffer gas. For example, we suggest
using CO2, or at least a mixture of O2 and CO2. This is
motivated by the reaction of O(1D) with CO2,

O(1D) + CO2 → O+CO2 , (38)

i.e., the quenching of O(1D) back to its ground state via
collisions with CO2. The reaction enthalpy is therefore
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FIG. 9. Fourier analysis of 3D simulations, showing the trans-
verse (kx, ky) Fourier profile of the total electric field at z=
0 and 1 cm, as well as lineouts (on a logarithmic scale) vs.
kx at ky = 0: a) Λ = 60λ, i.e., ρ = 4.7 (same as Fig. 8):
diffraction in the Bragg regime, with near-complete transfer
of power from the incident mode m = 0 into m = 1; b)
Λ = 200λ, i.e., ρ = 0.4: the diffraction starts to enter the
Raman-Nath regime, with significant energy diffracted into
high-order modes (m = −2 to +3).

−1.97 eV, i.e., the full electronic energy of O(1D), of
which 1.23 eV are available to heat the surrounding gas
assuming energy equipartition (vs. 0.29 eV and 0.84 eV
for reactions 1a and 1b), and the reaction rate, k6 =
1.1 × 10−10 cm3/s [19], is also 3.4 and 13.8 times faster
than for reactions 1a and 1b.

We estimate a significant increase in diffraction effi-
ciency when replacing oxygen by carbon dioxide. Figure
10 shows the diffraction efficiency for the same parame-
ters as Fig. 7 (1 cm propagation length, room tempera-
ture) but with O2 replaced by CO2 as the buffer gas. Sim-

ilar diffraction efficiencies are obtained for CO2 compared
to O2 for only about a tenth of the ozone fraction—or,
depending on the particular application and constraints,
one can in principle reach high diffraction efficiency for
shorter propagation distances, or a lower UV fluence.
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FIG. 10. Diffraction efficiency for a 1 cm gas optics (same as
Fig. 7), but with CO2 instead of O2 used as the buffer gas.

Other reactions can potentially be utilized to increase
the gas heating even further, like adding hydrogen to the
buffer gas due to its fast reaction rate with O(1D) and
the high exothermicity of the reaction.
Applications of gas optics for ICF or IFE experiments

will require operations in vacuum environment, which
might be the primary challenge facing the deployment
of gas optics technology for these applications. Gas jets
could in principle be utilized to generate gas densities
close to those at atmospheric pressure; however, the high
pressurization of ozone required in the process can lead
to its rapid self-dissociation. Lowering the requirements
on the fraction of ozone, like CO2 is estimated to allow,
should help find a workable parameter space for high-
power lasers applications in vacuum environments.
Finally, our model can easily be extended to the de-

sign of other volumetric holographic optical elements. In
particular, a volumetric holographic lens, similar to the
plasma lenses described in Refs. [6, 31], should be a
relatively straightforward next step, requiring the exten-
sion of our 1D fluid model to both transverse dimensions
(x, y).

VI. CONCLUSION

In conclusion, we have derived a comprehensive de-
scription of the physics and chemistry of acousto-optics
in gas initiated by the absorption of a modulated UV
“imprint” beam and resulting gas heating. Such gas-
based optical elements have the potential to transform
the design and applications of high power lasers, includ-
ing inertial fusion energy. Compared to plasma gratings
such as the ones described in our previous work [32], gas



13

optics have lower index modulation amplitudes but sig-
nificantly longer lifetimes (tens of ns vs. tens of ps for
plasma gratings), making them better suited for long-
pulse (ns) laser applications. Our model gives good
agreement with previous experiments and will be used
to design future ones for high-power laser applications,
including for the design of other holographic elements
relying on the same process, such as diffraction lenses.
Other configurations with different absorbing molecules
or buffer gas are expected to further improve the perfor-
mances of these novel optical elements.
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