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Abstract. This article gives a summary of recent results on extreme value analysis that were
presented at the Journées MAS 2024 in Poitiers. We first set the general background and motivation
for these results, and we then discuss partial solutions to four contemporary problems in extreme
value analysis: the construction of bias-reduced estimators of the Expected Shortfall (or Tail-Value-
at-Risk) at extreme levels, extremal regression and inference in the presence of dependent data,
multivariate inference about extreme quantiles using an analogue of the classical ANOVA method
in regression, and improved estimation of tail risk measures using nonparametric resampling of
multivariate Generalized Pareto distributions.
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1 Background

Extreme value theory is a subfield of probability and statistics whose objective is to model, estimate
and infer the characteristics of rare events. Applications of extreme value theory can be found in,
among others, insurance and finance (see e.g. p.9 in Embrechts et al., 1997), the natural sciences (see
Sections 1.3.1, 1.3.2 and 1.3.5 in Beirlant et al., 2004) as well as niche fields such as the analysis
of teletraffic data (see Section 8 in Resnick, 2007). A particular field of application of extreme
value theory is risk management, which is concerned with the analysis of rare events with high
potential impact on the environment and the wider economy, from natural disaster risk (Bousquet
and Bernardara, 2021), asset and investment risk that may result in systemic risk (Cai et al., 2015),
as well as more recent areas of concern such as cyber risk (Farkas et al., 2021). A standard univariate
risk measure is the quantile q(τ) of a random risk variable X, for a suitably chosen level τ ∈ (0, 1); in
finance, one typically takes X to be the negative of a net financial result, in which case high quantiles
give a picture of high losses, and the quantile is then called Value-at-Risk or VaR. A typical goal
of extreme value analysis, in such contexts, is the estimation of extreme quantiles of a univariate
random variable of interest, such as the daily log-return of a stock market index, the magnitude of
earthquakes in a given region, or the size of data packets transferred in a computer network.

The basic problem in extreme value analysis is the estimation of extreme quantiles which may lie
beyond the range of the data. To put it differently, given an i.i.d. sample of data (X1, . . . , Xn) of size
n, we seek an estimator of an extreme quantile q(1−pn), with pn ↓ 0 and npn = O(1). In univariate
extreme value theory, this is the focus of the so-called Peaks-over-Threshold approach which rests
upon the assumption, motivated by the Pickands-Balkema-de Haan theorem, that exceedances of
the random variable of interest X above a high threshold can be modeled to an acceptable degree of
approximation by a Generalized Pareto distribution. Equivalently, if F is the distribution function of
X, q is its quantile function, and U : t 7→ q(1−1/t) is its tail quantile function, the basic assumption
underlying the Peaks-over-Threshold method is that there exist γ ∈ R, called the extreme value
index of X, and a positive scale function a such that

∀x > 0, lim
t→∞

U(tx)− U(t)

a(t)
=

∫ x

1

sγ−1ds
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or, equivalently, if σ(t) = a(1/(1− F (t))),

∀x > 0 with 1 + γx > 0, lim
t→∞

P
(
X − t

σ(t)
> x |X > t

)
= (1 + γx)−1/γ .

See Theorem 1.1.6 in de Haan and Ferreira (2006). These two equivalent conditions play a funda-
mental role in the construction of semiparametric extreme quantile estimators of X; they can be
rewritten as the extrapolation formula U(tx) ≈ U(t) + a(t)

∫ x

1
sγ−1ds when t is large, on the one

hand, and as
X − t

σ(t)
|X > t

d−→ Generalized Pareto(γ)

as t → ∞, on the other hand. The use of this extrapolation formula in statistical practice rests
upon the construction of estimators for the location parameter U(t), the scale parameter a(t) and
the shape parameter γ.

In the heavy-tailed setting γ > 0, which gathers many applications of extreme value theory to
insurance, finance and climate science (Beirlant et al., 2004; Embrechts et al., 1997; Resnick, 2007),
the extrapolation formula in the Pickands-Balkema-de Haan theorem takes the simpler form

∀x > 0, lim
t→∞

1− F (tx)

1− F (t)
= x−1/γ ⇔ ∀x > 0, lim

t→∞

U(tx)

U(t)
= xγ .

See Theorem 1.2.1 and Corollary 1.2.10 in de Haan and Ferreira (2006). The latter approximation
then suggests the heuristic extrapolation formula

q(τ ′) ≈
(
1− τ ′

1− τ

)−γ

q(τ), for τ, τ ′ ↑ 1, τ < τ ′.

This extrapolation formula entails that an extreme quantile q(1− pn) of a heavy-tailed distribution
may be consistently estimated provided one can consistently estimate a quantile at a much lower
(but still high) level τ and the extreme value index γ. A typical choice for τ = τn is τn = 1− k/n,
where k = k(n) is a sequence of integers such that k → ∞ and k/n → 0; with this choice of τ , the
empirical quantile q̂n(1 − k/n) = Xn−k:n, where X1:n ≤ X2:n ≤ · · · ≤ Xn:n are the order statistics
from the sample (X1, . . . , Xn), is a consistent estimator of q(1 − k/n) under mild conditions. A
standard choice for the estimator of γ, which turns out to be the Maximum Likelihood Estimator
in a pure Pareto model, is the Hill estimator (Hill, 1975), namely

γ̂n(k) =
1

k

k∑
i=1

logXn−i+1:n − logXn−k:n. (1)

This suggests the classical Weissman-Hill extreme quantile estimator (Weissman, 1978):

q̂⋆n(1− pn) =

(
k

npn

)γ̂n(k)

Xn−k:n = dγ̂n(k)
n Xn−k:n, (2)

where dn = k/(npn) is interpreted as an extrapolation factor. The rationale behind this construction
is that one may use the heavy right tail assumption to extrapolate intermediate quantiles to properly
extreme levels by using the shape of the tail of the underlying distribution. The key to the asymptotic
analysis of q̂⋆n(1− pn) is the identity

log

(
q̂⋆n(1− pn)

q(1− pn)

)
= log(dn)(γ̂n(k)− γ) + log

(
q̂n(1− k/n)

q(1− k/n)

)
+ log

(
dγn

q(1− k/n)

q(1− pn)

)
. (3)

As a consequence, the asymptotic behavior of q̂⋆n(1 − pn) is determined by the weak convergence
properties of the random pair

√
k(γ̂n(k) − γ, log(q̂n(1 − k/n)/q(1 − k/n))) and by the asymptotics

of the final, nonrandom bias term in (3). Obtaining this asymptotic behavior formally can be done
under the following classical extreme value assumptions.

C2(γ, ρ,A) There are γ > 0, a second-order parameter ρ ≤ 0 and an auxiliary function A having
constant sign and converging to 0 at infinity such that

∀x > 0, lim
t→∞

1

A(1/F (t))

(
F (tx)

F (t)
− x−1/γ

)
=

x−1/γ

γ2

∫ x

1

sρ/γ−1 ds.
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K(λ) Under C2(γ, ρ,A), the sequence k = k(n) satisfies k →∞, k/n→ 0 and
√
kA(n/k)→ λ ∈ R.

Assumption C2(γ, ρ,A) is very mild, and is satisfied by every continuous heavy-tailed probability
distribution that is commonly used in statistical modeling, see a non-exhaustive list in Table 4
in Daouia et al. (2024b). It quantifies, through the function A, the bias incurred in extreme value
procedures by using the Pareto distribution as a model rather than the correct underlying distri-
bution. It can be shown that |A| is necessarily regularly varying in a neighborhood of infinity with
index ρ by viewing any function F satisfying C2(γ, ρ,A) within the wider framework of extended
regular variation and by applying Theorem B.2.1 in de Haan and Ferreira (2006). When ρ < 0, this
motivates the assumption of a further, simpler parametric form:

A(y) ∼ βγyρ, as y →∞, (4)

with ρ < 0 and β ̸= 0. This situation arises for instance in the Hall-Welsh class of heavy-tailed
distributions (Hall and Welsh, 1985). Condition K(λ) imposes a value of k that not only is inter-
mediate, meaning that the quantile q(1− k/n) can be consistently estimated by the nonparametric
estimator Xn−k:n, but also that makes it possible to control the bias in the estimation of γ by γ̂n(k).
Then, under conditions C2(γ, ρ,A) and K(λ),

√
k

(
γ̂n(k)− γ, log

(
q̂n(1− k/n)

q(1− k/n)

))
d−→ N

((
λ

1− ρ
, 0

)
,

(
γ2 0
0 γ2

))
.

This is readily shown by, for example, following the proof of Theorem 3.2.5 in de Haan and Ferreira
(2006) using tail empirical quantile processes, see p.76 therein. Moreover, the final, nonrandom term
in (3) is, when ρ < 0, a O(1/

√
k) if k/(npn) → ∞, see the top equation on p.139 of de Haan and

Ferreira (2006). As a conclusion, when also
√
k/ log(k/(npn))→∞, then

√
k

log(dn)
log

(
q̂⋆n(1− pn)

q(1− pn)

)
d−→ N

(
λ

1− ρ
, γ2

)
.

This asymptotic normality result then yields asymptotic Gaussian confidence intervals whose cov-
erage probability is fairly close to the nominal level in reasonable situations (see Figures B1–B3 in
Buitendag et al., 2020), although refined confidence intervals exist (Buitendag et al., 2020; Gardes
and Maistre, 2023).

The methodology for extreme quantile inference based on univariate i.i.d. data is therefore well-
established. In applications, however, it is often of interest to go beyond extreme quantile estimation,
since the quantile risk measure q(τ) is unable to give any idea of the shape of the distribution of
X beyond the level q(τ), and fails to constitute a coherent risk measure in a financial and actuarial
sense, see Artzner et al. (1999) and Acerbi (2002). An alternative to the quantile that deals with
these issues is the Expected Shortfall at level τ , namely

ES(τ) =
1

1− τ

∫ 1

τ

q(t)dt.

When the distribution of X is continuous, this is nothing but the τ -Conditional Value-at-Risk or
Conditional Tail Expectation (Rockafellar and Uryasev, 2002):

CTE(τ) = E(X |X > q(τ)). (5)

The Expected Shortfall indeed takes the values of X beyond q(τ) into account and, being a spec-
tral risk measure with positive and nonincreasing risk spectrum, it is coherent and comonotonically
additive, see Theorem 4.47 p.180 and Remark 4.85 p.199 in Föllmer and Schied (2004). Major
regulators, such as the EU, UK, Australia and Canada, will require the use of ES(97.5%), rather
than VaR(99%), in alternative internal models from 1 January 2025. The EU has formally codi-
fied this requirement in Article 325ba(1) of Regulation (EU) No 2019/876, itself a revision of the
Capital Requirements Regulation (EU) No 575/2013, implementing the Basel Committee on Bank-
ing Supervision rules. The question of estimating the Expected Shortfall above extreme levels τ
is therefore of high practical importance. Another practical problem in recent applications is to
construct reliable estimation and inference methodologies when the structure of the data is more
complex than univariate and i.i.d., i.e. when it features serial dependence, spatial heterogeneity,
and/or is multivariate. In particular, the problem of multivariate inference about extreme quantiles
has, perhaps quite surprisingly, been left largely untouched until a series of papers from 2016 to
2019 (Dematteo and Clémençon, 2016; Kinsvater et al., 2016; Hoga, 2018; Stupfler, 2019) which
developed theoretical tools in order to obtain the joint weak convergence of several Hill estimators.
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The purpose of this article is to give a brief account of four papers, presented on 28th August
2024 at the “Extrêmes” parallel session of talks of the Journées MAS 2024 in Poitiers, France, which
discuss solutions to these contemporary problems. We start in Section 2 with the development of a
bias reduction methodology for the estimation of the CTE above extreme levels in the presence of
potentially very heavy tails, based upon Allouche et al. (2024a). Section 3 deals with nonparametric
extremal regression upon serially dependent and spatially heterogeneous data, based upon Daouia
et al. (2023). Section 4 then considers the problem of testing for equality of extreme quantiles by
constructing a test statistic reminiscent of the traditional ANOVA statistic in linear regression, based
upon a recent paper (Girard et al., 2024). Finally, Section 5 adopts a resolutely multivariate view-
point and introduces a data augmentation methodology using resampling with the goal of improving
the accuracy of existing tail Expected Shortfall estimators. This last section is based upon Legrand
et al. (2023) and a recent preprint (Madhar et al., 2024).

2 Estimation of extreme risk measures for heavy-tailed data

The existence of the CTE (5) requires the random variable X to be integrable while the asymptotic
normality of its empirical counterpart assumes the existence of the second moment, see (Brazauskas
et al., 2008, Theorem 3.1). In heavy-tailed models, the integrability assumption may not hold as
soon as γ ≥ 1 and the finite second moment condition may be violated when γ ≥ 1/2. This can be
the case in insurance, see for instance El Methni and Stupfler (2018) where the extreme value index
is estimated on commercial fire losses at γ̂n ≃ 0.7 and in Beirlant et al. (2004, Example 1.2) where
γ̂n ≃ 0.8 on Norwegian fire data in 1976 (studied hereafter for the year 1990).

As an alternative, we consider the CTE for Box-Cox transforms (Box and Cox, 1964) of X:

Ma(τ) = E(Ka(X) | X > q(τ)), with Ka(x) =

∫ x

1

ua−1du, (6)

and a ∈ R. It can then be shown that Ma(τ) exists for τ close to 1 provided that aγ < 1, and,
moreover, from Allouche et al. (2024a, Lemma 5(i)):

lim
τ→1

Ma(τ)−Ka(q(τ))

1 + aKa(q(τ))
=

γ

1− aγ
. (7)

Clearly, consideringMa(τ) permits to recover various risk measures since CTE(τ) =M1(τ)+1, the
conditional tail variance (Valdez, 2005) is given by CTV(τ) = 2(M2(τ)−M1(τ))−M2

1(τ) and more
generally, the conditional tail moment introduced in El Methni et al. (2014) defined when a ̸= 0 by
CTMa(τ) = E (Xa|X > q(τ)) can be rewritten as CTMa(τ) = 1 + aMa(τ).

Here, we propose non-parametric estimators ofMa(τn) in the challenging situation where τn → 1
as n→∞ and when X is heavy-tailed. A direct estimator ofMa at an intermediate level is obtained
by considering the empirical counterpart of (6):

M̃(D)
a,n(1− k/n) =

1

k

k∑
i=1

Ka(Xn−i+1:n),

where k →∞ with k/n→ 0 as n→∞. Similarly, one can introduce the following (direct) estimator
ofMa(1− pn) at an extreme level:

M̂(D)
a,n(1− pn; γ̂n(k)) =

1

k

k∑
i=1

Ka

(
Xn−i+1:n d

γ̂n(k)
n

)
, (8)

with pn → 0 as n → ∞. Here, γ̂n(k) is the Hill estimator (1), but bias-corrected versions (see for
instance Caeiro et al. (2005)) can be considered. It is also possible to derive from (7) that

Ma(τ) ≃
1

1− aγ
(Ka(q(τ)) + γ) , (9)

when τ is close to one, and to build an indirect estimator ofMa at an intermediate level by estimating
the intermediate quantile q(1− k/n) by the associated order statistic:

M̃(I)
a,n(1− k/n; γ̂n(k)) =

1

1− aγ̂n(k)
(Ka(Xn−k:n) + γ̂n(k)) .
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Note that M̃(I)
0,n(1 − k/n; γ̂n(k)) = M̃(D)

0,n (1 − k/n) if γ̂n is the Hill estimator. This estimator can
also be used to build an indirect estimator ofMa at an extreme level:

M̂(I)
a,n(1− pn; γ̂n(k)) =

1

1− aγ̂n(k)
(Ka (q̂

⋆
n(1− pn)) + γ̂n(k)) , (10)

where q̂⋆n(1− pn) is the Weissman estimator (2) of the extreme quantile q(1− pn).
In the sequel, we focus on the estimators (8) and (10) ofMa at an extreme level. The asymptotic

normality of the direct and indirect estimators M̂(D)
a,n(1 − pn; γ̂n(k)) and M̂(I)

a,n(1 − pn; γ̂n(k)) is
established in Allouche et al. (2024a, Theorem 4 and Theorem 6), under the conditions aγ < 1/2 and
aγ < 1 respectively. It appears that both estimators are asymptotically biased under the assumptions

C2(γ, ρ,A) and K(λ). In particular, M̂(D)
a,n(1 − pn; γ̂n(k)) has an asymptotic bias involving two

components: a first one inherited from the estimator of the extreme value index γ and a second one
due to the extrapolation method. The same observations have been made in the case of the Weissman
estimator dedicated to extreme quantiles in Allouche et al. (2023). The asymptotic bias can thus be

removed by using a reduced-bias estimator γ̂
(RB)
n of γ and by estimating and removing the bias term

due to the second-order terms. More specifically, assume that
√
k(γ̂

(RB)
n − γ)

d−→ N (0, σ2) for some
σ > 0 under C2(γ, ρ,A) and K(λ). Then, under the additional assumption (4), the reduced-bias
version of the direct estimator ofMa at an extreme level is given by

M̂(D,RB)
a,n

(
1− pn; γ̂

(RB)
n

)
= M̂(D)

a,n

(
1− pn; γ̂

(RB)
n

)1−
a
(
1− aγ̂

(RB)
n

)
β̂nγ̂

(RB)
n (n/k)ρ̂n

ρ̂n

(
1− aγ̂

(RB)
n − ρ̂n

)


−

(
1− aγ̂

(RB)
n

)
β̂nγ̂

(RB)
n (n/k)ρ̂n

ρ̂n

(
1− aγ̂

(RB)
n − ρ̂n

) ,

where ρ̂n and β̂n are estimators of the second-order parameters ρ and β respectively such that

(log(n/k))(ρ̂n−ρ) = oP(1) and β̂n
P−→ β. In contrast, the asymptotic bias of M̂(I)

a,n(1−pn; γ̂n(k)) only
stems from the asymptotic bias of γ̂n and can be removed by considering a reduced-bias estimator
of γ. It is then proved under the above mentioned assumptions that both

√
k

log(dn)

M̂(D,RB)
a,n

(
1− pn; γ̂

(RB)
n

)
−Ma(1− pn)

1 + aMa(1− pn)


and

√
k

log(dn)

M̂(I)
a,n

(
1− pn; γ̂

(RB)
n

)
−Ma(1− pn)

1 + aMa(1− pn)


are asymptotically N (0, σ2) distributed, see Allouche et al. (2024a, Theorem 5 and Corollary 1).

As mentioned, we consider fire insurance claims of a Norwegian insurance company for the year
1990. This data set was already analyzed in Beirlant et al. (2001) and consists of n = 628 claims in
units of 1000 kr (Norwegian crown) larger than the threshold 500,000 kr. The Hill plot k 7→ γ̂n(k)
presented in Figure 1 (left panel) features a nice stability region on the range k ∈ [150, 300] indicating
a heavy-tail behaviour of the data. Two procedures were used to select the threshold, (Allouche et al.,
2024a, Algorithm 1) and Beirlant et al. (1999), giving respectively k⋆ = 279 and k† = 290. Both
lead to the same estimation for the extreme value index: γ̂n(k

†) = γ̂n(k
⋆) = 0.62. Moreover, the log

quantile-quantile plot of the pairs (log((n+1)/i), logXn−i+1:n) for i ∈ {1, . . . , k⋆} drawn on Figure 1
(right panel) appears to be approximately linear. This constitutes empirical evidence that the heavy-
tail assumption makes sense and that k⋆ = 279 is a reasonable choice for the threshold. Besides,
the estimated second-order parameter provided by the package evt0 of the R software (Manjunath
et al., 2013) is ρ̂n = −1.85, corresponding to a relatively low bias situation.

Let us denote by X test = {Xtest
i = Xn−i+1:n, i = 1, . . . , ⌈n(1− ξ)⌉} the testing set made of the

⌈n(1− ξ)⌉ largest order statistics with ξ = 0.9 and X train the remaining ⌈nξ⌉ smallest data points.
Clearly,Xtest

⌈n(1−ξ)⌉:⌈n(1−ξ)⌉ = Xn−⌈n(1−ξ)⌉+1:n can be interpreted as the empirical estimator computed

on X test of the extreme quantile q(1− pn) with pn = 1/⌈nξ⌉ while

M̂(EMP)
a,n (1− 1/⌈nξ⌉) = 1

⌈n(1− ξ)⌉

⌈n(1−ξ)⌉∑
i=1

Ka(X
test
i ) =

1

⌈n(1− ξ)⌉

⌈n(1−ξ)⌉∑
i=1

Ka(Xn−i+1:n) (11)
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(EMP) (D) (D,RB) (I) (I,RB)

ĈTEn(1− pn; 1) 14724 7267 15624 4963

ĈTEn(1− pn; 1/2) 16606 7852 17056 5307

ĈTE
(EMP)

n (1− pn) 8732

Table 1: Norwegian fire data. Estimations of CTE(1 − pn) (in 1000 kr) obtained from (12), (13)
and (14) at the risk level 1− pn = 1− 1/⌈nξ⌉ with ξ = 0.9.

0 100 200 300 400 500 600

0.5

0.6

0.7

0.8

0.9

1 2 3 4 5 6
7

8

9

10

11

Figure 1: Norwegian fire data. Left panel: Hill estimator γ̂n(k) as a function of k and pair (k⋆, γ̂n(k
⋆))

selected by Allouche et al. (2024a, Algorithm 1) emphasized by a red triangle. Right panel: Log
quantile-quantile plot (horizontally: log((n + 1)/i), vertically: log(Xn−i+1:n) for i ∈ {1, . . . , k⋆}).
The approximating line with slope γ̂n(k

⋆) is superimposed in red.

Figure 2: Norwegian fire data. Left panel: estimation ofM1/2(1−pn) and right panel: estimation of

M1(1−pn), for pn = 1/⌈nξ⌉, associated with M̂(EMP) (black), M̂(D) (blue), M̂(D,RB) (green), M̂(I)

(red) and M̂(I,RB) (purple) estimators as functions of k ∈ {2, . . . , ⌈nξ⌉} with ξ = 0.9. Estimations
at the selected level k⋆ are emphasized by a triangle.
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is the direct estimator of Ma(1 − pn) with pn = 1/⌈nξ⌉ computed on X test. Our first goal is to
compute Ma(1 − pn) with a ∈ {1/2, 1} at the extreme risk level pn = 1/⌈nξ⌉ on X train using
the four above competitors and to compare the results with the empirical estimation computed
on X test thanks to (11). As it can be seen on Figure 2, for respectively a = 1/2 (left panel)

and a = 1 (right panel), both estimators M̂(I) and M̂(D) tend to be largely above the empirical

estimate M̂(EMP), while the two reduced-bias ones are only slightly below the empirical estimate
and benefit from a nice stable behaviour in a large neighborhood around their respective estimated
values. The direct reduced-bias estimator seems to provide the closest estimations to the empirical

ones (11) with respectively M̂(D,RB)
1/2,n = 168.0 versus M̂(EMP)

1/2,n = 167.2 and M̂(D,RB)
1,n = 7265.9 versus

M̂(EMP)
1,n = 8731.0. The good performance of the direct reduced-bias estimator here is probably due

to the low estimated bias (ρ̂n = −1.85) and the large estimated extreme-value index (γ̂n > 0.6),
which is a behavior already observed on simulated data, see (Allouche et al., 2024a, Section 4). Our
second objective is to recover from the previous results some estimates of the CTE at the extreme
level pn = 1/⌈nξ⌉. Since CTE(1− pn) = 1 +M1(1− pn), one can straightforwardly obtain

ĈTEn(1− pn; 1) = 1 + M̂1,n(1− pn), (12)

to get four estimators of the CTE with M̂1,n ∈ {M̂(D)
1,n ,M̂

(D,RB)
1,n ,M̂(I)

1,n,M̂
(I,RB)
1,n }. Moreover,

from (7), one has

1 +
1

2
M1/2(1− pn) ∼

q1/2(1− pn)

1− γ/2
, while CTE(1− pn) ∼

q(1− pn)

1− γ
,

as pn → 0, so that combining the two approximations yields

CTE(1− pn) ∼ Ψ
(
M1/2(1− pn), γ

)
=

1

1− γ

((
1− γ

2

)(
1 +

1

2
M1/2(1− pn)

))2

.

Taking advantage of the estimated extreme-value index γ̂n(k
⋆) on X train, one obtains four additional

estimators of the CTE:

ĈTEn(1− pn; 1/2) = Ψ
(
M̂1/2,n(1− pn), γ̂n(k

⋆)
)
. (13)

All eight resulting estimates are compared in Table 1 to the empirical estimation computed on the
testing set by

ĈTE
(EMP)

n (1− 1/⌈nξ⌉) = 1

⌈n(1− ξ)⌉

⌈n(1−ξ)⌉∑
i=1

Xtest
i =

1

⌈n(1− ξ)⌉

⌈n(1−ξ)⌉∑
i=1

Xn−i+1:n. (14)

It appears that ĈTE
(D,RB)

n (1 − pn; 1/2) is once again the closest to the empirical estimator. This
highlights the benefit of using the Box-Cox transform with a < 1 to obtain a reduced-variance
estimate and then transform the result back to the targeted CTE.

To conclude, we have introduced reduced-bias estimators of the CTE at intermediate and extreme
levels for Box-Cox transformed heavy-tailed random variables. The use of the Box-Cox transform
permits to define and estimate the CTE even for distributions with large extreme-value indices, the
asymptotic normality of all estimators being established in Allouche et al. (2024a). The Box-Cox
transform also allows to derive estimators for other risk measures such as the CTM, see El Methni
et al. (2014). Finally, the bias reduction leads to estimators with stable sample paths that are easy to
use in practice. These properties are illustrated both on simulated (Allouche et al., 2024a, Section 4)
and real data thanks to Python code freely available for download. We also refer to Allouche et al.
(2024b) for a comparison with neural network approaches. The work presented in this section is
univariate in nature and is therefore unable to account for covariate-induced heterogeneity in order
to produce a finer picture of extreme value behavior. Doing so is the focus of the next section.

3 Extremal regression with dependent heavy-tailed data

Consider a dataset which records, for each tornado that has occurred in the United States between
1 January 2010 and 31 December 2019, the associated monetary loss (loss), its starting and ending
latitude and longitude (slat, slon, elat and elon), and the length and width of the area it traveled
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over (len and wid). To reduce heterogeneity due to the strength and duration of a tornado, we
consider the loss per surface unit Y (in USD) as a function of a tornado’s average geographical
location X = (X1, X2), that is, Y = loss/(len× wid), X1 = (slon+ elon)/2, and X2 = (slat+
elat)/2. One then obtains a sample (Yt,Xt) of size n = 6,360, including high-impact events such as
the tornado which caused a 2.8 billion USD total loss across its path in Joplin, Missouri, on 22 May
2011. A scatterplot of the dataset and a smoothed estimate of the frequency of tornadoes across the
eastern half of the United States are given in Figure 3 (a) and (b).

It is clear that the data feature considerable spatial heterogeneity as well as serial dependence.
In such a situation, how to construct confidence intervals about extreme conditional quantiles is
not obvious. One possible solution is to use extremal linear quantile regression, as worked out
by Chernozhukov (2005) and Chernozhukov and Fernández-Val (2011). The linear extreme quantile
model is, however, a strong model specification, for which goodness-of-fit testing procedures are
not easy to develop and, in fact, do not exist as far as we are aware. Assuming more general
forms of regression models, meanwhile, is possible but requires prior extra knowledge about the
phenomenon of interest. At the opposite, nonparametric approaches to extremal regression such as
those of Daouia et al. (2011) and Daouia et al. (2013) are limited to i.i.d. data. They constitute
nonetheless a reasonable starting point which we use to sketch out a solution to the problem of
nonparametric extremal regression and inference for conditional extreme quantiles.

Assume that ((Yt,Xt))t≥1 is a strictly stationary sequence of copies of a random pair (Y,X) ∈
R × Rp. Let F (·|x) denote the distribution function of Y given X = x. Assume that X has a
probability density function (p.d.f.) g on Rp and fix x ∈ Rp with g(x) > 0, and a kernel p.d.f. K
on Rp. Consider the Nadaraya-Watson estimator of F (·|x):

F̂n(y|x) =
1

nhp
n ĝn(x)

n∑
t=1

1{Yt≤y}K

(
x−Xt

hn

)
with ĝn(x) =

1

nhp
n

n∑
t=1

K

(
x−Xt

hn

)
.

In this section, hn → 0 is a (positive) bandwidth sequence. A conditional quantile q(τ |x) ≡
inf {y ∈ R |F (y|x) ≥ τ} of (Y,X) can then be estimated by its empirical counterpart q̂n(τ |x) =

inf{y ∈ R | F̂n(y|x) ≥ τ}. Just as in the unconditional setting, the idea is to show first that q̂n(τn|x)
is a (relatively) consistent estimator of q(τn|x) at intermediate levels τn, and then to extrapolate
such intermediate estimators using the shape of the tail of the conditional distribution. This is done
using a kernel Hill-type estimator of γ(x) introduced in Daouia et al. (2011):

γ̂(J)
τn (x) =

1

log(J !)

J∑
j=1

log

(
q̂n(1− (1− τn)/j|x)

q̂n(τn|x)

)
, for a fixed J ≥ 2.

This results in the conditional extreme quantile estimator

q̂Wn,τn(1− pn|x) =
(

pn
1− τn

)−γ̂(J)
τn

(x)

q̂n(τn|x).

We provide here a brief account of the asymptotic properties of q̂n(τn|x), γ̂(J)
τn (x) and q̂Wn,τn(1−pn|x);

full details can be found in Daouia et al. (2023). The main model assumption in that article is

ConditionM ((Yt,Xt))t≥1 is a stationary α−mixing sequence of copies of a random vector (Y,X)
whose conditional distribution at X = x satisfies condition C2(γ(x), ρ(x), A(·|x)).
This condition is used in conjunction with a technical condition in order to develop a “big block-small
block” argument. This technique splits F̂n(y|x) into large blocks of equal size, and then small block-
sized holes (whose size nonetheless increases as n→∞) are created within each large block in order
to take advantage of the asymptotic independence condition provided by the mixing assumption. If
the size of the small block is negligible relative to that of the large block, then this should not alter
the asymptotic behavior of the blocks, and the asymptotics of F̂n(y|x) (and therefore of q̂n(τn|x))
then follow from viewing large blocks as (essentially) independent random variables.

One also requires anti-clustering assumptions that prevent the covariates from clustering in small
balls and conditional extremes from repeating too often. Assume, on the one hand, that

Condition Bp There exists an integer t0 ≥ 1 such that

1 ≤ t < t0 ⇒ lim
r→0

r−p P(X1 ∈ B(x, r),Xt+1 ∈ B(x, r)) = 0

and lim sup
r→0

sup
t≥t0

r−2p P(X1 ∈ B(x, r),Xt+1 ∈ B(x, r)) <∞.
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(a) Losses per squared−yard
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Figure 3: Tornado losses data. Top row, left: Data across the eastern half of the US, right: Local
number of observations. Middle row, left: Estimated conditional mean of losses per squared yard,
right: Extrapolated conditional quantile estimate of those losses at level 1− p = 0.995. Cities with
the highest estimated conditional average loss and extreme loss are marked with a black triangle in
the left and right panels, respectively. Bottom row, left: Unconditional statewide estimation, using
the sample average, right: Using the bias-reduced extreme quantile estimator of Gomes and Pestana
(2007) at level 1− p = 0.995. Losses (all panels except (b), in USD) and tornado frequency (panel
(b)) are indicated by a color scheme, ranging from dark blue (lowest) to dark red (highest).

9



On the other hand, it is assumed that a joint conditional extreme value of (Y1, Yt+1) cannot be much
more likely than a marginal conditional extreme of Y1, uniformly across time and locally uniformly
across the covariate space, namely

Condition BΩ There exist h, z > 0 such that

sup
t≥1

sup
y,y′≥z

sup
x′,x′′∈B(x,h)

P(Y1 > y, Yt+1 > y′|X1 = x′,Xt+1 = x′′)√
F (y|x′)F (y′|x′′)

= O(1).

This should be considered as a weak requirement compared with the existence of a (conditional) tail
copula, as assumed in e.g. Drees (2003) and Davison et al. (2023) in the unconditional setting.

Under these conditions, plus adaptations of classical conditions from the regression literature en-
suring that regression estimators achieve an optimal pointwise rate of convergence, plus a transparent
bias condition and a standard restriction on the mixing rate, one obtains the joint asymptotic nor-

mality of γ̂
(J)
τn (x) and q̂n(τn|x), for τn ↑ 1, and hn → 0 such that nhp

n(1− τn)→∞. This ultimately
results in the weak convergence√

nhp
n(1− τn)

log[(1− τn)/pn]

(
q̂Wn,τn(1− pn|x)
q(1− pn|x)

− 1

)
d−→ N

(
0,

∫
Rp K

2

g(x)
γ2(x)× J(J − 1)(2J − 1)

6 log2(J !)

)
.

It is remarkable that the asymptotic distribution of q̂Wn,τn(1−pn|x) is exactly the one obtained in the
i.i.d. setting by Daouia et al. (2011) under a further unnecessary regularity assumption on conditional
tails. This is not true in the unconditional setting, see Drees (2003). This phenomenon, which is
very important as far as inference is concerned since it drastically simplifies the estimation of the
asymptotic variance, has already been observed for nonparametric conditional Expected Shortfall
estimation (Linton and Xiao, 2013, p.784).

The Nadaraya-Watson estimates of the conditional mean of losses per squared yard and a (bias-
reduced version of the) estimate q̂Wn,τn(1 − pn|x) are shown in Figure 3 (c) and (d), respectively.
An important benefit of the nonparametric approach to extremal regression is its ability to provide
a smooth representation of conditional extreme value behavior, without recourse to strong spatio-
temporal model specifications. This is made clear by comparing the estimates with those obtained by
calculating, in each state, the mean and quantile at level 99.5% from the univariate sample of losses
in this state only, see Figure 3 (e) and (f). This approach yields estimates in the riskiest areas that
are up to 67% lower than those of the regression method, and produces unrealistic discontinuities in
the estimates, see the examples of Texas-Oklahoma-Kansas, Nebraska-South Dakota and Georgia-
South Carolina, unlike the kernel regression method with may pool regional information across state
boundaries. Inference can also be carried out at specific locations of interest, see Table 1 in Daouia
et al. (2023), where corrected confidence intervals based on the asymptotic normality result for
q̂Wn,τn(1− pn|x) are calculated, and compared to those based on purely empirical estimates.

A large part of the difficulty in carrying out inference using nonparametric extremal regression
is that the extreme value index of Y given X = x is allowed to depend on x. If it were in fact
constant with respect to x, then under reasonable assumptions (such as those of Einmahl et al.,
2016) the observations Yt could be pooled in order to estimate their common extreme value index.
It is, more generally, of interest to test for equality of extreme value features of several samples
of data, as a preliminary step before improving estimation and inference via pooling as done, for
instance, in Kinsvater et al. (2016) and Daouia et al. (2024a). This is the focus of the next section.

4 Analysis of variability for heavy-tailed extremes

Let us now consider J > 1 samples Ej = {X(j)
i , i = 1, . . . , nj}, j = 1, . . . , J , with independence

between samples and possibly different sample sizes nj > 1 such that nj/n→ λj > 0 as n→∞, for
j = 1, . . . , J . We assume that the random variables in each Ej are i.i.d. with cumulative distribution
function Fj and quantile function qj satisfying condition C2(γj , ρj , Aj). While the classical ANalysis
Of VAriance (ANOVA) aims at testing the equality between the means (central quantities) of the J
samples using a decomposition of the total variance into intra-class and inter-class variances (Scheffé,
1999), we are interested in testing if the samples have the same tail properties, and introduce
an ANalysis Of Variability for EXtremes (ANOVEX). A first possibility, already proposed in the
literature (see Mougeot and Tribouley (2010) or Worms and Worms (2015) for instance) may be to
test the equality of the extreme value indices γ1, . . . , γJ . However, two distributions may have the
same extreme value index and a widely different scale factor. Since two heavy-tailed distributions
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have the same shape and scale if and only if their quantiles are asymptotically equivalent (as the
quantile level tends to 1), we thus propose to test the equality of the extreme quantiles q1, . . . , qJ .
More precisely, our null hypothesis is defined by

(H0) For all (j, j′) ∈ {1, . . . , J}2 with j ̸= j′, we have qj′(1− p)/qj(1− p)→ 1 as p→ 0.

Note that, as introduced in Section 2, any extreme quantile qj,n may be suitably estimated using the
Weissman estimator q̂⋆j,n. The ANOVEX approach is the following: consider L ≥ 1 extreme levels

pℓ,n = τℓ/n, τℓ > 0 for ℓ = 1, . . . , L,

and focus on the decomposition of the following variability measure:

∆n =
1

JL

J∑
j=1

L∑
ℓ=1

(
log q̂⋆j,n(1− pℓ,n)− µp,n

)2
, with µp,n =

1

JL

J∑
j=1

L∑
ℓ=1

log q̂⋆j,n(1− pℓ,n).

Some straightforward calculations (Girard et al., 2024, Lemma 2.1) show that this total variability
may be decomposed into variability measures ∆1,n (due to the different samples) and ∆2,n (due to
the different quantile levels), i.e. ∆n = ∆1,n +∆2,n holds, where

∆1,n =
1

JL

L∑
ℓ=1

J∑
j=1

log q̂⋆j,n(1− pℓ,n)−
1

J

J∑
j=1

log q̂⋆j,n(1− pℓ,n)

2

,

∆2,n =
1

L

L∑
ℓ=1

 1

J

J∑
j=1

log q̂⋆j,n(1− pℓ,n)− µp,n

2

.

Inspired by the ANOVA, we define the ANOVEX test statistic

Tn =
Jvarlog(τ1:L) k

Sn(k, τ1:L)

∆1,n

∆2,n
,

where

varlog(τ1:L) =
1

L

L∑
ℓ=1

log2 (τℓ)−

(
1

L

L∑
ℓ=1

log (τℓ)

)2

and Sn(k, τ1:L) =
1

L

L∑
ℓ=1

log2
(
k

τℓ

)
.

If all the random variables are heavy-tailed, then the limit distribution of Tn is obtained in the
following result.

Theorem 1. Suppose that Fj fulfills condition C2(γj , ρj , Aj) and K(0) for each j = 1, . . . , J . Then,

under (H0), Tn
d−→ χ2

J−1 as n→∞.

The ANOVEX test thus rejects (H0) with asymptotic level α ∈ (0, 1) if Tn > χ2
J−1,1−α, where

χ2
J−1,1−α denotes the quantile of level 1 − α of the chi-square distribution with J − 1 degrees of

freedom.
A natural question is obviously the power of such a test. For that purpose, we propose to consider

three situations (all with J = 2 samples) where an approximation of the error rate is available. The
first one is the case where the two samples are identically Pareto distributed. In such a case, the
ANOVEX test is supposed to be rejected with a rate (or Type I error) α.

Proposition 1. Consider two independent samples Ej = {X(j)
1 , . . . , X

(j)
n }, j = 1, 2, of i.i.d. vari-

ables following the same Pareto distribution (denoted P(1/γ) in the sequel) with cumulative survival
function (c.s.f.) x−1/γ , γ > 0, x > 1. Assume that k is an intermediate sequence such that
(k log(n))/n→ 0 as n→ 0. Then, as n→∞,

Tn
d
= Γ2

(
1 +

1

Sn(k, τ1:L)

)(
1+OP

(
1√
k

)
+OP

(
k

n log(k)

))
where Γ is a standard normal random variable.
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Therefore, the probability PH0

(
Tn > χ2

1,1−α

)
to wrongly reject (H0) with asymptotic level α ∈ (0, 1)

is for large n approximately equal to

2Φ̄

(
Φ̄−1(α/2)

(
1 +

1

Sn(k, τ1:L)

)−1/2
)
,

where Φ(·) is the standard Gaussian survival function.
The second situation deals with two Pareto samples with a different scale parameter. In this

context, the test is supposed to be rejected, and the error (called Type II error) is the probability
to wrongly not reject (H0). An approximation is obtained, using the following notation:

sn(k, τ1:L) =
1

L

L∑
ℓ=1

√
1 + log2

(
k

τℓ

)
.

Recall also the notation x ∨ y for the maximum of x and y and un ≪ vn to denote the convergence
un/vn → 0.

Proposition 2. Consider two independent samples denoted by E1 = {X(1)
1 , . . . , X

(1)
n } and E2 =

{X(2)
1 , . . . , X

(2)
n } where X

(1)
i ∼ P(1/γ) and X

(2)
i

d
= λnX

(1)
i , i = 1, . . . , n and λn → 1 as n → ∞

(assumption (H1,n)). Assume that

log(k)

k3/4
∨
√

log(k)

n
≪ log(λn)≪

1√
k
.

Then, as n→∞,

Tn
d
=

(
log2(λn)k

2γ2Sn(k, τ1:L)
−
√
2k log(λn)sn(k, τ1:L)

γSn(k, τ1:L)
Γ +

1 + Sn(k, τ1:L)

Sn(k, τ1:L)
Γ2

)

×
(
1 + OP

(
1√
k

)
+OP

(
k

n log(k)

))
where Γ is a standard normal random variable.

Note that we assume that λn → 1 (and in a sense (H1,n) → (H0)) as n → ∞. This situation is
referred to as the contiguity concept (see e.g. Falk and Marohn, 1993) in the test literature. By
assuming the slightly stronger condition

log2(k)

k3/4
∨

√
log3(k)

n
= o(log(λn)),

then the probability PH1,n

(
Tn ≤ χ2

1,1−α

)
to (wrongly) not reject (H0) with asymptotic level α ∈

(0, 1) is, for large n, approximately equal to Φ̄
(
Ω1,n −

√
Ω2,n

)
− Φ̄

(
Ω1,n +

√
Ω2,n

)
, where

Ω1,n =
log(λn)

√
ksn(k, τ1:L)√

2γ (1 + Sn(k, τ1:L))
,

Ω2,n =
log2(λn)k

2γ2

sn(k, τ1:L)
2 − 1− Sn(k, τ1:L)

(1 + Sn(k, τ1:L))
2 +

Sn(k, τ1:L)

1 + Sn(k, τ1:L)
χ2
1,1−α > 0.

The third situation deals with two Pareto samples with a different shape parameter. Here also, the
test is supposed to be rejected, and the Type II error is the probability to wrongly not reject (H0).
An accurate approximation of the Type II error may be obtained, using the notations:

sn(k, τ1:L) =
1

L

L∑
ℓ=1

log

(
n

τℓ

)√
1 + log2

(
k

τℓ

)
and smlog(n/τ1:L) =

1

L

L∑
ℓ=1

log2
(
n

τℓ

)
.

Proposition 3. Consider two independent samples E1 = {X(1)
1 , . . . , X

(1)
n } and E2 = {X(2)

1 , . . . , X
(2)
n },

where X
(1)
i ∼ P(1/γ) and X

(2)
i

d
= (X

(1)
i )θn , i = 1, . . . , n and θn → 1 as n→∞ (assumption (H ′

1,n)).
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Let us assume that (θn) satisfies the same conditions as (λn) in Proposition 2. Then,

Tn
d
= 2

(
k(1− θn)

2

(1 + θn)2
smlog(n/τ1:L)

Sn(k, τ1:L)
+ 2

√
k
√

1 + θ2n(1− θn)

(1 + θn)2
sn(k, τ1:L)

Sn(k, τ1:L)
Γ +

(1 + θ2n)

(1 + θn)2
1 + Sn(k, τ1:L)

Sn(k, τ1:L)
Γ2

)

×
(
1 + OP

(
k

n log(k)

)
+OP

(
1√
k

))
, as n→∞,

where Γ is a standard normal random variable.

5 10 15 20 25 30

0.
04

0.
06

0.
08

0.
10

Rejection probability

L

P
ro

ba
bi

lit
y

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Non−rejection probability

L

P
ro

ba
bi

lit
y

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Non−rejection probability

L

P
ro

ba
bi

lit
y

5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Non−rejection probability

L

P
ro

ba
bi

lit
y

Figure 4: Empirical (solid curves) and approximated (dashed curves) Type I (top left panel) and
Type II (top right and bottom panels) errors obtained for 10,000 replications with J = 2, n = 1,000
and k = 100 as functions of L. Top left panel: The two samples are identically Pareto (blue), Fréchet
(purple), Burr with ρ = −0.75 (green) and GP (red) distributed. Top right panel: Setting of (H1,n)
with λn = 1 + 2n−1/3 = 1.2 and γ = 0.15 (blue curves), 0.25 (green curves), 0.35 (purple curves)
and 0.5 (red curves). Bottom left panel: Setting of (H1,n) with γ = 0.25 and λn = 1.1 (blue curves),
λn = 1.2 (green curves), λn = 1.3 (purple curves) and λn = 1.4 (red curves). Bottom right panel:
Setting of (H ′

1,n) with γ = 0.25 and θn = 1 + n−1/3 = 1.1 (green curves), θn = 1.2 (brown curves),
θn = 1.3 (blue curves) and θn = 1.4 (red curves).

Under a slightly stronger assumption on θn, then the probability PH′
1,n

(
Tn ≤ χ2

1,1−α

)
to (wrongly)

not reject (H0) with asymptotic level α ∈ (0, 1) may be approximated, for n large enough, by
Φ̄
(
Ψ1,n −

√
Ψ2,n

)
− Φ̄

(
Ψ1,n +

√
Ψ2,n

)
where

Ψ1,n =

√
k(θn − 1)sn(k, τ1:L)√

1 + θ2n (1 + Sn(k, τ1:L))
,

Ψ2,n =
(θn − 1)2k

(1 + θ2n)

sn(k, τ1:L)
2 − (1 + Sn(k, τ1:L)) smlog(n/τ1:L)

(1 + Sn(k, τ1:L))
2 +

(1 + θn)
2

(1 + θ2n)

Sn(k, τ1:L)

1 + Sn(k, τ1:L)

χ2
1,1−α

2

> 0.

The accuracy of these three approximations has been evaluated using a simulation study involving the
Pareto (c.s.f. x−1/γ , x > 1), Burr (c.s.f. (1+x−ρ/γ)1/ρ, ρ < 0, x > 0), Fréchet (c.s.f. 1−exp(−x−1/γ),
x > 0) and Generalized Pareto (GP, c.s.f. (1 + γx)−1/γ , x > 0) distributions. Figure 4 gives
an overview of the obtained results. They show in particular a very good approximation of the
considered Type II errors.
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Figure 5: Multivariate stock market data. Left: Correlation matrix (absolute values) between 12 se-
ries of negative daily log-returns of market stock indices (pre-filtered via an ARMA(1,1)-GARCH(1,1)
process). Right: Dendrogram of the market stock indices, where the dissimilarity measure is the
test statistic Tn (and the linkage method is the complete-linkage).

Finally, the test statistic Tn has been applied as a tail dissimilarity measure to the daily negative
log-returns of J = 12 stock market indices (pre-filtered using an ARMA(1,1)-GARCH(1,1) model).
The independence within and between the samples may be justified (see the correlation matrix in
Figure 5), and this leads to the dendrogram of Figure 5. By hierarchically testing (following the
hierarchy provided by the dendrogram) the tail equalities of the samples, it appears that these 12
indices may be split into two groups:

• A first one containing the indices from Central America (IPC Mexico) and South America
(IBOVESPA, Brazil and S&P MERVAL, Argentina), along with the S&P BSE 500 (India),
KOSPI Composite (South Korea) and BIST 100 (Turkey) indices,

• A second one containing the other Eurasian indices (Euro Stoxx 50, MOEX, Russia and TA-
125, Israel), along with the SSE Composite (China), PSEi (Philippines) and Tadawul All
Shares (Saudi Arabia).

It appears that these two groups cannot be merged, since the corresponding test is rejected. In such
a situation, the data cannot be pooled in a unique sample, and a multivariate approach to extreme
risk is mandatory, motivating the focus of the next section. We also refer to Girard et al. (2024) for
an application to the analysis of daily precipitation in Germany.

5 Improving extreme risk estimation through simulation of
multivariate extremes

As mentioned in Section 1, one of the main challenges in attempting to quantify risk measures at
a high level is the inherent scarcity of available extreme events. Another consideration is that uni-
variate risk measures can be improved by taking into account the potential asymptotic dependence
structure exhibited by the risk variable of interest X, with other covariates. This section presents
an alternative approach to the one employed in Section 2 for the estimation of risk measures, focus-
ing exclusively on empirical estimators. In order to address the two aforementioned issues, i.e. the
scarcity of data at extreme levels and the presence of extremal dependence structure between vari-
ables, we develop a stochastic generator of multivariate extreme events (see Legrand et al., 2023;
Madhar et al., 2024).

Three risk measures are considered. For a multivariate random vector X = (X1, . . . , Xd), the
CTE at level τ of a target risk variable Xj , j ∈ {1, . . . , d}, has been defined in Equation (5) and is
the first risk measure of interest. However, this risk measure does not take into account the potential
asymptotic dependence between Xj and the other components of X. To address this specific aspect,
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we consider, first, the Multivariate Marginal Expected Shortfall (MMES) of Xj at level τ , that is,

MMESj(τ) = E(Xj |X−j ≥ vτ
−j) (15)

where vτ is the vector made of the marginal quantiles of X at level τ , and with the notation v−j

denoting the vector v deprived from its jth component. Through this formulation the aim is to
capture the behavior of Xj when other components of X reach extreme levels. The third risk
measure we consider can be used to quantify the risk of Xj when other components of X as well
as Xj itself reach extreme levels simultaneously. Its definition is an extension of the Dependent
Conditional Tail Expectation (DCTE) to the multivariate case:

DCTEj(τ) = E(Xj |X ≥ vτ ) (16)

For the above mentioned risk measures, parametric and nonparametric estimators have been pro-
posed but these are often limited to the bivariate case. In this study, we rather consider empirical
estimation of the CTE, the MMES and the DCTE in a multivariate setting, i.e. for d ≥ 2. In order
to overcome the limitations of the amount of available data for carrying out empirical estimation,
we develop a joint simulation algorithm of multivariate extreme events.

The simulation procedure is based on the stochastic representation of a standard multivariate
generalized Pareto (MGP) vector. Assuming that the original data X can be marginally trans-
formed to the exponential scale (using the probability integral transform) and denoting by XE the
transformed data, one can consider the conditional distribution

[XE − u |XE ≰ u] (17)

of the vector of exceedances, where XE ≰ 0 means that at least one of the component of XE is
positive. Then, for u large enough, the conditional distribution of the vector of exceedances defined
in (17) can be approximated by a vector Z having an MGP distribution (see Rootzén and Tajvidi,
2006). Rootzén et al. (2018) have shown that such vectors Z, called standard MGP vectors, can be
decomposed as

Z = E + T −max(T ) (18)

where E is a unit exponential random variable and T is a random vector independent of E. Paramet-
ric forms have been proposed for T (see, e.g., Kiriliouk et al., 2019). We propose here a distribution-
free stochastic generator of MGP vectors Z using nonparametric bootstrap.

The main idea of this generator is to consider the multivariate differences

∆j,k = Zj − Zk = Tj − Tk, for all j, k ∈ {1, . . . , d}.

From these differences, Equation (18) can then be rewritten as

Zj = E +

d∑
k=1,k ̸=j

∆j,k
d∏

ℓ=1,ℓ̸=k

1{∆ℓ,k<0}, for all j ∈ {1, . . . , d}. (19)

It is then sufficient to generate realizations of the differences ∆j,k for all j, k ∈ {1, . . . , d}, and since
∆j,k = ∆1,k −∆1,j for all j, k ∈ {1, . . . , d}, it is sufficient to generate realizations of the differences
∆1,k for all k ∈ {2, . . . , d}. Denoting by ∆ = (∆1,1, . . . ,∆1,d) ∈ Rd, the algorithm generating
MGP vectors is then simply based on a nonparametric resampling of the observed differences ∆, see
Algorithm 1. Proposition 7.1 in (Madhar et al., 2024) guarantees that the samples simulated with
Algorithm 1 are indeed distributed according to a standard MGP distribution.

Numerical experiments can be found in Legrand et al. (2023, Section 4.2) and in Madhar et al.
(2024, Section 3.2). We illustrate the benefits of using this resampling algorithm using simula-
tion evidence when the (3-dimensional) random vector X = (X1, X2, X3) has marginal Student
t-distribution with degrees of freedom ν = (2, 3, 2.5). This distribution is chosen so as to mimic
financial returns, which are typically heavy-tailed. To ensure that the components of X are upper
tail dependent, we generate them using a Gumbel copula with parameter θ ≥ 1 (see, e.g., Nelsen,
2006). Simply stated, the larger θ, the stronger the asymptotic dependence structure between the
components of X. For the sake of simplicity, we only consider the risk measures associated to the
risk variable X1. Then, we empirically estimate CTE(1 − p), MMES1(1 − p) and DCTE1(1 − p)
(see Equations (5), (15) and (16)) for different (small) values of level p but also different values
of θ, corresponding to the degree of asymptotic dependence between the components of X. Since
benchmark values for each risk measure can be analytically computed, we can consider the relative
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Algorithm 1 Nonparametric joint MGP simulation

Input: Observations (Zi)1≤i≤n = (Zi,1, . . . , Zi,d)1≤i≤n from a standard MGP distribution

Output: A standard MGP simulated sample
(
Z̃m

)
1≤ℓ≤m

=
(
Z̃ℓ,1, . . . , Z̃ℓ,d

)
1≤ℓ≤m

1: procedure
2: Compute ∆1,k

i ← Zi,1 − Zi,k, for 1 ≤ i ≤ n and 1 ≤ k ≤ d

3: Generate E1, . . . , Em
i.i.d.∼ Exp(1), and independent of (∆1,k

i )1≤i≤n,1≤k≤d

4: Generate a m-bootstrap sample ∆̃ =
(
∆̃ℓ

)
ℓ=1,...,m

from (∆i)1≤i≤n

5: Compute ∆̃r,s
ℓ ← ∆̃1,s

ℓ − ∆̃1,r
ℓ , for 1 ≤ ℓ ≤ m and all 1 ≤ r, s ≤ d

6: Compute Z̃ℓ,j ← Eℓ +
∑d

s=1,s̸=j ∆̃
j,s
ℓ

∏d
r=1,r ̸=s 1{∆̃r,s

ℓ <0} for all 1 ≤ ℓ ≤ m and 1 ≤ j ≤ d

7: end procedure

errors between the empirical estimates and the theoretical values. These are estimated using, first,
the original sample without data augmentation (denoted by Orig.), then the data generated using
Algorithm 1 only (denoted by Simu.) and the original sample and the simulated sample combined
(denoted by Ext.).

Figure 6 illustrates the distribution of the relative errors in each of the aforementioned cases
considering 50 original simulated samples. It is noteworthy that the simulation of multivariate
extremes using Algorithm 1 improves not only the estimation of the MMES and the DCTE but
also the estimation of the CTE which is defined solely in terms of the variable X1. This suggests
that the estimation of univariate risk measures may be enhanced by the consideration of additional
relevant variables (in particular, variables exhibiting asymptotic dependence with the risk variable
of interest).

6 Discussion

As Section 5 illustrates, there is substantial potential in combining empirical estimation methods
with resampling algorithms or generative methods based on neural networks (Allouche et al., 2022;
Huster et al., 2021) in order to improve estimation accuracy. It would be interesting to pair the
nonparametric stochastic generator of multivariate extreme data points with bias-reduced estimators
in order to test for tail homogeneity, as a preliminary step before carrying out (or not) extremal
regression. Another interesting avenue for research would be the adaptation of the resampling
methodology to the extremal regression context, where finite-sample uncertainty in the estimation
is often sizeable, in order to produce estimators that are much more accurate than what is currently
available without having to resort to strong model specifications such as linear quantile regression
models. It would, finally, be important to adapt the methods presented in this article to the presence
of serial dependence so as to be able to handle real data applications in risk management such as
the tornado losses problem, or the tail homogeneity assessment exercise for financial data without
having to rely on the ARMA-GARCH filtering step (whose effect on the time dependence structure
is not guaranteed should this model be incorrect).
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Figure 6: Distribution of relative approximation errors of the estimations of risk measures on 50
original samples (grey oblique lines), 50 simulated samples (red dots) and 50 extended samples (yellow
grid) for the CTE (Figures a), b), c)), the MMES1 (Figures d), e), f)) and the DCTE1 (Figures
g), h), i)) at varying levels τ = 1 − p ∈ {0.9975, 0.999, 0.9997} with respect to copula parameter
θ ∈ {1.3, 2.6, 7.3}.
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Dematteo, A. and Clémençon, S. (2016). On tail index estimation based on multivariate data.
Journal of Nonparametric Statistics, 28(1):152–176.

Drees, H. (2003). Extreme quantile estimation for dependent data, with applications to finance.
Bernoulli, 9(4):617–657.

Einmahl, J. H. J., de Haan, L., and Zhou, C. (2016). Statistics of heteroscedastic extremes. Journal
of the Royal Statistical Society: Series B, 78(1):31–51.

El Methni, J., Gardes, L., and Girard, S. (2014). Nonparametric estimation of extreme risks from
conditional heavy-tailed distributions. Scandinavian Journal of Statistics, 41(4):988–1012.

El Methni, J. and Stupfler, G. (2018). Improved estimators of extreme Wang distortion risk measures
for very heavy-tailed distributions. Econometrics and Statistics, 6:129–148.
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