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A B S T R A C T

Conventional Transmission Electron Microscopy (TEM) is widely used for routine characterization of the size
and shape of an assembly of (nano)particles. While the most basic approach only uses the projected area of
each particle to infer its size (the ‘‘circular equivalent diameter’’ corresponding to the so-called ‘‘spherical
approximation’’), other shape descriptors can be determined and used for more elaborate analyses. In this
article we present a generic model of particles, considered to be made of a few individual grains, and show
how the equivalent size (i.e. a particle volume information) can be reliably deduced using only two basic
parameters: the projected area and the perimeter of a particle. We compare this simple model to the spherical
and ellipsoidal approximations and discuss its benefits. Then, partial coalescence of grains in a particle is also
considered and we show how a simple analytical approximation, based on the circularity parameter of each
particle, can improve the experimental determination of a particle size histogram. The analysis of experimental
observations on nanoparticles assemblies obtained by mass-selected cluster deposition is presented, to illustrate
the efficiency of the proposed approach for the determination of particle size just from conventional TEM
images. We show how the presence of multimers offers an excellent opportunity to validate our improved and
simple procedure. In addition, since the circularity plays a central role in this approach, attention is attracted
on the perimeter determination in a pixelated image.
1. Introduction

Nanoparticles are of great interest in a wide range of disciplines [1–
11], going from chemistry and catalysis to biomedicine or geoscience,
through various area of physics: optics, magnetism, electronics etc.
There exists many ways to artificially produce nanoparticle samples,
while nature is also able to provide nanoparticles of different kinds
(for instance due to combustion/volcanism [6,12] or to living beings...).
From a characterization point of view it is often essential to be able to
determine the shape and size distribution in an assembly of nanopar-
ticles (or microparticles as well, the approach exposed in this paper
can in fact be applied at any scale) [6,13–17], for instance in the
precise case of size-effect investigations for nano-magnets [18–27]. A
method of choice, quite easily accessible, is to observe an assembly
of dispersed particles on a surface with conventional Transmission
Electron Microscopy (TEM) [6,28–32]. This is a powerful technique,
with an excellent spatial resolution, no problem of probe convolution
(contrary to scanning electron microscopy (SEM) which is also often
used, especially for large particles) [15,30,33,34], and with a direct
visualization of the particles in the sample (as opposed to indirect
methods using scattering of X-rays or visible light for instance...) thus
providing a lot of information: the particle arrangement in the sample,

E-mail address: florent.tournus@univ-lyon1.fr.

the variability of size and shape etc. Image analysis procedures and
particle classification have thus been devised, sharing common ques-
tions with other techniques of imaging (optical microscopy or SEM for
instance) and in connection with many fields of research at the micro or
macro-scale (volcanology, geology, sedimentary research, crop science,
metrology and computer vision in general) [35–48].

However, except when more involved techniques are used (to-
mography in particular), conventional TEM images on assemblies of
particles only provide a 2D information, namely we can separate in a
image the particles from the background, in order to determine their
projected area, but out-of-plane information (i.e. along the observation
direction) is missing. Note that the contrast of a particle, while it
has a dependence on its thickness, cannot be reliably and routinely
used to determine the volume in an assembly of particles. For such
a purpose, one would prefer to use a technique like STEM-HAADF
giving somehow access to an out-of-plane information, but also with
some limitations (resolution, damage of the particles, chemical sensi-
tivity...), or other techniques more time-consuming and/or harder to
apply to a large number of particles (electron/atom probe tomography,
holography...) [49–64].
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Therefore, particles characterization using conventional TEM sticks
with 2D information and one has to resort to some hypothesis to infer
3D information. Notably, a whole community has been working in this
irection with the study of soot particles, consisting in agglomerates
f complex shapes (with fractal dimension) made of a large number
f primary nanoparticles, aiming at a 3D structure determination from
rojected area TEM imaging, with the help of computer softwares,
imulations and possibly artificial intelligence [6,12,45,65–69]. Since
he notion of particle size is in fact usually related to the particle
olume, especially for comparison with different measurements and
xperimental techniques (for instance magnetometry measurements in
he precise case of nanomagnets [18,19,22,23], as the particles consid-

ered in Section 4), it is highly desirable to have access to a reliable
valuation of the volume. The simplest and common approximation is

to consider that particles are spherical, and then infer their equivalent
ize from the projected area 𝐴 only: this hypothesis means that the out-
f-plane dimension of an observed particle is equal to the diameter 𝐷𝑠𝑝ℎ
f the disk having the area 𝐴. This may be a reasonable assumption
n the case of particles which look spherical, i.e. which are circular
however it is always possible that the particles are for instance flat
isks...). But what about particles having irregular shapes, for which
he spherical hypothesis would be obviously wrong?

In the present article, our motivation is to provide a simple approach
for the analysis of the particle size distribution going beyond the crude
spherical approximation. In Section 2, in addition to the spherical
and ellipsoidal hypotheses, we present a generic model of particles,
considered to be made of individual grains. We show how the equivalent
diameter is related to two basic parameters: the projected area 𝐴 and
the perimeter 𝑃 of each particle. Then, in Section 3, we introduce
a partial coalescence model (quantified by an overlap parameter) ex-
tending the ‘‘grain’’ model, which allows us to improve the particle
size determination especially when 𝐴 vs. 𝑃 displays a linear trend.
We establish a simple analytical approximation for the inferred out-of-
plane dimension, where the circularity appears as a central parameter
to correct the diameter from the spherical hypothesis. In Section 4
the approach is illustrated on various samples of deposited clusters,
where convention TEM images are used to compute the particle size
distribution. The efficiency of the partial coalescence approximation
is discussed and in particular we take benefit from the presence of
multimers on the surface (i.e. particles made of two or more incident
clusters that have come into contact [20,70]) to validate our improved
rocedure. In addition, since the circularity plays a central role in this
pproach, attention is attracted on the perimeter determination in a
ixelated image. Finally, a summary and conclusion is given in the last
ection.

2. Basic models and their relation with shape parameters

2.1. Concept of equivalent diameter and spherical approximation

In a very general way, one can defined the equivalent diameter of
ny particle (of any shape) as the diameter of a sphere having the same
olume as the true particle volume 𝑉 :

𝐷𝑒𝑞 =
( 6𝑉

𝜋

)1∕3
(1)

If the volume 𝑉 can be measured, then the equivalent diameter is
non-ambiguously defined (it is sometimes called ‘‘volume equivalent
diameter’’ [71]). Since all the difficulty is that precisely we do not
have access to the particle volume, in the following discussion the
equivalent diameter will be computed using different approximations
for the calculation of 𝑉 from the particle shape analysis (in particular,
based on the area and perimeter measurement).

The simplest and widespread hypothesis is what we call the ‘‘spher-
cal approximation’’, where the particle size is determined using only

its projected area 𝐴. The projected area 𝐴 of a sphere of diameter
 t

2 
𝐷 is 𝐴 = 𝜋
4𝐷

2 and its volume is 𝑉 = 𝜋
6𝐷

3, then we can call 𝐷𝑠𝑝ℎ
the ‘‘equivalent diameter’’ in the spherical approximation the quantity
(sometimes called ‘‘Heywood diameter’’, ‘‘circular equivalent diameter’’
r ECD for ‘‘equivalent circular diameter’’ [14,15,30,33,38,44,46,47,

56,58,60,72–76] :
𝐷𝑠𝑝ℎ =

√

4𝐴∕𝜋 (2)

Note that sometimes a particle diameter is reported without explicitly
indicating that this spherical hypothesis has been used and while
the particles are apparently not ideal spheres [24–27,29,77,78]. The
corresponding volume, directly determined from the area 𝐴, is
𝑉𝑠𝑝ℎ = 2

3
𝐴𝐷𝑠𝑝ℎ = 4

3
√

𝜋
𝐴3∕2 (3)

Therefore, in this spherical approximation, the equivalent diameter
s the one of a perfect sphere having the same projected area 𝐴 as

the one measured for the real particle. Using this particle size to
infer the particle volume is equivalent to consider that 𝐷𝑠𝑝ℎ is also
the out-of-plane diameter (maximum particle thickness). Because the
spherical shape is an extreme case (point contact with the surface,
with absolutely no wetting) one can expect that the 𝑉𝑠𝑝ℎ value is
overestimating the true particle volume 𝑉 . Moreover, in the case of
complex/irregular in-plane shapes obviously deviating from a disk, it
can be clear that assuming an out-of-plane dimension of 𝐷𝑠𝑝ℎ is a wrong
estimation of the typical particle thickness. This means that 𝐷𝑠𝑝ℎ is
somehow an upper bound of the correct equivalent diameter.

Let us however emphasize that the ‘‘spherical approximation’’ is
 quite natural way to determine a particle size (i.e. a diameter) if

the only information available is the projected area 𝐴 (𝐷𝑒𝑞 can also
be sometimes called the area-equivalent diameter [79]). In addition to
its simplicity, this hypothesis is motivated by the fact that a sphere
is the equilibrium shape for a freestanding fluid particle (because it
orresponds to a minimization of the surface energy, for a given total
olume). However there are evident reasons for a deviation from this
imple model [5,8,80–83] : i) the particles may be in a non-equilibrium

state (for instance touching particles that have not coalesced) (ii) for
crystalline particles, the surface energy depends on the orientation
(atomic planes) so that facetting is expected, leading to polyhedral
equilibrium shapes (iii) particles are supported on a substrate (and
potentially capped or embedded in another medium) so that interface
energies play a role with wetting/truncation effects, affecting the out-
of-plane dimension, even if the system is isotropic in plane. While
points (i) and (ii) may be directly detected on the 2D images with non-
circular shapes of particles (i.e. their areas do not correspond to disks),
the truncation (or flattening) problem of point (iii) will not be visible
simply looking at the projected areas.

It should be noted that, for some particular purposes, various shape
escriptors (as the circularity and roundness, see below) and alternative

diameters (or ‘‘lengths’’) can be used to characterize a particle [36,38,
39,72,74,75,84]: for instance the concept of Feret diameter (distance
between two parallel lines tangent to the projected contour, also known
as the caliper diameter ; the minimum Feret diameter being defined
as the minimum length of parallel tangents (particle breadth) accord-
ing to ISO 9276-6) which is of particular relevance for sieving, and
other dimensions that may also be of interest (diameter of the largest
inscribed or smallest circumscribing circles, Martin’s diameter...) will
not be considered in this article.

2.2. Ellipsoidal approximation

One can easily improve the shape description of the particles, taking
into account deviations of the projected area from a perfect disk. The
‘‘ellipsoidal approximation’’ thus keeps tracks of the anisotropic shape
of the projected area by defining an equivalent ellipse [23,35,36,40–
42,45,47,72,75,85] having a major axis 𝐷𝑚𝑎𝑗 𝑜𝑟 and a minor axis 𝐷𝑚𝑖𝑛𝑜𝑟
orresponding in our case to the same inertia matrix (2 × 2 matrix) as
he original particle. Note that while there are other ways to define an
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Ultramicroscopy 268 (2025) 114067 
approaching ellipse for a given particle, here we force the area of the
ellipse to be the same as the one of the particle, so that we can write:

𝐴 = 𝜋
4
𝐷𝑚𝑎𝑗 𝑜𝑟𝐷𝑚𝑖𝑛𝑜𝑟 (4)

To go further, one then considers that the particles can be approx-
imated by an ellipsoid where the unknown out-of-plane dimension is,
for simplicity, equal to 𝐷𝑚𝑖𝑛𝑜𝑟. Note that this arbitrary assumption [23,
46,75] can in fact be justified by two features: first, when the elongated
hapes correspond to particles formed by smaller grains in contact

with their neighbors (without or with limited subsequent coalescence)
then the ‘‘thickness’’ rather corresponds to the smallest in-plane di-
mension; second, when there is an adhesion energy (interface energy
between the particle surface and the substrate) leading to a particle
flattening, then it is not favorable to have an ellipsoid with its longest
xis perpendicular to the substrate. Of course, it is still possible to
xperimentally meet some particles where this assumption is in fact not

valid (for instance for columnar particles), so that one must always keep
 critical view on the inferred particle size distribution. Nevertheless,
et us insist on the fact that the ellipsoidal approximation does only
equire very light data processing (which are currently done in standard
nalysis softwares) and it encompasses the spherical approximation (if
he projected area is a disk, we simply find 𝐷𝑚𝑎𝑗 𝑜𝑟 = 𝐷𝑚𝑖𝑛𝑜𝑟): it is
hus a better approximation than the usual spherical approximation and
hould therefore be preferred.

The volume of the approximated ellipsoid corresponds to
𝑉𝑒𝑙 𝑙 𝑖𝑝𝑠 = 𝜋

6
𝐷𝑚𝑎𝑗 𝑜𝑟𝐷2

𝑚𝑖𝑛𝑜𝑟 =
2
3
𝐴𝐷𝑚𝑖𝑛𝑜𝑟 (5)

so that one can deduce the equivalent diameter in the ellipsoidal
approximation:

𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠 =
(

4𝐴𝐷𝑚𝑖𝑛𝑜𝑟
𝜋

)1∕3
(6)

This equivalent diameter can also be expressed as

𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠 = 𝐷2∕3
𝑠𝑝ℎ𝐷

1∕3
𝑚𝑖𝑛𝑜𝑟 (7)

which makes clear the essence of the ellipsoidal approximation: the
only difference with respect to the spherical approximation is to use

𝑚𝑖𝑛𝑜𝑟 instead of 𝐷𝑠𝑝ℎ for the out-of-plane dimension. Since by defini-
ion we necessarily have 𝐷𝑚𝑖𝑛𝑜𝑟 ≤ 𝐷𝑠𝑝ℎ then 𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠 ≤ 𝐷𝑠𝑝ℎ (they can
nly be equal if the projected area is a perfect disk).

Fig. 1 displays an example of image analysis (deposited FeRh clus-
ters on an amorphous carbon film) with the projected area of the
particles (Fig. 1b) and the equivalent ellipses (Fig. 1c) corresponding to
n original TEM image (Fig. 1a). The particle size distribution deduced

from many such images is given in Fig. 1d, where we clearly see the
difference between the spherical and ellipsoidal approximation.

2.3. Grain approximation

Because complex particle shapes may come from the existence of
everal ‘‘grains’’, with potentially a partial coalescence (see below),

one can consider another very basic approximation that we shall call
the ‘‘grain approximation’’. Note that tortuous/ramified shapes do not
correspond to equilibrium conditions and are thus the result of the
particle formation process which can occur by aggregation in gas or
liquid phase, or even on the surface (through cluster diffusion) [13,17,
69,82,86–90].

In the present approximation, we will imagine the most simple
scenario where particles are formed by individual spherical grains
of the same size (diameter 𝑑𝑔 𝑟𝑎𝑖𝑛), touching each-other without any
coalescence (like beads). Contrary to complex shaped soot particles (see
or instance [6,12,46]) we restrict our model to particles made of a
imited number of grains, all lying on the surface. With this assumption,
he projected area is necessary a multiple of the single grain area:

𝜋 2
𝐴 = 𝑛
4
𝑑𝑔 𝑟𝑎𝑖𝑛 (8)

3 
with 𝑛 integer. The corresponding volume would then be

𝑉𝑔 𝑟𝑎𝑖𝑛 = 𝑛𝜋
6
𝑑3𝑔 𝑟𝑎𝑖𝑛 =

2
3
𝐴𝑑𝑔 𝑟𝑎𝑖𝑛 (9)

This shows that with this approximation, the out-of-plane dimension is
ot 𝐷𝑠𝑝ℎ but 𝑑𝑔 𝑟𝑎𝑖𝑛. One can also directly see that since 𝑑𝑔 𝑟𝑎𝑖𝑛 ≤ 𝐷𝑠𝑝ℎ,

the volume and consequently the equivalent diameter will always be
lower than that of the spherical approximation. Moreover, the spherical
approximation would simply correspond to impose 𝑛 = 1 so that
once again, the grain approximation appears as an extension that
encompasses the usual spherical approximation. It must then be more
powerful. The question that remains is how to determine the 𝑛 value
for a given particle? For the moment, we will circumvent this question
by using the perimeter 𝑃 of the particle, which is simply in this grain
model 𝑃 = 𝑛𝜋 𝑑𝑔 𝑟𝑎𝑖𝑛. By using the ratio between the projected area and
the perimeter, which are both proportional to the number of grains 𝑛,
we can then write:

𝑑𝑔 𝑟𝑎𝑖𝑛 = 4𝐴
𝑃

(10)

Thus, one can always calculate a value of 𝑑𝑔 𝑟𝑎𝑖𝑛 (as we can always
calculate a 𝐷𝑠𝑝ℎ value) that may or may not be relevant for the
particle size analysis. If the grain approximation is adapted to the real
experimental situation, and we will discuss later how it can be tested, it
will be a sound choice to consider 𝑑𝑔 𝑟𝑎𝑖𝑛 for the out-of-plane dimension.
For a spherical particle, the 𝑑𝑔 𝑟𝑎𝑖𝑛 value defined as above is simply equal
to the particle diameter 𝐷. Therefore, as already explained, the grain
approximation is more robust than the spherical approximation since
the later appears as a special case of the more general situation (where
𝑛 can differ from 1).

The particle volume can be written as 𝑉𝑔 𝑟𝑎𝑖𝑛 = 8𝐴2

3𝑃 so that the
quivalent diameter of a particle is defined by

𝐷𝑔 𝑟𝑎𝑖𝑛 =
(

16𝐴2

𝜋 𝑃
)1∕3

= 𝐷2∕3
𝑠𝑝ℎ𝑑

1∕3
𝑔 𝑟𝑎𝑖𝑛 (11)

This expression is similar to the one established within the ellipsoidal
approximation where we had 𝐷𝑚𝑖𝑛𝑜𝑟 instead of 𝑑𝑔 𝑟𝑎𝑖𝑛. This under-
lines the difference between the three approximations that we have
presented up to now. They only differ by the value used for the out-
of-plane dimension: 𝐷𝑠𝑝ℎ, 𝐷𝑚𝑖𝑛𝑜𝑟 or 𝑑𝑔 𝑟𝑎𝑖𝑛 respectively for the spherical,
the ellipsoidal or grain approximation. In the following, as a variable
naming convention, we will use lower case 𝑑 for the out-of-plane
dimensions and upper case 𝐷 for the in-plane or equivalent diameters
f different approximations. Note that a table with the list of variables
nd their meaning is given in Appendix A (see Table A.1).

2.4. Circularity, roundness and comparison of the different approximations

In the definition of the grain diameter, we have used the particle
perimeter 𝑃 . This is an important information when we analyze the
shape of a particle. We postpone to Section 4 the discussion on the
practical evaluation of the perimeter from a pixelated 2D image, which
is not as simple as it may seem. Here we assume that, just as for the
rojected area 𝐴, we have a reliable way to measure the perimeter 𝑃 . A
pecially important dimensionless parameter is defined as the circularity

[35,37,41–43,75,82,91]:

𝐶 = 4𝜋 𝐴
𝑃 2

(12)

It varies between 0 and 1, and can only reach 1 for a perfect disk. It is
important to keep in mind that there are many ways to have a particle

ith a given circularity (except for 𝐶 = 1), for instance having a surface
‘‘roughness’’, ramifications, or an elongated shape will reduce 𝐶. While
a given shape corresponds to a given 𝐶 value, the opposite is not true:
a shape cannot be fully characterized just from its circularity! It is just
a single (useful) parameter, it is therefore logical that it is not sufficient
to describe a 2D shape (except for a perfect disk).
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Fig. 1. Transmission electron microscopy (TEM) image of FeRh particles on an amorphous carbon film (a) with the corresponding projected areas (b) (binary image obtained by
filtering and thresholding of the gray level image) and equivalent ellipses (c) used to compute the particle size in the spherical or ellipsoidal approximation. By using many such
images, one finally obtain the particle size distribution (d): the experimental histogram can be fitted using a bimodal distribution made of two Gaussians (the incident particles,
called monomers, and the dimers formed by two incident particles). The spherical approximation would provide a significantly higher equivalent diameter than the ellipsoidal
approximation (incident particle size centered on 4.70 nm instead of 4.39 nm).
Interestingly, the circularity can be used to relate 𝑑𝑔 𝑟𝑎𝑖𝑛 and 𝐷𝑠𝑝ℎ.
We indeed can note that
𝑑𝑔 𝑟𝑎𝑖𝑛
𝐷𝑠𝑝ℎ

=
√

4𝜋 𝐴
𝑃 2

=
√

𝐶 (13)

and the equivalent diameter of the grain approximation is consequently

𝐷𝑔 𝑟𝑎𝑖𝑛 = 𝐶1∕6𝐷𝑠𝑝ℎ (14)

The circularity is thus the relevant parameter to go from the spherical
approximation to the grain approximation (once again, for a perfect
disk, 𝐶 = 1 and the two expressions are the same).

Another shape descriptor, often provided by imaging softwares
when analyzing particles, is the roundness 𝑟 [35,36,39,41,43,72]. This
dimensionless parameter, also varying between 0 and 1, is related to
the equivalent ellipse discussed above, and is defined by

𝑟 = 4𝐴
𝜋 𝐷2

𝑚𝑎𝑗 𝑜𝑟
=

𝐷𝑚𝑖𝑛𝑜𝑟
𝐷𝑚𝑎𝑗 𝑜𝑟

= 1
𝛾

(15)

where 𝛾 is the aspect ratio of the equivalent ellipse, i.e. 𝛾 = 𝐷𝑚𝑎𝑗 𝑜𝑟∕𝐷𝑚𝑖𝑛𝑜𝑟
≥ 1. Note however that, contrary to the circularity, there are plenty of
shapes that corresponds to 𝑟 = 1 (or equivalently to 𝛾 = 1). Because
the equivalent ellipse is related to the inertia matrix of a particle, 𝑟 can
be equal to 1 if the particle shape is symmetrical enough (for instance
with a star shape). While a perfect disk will correspond to 𝑟 = 1, the
opposite is not true and in particular, one can have shapes with 𝑟 = 1
and a circularity 𝐶 far from unity (on the contrary, if 𝐶 approaches
1 then 𝑟 is necessarily getting close to 1). This shows that roundness
and circularity are not sensitive in a same way to a deviation from a
spherical shape (or disk in 2D). The two parameters are convenient and
of interest to analyze the shape of particles.
4 
From the previous discussion on the ellipsoidal approximation, one
can note that
𝐷𝑚𝑖𝑛𝑜𝑟
𝐷𝑠𝑝ℎ

=
√

𝑟 (16)

and for the equivalent diameter we have

𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠 = 𝑟1∕6𝐷𝑠𝑝ℎ (17)

Remarkably, this is reminiscent of the relation established for the grain
approximation, where instead of the circularity here it is the roundness
𝑟 which appears as the relevant parameter to go from the spherical
approximation to the ellipsoidal approximation. For a perfect disk,
of course we have at the same time 𝐶 = 1 and 𝑟 = 1 and all the
approximations are equivalent.

If we want to compare the grain and ellipsoidal approximation, we
can write
𝑑𝑔 𝑟𝑎𝑖𝑛
𝐷𝑚𝑖𝑛𝑜𝑟

=
√

𝐶
𝑟

(18)

for the out-of-plane dimension, and
𝐷𝑔 𝑟𝑎𝑖𝑛
𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠

=
(𝐶
𝑟

)1∕6
(19)

for the equivalent diameter.
If the particles display elliptical projected areas, then there is a

one to one relation between the circularity and the roundness (see
Fig. 2). Using approximated analytical formula for the perimeter 𝑃
(which involves elliptic integral or infinite series to get an exact value),
we can for instance write, using the quite simple and efficient formula
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Fig. 2. (a) Projected area for the different hypotheses considered in the text: spherical or ellipsoidal particles, or a particle made of touching grains. (b) Red curve: evolution
of the circularity for an ellipse (calculated here with the Muir approximation, Eq. (20)), as a function of the roundness 𝑟. Black dots correspond to the distribution of 𝐶 vs 𝑟
experimentally measured for the particles corresponding to Fig. 1, showing a good agreement with what is expected for ellipses (except for a few particles with low circularity).
(c) Ratio 𝐷𝑔 𝑟𝑎𝑖𝑛∕𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠 or 𝐷𝑠𝑝ℎ∕𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠 calculated for an ellipsoidal particle of different roundness parameter.
proposed by Muir [92,93] (𝑃 ≃ 𝜋
[

(𝐷𝑥
𝑚𝑎𝑗 𝑜𝑟 +𝐷𝑥

𝑚𝑖𝑛𝑜𝑟)∕2
]1∕𝑥

with 𝑥 =
3∕2):

𝐶𝑒𝑙 𝑙 𝑖𝑝𝑠 = 𝑟
(

2
1 + 𝑟3∕2

)4∕3
(20)

where we have noted 𝐶𝑒𝑙 𝑙 𝑖𝑝𝑠 for the circularity, to emphasize that this
is not true in any case but only for an ellipse (this also appears as an
upper bound of 𝐶 vs. 𝑟 relation in general).

Since for an ellipse 𝐶𝑒𝑙 𝑙 𝑖𝑝𝑠 is larger than the roundness 𝑟, the param-
eter 𝑑𝑔 𝑟𝑎𝑖𝑛 is always larger than 𝐷𝑚𝑖𝑛𝑜𝑟 and thus the grain equivalent
diameter 𝐷𝑔 𝑟𝑎𝑖𝑛 will be larger than the ellipsoidal equivalent diameter
𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠, if particles have projected areas close to true ellipses. As shown
in Fig. 2, the evolution of the ratio 𝐷𝑔 𝑟𝑎𝑖𝑛∕𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠 as a function of 𝑟 is
very close to a simple straight line. Using the grain approximation for
particles that are in fact ellipsoidal would result however in a moderate
overestimation of their size (lower than 15% as long as 𝑟 > 0.2, i.e. for
particles with an aspect ratio lower than 5). Nevertheless, the error
would be even larger if we use the spherical equivalent diameter 𝐷𝑠𝑝ℎ.
This shows that the grain approximation not only encompasses the
spherical approximation, but it is still a better choice even in the case
of particles having an ellipsoidal shape. Anyway, in such a case, that
can be detected by the eyes or with a numerical analysis (for instance
looking at the variation of 𝐶 vs. 𝑟, which follows a known curve for
perfect ellipses), the ellipsoidal approximation would of course be the
wisest choice. On the contrary, one may wonder how bad it would
be to use the ellipsoidal expression in the case of particles really
corresponding to several identical grains. Since such particles (with
a perfectly defined 𝑑𝑔 𝑟𝑎𝑖𝑛) may adopt different shapes, depending on
how the grain are disposed (linear chain, compact island, branched
shapes...), the very same 𝐷𝑔 𝑟𝑎𝑖𝑛 value can correspond to completely
different roundness parameters. Quantifying the error of using 𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠
instead of 𝐷𝑔 𝑟𝑎𝑖𝑛 is not possible, but in any case it would always be
better (or identical, for particles with 𝑟 = 1) than the simple spherical
approximation.

A convenient way to test the validity of the grain approximation,
for a given experimental assembly of particles, is to plot the projected
area 𝐴 of each particle as a function of its perimeter 𝑃 . Indeed, in the
case of a well-defined value of 𝑑𝑔 𝑟𝑎𝑖𝑛, the relation between 𝐴 and 𝑃
will be linear (see Eq. (10)) [94]. The situation will clearly differ from
one where the particles are nearly spherical, because in this case the
circularity remains close to 1 and the projected area varies as 𝑃 2 (for
a disk, we simply have 𝐴 = 𝑃 2

4𝜋 ). In the case of ellipsoidal particles of
fixed roundness, the variation of 𝐴 vs. 𝑃 is still quadratic, but in the
general case we can write

𝐴 = 𝑃 2

4𝜋
𝐶𝑒𝑙 𝑙 𝑖𝑝𝑠(𝑟) (21)

the expression of the circularity 𝐶𝑒𝑙 𝑙 𝑖𝑝𝑠 as a function of the roundness 𝑟
being approximately given by Eq. (20) (from Muir analytical expression
given above for the perimeter). In an assembly made of ellipsoidal
5 
particles with a distribution of 𝑟 parameter, the resulting evolution of
𝐴 vs. 𝑃 2 will not be a simple straight line: depending on the dispersion
of roundness it can still be close to a pure 𝑃 2 variation (since 𝐶𝑒𝑙 𝑙 𝑖𝑝𝑠
evolves rather slowly with 𝑟: for instance it remains over 0.8 for 𝑟 > 0.5)
or on the contrary it can display a quite large scattering. In such a case,
as mentioned above, a plot of 𝐶 vs. 𝑟 for the ensemble of particles is a
good way to see if the measurements are close to the theoretical curve
𝐶𝑒𝑙 𝑙 𝑖𝑝𝑠(𝑟), and thus if the use of the ellipsoidal approximation is relevant
(i.e. particle size given by the 𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠 equivalent diameter).

To evaluate if the spherical approximation is a sound choice or
not, one may also look at the circularity value among the particles
in the assembly, as they should remain close enough to 1. These
considerations emphasize the crucial role of the circularity parameter
in the analysis of particle sizes. This implies that the perimeter of each
particle must be evaluated with a special care in order to get reliable
values. This question will be addressed further (see Section 4). To
conclude this section, let us insist on the fact that the three equivalent
diameters 𝐷𝑠𝑝ℎ, 𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠 and 𝐷𝑔 𝑟𝑎𝑖𝑛 reach the same value when particles
are spherical (more precisely, when the projected area are disks). A
comparison between these 3 quantities for a given assembly therefore
provides an indication of how far we are from the perfect sphere
situation. If the 3 equivalent sizes are nearly identical, the obtained
value can be trusted, while if they significantly differ, for sure one must
not use the spherical approximation.

3. Partial coalescence model

The grain approximation presented above, with the use of the
𝑑𝑔 𝑟𝑎𝑖𝑛 dimension that can be easily calculated, is a first attempt (to
our knowledge) to simply take into account the circularity 𝐶 ≠ 1 of
particles to better evaluate their equivalent diameter. It appears as
a correction to the widely used spherical approximation, with some
kind of rescaling through the use of the circularity (see Eq. (14)).
However, even if this approximation is always better than the spherical
approximation, it may be quite unrealistic. Indeed, particles of complex
shapes rarely look like a necklace of touching spherical grains. The
existence of an ultimately thin ‘‘neck’’ (point contact between two
grains) is something which is definitely not favorable, and if atoms can
diffuse, the contact region will evolve with time in order to increase the
neck lateral size [88,95–99]. In the following, we would like to extend
the grain approximation to a more realistic situation where a partial
coalescence can occur. It must be noted that a full coalescence, leading
to equilibrium, would in general result in a circular projected area so
that the spherical approximation is then adapted [100].

We can parameterize the degree of coalescence by the ratio of the
overlapping distance ℎ between two spheres with the spherical grain
radius 𝑅𝑔 (see Fig. 3). The dimensionless coalescence parameter 𝑥 =
ℎ∕𝑅𝑔 can thus vary from 0 for no coalescence at all (point contact
between grains) to 1 for a full coalescence (single sphere). Such a
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Fig. 3. (a) Illustration of the partial coalescence model, with a particle made of two grains (𝑛 = 2) i.e. 2 overlapping spheres with a coalescence parameter 𝑥 = ℎ∕𝑅𝑔 . Particles
with a larger number of grains are constructed in the same way, with a linear configuration (𝑛 = 3 is shown as an example), but as long as 𝑥 is not too large, the corresponding
volume, projected area and perimeter would be the same for 𝑛-mers with more complicated (and thus more realistic) arrangements of the grains, as shown here with a tetramer
and pentamer. However, the model will not consider particles such as the crossed out one. (b) Ratio 𝐷𝑒𝑞∕𝐷𝑠𝑝ℎ and 𝐷𝑒𝑞∕𝐷𝑔 𝑟𝑎𝑖𝑛 calculated for various degrees of coalescence (𝑥 = 0.1,
0.3, and 0.5, in addition to 𝑥 = 0 and 𝑥 = 1). While the spherical approximation can strongly overestimate the correct equivalent diameter, the grain approximation (i.e. constructed
for a situation without any coalescence) provides a quite good estimation (relative error around 10% in the case shown here) even for a coalescence parameter as large as 𝑥 = 0.5.
In the limit 𝑥 → 1, (total coalescence) as expected the two models give the same value. (c) Evolution of the out-of-plane dimension 𝑑𝑒𝑞 (normalized by the monomer diameter)
with the number of grains in the particle, for different degrees of coalescence. It does not vary a lot, even when the coalescence is significant. The value 𝐷𝑠𝑝ℎ of the spherical
approximation is shown for comparison: it strongly overestimates the correct value (except when 𝑥 → 1).
parameter is commonly used in the context of soot characterization
(i.e. particles which are agglomerates of many primary grains), where
it is called the ‘‘overlap parameter’’ [12,65,101–104]. We will suppose
that 𝑥 has a fixed value for a given assembly of particles (to complexify
the model, one may envisage a variation of 𝑥 with the particle size for
instance). Particles can be made of an increasing number 𝑛 of grains,
all partially coalesced in a same way: monomers for 𝑛 = 1, dimers
for 𝑛 = 2, trimers for 𝑛 = 3, etc. (see Fig. 3a). For the general case,
a particle is thus a 𝑛-mer with an integer value 𝑛 which is a priori
not known [105]. It is possible, within the present model, that the
incident particles are in fact themselves made of several grains (in such
a case, only a particular sequence of 𝑛-mers would then be obtained,
corresponding to multiples of the incident size). For strong coalescence,
let say typically 𝑥 ≥ 0.5, the resulting particles (except maybe for 𝑛-
mers of large 𝑛) have shapes that tend to look like ellipsoids, so that
the ellipsoidal approximation should become acceptable. We are thus
particularly interested in the case of moderate to low coalescence, 𝑥
having a small but finite value, which allows us to improve the crude
‘‘grain approximation’’ seen before.

3.1. Analytical expressions

For simplicity, we will only consider 𝑛-mers corresponding to ‘‘lin-
ear’’ chains of grains (the particles may have more tortuous shapes, but
except the final grains on the border, each grain is supposed to overlap
with two neighboring grains). It may seem far from a realistic situation
but we have to keep in mind that other usual approximation are worse!
We also implicitly assume that as 𝑛 increases, the number of 𝑛-mers in
the assembly is getting lower [70] (i.e. the dimers are more abundant
than trimers, which are themselves more abundant than tetramers etc.,
so that no long chains are found in the experimental particle assembly).
The experimental relevance of this partial coalescence model will be
illustrated later.

Simple geometry allows us to write, for a given coalescence degree
𝑥 and a number 𝑛 of grains, the projected area 𝐴𝑛, the perimeter 𝑃𝑛
and the volume 𝑉𝑛 of a particle. If we call 𝐷 the initial diameter of a
spherical grain, before coalescence, then the volume of a 𝑛-mer is by
definition (this is true for any 𝑥 value, because coalescence does not
change the total volume of matter):

𝑉𝑛 = 𝑛𝜋 𝐷
3

6
(22)

The grain radius 𝑅𝑔 of the finally overlapping spheres is different from
𝐷∕2, and its value will depend both on 𝑥 and 𝑛 (of course, we simply
have 𝑅𝑔 = 𝐷∕2 for 𝑛 = 1). Noting 𝑉0 =

4
3𝜋 𝑅3

𝑔 , 𝐴0 = 𝜋 𝑅2
𝑔 and 𝑃0 = 2𝜋 𝑅𝑔 ,

helps us to express the quantities 𝑉 , 𝐴 and 𝑃 . Let us emphasize that
𝑛 𝑛 𝑛

6 
𝑉0, 𝐴0 and 𝑃0 are not fixed values but functions of 𝑛 and 𝑥, through the
quantity 𝑅𝑔(𝑛, 𝑥). For a dimer particle we can write for instance:

𝑉2(𝑥) = 2𝑉0
[

1 − 𝑥2(3 − 𝑥)
4

]

= 2𝑉0𝜖𝑉 (𝑥) (23)

𝐴2(𝑥) = 2𝐴0

[

1 − acos(1 − 𝑥) − (1 − 𝑥)
√

1 − (1 − 𝑥)2

𝜋

]

= 2𝐴0𝜖𝐴(𝑥) (24)

𝑃2(𝑥) = 2𝑃0

[

1 − acos(1 − 𝑥)
𝜋

]

= 2𝑃0𝜖𝑃 (𝑥) (25)

where we have introduced the three functions 𝜖𝑉 , 𝜖𝐴 and 𝜖𝑃 which vary
from 1 (for 𝑥 = 0) to 1/2 (for 𝑥 = 1). Doing the same for a 𝑛-mer, we
can write:

𝑉𝑛(𝑥) = 𝑛𝑉0𝜖𝑉 ,𝑛(𝑥) (26)

𝐴𝑛(𝑥) = 𝑛𝐴0𝜖𝐴,𝑛(𝑥) (27)

𝑃𝑛(𝑥) = 𝑛𝑃0𝜖𝑃 ,𝑛(𝑥) (28)

where the three 𝜖 functions vary between 1 (for 𝑥 = 0) and 1∕𝑛 (for
𝑥 = 1) and correspond respectively to
𝜖𝑉 ,𝑛(𝑥) = 1 − 𝑛 − 1

2𝑛
𝑥2(3 − 𝑥) (29)

𝜖𝐴,𝑛(𝑥) = 1 − 2(𝑛 − 1)
𝑛𝜋

[

acos(1 − 𝑥) − (1 − 𝑥)
√

1 − (1 − 𝑥)2
]

(30)

𝜖𝑃 ,𝑛(𝑥) = 1 − 2(𝑛 − 1)
𝑛𝜋

acos(1 − 𝑥) (31)

These functions can then be used to determine the apparent grain
radius (simply 𝑅𝑔 = 𝐷∕2 for 𝑛 = 1)

𝑅𝑔(𝑛, 𝑥) = 𝐷
2
𝜖𝑉 ,𝑛(𝑥)−1∕3 (32)

and, combined together, can provide the ratio between the equivalent
diameter 𝐷𝑒𝑞 (the one that would correspond to the exact volume, see
Eq. (1)) and 𝐷𝑔 𝑟𝑎𝑖𝑛 or 𝐷𝑠𝑝ℎ (respectively the grain approximation and
spherical approximation equivalent diameter, introduced in Section 2):
𝐷𝑒𝑞

𝐷𝑔 𝑟𝑎𝑖𝑛
= 𝜖𝑃 ,𝑛(𝑥)1∕3𝜖𝑉 ,𝑛(𝑥)1∕3𝜖𝐴,𝑛(𝑥)−2∕3 (33)

𝐷𝑒𝑞

𝐷𝑠𝑝ℎ
= 𝑛−1∕6𝜖𝑉 ,𝑛(𝑥)1∕3𝜖𝐴,𝑛(𝑥)−1∕2 (34)

The evolution of these ratios is shown in Fig. 3b, for different 𝑥 values
and up to 𝑛 = 10. It is clear that 𝐷𝑔 𝑟𝑎𝑖𝑛 is always closer to the true 𝐷𝑒𝑞
value than 𝐷𝑠𝑝ℎ, and that it is a quite good estimation of the correct
equivalent particle diameter (even if a better approximation can be
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proposed, see further). The circularity 𝐶𝑛(𝑥) (written this way since it
epends on 𝑥 and 𝑛) can also be expressed by:

𝐶𝑛(𝑥) =
4𝜋 𝐴𝑛(𝑥)
𝑃𝑛(𝑥)2

=
𝜖𝐴,𝑛(𝑥)
𝑛𝜖𝑃 ,𝑛(𝑥)2

(35)

and the out-of-plane dimension in the grain approximation is
𝑑𝑔 𝑟𝑎𝑖𝑛 = 𝐷

𝜖𝐴,𝑛(𝑥)
𝜖𝑃 ,𝑛(𝑥)𝜖𝑉 ,𝑛(𝑥)1∕3

(36)

3.2. Simple approximation for the out-of-plane dimension

The out-of-plane dimension, which relates the particle volume to its
rojected area, is given by

𝑑𝑒𝑞 =
3𝑉𝑛
2𝐴𝑛

= 𝐷
𝜖2∕3𝑉 ,𝑛
𝜖𝐴,𝑛

(37)

where the 𝑥 dependence is not explicitly written. Note, that 𝑑𝑒𝑞 is also
the dimension allowing us to relate the exact equivalent diameter to
he spherical diameter, through the equation:

𝐷𝑒𝑞 = 𝐷2∕3
𝑠𝑝ℎ𝑑

1∕3
𝑒𝑞 (38)

It is interesting to see that this dimension (which is by definition equal
o the monomer diameter 𝐷 for 𝑛 = 1) does not evolve much with the

number of grains in a particle (see Fig. 3c). While this is expected for a
small 𝑥 value, it is not so intuitive for larger degrees of coalescence (of
course, for 𝑥 → 1 it is not true any more). Notably, for a significant
coalescence parameter 𝑥 = 0.3, compared to monomers 𝑑𝑒𝑞 is only
around ≃ 10% larger for trimers and less than 15% larger for 10-mers.
One may compare this to the value we would deduce by using the usual
spherical approximation. In such a case, one finds
𝐷𝑠𝑝ℎ

𝐷
=

𝑛1∕2𝜖1∕2𝐴,𝑛

𝜖1∕3𝑉 ,𝑛
(39)

which would erroneously lead to a factor about 1.6 for trimers and 3
or 10-mers, again for a 𝑥 = 0.3 coalescence parameter.

One can compare the correct out-of-plane dimension 𝑑𝑒𝑞 with 𝐷𝑠𝑝ℎ
n one hand and with 𝑑𝑔 𝑟𝑎𝑖𝑛 on the other hand. From the expression

established above, we can write
𝑑𝑒𝑞
𝐷𝑠𝑝ℎ

=
𝜖𝑉 ,𝑛

𝑛1∕2𝜖3∕2𝐴,𝑛

and
𝑑𝑒𝑞
𝑑𝑔 𝑟𝑎𝑖𝑛

=
𝜖𝑃 ,𝑛𝜖𝑉 ,𝑛
𝜖2𝐴,𝑛

(40)

and the evolution of these ratios is shown in Fig. 4a as a function
of the coalescence parameter 𝑥, for some multimers up to 𝑛 = 10.
One can see again that the grain approximation is a better choice
than the spherical approximation, on the entire range of coalescence
egree. 𝑑𝑔 𝑟𝑎𝑖𝑛 is not so far from the correct (equivalent) out-of-plane
imension, the worst case being for quite strong coalescence (typically
or 𝑥 between 0.5 and 0.7). 𝑑𝑔 𝑟𝑎𝑖𝑛 will then be used as a starting point
o find a simple expression of the out-of-plane dimension, even closer
o the true value. Since the value of 𝑛 and 𝑥 is a priori not known for
 given observed particle, we would like to use a measured quantity,
amely the particle circularity 𝐶, to parameterize the estimation of the
ut-of-plane dimension. In Fig. 4b, we show the same kind of curves but
s a function of the circularity instead of 𝑥. Indeed, for a given family

of particles (𝑛-mers), we can plot a curve 𝑑𝑒𝑞∕𝑑𝑔 𝑟𝑎𝑖𝑛 vs 𝐶𝑛(𝑥). Then, for
a given 𝑥 (which is supposed to be the same for all the 𝑛-mers), we can
visualize the evolution of the ratio 𝑑𝑒𝑞∕𝑑𝑔 𝑟𝑎𝑖𝑛 with the circularity (for
𝑥 = 0.1, 0.3 and 0.5 in Fig. 4b for instance). Note that for 𝑛 = 1, we
ave 𝑑𝑒𝑞 = 𝐷 = 𝑑𝑔 𝑟𝑎𝑖𝑛, while for 𝐶 = 1 of course 𝑑𝑒𝑞 is also equal to
𝑔 𝑟𝑎𝑖𝑛. For large values of 𝑛, the ratio 𝑑𝑒𝑞∕𝑑𝑔 𝑟𝑎𝑖𝑛 displays a quasi-linear
ariation with the circularity, with a limit value at 𝐶 → 0 decreasing
ith 𝑥. We can propose the following simple analytical expression to
pproach the true 𝑑𝑒𝑞(𝐶) curve:

𝑑𝛼 = 𝑑𝑔 𝑟𝑎𝑖𝑛[1 − (1 − 𝛼)
√

1 − 𝐶] (41)

This equation ensures that 𝑑𝑒𝑞 = 𝑑𝑔 𝑟𝑎𝑖𝑛 for 𝐶 = 1, and has only
a single adjustable parameter 𝛼(𝑥) which can be chosen to provide
 i

7 
the best approximation for a given coalescence degree 𝑥 (note that 𝛼
corresponds to the limit of 𝑑𝛼∕𝑑𝑔 𝑟𝑎𝑖𝑛 at 𝐶 → 0, i.e. at 𝑛 → ∞). We
find that a good choice is to force the ratio 𝑑𝛼∕𝑑𝑔 𝑟𝑎𝑖𝑛 to coincide with
he true 𝑑𝑒𝑞∕𝑑𝑔 𝑟𝑎𝑖𝑛 ratio at 𝑛 = 5 (which corresponds somehow to a
iddle-ranged circularity): this is completely arbitrary but it should

ive precise results on a extended range of 𝑛-mer particles. However,
ince the experimental value of 𝑥 is unknown, one has to keep in mind
hat the 𝛼 value in the 𝑑𝛼 expression is an adjustable parameter (but
n a quite limited range, let say between 0.55 and 0.75, see Fig. 1
n supplementary information [106]). Let us also emphasize that for

almost perfect coalescence (𝑥 values approaching 1), the magnitude of
𝛼 does almost not play any role since the circularity will be limited
o values close to 1. On the contrary, in the limit of no coalescence
i.e. just touching spheres, as in the grain approximation), 𝑑𝑒𝑞 → 𝑑𝑔 𝑟𝑎𝑖𝑛

and thus, for 𝑥 → 0 the coefficient 𝛼 must go to 1. We will call in the
ollowing the alpha approximation, the use of the above expression of 𝑑𝛼

(Eq. (41)) for the out-of-plane dimension. Within this approximation,
supposed to be best adapted in the case of a partial coalescence, an
equivalent particle size 𝐷𝛼 (i.e. the spherical equivalent diameter of
the alpha approximation) can be calculated:
𝜋 𝐷3

𝛼
6

= 2
3
𝐴𝑑𝛼 so that 𝐷𝛼 = 𝐷2∕3

𝑠𝑝ℎ𝑑
1∕3
𝛼 (42)

This quantity can be eventually compared to the theoretical 𝐷𝑒𝑞 value,
via the ratio 𝐷𝑒𝑞∕𝐷𝛼 (which is also equal to (𝑑𝑒𝑞∕𝑑𝛼)1∕3). This is what is
hown in Fig. 4c, on the entire range of coalescence parameter (𝑥 from

0 to 1) for some families of 𝑛-mers up to 𝑛 = 10. It is remarkable that
up to 𝑛 = 5 the particle size deduced with the alpha approximation is
deviating from the true value by less than 1% (the results are even more
precise in the range of 𝑥 particularly relevant, i.e. around 0.3–0.5).
Even for long chains of grains such as particles corresponding to 𝑛 = 10,
the error in the equivalent diameter is still quite negligible (slightly
over 1% when 𝑥 ≃ 0.7). To realize the gain offered by the present
approximation, with respect to the crude spherical approximation, one
can compare this ratio to the data of Fig. 3b. This demonstrates how
partially coalesced particles can be analyzed in a much more powerful
and reliable way than with the usual spherical approximation. One
can write in a quite condensed way the expression of the equivalent
iameter in the frame of this alpha approximation:

𝐷𝑒𝑞 ≃ 𝐷𝛼 = 𝐷𝑠𝑝ℎ 𝐶1∕6
[

1 − (1 − 𝛼)
√

1 − 𝐶
]1∕3

(43)

which can also be written as a function of the perimeter 𝑃 and circu-
larity (which of course depends on the area 𝐴)

𝐷𝑒𝑞 ≃ 𝐷𝛼 = 𝑃
𝜋
𝐶2∕3

[

1 − (1 − 𝛼)
√

1 − 𝐶
]1∕3

(44)

3.3. Area vs perimeter evolution

We have seen in Section 2 that, if the grain approximation is valid,
he projected area 𝐴 varies linearly with the perimeter 𝑃 . To what
xtent will it remain the case when a partial coalescence occurs? In
he extreme case of full coalescence (𝑥 = 1) we recover the spherical
imit and 𝐴 follows a 𝑃 2 evolution. Since by definition we have 𝑑𝑔 𝑟𝑎𝑖𝑛 =
𝐴∕𝑃 , having a quasi-linear relation between 𝐴 and 𝑃 is equivalent to
ave a well-defined value of 𝑑𝑔 𝑟𝑎𝑖𝑛 for all the particles in an assembly,
.e. for all the 𝑛-mers (limited to a reasonable 𝑛 value) with a fixed
oalescence degree. Here again, we know that this will not be true in
he limit of an almost perfect coalescence (𝑥 → 1).

In Fig. 5a, we plot the evolution of 𝑑𝑔 𝑟𝑎𝑖𝑛 with the number of grains
n the particles, for different values of 𝑥. Except at low 𝑥, one can hardly
ell that the value is constant for all 𝑛-mers. On the contrary, as already
oticed on Fig. 3c, the equivalent out-of-plane diameter 𝑑𝑒𝑞 remains

well-defined, up to quite large values of 𝑛, even with a significant
oalescence. Since 𝑑𝛼 was shown to be a very good approximation of

the true 𝑑𝑒𝑞 size, it is no surprise that it displays a similar behavior:
t remains almost constant for all 𝑛-mers in a particle assembly, with
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Fig. 4. (a) Evolution of 𝑑𝑒𝑞∕𝑑𝑔 𝑟𝑎𝑖𝑛 and 𝑑𝑒𝑞∕𝐷𝑠𝑝ℎ with the coalescence degree 𝑥, for different 𝑛-mers (𝑛 = 2, 3, 4, 5 and 10). The correct out-of-plane dimension can be highly
different from the spherical approximation one, especially for low 𝑥 values and large 𝑛. On the contrary, the grain approximation gives the correct value for 𝑥 = 0 and 𝑥 = 1 and
does not deviate so much from 𝑑𝑒𝑞 . (b) Same 𝑑𝑒𝑞∕𝑑𝑔 𝑟𝑎𝑖𝑛 curves, for a given 𝑛 as in (a), but plotted as a function of the circularity 𝐶, which itself directly depends on 𝑥. The ratios
calculated for 𝑛 = 1-10 and larger values (𝑛 = 12, 15, 20, 25, 30, 50, 100) are also shown as scattered points, for 3 selected values of the coalescence degree (𝑥 = 0.1, 0.3 and
0.5), together with the analytical curve (dashed curves) corresponding to the alpha approximation (see text). (c) Equivalent diameter ratio 𝐷𝑒𝑞∕𝐷𝛼 , for different 𝑛-mers (𝑛 = 2, 3,
4, 5 and 10), as a function of the coalescence degree 𝑥. The precision of the alpha approximation can be appreciated, especially by comparison with the spherical approximation
as shown with the data of Fig. 3b.
Fig. 5. (a) Variation of the ratio 𝑑𝑔 𝑟𝑎𝑖𝑛∕𝐷 and 𝑑𝛼∕𝐷 with 𝑛, for different degrees of coalescence 𝑥. (b) Evolution of the projected area 𝐴 (normalized by the area 𝐴1 of monomers)
with respect to the perimeter 𝑃 (also normalized by the perimeter 𝑃1 of monomers). Even with a coalescence parameter 𝑥 as large as 0.5, the variation appears quasi linear,
much different from the parabolic evolution corresponding to the spherical case (full coalescence, i.e. 𝑥 = 1). The maximum 𝑛 value in the graph is indicated for each curve. (c)
Variation of the 𝐴 vs 𝑃 slope correction factor (with respect to 𝐷∕4, which corresponds to 𝑥 = 0, see text) with the coalescence degree 𝑥. The black curve is calculated with 𝑛 = 5
but note that considering 𝑛 = 2 or 𝑛 = 10 does almost give the same value.
variations less than 10% for 𝑥 = 0.3, or 20% for 𝑥 = 0.5. Such a
variation with respect to the monomer diameter must be often smaller
or comparable to the natural size dispersion met in a real sample. This
means that a narrow grain size distribution will also correspond to a
quite narrow effective out-of-plane dimension (as expressed with 𝑑𝛼)
as long as the partial coalescence model is relevant.

Interestingly, despite the evolution of 𝑑𝑔 𝑟𝑎𝑖𝑛 with 𝑛, the partial
coalescence signature is clearly visible on a 𝐴 vs 𝑃 plot: the evolution
remains linear, as for the ideal grain model (i.e. 𝑥 = 0), even for a
coalescence degree as large as 𝑥 = 0.5. Indeed, from the expression
established above, we can write
𝐴𝑛
𝐴1

=
𝑛𝜖𝐴,𝑛
𝜖2∕3𝑉 ,𝑛

and
𝑃𝑛
𝑃1

=
𝑛𝜖𝑃 ,𝑛
𝜖1∕3𝑉 ,𝑛

(45)

where 𝑃1 = 𝜋 𝐷 and 𝐴1 = 𝜋 𝐷2∕4 are respectively the perimeter and
projected area of monomers. The calculated values are reported in
Fig. 5b, for different values of 𝑥. The linear 𝐴 vs 𝑃 regime, as opposed to
the parabolic evolution met for spherical or ellipsoidal particles, is thus
a signature to look at in order to experimentally detect that we are in a
partial coalescence situation (see further for experimental illustrations).
It may be particularly convenient to use a log–log plot of 𝐴 vs 𝑃 to make
the distinction between a linear and a quadratic variation.

The linear behavior of 𝐴 vs 𝑃 curves can also be used to experimen-
tally infer the grain size 𝐷 (i.e. the diameter of a single grain, called
a monomer) constituting the particles. From the previous expressions,
we can express the slope as
8 
𝐴𝑛 − 𝐴1
𝑃𝑛 − 𝑃1

= 𝐷
4

⎛

⎜

⎜

⎝

𝑛𝜖𝐴,𝑛𝜖
−2∕3
𝑉 ,𝑛 − 1

𝑛𝜖𝑃 ,𝑛𝜖−1∕3𝑉 ,𝑛 − 1

⎞

⎟

⎟

⎠

(46)

which shows that the slope is close to 𝐷∕4, corrected by a factor that
must be almost constant with 𝑛, but which varies with the degree of
coalescence 𝑥 (keep in mind that the 𝑥 dependence of the 𝜖 functions
is implicit). The correction factor is shown in Fig. 5c, for 𝑥 between
0.1 and 0.5 it varies almost linearly with a typical value between 1.3
and 2. In this relevant range for the partial coalescence model, the
slope correction factor is approximately equal to 1.222 + 1.58𝑥. Let us
emphasize that a plot of 𝐴 vs 𝑃 in an assembly of particles will thus be
a powerful technique: (i) to detect that the grain approximation with
partial coalescence is adapted; (ii) to have an idea of the typical grain
size 𝐷 constituting the particles. Moreover, it should be kept in mind
that the smallest particles (deposited monomers, i.e. individual incident
particles on the surface) may in fact be made of several initial grains
(of size 𝐷): if they correspond to 𝑛𝑚𝑖𝑛 grains, only 𝑛-mers which are
multiples of 𝑛𝑚𝑖𝑛 will be observed on the 𝐴 vs 𝑃 curve. This will not
change the overall slope, so that the individual grain size 𝐷 can be
inferred and subsequently compared to the projected area of the single
particles: the value of 𝑛𝑚𝑖𝑛 can then be determined, with potentially a
signature that it is larger than 1, that could be of interest concerning
the formation process of the particles [17,86,89,90].

3.4. Other considerations

Another possible way to detect the validity of the partial coalescence
model is to look at the evolution of the circularity 𝐶 with the inverse
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perimeter 1∕𝑃 of each particle. For the grain approximation and as
long as 𝑥 is not too large, 𝐶 will vary linearly with 1∕𝑃 , while it will
be constant (or dispersed without any linear pattern) for spherical or
llipsoidal particles. Indeed, as discussed above for an ellipse, 𝐶 is
irectly linked to 𝑟 so that it will be constant for a given 𝑟, which

is another way to see that the area scales with 𝑃 2 in such a case.
For very strong coalescence degree (𝑥 approaching 1), 𝑛-mers tend to
have shapes (projected area) which can be approximated by ellipses,
so that the particle size distribution determined within the ellipsoidal
approximation (or even with the spherical approximation) will merge
with that determined with the present partial coalescence model. Any-
way, even if it encompasses the spherical approximation, the partial
coalescence model (with the approximate 𝑑𝛼 determination from 𝐴
and 𝑃 of each particle) is relevant as long as a linear trend between
𝐴 and 𝑃 is observed. When the evolution is parabolic, the ellipsoidal
approximation (which also encompasses the spherical approximation)
should be preferred, and one will use the projected area 𝐴 and the
roundness 𝑟 to compute each particle equivalent size.

As discussed above (and see Fig. 3), 𝐷𝑔 𝑟𝑎𝑖𝑛 (which corresponds to
he use of 𝑑𝑔 𝑟𝑎𝑖𝑛 as out-of-plane dimension) is always a better choice

than 𝐷𝑠𝑝ℎ and it is directly defined from the area and perimeter of a
article, i.e. without any arbitrary parameter. The alpha approximation
llows us to further improve the particle size determination, provided
hat the coalescence degree 𝑥 is known: we can approximate the true
quivalent diameter 𝐷𝑒𝑞 with 𝐷𝛼 , to a very high degree of precision
hen the 𝛼 constant is correctly chosen. This approximation simply
ses the circularity 𝐶 of each particle to convert the measured 𝑑𝑔 𝑟𝑎𝑖𝑛
o the more precise 𝑑𝛼 out-of-plane dimension. Since the circularity
irectly stems from the value of 𝐴 and 𝑃 , in fact no additional quantity
s required. One may wonder what value of 𝑥 (and consequently of 𝛼)
ust be preferred when analyzing a real assembly of particles where

he coalescence degree is a priori unknown (if such a quantity makes
ense). We can notice that the alpha approximation is convenient since
he best 𝛼 value does not depend so much on the magnitude of 𝑥
see Fig. 1 of supplementary information [106]) and something like
𝛼 = 0.65, corresponding to 𝑥 ≃ 0.3 i.e. a moderate coalescence, should
be a good choice in most of the situations.

Anyway, there are other means to infer the degree of coalescence
rom experimental measurements. A simple parameter to look at is the
atio between the projected area of dimers 𝐴2 and that of monomers
1 [107]: provided the particle density on the surface is large enough,
nd the individual grain size 𝐷 not too dispersed, a clear peak of dimers
s visible on the projected area histogram [20,70]. From Eq. (43) seen
arlier, we can write
𝐴2
𝐴1

=
2𝜖𝐴,2
𝜖2∕3𝑉 ,2

(47)

and remarkably, this ratio is almost a perfect straight line between
𝑥 = 0.1 and 𝑥 = 1 (see Fig. 2 of supplementary information [106]).
With no coalescence (𝑥 = 0), dimers are made of two touching grains
nd 𝐴2∕𝐴1 = 2, while for a perfect coalescence (𝑥 = 1) they form a
ingle disk and 𝐴2∕𝐴1 = 22∕3. Therefore, from the measured ratio one
an deduce an effective value of the degree of coalescence:

𝑥 ≃
2.02 − 𝐴2∕𝐴1

0.43
(48)

Of course, the consistency with the existence (or not) of a linear
evolution of 𝐴 vs 𝑃 among the entire assembly of particles should
be checked. Besides, as shown in Fig. 5, with the correct 𝛼 in the
alpha approximation, the deduced 𝑑𝛼 of each 𝑛-mer population are
almost the same (except for large coalescence degrees), so that a
single peak should appear in the out-of-plane dimension histogram
(the width will depend on the dispersion of initial grains/monomers).
This criterion is a good indication that the out-of-plane dimensions
have been correctly evaluated. The consistency should also be verified
with the slope of 𝐴 vs 𝑃 , which is supposed to be 𝐷∕4 multiplied by

a correction factor between 1.3 and 2 (typically it is around 1.7 for
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𝑥 = 0.3). The grain size 𝐷 inferred from the measured slope (and
assuming a given 𝑥 value) should be comparable to the average 𝑑𝛼
ut-of-plane dimension. Interestingly, since the volume of dimers must
e (by definition) twice the volume of monomers, we can deduce
he theoretical ratio of out-of-plane dimension from the measured
2∕𝐴1 ratio. Namely 𝑑𝑒𝑞 ,dimer∕𝑑𝑒𝑞 ,monomer = 2𝐴1∕𝐴2 (and more generally,
𝑒𝑞 ,𝑛−mer∕𝑑𝑒𝑞 ,monomer = 𝑛𝐴1∕𝐴2), which allows us to know a priori how
uch the 𝑑𝑒𝑞 of dimers will be shifted with respect to that of monomers.
e find that typically for 𝑥 < 0.5 the relative difference of out-of-plane

imension between monomers and dimers will be less than 10%: except
or highly monodispersed monomers, this difference will not produce a
eparate peak in the histogram (while in the projected area histogram
 clear dimer peak can be detected).

One may also wonder how the height 𝐻 of the particles will be
related to the other parameters. The height (as it could be measured
for instance by AFM/STM or other techniques such as tomography or
grazing-incidence small angle X-ray scattering (GISAXS) [16,24,30,58,
60,83,108,109]) corresponds to 𝐻 = 2𝑅𝑔 , and is thus a function of
𝑛 and 𝑥 (see Eq. (32)). Intuitively, the out-of-plane dimension (con-
structed to relate the exact volume, to the projected area of the particle)
should be nearly equal to 𝐻 . Precisely, one can establish
𝐻
𝑑𝑒𝑞

=
𝜖𝐴,𝑛
𝜖𝑉 ,𝑛

(49)

which appears to keep a value close to 1 (see Fig. 3 of supplementary
information [106]). Within roughly 10% of error, the quantity 𝑑𝛼 which
itself is a very good approximation of 𝑑𝑒𝑞 will then reflect the height
of the particles: as long as 𝑥 is not too large (linear 𝐴 vs 𝑃 regime),
all 𝑛-mers will correspond to a well-defined 𝑑𝛼 value (see Fig. 5a)
and equivalently to a well-defined height 𝐻 . When 𝑥 approaches 1
(total coalescence) the particles becomes spherical and each 𝑛-mer
corresponds to a different 𝑑𝑒𝑞 (or equivalently 𝑑𝛼 , i.e. one may observe

ultiple peaks in the distribution of 𝑑𝛼), but we still have 𝐻 ≃ 𝑑𝑒𝑞 and
ndeed each 𝑛-mer has a different height.

Let us insist on the fact that all the previous discussions are of
ractical use only if monomer particles have well-defined sizes (narrow
ize distribution of the incident particles, and thus of the constitutive
rains of the particles: the 𝐷 relative dispersion must remain low

enough to separate the population of monomers from other 𝑛-mers in
the size histogram). The calculations were made here with a unique 𝐷
value, which is of course not realistic: in a true nanoparticle assembly,
instead of discrete values of the circularity (and 𝐴 or 𝑃 ) we will observe
a continuum, reflecting the size dispersion. The important point, that
has a broad implication, is that for an individual particle the measured
circularity can be used to evaluate its out-of-plane dimension, in a
simple way that allows us to go much beyond the usual spherical
approximation.

4. Illustration with some nanoparticles examples

We will now illustrate the previous discussion, and especially the
benefits of the approach exposed in Section 3, on real nanoparti-
cle assemblies observed by TEM. As the perimeter 𝑃 of each parti-
cle plays a central role (it is needed to compute the grain diameter
𝑑𝑔 𝑟𝑎𝑖𝑛 = 4𝐴∕𝑃 and the circularity 𝐶 = 4𝜋 𝐴∕𝑃 2), we start by examining
the not-so-trivial problem of its experimental evaluation from digital
images.

4.1. Experimental evaluation of the perimeter

Image analysis nowadays relies on computer software using digital
(i.e. pixelated) images. Beyond the question of image processing (clean-
ing steps, thresholding etc.) [28,31,32,37,38,41,77,110–112], once an
image consists of perfectly defined particles (black pixels over a white
ackground as in Fig. 1), one may think that it is an easy task to

measure the area 𝐴 and perimeter 𝑃 of each object. This task is in fact
more subtle than it looks, and the question was examined a long time
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ago (and is still under investigation) [35,37,113–118]. While for the
area one can just count the number of black pixels (or half pixels in
case of diagonals), what will lead to a correctly converging value when
the image resolution is increasing, the usual way to compute a length
from a pixelated/digitized curve may lead to a systematic error even in
the limit of an infinite resolution.

From the early days of computer science, the so-called Freeman
stimation has been used [113]: it consists in considering a unit length
𝓁 (pixel dimension) for vertical or horizontal moves on a contour,
nd a

√

2𝓁 length for diagonal moves. This is a very simple, intuitive
and convenient way to compute the length of a given line (each pixel
has 8 possible neighbors, which explains why the so-called 8-chain
code of a contour is used for the length determination). The problem
with the Freeman estimation is that it gives the true length only for
straight lines which are either horizontal or vertical, or at 45Â◦. This
estimator is for instance the one implemented in the very complete
Particles8 plugin [119] for the ImageJ free software, providing a pow-
erful particle analysis tool with many shape descriptors. However,
the calculated perimeter appears to be often overestimated, so that
the circularity of particles with almost perfect ellipsoidal or spherical
shapes is downshifted compared to the expected theoretical value.

Other estimators have been proposed, which are not more com-
licated than that of Freeman: one can still use the 8-chain code but
ith a chosen length for horizontal/vertical moves and diagonals which
as been optimized to reduce the root-mean-square error for randomly
riented straight lines [117,120], or for arc of circles [114], or one can

also add the so-called corner count to obtain a closer value [117]. When
the Freeman estimation is used, we observe a systematic overestimation
of the perimeter resulting in an artificial downshift of the circularity
(as well as 𝑑𝑔 𝑟𝑎𝑖𝑛 and other quantities related to this parameter). This
is clearly visible with a sample where particles have almost spherical
shapes, like the Pb nanoparticles shown in Fig. 4 of supplementary
material [106]. This is why we recommend to use a more precise
perimeter calculation, as we have implemented in the (free, with a

NU General Public Licence) java plugin for ImageJ ParticlesShape.java,
lso provided in supplementary material. Note that this plugin provides
 better estimation of the area and perimeter of each particle, plus
dditional shape parameters (equiv. ellipse, circularity, Feret diameter
tc.), and the subsequent particle diameter determination is left to the

user, simply by using the output data and the framework of his/her
choice (spherical approximation, ellipsoidal approximation, alpha ap-
proximation with a chosen 𝛼 value or any other way to exploit the
measured parameters).

4.2. Irregular particles: benefits of the partial coalescence approach

In Fig. 6 we show as an example, the analysis of a Co3Pt nanopar-
icle assembly (particles have been size-selected and deposited on
morphous carbon for TEM investigations), which is quite diluted: the
ize histogram reveals a main peak (monomers, that can be fitted with
 Gaussian) and a small secondary peak (only a few percent of larger
articles) corresponding to two incident particles that have come into
ontact. These dimers should thus have an average volume twice the one
f the incident particles. The different plots of Fig. 6 indicate that the

particles are not too far from the ellipsoidal approximation, but with
 roundness dispersed roughly from 0.4 to 1. The 𝐴 vs 𝑃 evolution is
pparently rather in an intermediate situation, even if a linear trend
eems better. From the projected area histogram (not shown), the ratio
𝐴2∕𝐴1 ≃ 1.977 would correspond to a coalescence degree 𝑥 ≃ 0.1. From
he volume histogram (Fig. 6b) one can deduce the mean equivalent
iameter of monomers and dimers, respectively 𝐷1 and 𝐷2, and also
irectly compare the volume ratio 𝑉2∕𝑉1 with the theoretical value of
. The values are reported in Table 1, where one can see how the

spherical approximation is not correct, and how the partial coalescence
odel (alpha approximation) performs better, providing almost the

exact position of the dimer peak. Of course one may think that using an
10 
Table 1
Data corresponding to the sample of Fig. 6 (i.e. Co3Pt nanoparticles deposited on
morphous carbon). The different approximations for the particle size determination
re compared: spherical, ellipsoidal, grain and alpha (partial coalescence, here with

𝛼 = 0.65). The comparison is given for the monomer mean diameter 𝐷1, the dimer
mean diameter 𝐷2 and its deviation from the expected value (that would give a volume
of dimers twice that of monomers), as well as the ratio 𝑉2∕𝑉1 which should in principle
e equal to 2.
Approximation Spher. Ellips. Grain Alpha

Monomer equivalent diameter 𝐷1 (nm) 3.70 3.41 3.58 3.40
Dimer equivalent diameter 𝐷2 (nm) 5.29 4.60 4.84 4.40
Deviation from theoretical 𝐷2 16.8% 8.8% 9.2% 3.4%
𝑉2∕𝑉1 ratio 2.91 2.45 2.47 2.16

equivalent diameter of 3.7 nm instead of 3.4 nm is not a problem, but
we would like to emphasize that it would almost correspond to a 30%
overestimation of the particle volume (this can be problematic when
 quantity scaling with the volume, for instance the magnetic moment

or the magnetic anisotropy, is determined using a given particle size).
Without surprise, we can see that the ellipsoidal approximation pro-
vides a better result than the spherical approximation (it performs very
well for the monomers, but is less adapted to dimers than the alpha
approximation). Notably, the out-of-plane dimension (i.e. 𝑑𝛼 histogram,
not shown) is well defined, with a single peak centered on 2.93 nm,
what would thus correspond to the average particle height (particles
could then be slightly flattened, since the average in-plane diameter is
𝐷𝑠𝑝ℎ = 3.70 nm).

Another interesting example is shown in Fig. 7 and the data in
Table 2. It corresponds to the same FeRh particles (mass-selected, de-
posited on amorphous carbon with a high density, so that many dimers
and larger 𝑛-mers are formed), observed as deposited or after annealing
(2 h at 700◦C). The rather tortuous shapes become more spherical after
annealing, and the 𝐴 vs 𝑃 scaling is completely different, going from
a linear behavior to a parabolic one. The circularity and roundness
also evolve, remaining quite dispersed but close to the theoretical
ellipse relation for annealed particles. The equivalent diameter 𝐷𝛼 is
ery different from that of the spherical approximation 𝐷𝑠𝑝ℎ for the
s-deposited particles. On the contrary, after annealing the different
quivalent diameters are quite close to each other (even if 𝐷𝑠𝑝ℎ is
till an overestimation of the true size). What is remarkable is that
he out-of-plane dimension, as deduced from the 𝑑𝛼 histogram (see

Fig. 7g), is completely different from the one of 𝐷𝑠𝑝ℎ: it reduces to a
single peak, very well defined (centered on 5 nm). This would thus
correspond to the height of the particles, which is almost constant
among the particles despite their very different projected area (i.e. in-
plane size). Note that it is only with the alpha approximation that we
obtain a ratio 𝑉2∕𝑉1 approaching the correct value of 2. This is another
ndication of the strength of the partial coalescence model developed
ere. Let us also emphasize the strong error that would be made on the

equivalent thickness for as-deposited particles (there is also always a
significant uncertainty, explaining why the measured value before and
after annealing is not exactly the same): around 21 Å for the spherical
approximation instead of 8 Å for the alpha approximation (more than a
factor 2). Another striking feature is that the equivalent diameter 𝐷1 of
the alpha approximation, calculated for the as-deposited particles, is in
perfect agreement with the particle size after annealing. This is normal
since the annealing step only leads to a change of particle shape but
conserves the volume of monomers and thus their equivalent diameter.
Note that the best choice for the particle determination after annealing
is the ellipsoidal approximation (see the very good correspondence
with the ellipse theory on Fig. 7d), even if the alpha approximation
rovides almost the same results. Anyway, we hope that Table 2 makes

it clear that there is always a better choice than the crude spherical
approximation.
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Fig. 6. Example of a nanoparticle assembly (Co3Pt particles on amorphous carbon) analyzed with the different approximations: spherical, ellipsoidal, grain and alpha (partial
coalescence, here with 𝛼 = 0.65). A typical binary image (size 128 nm × 96 nm) is shown in (a), while the volume histograms (calculated with the appropriate out-of-plane
dimension of each approximation) are shown in (b). The 𝐴 vs 𝑃 evolution (log scale) as well as 𝐶 and 𝐷𝑔 𝑟𝑎𝑖𝑛∕𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠 vs roundness 𝑟 for comparison with the ellipse model (red
curves) are given in (c).
Table 2
Data corresponding to the samples of Fig. 7 (i.e. the same FeRh nanoparticles deposited
on amorphous carbon, before and after annealing). The different approximations for
the particle size determination are compared: spherical, ellipsoidal, grain and alpha
(partial coalescence, here with 𝛼 = 0.65). The comparison is given for the monomer
mean diameter 𝐷1 (first and most intense peak in the size distribution), the ratio
𝑉2∕𝑉1 of the dimer to monomer volume (calculated with the appropriate out-of-plane
dimension of each approximation), and the equivalent thickness 𝑒 deduced from the
total FeRh volume divided by the corresponding area of observation (10 images as the
one shown in Fig. 6).

Sample As deposited Annealed

𝐴 vs 𝑃 Evolution Linear Parabolic

Approximation Spher. Ellips. Grain Alpha Spher. Ellips. Grain Alpha

Diameter 𝐷1 (nm) 7.07 6.32 6.63 6.14 6.36 6.14 6.32 6.11
Ratio 𝑉2∕𝑉1 2.65 2.27 2.17 2.07 2.26 2.23 2.23 2.22
Equiv. thickness 𝑒 (Å) 21.2 15.1 11.3 8.3 12.8 10.1 11.1 9.5

5. Summary and conclusion

5.1. Practical procedure for particle size analysis

In the present article, we have introduced a new quantity directly
defined from the projected area and perimeter of a particle: 𝑑𝑔 𝑟𝑎𝑖𝑛 =
4𝐴∕𝑃 . The relevance of this dimension, especially for particles made
of grains, emphasizes the central role that perimeter could play (to go
beyond the simple use of 𝐴 to compute a spherical equivalent diameter
𝐷𝑠𝑝ℎ =

√

4𝐴∕𝜋) in the equivalent diameter determination of non-
spherical particles. As we have demonstrated with a partial coalescence
model, the circularity (𝐶 = 4𝜋 𝐴∕𝑃 2) which is also determined by 𝐴 and
𝑃 , can be used to correct the particle sizes estimation in order to better
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take into account their specific shapes. We have shown that the out-of-
plane dimension can be approximated to a high degree of precision by
the quantity:

𝑑𝛼 = 𝑑𝑔 𝑟𝑎𝑖𝑛[1 − (1 − 𝛼)
√

1 − 𝐶] (50)

then corresponding to an equivalent diameter 𝐷𝛼 = 𝐷2∕3
𝑠𝑝ℎ𝑑

1∕3
𝛼 much

more adapted than the spherical approximation to describe particles of
complex geometries, made of several partially coalesced grains. Such
a regime is indeed experimentally relevant and can be detected by a
linear trend in the 𝐴 vs 𝑃 evolution among the particles in an assembly.
In this kind of regime, while the grain approximation is adapted for a
negligible coalescence parameter, the alpha approximation given above
should provide excellent results with a correctly chosen 𝛼 constant,
whose value reflect the coalescence degree. However, the best 𝛼 value
only varies in a limited range (typically between 0.55 and 0.75) so that
sticking to 𝛼 = 0.65 (as we did here) is usually satisfying.

On the contrary, if the 𝐴 vs 𝑃 evolution exhibits a parabolic trend,
then instead of the alpha approximation, the ellipsoidal approximation
should be used to infer the particle size from the roundness and the
projected area (see Eq. (17)). A simple flowchart is given in Fig. 8,
summarizing the procedure to follow in order to reliably determine
the particle sizes in a practical case. We hope it will facilitate the
use of the present approach, definitely superior to the crude spherical
approximation.

5.2. Outlook

The gap between the mean particle size evaluated using the different
approximations provides a useful information on which equivalent
size can be trusted. Anyway, since the ellipsoidal, grain and alpha
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Fig. 7. Analysis of two particles assemblies: as deposited (a, c, e and g) and after annealing (b, d, f and h). (a) and (b) show a typical binary image (size 261 nm × 173 nm); (c)
and (d) display the 𝐴 vs 𝑃 test (in linear or log scale) as well as 𝐶 and 𝐷𝑔 𝑟𝑎𝑖𝑛∕𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠 vs roundness 𝑟 for comparison with the ellipse model (red curves); (e) and (f) display the
equivalent diameter histogram (𝐷𝑠𝑝ℎ and 𝐷𝛼) with an indicative 3-Gaussians fit; (g) and (h) give the out-of-plane dimension histogram (i.e. 𝑑𝑒𝑞 , approximated by 𝑑𝛼 with 𝛼 = 0.65),
compared to 𝐷𝑠𝑝ℎ of the spherical approximation.
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Fig. 8. Flowchart summarizing the approach and the recommendations for a reliable particle size analysis. The keypoint is to separate the two situations: linear or quadratic
evolution of 𝐴 vs 𝑃 , which indicates if one should use the alpha approximation (Eqs. (43)–(44)) or the ellipsoidal approximation (Eq. (7) or (17)).
approximations encompass the spherical approximation (they all con-
verge to the same value when particles are really spherical), they are
always preferable than the crude use of 𝐷𝑠𝑝ℎ, which unfortunately
appears to be standard approach in the nanoparticle community. It
must be kept in mind that in most cases the equivalent diameters of
the spherical approximation will correspond to an overestimation of the
true particle sizes. The resulting error in the particle volume evaluation
(and total volume, as expressed by an equivalent thickness) can then
be very large, what may subsequently strongly affect and corrupt the
determination of other physical quantities. We are convinced that a
good knowledge of the particle size in an assembly is a prerequisite
for reliable size-effect investigations.

Our simple approach, which propose an efficient way to go beyond
the spherical approximation, only implies the perimeter measurement
of each particle. This is easily accessible with many image analysis
softwares, but we insist on the fact that length evaluation for digitized
curves has to be cautiously performed. This is why our advice is to
use the corner-count estimator [117], for instance proposed in our
ParticlesShape plugin for ImageJ. It is remarkable that with a 2D infor-
mation (giving access to the projected area and perimeter, i.e. also to
the circularity parameter), measured with conventional TEM as routine
observations on particle assemblies, one has access to an information
on the particle thickness (i.e. the out-of-plane dimension). Even if
the model could be complexified (non-spherical grains, coalescence
description...), the proposed approach has been validated on samples
of mass-selected nanoparticles, offering a powerful way to test the
adequation of the inferred sizes thanks to the presence of well-defined
𝑛-mers. The alpha approximation should be adapted for particles made
of a few grains (typically of the order of 10 or less) and our model
has been devised for grains that are lying in-plane: it was supposed
that there is no 3D projection effect (note that two grains of diameter
𝐷 exactly on top of each other would appear as a single particle
of diameter 𝐷, this kind of situation is supposed to be excluded or
negligible).

Other specific analyses schemes have been proposed for other spe-
cial cases, such as soot particles with complex 3D shapes (agglomerates
13 
of a large number of primary particles, displaying non-integer fractal
dimension arrangements), with much more complicated criteria and
often supplemented with computer simulations. In the present article,
we have shown how to easily improve the reliability of size-histogram
determination, on an entire assembly of non-spherical particles, with
almost no additional computational expense. Of course there also exist
more involved experimental techniques (atom probe or electron tomog-
raphy, phase contrast imaging, STEM-HAADF etc.) which can provide
a 3D information on individual nanoparticles, but they cannot be
routinely applied to hundreds of particles! This is why we are convinced
that the partial coalescence model, with the alpha approximation that
we have introduced, can be useful in a variety of scientific fields (not
only for nano-particles) when preformed particles are deposited on a
surface.
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Table A.1
List of the main variables used in the article, with their physical meaning, the section

here they first appear and the equations of figure used for their definition.
Name Physical meaning Section Eq./Fig.

𝐴 projected area of a particle Section 1
𝑃 perimeter of a particle Section 1
𝑉 volume of a particle Section 2
𝐷𝑒𝑞 (volume) equivalent diameter Section 2.1 Eq. (1)a

𝐷𝑠𝑝ℎ spherical equivalent diameter Section 2.1 Eq. (2)
𝑉𝑠𝑝ℎ hypothetical spherical volume Section 2.1 Eq. (3)
𝐷𝑚𝑎𝑗 𝑜𝑟 major axis of the equivalent ellipse Section 2.2 Fig. 2
𝐷𝑚𝑖𝑛𝑜𝑟 minor axis of the equivalent ellipse Section 2.2 Fig. 2
𝑉𝑒𝑙 𝑙 𝑖𝑝𝑠 hypothetical ellipsoidal volume Section 2.2 Eq. (5)
𝐷𝑒𝑙 𝑙 𝑖𝑝𝑠 equivalent diameter in the ellipsoidal approx. Section 2.2 Eqs. (6)–(7)
𝑑𝑔 𝑟𝑎𝑖𝑛 grain diameter (without coalescence) Section 2.3 Fig. 2, Eq. (10)b

𝑉𝑔 𝑟𝑎𝑖𝑛 hypothetical volume for a particle of 𝑛 grains Section 2.3 Eq. (9)
𝐷𝑔 𝑟𝑎𝑖𝑛 equivalent diameter in the grain approx. Section 2.3 Eq. (11)
𝐶 circularity (dimensionless) Section 2.4 Eq. (12)
𝑟 roundness (dimensionless) Section 2.4 Eq. (15)
ℎ overlapping distance for partial coalescence Section 3 Fig. 3
𝑅𝑔 radius of partially coalesced spherical grains Section 3 Fig. 3, Eq. (32)c

𝑥 coalescence parameter (dimensionless) Section 3
𝐴𝑛 projected area of a (partially coalesced) 𝑛-mer Section 3.1
𝑃𝑛 perimeter of a (partially coalesced) 𝑛-mer Section 3.1
𝑉𝑛 volume of a (partially coalesced) 𝑛-mer Section 3.1 Eq. (22)
𝐷 initial diameter of a grain (before coalescence) Section 3.1 Eq. (22)d

𝐴0 area of a disk of radius 𝑅𝑔 Section 3.1
𝑃0 perimeter of a disk of radius 𝑅𝑔 Section 3.1
𝑉0 volume of a sphere of radius 𝑅𝑔 Section 3.1
𝑑𝑒𝑞 out-of-plane dimension relating 𝑉𝑛 to 𝐴𝑛 Section 3.2 Eqs. (37)–(38)e

𝑑𝛼 alpha approximation of the true 𝑑𝑒𝑞 Section 3.2 Eq. (41)
𝛼 (adjustable) parameter used to express 𝑑𝛼 Section 3.2 Eq. (41)f

𝐷𝛼 equiv. diameter in the alpha approx. Section 3.2 Eqs. (42)–(44)
𝐻 height of partially coalesced particles Section 3.4 Eq. (47)

a Sometimes called ‘‘area-equivalent diameter’’ since it is only determined from the
rojected area 𝐴.

b As expressed by Eq. (10), one can always calculate a value of 𝑑𝑔 𝑟𝑎𝑖𝑛 from 𝐴 and 𝑃 .
c Its value depends on the number of grains (𝑛) and the coalescence parameter (𝑥).
d It is also equal to a monomer diameter, for which we have 𝐷 = 2𝑅𝑔 .
e 𝑑𝑒𝑞 also relates the true 𝐷𝑒𝑞 to 𝐷𝑠𝑝ℎ.
f 𝛼 depends on 𝑥 but in a limited range, so that 𝛼 = 0.65 is a good choice.
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