

Production cross section measurements of the $natPd(\alpha, x)$ 111Ag reaction

Laurine Puren, Arnaud Guertin, Etienne Nigron, Ferid Haddad, Vincent

Métivier

► To cite this version:

Laurine Puren, Arnaud Guertin, Etienne Nigron, Ferid Haddad, Vincent Métivier. Production cross section measurements of the nat $Pd(\alpha,x)111Ag$ reaction. Tumour targeting, Imaging, RadiotherapieS, Oct 2024, Erquy, FR, France. hal-04780637

HAL Id: hal-04780637 https://hal.science/hal-04780637v1

Submitted on 13 Nov 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. **IMT Atlantique** Bretagne-Pays de la Loire École Mines-Télécom

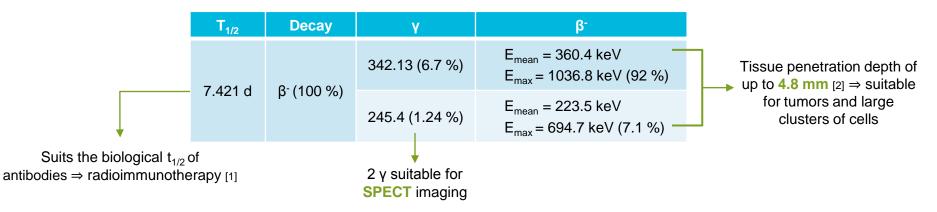
Physics of Radiation InteractionS with Matter and Applications

Production cross section measurements of the ^{nat}Pd(α,x)¹¹¹Ag reaction

. Puren, A. Guertin, , E. Nigron, F. Haddad, V. Métivier

Laurine PUREN

PhD Student SUBATECH Laboratory (Nantes, France)


Tumour targeting, Imaging, Radiotherapies workshop

10th October 2024

Context and motivations

 \Box Low toxicity of silver in humans \Rightarrow already used in several pharmaceuticals [1]

 \Box ¹¹¹Ag can be used for β - therapy:

□ The appeal for ¹¹¹Ag:

- > Dose assessment and biodistribution monitoring with SPECT imaging
- Radiosynovectomy : treatment for arthritis. [2]

[1] K. M. El-Azony *et al.*, 'Advantages and disadvantages of nuclear reactions used in reactors or cyclotrons, in addition to a theoretical study based on photodisintegration on natural indium for 111Ag production' Feb. 2022

[2] S. Chattopadhyay et al., 'Preparation and evaluation of a new radiopharmaceutical for radiosynovectomy, 111Ag-labelled hydroxyapatite (HA) particles', Mar. 2008

Context and motivations

Production routes of ¹¹¹Ag :

¹⁰⁵ ln 5.07 min ε β ⁺ = 100 %	¹⁰⁶ ln 6.23 min ε β ⁺ = 100 %	¹⁰⁷ In 32.4 min ε β ⁺ = 100 %	¹⁰⁸ ln 58 min ε β ⁺ = 100 %	¹⁰⁹ ln 4.154 h ε β ⁺ = 100 %	¹¹⁰ ln 4.9 h ε β ⁺ = 100 %	¹¹¹ ln 2.80 d ε β ⁺ = 100 %	¹¹² In 14.88 m ε β ⁺ = 62 % β ⁻ = 38 %	¹¹³ In STABLE 4.281 %	¹¹⁴ In 71.9 s β ⁻ = 99.5 % εβ ⁺ = 0.5 %	¹¹⁵ In 4.41e14 y 95.719% β [.] = 100 %
¹⁰⁴ Cd 57.8 min ε β ⁺ = 100 %	¹⁰⁵ Cd 55.4 min ε β ⁺ = 100 %	¹⁰⁶ Cd STABLE 1.245 %	¹⁰⁷ Cd 6.52 h ε β ⁺ = 100 %	¹⁰⁸ Cd STABLE 0.888%	¹⁰⁹ Cd 461.98 d ε = 100 %	¹¹⁰ Cd STABLE 12.47 %	¹¹¹ Cd STABLE 12.795 %	¹¹² Cd STABLE 24.109 %	¹¹³ Cd 8.04e15 y 12.227 % β ⁻ = 100 %	¹¹⁴ Cd STABLE 28.754 %
¹⁰³ Ag 65.8 min ε β ⁺ = 100 %	¹⁰⁴ Ag 69.3 min ε β ⁺ = 100 %	¹⁰⁵ Ag 41.29 d ε β ⁺ = 100 %	¹⁰⁶ Ag 23.96 m ε β ⁺ > 99 % β ⁻ < 1 %	¹⁰⁷ Ag STABLE 51.83 %	¹⁰⁸ Ag 2.39 m β ⁻ = 97.15 % ε β ⁺ = 2.85 %	¹⁰⁹ Ag STABLE 48.161 %	¹¹⁰ Ag 24.56 s β [.] = 100 %	¹¹¹ Ag 7.421 d β ⁻ = 100 %	¹¹² Ag 3.15 h β ⁻ = 100 %	¹¹³ Ag 5.37 h β [.] = 100 %
¹⁰² Pd STABLE 1.02 %	¹⁰³ Pd 17 d ε β ⁺ = 100 %	¹⁰⁴ Pd STABLE 11.14 %	¹⁰⁵ Pd STABLE 22.33 %	¹⁰⁶ Pd STABLE 27.33 %	¹⁰⁷ Pd 6.50e6 y β [.] = 100 %	¹⁰⁸ Pd STABLE 26.46 %	¹⁰⁹ Pd 13.437 h β ⁻ = 38.5 %	¹¹⁰ Pd STABLE 30.85 %	¹¹¹ Pd 23.6 min β [.] = 100 %	¹¹² Pd 21.027 h β ⁻ = 100 %

Neutron and photonuclear routes :

- $\label{eq:alpha} \square \ ^{110}\text{Pd}(n,\gamma)^{111}\text{Pd} \ (\beta^{-} \) \rightarrow \ ^{111}\text{Ag}$
- □ Isotope Separation On-Line technique (ISOL)
- \Box ^{nat}ln(γ ,x)¹¹¹Ag
- $\square \ ^{nat}Cd(\gamma,x)^{111}Ag$

Light-charged particle routes :

- □ ²³²Th(p,f)¹¹¹Ag (fission product)
- □ ^{nat}Pd(d,x)¹¹¹Ag, ¹¹⁰Pd(d,x)¹¹¹Ag
- $\Box ^{nat}Pd(\alpha,x)^{111}Ag, ^{110}Pd(\alpha,x)^{111}Ag, ^{108}Pd(\alpha,x)^{111}Ag$
 - Few experimental data available

Context and motivations

\Box a production routes of ¹¹¹Ag :

- Only two experimental datasets for ^{nat}Pd(α,x)¹¹¹Ag.
- Lack of data at high energy.

L, add data in the region of the peak and investigate what's happening after it.

Motivations

- 1. New measurements at high energy of ${}^{nat}Pd(\alpha,x)^{111}Ag$.
- 2. Comparison with the literature.
- 3. Comparison with the other production routes.

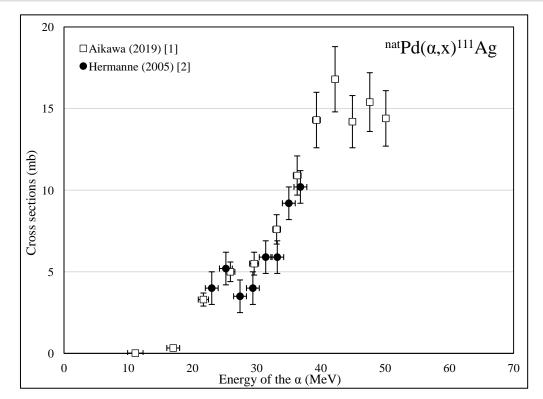
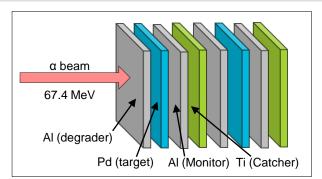
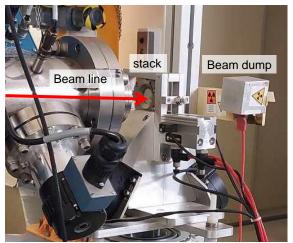


Figure 1 : Cross section measurements of the $^{nat}Pd(\alpha, x)^{111}Ag$ reaction

Method: Stacked-foils technique


□ Stacked-foils technique: in one irradiation, several production cross sections can be measured.


L One pattern composed : degrader, target, monitor + catcher

- **Given State and State and**
 - Alpha beam of 67.4 MeV
 - Monitor reactions : ${}^{27}AI(\alpha,x){}^{24}Na$, ${}^{27}AI(\alpha,x){}^{22}Na$

	1 st exp	2 nd exp	3 rd exp
Time of irradiation	1 h 30	2 h	2 h
Intensity of the beam	100 nA	150 nA	150 nA

Use of the γ-rays at 342 keV (6.7 %) and 245 keV (1.24 %) to extract ¹¹¹Ag activity with a **HPGe** detector.

<u>Figure 3:</u> Schematical representation of the stack and setup of the experiment

Results

Observations:

 8 measurements done in three different experiments: good consistency between the 1st and 3rd series.

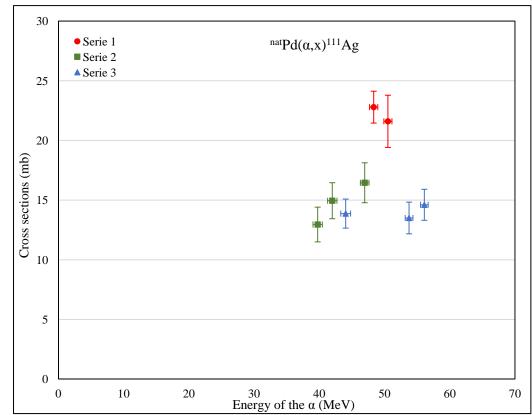


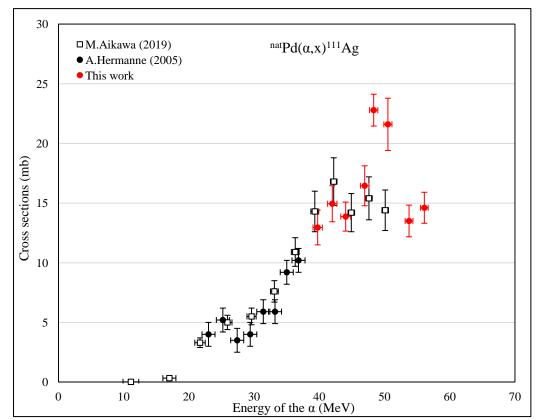
Figure 4: Cross section measurements of the ${}^{nat}Pd(\alpha,x)^{111}Ag$ reaction.

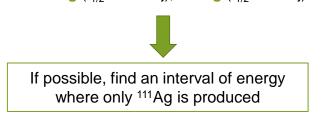
Results

Observations:

- 8 measurements done in three different experiments: good consistency between the 1st and 3rd series.
- The maximum cross section seems to be around 50 MeV
- Overall good agreement with the experimental values of Aikawa et al.
 - L, the points at 48 and 50.5 MeV (*serie 1*) seem questionable.

Make new measurements in the area around the peak to define it better.




Figure 4: Cross section measurements of the ${}^{nat}Pd(\alpha,x)^{111}Ag$ reaction.

Results – Contaminants

Production of other silver isotopes:

¹⁰³ Ag 65.8 min ε β ⁺ = 100 %	¹⁰⁴ Ag 69.3 min ε β ⁺ = 100 %	¹⁰⁵ Ag 41.29 d ε β ⁺ = 100 %	¹⁰⁶ Ag 23.96 m ε β ⁺ > 99 % β ⁻ < 1 %	¹⁰⁷ Ag STABLE 51.83 %	¹⁰⁸ Ag 2.39 m β ⁻ = 97.15 % ε β ⁺ = 2.85 %		¹¹⁰ Ag 24.56 s β [.] = 100 %	¹¹¹ Ag 7.421 d β [.] = 100 %	¹¹² Ag 3.15 h β ⁻ = 100 %	¹¹³ Ag 5.37 h β ⁻ = 100 %
¹⁰² Pd STABLE 1.02 %	¹⁰³ Pd 17 d ε β ⁺ = 100 %	¹⁰⁴ Pd STABLE 11.14 %	¹⁰⁵ Pd STA BLE 22.33 %	¹⁰⁶ Pd STABLE 27.33 %	¹⁰⁷ Pd 6.50e6 y β [.] = 100 %	¹⁰⁸ Pd STABLE 26.46 %	¹⁰⁹ Pd 13.437 h β [.] = 38.5 %	¹¹⁰ Pd STABLE 30.85 %	¹¹¹ Pd 23.6 min β [.] = 100 %	¹¹² Pd 21.027 h β ⁻ = 100 %
	^{106m} Ag: $t_{1/2} = 8.28 \text{ j}$					^{110m} Ag: t _{1/2} = 249.83 j				

■ Most of the contaminants produced are short-lived \Rightarrow a cooling time of 1-2 days is enough for them to decay completely I, Not the case for the longer-lived ¹⁰⁵Ag (t_{1/2} = 41.29 j), ^{106m}Ag (t_{1/2} = 8.28 j) and ^{110m}Ag (t_{1/2} = 249.83 j)

Results – Contaminants

Observations:

٠

¹¹¹Ag and ^{110m}Ag have the lowest cross sections of all the long-lived silver isotopes.

l, more than 5 times lower than for 106m Ag and more than 10 times lower than 105 Ag.

- They are all produced in the same energy interval than ¹¹¹Ag.
- Ly their production is **unavoidable**.

□ Use of an **enriched target** of ¹⁰⁸Pd or ¹¹⁰Pd :

- Small production of ¹⁰⁵Ag and ^{106m}Ag.
- ¹¹¹Ag is **still** produced alongside ^{110m}Ag.

What about the other production routes ?

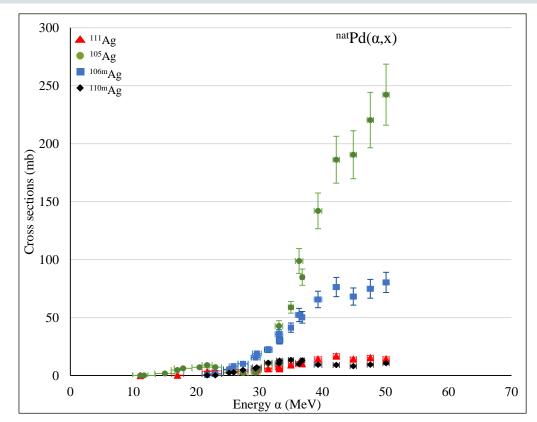


Figure 5: Cross section measurements of the $^{nat}Pd(\alpha,x)^{111}Ag$, ^{105}Ag , ^{106m}Ag , ^{110m}Ag reaction.

Results – Production routes

Deuteron route :

- Maximum cross section of ^{nat}Pd(d,x)¹¹¹Ag is at lower energy than with the alpha route : 10 MeV.
- The same contaminants : ^{105, 106m, 110m}Ag
 Low purity and low specific activity
- A theoretical production could be between 16 and 6 MeV.
 - L Target thickness : ≈ 225 μm
 - l, Yield at EOB : ≈ 1.21 MBq/µAh

Reactor route:

- Indirect production : $^{110}\text{Pd}(n,\gamma)^{111}\text{Pd}~(\beta^{-}~) \rightarrow \,^{111}\text{Ag}$
- · Contaminants : only short-lived silver isotopes
- High specific activity
- Production of 100 MBq of ¹¹¹Ag [1] :
 - L neutron flux : $3 \times 10^{13} \text{ n cm}^{-2} \text{ s}^{-1}$
 - L 26 h of irradiation

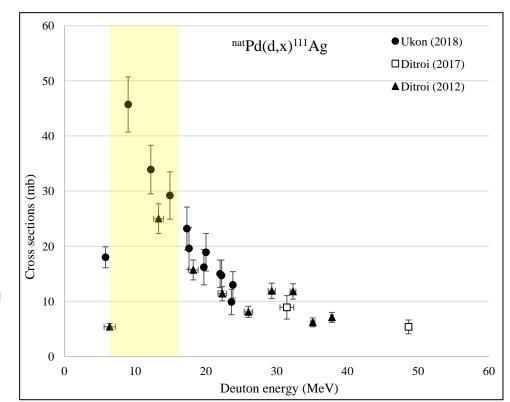
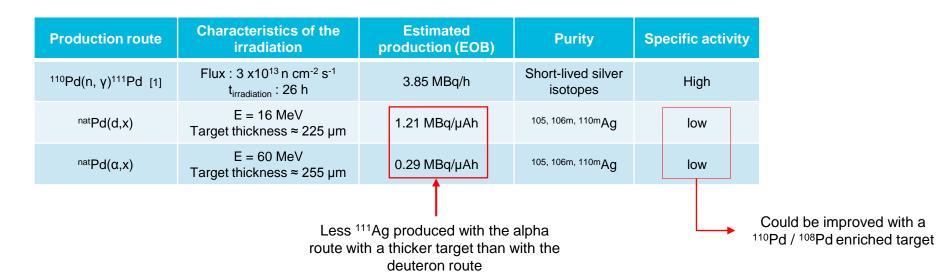



Figure 6: Cross section measurements of the $^{nat}Pd(d,x)$ reaction.

[1] R. Alberto et al. 'An improved method for the separation of 111Ag from irradiated natural palladium', Jul. 1992

The most promising route seems to be the neutron route.

[1] L. Morselli et al., 'Production and characterization of 111Ag radioisotope for medical use in a TRIGA Mark II nuclear research reactor', Jul. 2023

Conclusion

- New production cross section measurements of the reaction $^{nat}Pd(\alpha,x)^{111}Ag$ have been performed at the GIP Arronax at high energy:
 - \rightarrow Good agreement with the data of Aikawa *et al.*, apart from the points of my first experiment.
 - \rightarrow The maximum cross section seem to be around 50 MeV
- Comparison with the most accessible production routes:
 - \rightarrow low purity and specific activity with the alpha and deuteron routes
 - \rightarrow Good purity and high specific activity with the neutron route \Rightarrow the most promising
- **Outlook:**
 - → Measure again the peak area to understand the difference between the data from Aikawa my first experiment
 - \rightarrow Future experiments between 55 and 65 MeV to have experimental data after the peak
 - \rightarrow Extract the production cross sections of the silver contaminants (¹⁰⁵Ag, ^{106m}Ag and ^{110m}Ag)

THANK YOU FOR YOUR ATTENTION

IMT Atlantique Bretagne-Pays de la Loire École Mines-Télécom

Laurine Puren

A. Guertin, , E. Nigron, F. Haddad, V. Métivier