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Abstract: 
Impedance spectroscopy experiments are able to reveal the fundamental charge transport 

properties of a wide variety of complex disordered and nano-structured materials providing that 

appropriate modeling tools are used. In this paper, we present a numerical simulation-based approach to 

model the dynamical conductivity of networks formed by self-assembled metal nanoparticles. The inter-

particle nano-resistance and nano-capacitance are implemented at the nano-scale assuming inter-particle 

charge transfer and accumulation mechanisms which can be adapted depending on the nature of the 

nano-particles and of the surrounding medium. The actual positions and spatial arrangements of the 

nanoparticles within the network are taken into consideration, allowing the attributes of percolating 

conducting routes to be extracted, classified, and compared in terms of path conductance and statistical 

distribution of path lengths. Our findings are contrasted to those obtained using analytic models, which 

are commonly used but however rely on strong assumptions about the electric properties of the 

conducting paths. We address these assumptions and show that in the case of weakly disordered systems, 

there is a general agreement between numerical simulations and analytic modeling-based approaches. In 

the case of disordered networks where nano-particle size and position fluctuations are included, we show 

that the path length distribution is frequency dependent and can differ significantly from the log-normal 

distribution usually assumed in the analytic models. The impedance of individual pathways may be 

extracted from the numerical simulations; we discovered that the conductance and susceptance of a 

specific path are frequency-dependent and inversely proportional to the path length only in ordered 

networks. Strong scattering of conductance values is caused by disorder effects. The developed numerical 

approach is generic and applies to most nano-devices where charge transport relies on percolation; it 

allows to bridge the gap between the nano-scale and micro-scale electric characteristics and thus permits 

a deeper understanding of the charge transport properties of nano-structured materials.  

Introduction:  
The understanding of the unique properties of nanoparticles networks and their exploitation for 

the development of innovative functional devices is advancing rapidly. Indeed, many applications are 

based on the electronic, optic, or magnetic properties emerging from the multi-scale interaction between 
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nanoparticles in hierarchical assemblies  [1–4]. Amorphous semiconductors, ionic conducting glasses, 

ceramics, ionic or electronic conducting polymers, metal cluster compounds, transition metal oxides… [5–

7], have a common frequency-dependent conductivity σ(ω) that is characterized by a transition angular 

frequency ωc from a low-frequency DC plateau to a dispersive high frequency AC region. σ(ω) can be 

approximated by an empirical power law σ(ω) = σDC + Aωn, where n is a fractional exponent and A a pre-

exponential constant, and has been dubbed the "universal power law" (UPL) by Jonscher et al. [8,9]. 

Several published works assume that the n exponent is a constant less than one that it describes the AC 

component contribution to the dispersive region [8,9]. It is used to differentiate between dynamical 

charge transport mechanisms like quantum mechanical tunneling (QMT), non-overlapping small polaron 

tunneling (NSPT), overlapping-large polaron tunneling (OLPT), and correlated barrier hopping (CBH) [10]. 

However, there are severe issues concerning the validity of the UPL, as pointed out by Papathanassiou et 

al. [11]: 

(i) It was discovered experimentally that the n exponent of the UPL can be greater than unity, and no 

physical arguments can be advanced to put a limit on its value [12–14], 

(ii) the n exponent of the UPL is frequency dependent [5,7], 

(iii) the UPL has no upper frequency limit, which is in contradiction with experimental observations ([11], 

[12], [13]). 

Moreover, it is worth noting that both electron and ion conducting materials can display UPL 

behavior in their AC conductivity, which indicates that the charge transport properties are unrelated to 

the constituent units and are more likely connected to the morphology of the conducting network of these 

materials. 

Based on physical hypothesis, an analytical model was initially developed by Papathanassiou et 

al. [11] and complemented by Liang et al. [18]. This model, hereafter referred to as the analytic model, 

allows to describe the frequency dependent conductivity of disordered materials. It is based on a spatial 

distribution of conduction paths along which the electric charges flow. The model qualitatively reproduces 

the observed frequency dependent conductivity of a wide range of polymers and composite disordered 

materials [15–18]. Indeed, dynamical conductivity described by power laws with exponents greater than 

unity is physically acceptable within this model and has been observed in some cases ([11], [12], [13]). 

The saturation of conductivity at high frequency is also predicted and experimentally observed [12–15]. 

Another feature of this analytic model is that the exponents of the power law do not accumulate to some 

critical value (around 0.6–0.7, as suggested by  [12–15]). 

Nonetheless, some of the analytic model must be discussed: (i) the distribution of path lengths is 

assumed to follow a log-normal function that does not depend on frequency, (ii) The conductance and 

capacitance associated with a conducting path are inversely proportional to the path length, (iii) only the 
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self-capacitance of conducting paths was considered, while charge accumulation in adjacent paths, which 

may also contribute to the capacitance, was ignored. 

In this work, we investigate the charge transport properties of nano-composites materials 

consisting of metal nanoparticles embedded in a polymer matrix. Our approach is based on numerical 

simulations of the dynamical charge transport properties of a network made up of N elementary electric 

nano-circuits. It can be implemented in numerical solvers using the continuity of the electric current 

equations. The latter are discretized throughout the network, yielding NxN equations which can be solved 

according to Kirchhoff’s law. This approach has been developed theoretically [19,20] and applied to MOS 

(Metal Oxyde Semiconductor) devices [21], magnetic sensors, quantum Hall effect-based devices [18,19] 

and to electric networks using commercial simulation software [24–26]. However, these models either do 

not take into account the actual spatial distribution of the elementary circuits (i.e., positions within the 

network) or are unable to describe the local properties of the charge transport in a nano-circuit. 

Starting with an elementary electrical circuit describing the inter-particle charge transport 

properties at the nano-scale, we show that it is possible to determine the microscopic electrical resistance 

R and capacitance C of the entire network (Figure 1a). Because it can handle the actual spatial distribution 

of the nanoparticles, the numerical approach is versatile and can describe percolation and localization 

due to disorder effects. It also allows for the analysis and classification of conduction paths based on their 

length distribution and frequency dependence. It is therefore a powerful tool for testing the validity of 

analytical models. To the best of our knowledge, no such comparison of numerical simulations and 

analytical modeling has ever been performed in the context of impedance spectroscopy of composite 

nano-materials. Furthermore, the numerical simulations presented in this work are based on a general 

approach because the resistance and capacitance of an elementary circuit can be adapted to any 

particular system. One important motivation for this research is to determine whether it is possible to 

address the microscopic electrical properties of nano-particle networks investigated experimentally by 

impedance spectroscopy using nano-circuit building blocks. 

 

Results and discussion:  

1 – Analytical modeling:  

According to the analytical model [11,15–18] the response of a disordered system to an applied 

AC field is irrelevant to its constituting elementary units and the way that they build up. They merely has 

to do with the morphology of the conducting network. Electric charges move in a network made up of 

conduction paths of varying lengths, regardless of the identity of the basic units or how they are built up. 

A qualitative description of a polymer network in this approach consists of a group of polymer chains of 

varying lengths, with conformational disorder and random orientation. Charge carriers can hop along a 
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chain (intra-chain transfer) and over cross-linked chain clusters (inter-chain transfer). The latter is 

determined, by the degree of chain coupling. As a result, charge carriers flow in a network formed by 

conductive paths of varying lengths, characterized by a statistical distribution determined, in part, by the 

material's synthesis procedure. It is worth noting that a single path does not necessarily correspond to a 

single chain, but can involve a cluster of coupled chains. A path can be long enough to connect the 

electrical contacts on the sample's opposite sides. Shorter paths are more likely to end in a dead end. The 

characteristic travel distance LC of charges moving along a conductive path during half a period of the sine 

wave describing the AC electric field is defined as  [18]:  

Eq. 1       ����� = 	 �.
�  

where υ is the charge carrier velocity along the conducting path and � is the angular frequency. 

Because charges travel over distances of the order of LC, the latter can be interpreted as a cut-off distance. 

Depending on the length Lk of the conducting path, two limiting cases can be distinguished: 

(i) for Lk>LC (long clusters), the charges move freely along the conducting path k. Paths connecting the 

contact electrodes contribute to the DC conductance GDC. Their length is equal to or larger than the inter-

electrode separation. Whereas paths with dead-ends (i.e. non-connecting) and longer than LC are 

responsible for the frequency dependent conductance GAC(ω). Their length can be shorter, comparable or 

even larger than the inter-electrodes separation. With these assumptions, the total conductance can be 

written as: 

Eq. 2    ���� = �� + ������ = 	�� + ∑ ��������������  

where Gk(Lk) is the conductance of a path with length Lk. 

(ii) for Lk<LC (short clusters), the charges cannot move freely and accumulate at the ends of the conducting 

path, which behaves as a capacitor and gives rise to polarization effects. The contribution of such paths, 

to the overall capacitance, is expressed as:  

Eq. 3          ���� = ∑ ��������������  

Considering uncorrelated paths (i.e. random disorder), Papathanassiou et al. and Liang et al.  [18]: 

assumed a continuous log-normal distribution of conduction path lengths:  

Eq. 4      ����� ��� =  
√�".# . $%& '−

�)*+ ��,)*+ ��-�.
�#. / 

where �� = � �0123  is a normalized dimensionless path length defined as the ratio between the path length 

L and a minimum path length Lmin. The latter is taken as the size of an elementary building block. ��4 =
	�4 �0123  is the normalized mean path length, L0 being the length of the most abundant paths. s is the 

dimensionless parameter defining the width of the log-normal distribution. The full width at half 

maximum (FWHM) of the path length distribution, having the dimension of a length, is given by:  
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Eq. 5     ∆� = 	2�4. 789ℎ	�7. ;2. ���2�   

As underlined above, an important assumption of the analytical model is that the conductance 

and capacitance associated to a given conducting path are inversely proportional to its length (Gk ∝ Lk
-1 

and Ck ∝ Lk
-1). Within this assumption, Eq. 2- Eq. 4 lead to (see SI): 

Eq. 6   ���� = �� + �4. <  
√�".# . $%& '−

�=,)*+��-�.
�#. /)*+���>?@�

)*+�����A�� . BC 

Eq. 7  ���� = �4. <  
√�".# . $%& '−

�=,)*+ ��-�.
�#. /)*+�����A��

4 . BC 

where �4 = D. E. F and �4 = D. E. G are respectively the overall conductance and capacitance of the N 

paths forming the conducting network; F and ε are respectively the conductivity and permittivity of a 

conducting cluster and S is the network cross section. The bounds of the integrals (Eq. 6 and Eq. 7) are 

defined by the normalized critical length ������ = ����� �H893  and the normalized maximum length	��0IJ =
�0IJ �H893 ; �0IJis set to several inter-electrode distances to ensure full convergence of the integral (Eq. 

6).  

The results of the numerical simulations of the charge transport properties of a network formed 

by interconnected building blocks of elementary electrical circuits will be compared to the conductance 

and capacitance deduced from the analytical model presented above.  

2 – Numerical simulations:  

The approach developed in this work is based on numerical simulations of the dynamical charge 

transport properties of a network composed of elementary electric nano-circuits (Figure 1).  



6 

 

 

Figure 1: (a) microscopic resistance R and capacitance C of the microscopic circuit (c,d) resulting 
from the charge transport over the whole network formed by inter-connexion of elementary nano-
circuits (b). The latter are formed by inter-particle resistance Rij and capacitance Cij. The size of the 
simulated network is 500 nm x 500 nm containing around 1024 nanoparticles; 15% size and position 
fluctuations are included to account for structural disorder. 

 

Each circuit is a (i,j) pair of first neighbor nanoparticles characterized by an inter-particle 

resistance Rij and capacitance Cij (Figure 1b). The latter depend on the characteristics of the nanoparticle 

network (size, shape, separation and spatial distribution), on the surrounding medium (dielectric 

properties) as well as on temperature and eventually on an applied external stress. 

Calculations were performed for a system which has been investigated experimentally in previous 

works [27]. It consists in a single layer of spherical gold NPs (14 nm average size) arranged in a regular 

hexagonal lattice. The separation between neighboring NPs is set to the length (1.2 nm) of the stabilizing 

C12 molecules [27]. The simulated network is composed approximately of 1024 NPs (Figure 1c); a number 

large enough to generate thousands of conducting paths and at the same time keep within tractable 

computation time. Moreover, a size distribution linewidth of 15% of the average NP size and positions 

(with respect to positions of NPs in the regular array) was introduced in the network (Figure 1c) to mimic 

the lattice disorder effects  [28]. 
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It is worth to mention that the results of the numerical simulations presented in this work are 

quite general and do not depend critically on the characteristics of the elementary building blocks forming 

the network.  

Each (i,j) pair of nanoparticles located at positions (ri, rj) of the 2D network gives rise to a parallel 

equivalent electrical nano-circuit (Figure 1b) with admittance matrix element: 

Eq. 8      χij = 1/Rij + jCijω 

where Rij and Cij are the inter-particle resistance and capacitance, respectively.  

In our case, assuming that charge transport occurs through quantum tunnelling between first neighbour 

nanoparticles, the resistance Rij is given by [28–30]: 

Eq. 9      K1L = MN . $O�PQR,T� 
where kR is the inter-particle resistance at the touching limit, i.e. for vanishing inter-particle gap distance 

lij  ; U accounts for the electron tunnelling effect [28–30]:  

Eq. 10   U = V�1L − �9	'��W� , X, Y1L�/ with ��W� , X, Y1L� =  
ZPQR [−

\],ZPQR
 ,Z'^]_`aQR/ �b3 c +

\]dZPQR
 ,Z'^]e`aQR/ �b3 cf 

As detailed in references [29,31], U depends on the tunnelling decay constant β (around 3 nm-1 for the 

considered system [29,32]), and on the number of tunnelling states ��W� , X, Y1L�		which is determined by 

the Coulomb charging energy EC, c.a. 20 meV [28,29]), the temperature T and the voltage Vij between first 

neighbour nanoparticles.  

The inter-particle capacitance Cij is given by [31,33]:  

Eq. 11     �1L = gGB. �9�1 + B �1L⁄ � 

Where d is the nanoparticle diameter, G is the permittivity of the surrounding medium (i.e. of the ligand 

molecules in our case).  

The complex admittance matrix [Y] is constructed assuming that all first neighbour nanoparticles are 

located within a ring centered on the considered nanoparticle. The current flowing throughout the NP 

network is computed by solving numerically the matrix equation [34]:  

Eq. 12      jkl = jml,njol 
where [V] and [I] are, respectively, the voltage and the injected current vectors, and [Y] is the complex 

admittance matrix of which non-diagonal and diagonal terms are, respectively, Yij = -pij for i≠j, and Yii 

=∑ p1LL ; the latter being the total admittance connected to node i [35].  

The overall microscopic admittance of the network formed by the interconnected nano-circuits is Y0=V0/I0 

where V0(ω) is the voltage vector at the collecting electrode and I0(ω) is the injected current at the 

injection electrode. Finally, the conductance G and susceptance S of the network are obtained as G(ω) = 

Re(Y(ω)), and S(ω) = Im(Y(ω)), respectively. It is worth to mention that the numerical model is able to 

handle disorder (point defects and dislocations in the NPs network) as well as strain effects (due to an 
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applied external stress) on the charge transport properties of the NPs assembly.  

 

4 – Comparison between analytical model and numerical simulations:  

The AC conductance GAC(ω) = G(ω)-GDC and capacitance C(ω) = S(ω)/ω were normalized to their 

respective maximum values to allow for a direct comparison of the charge transport properties calculated 

using the analytical model and the numerical simulations (Figure 2). In this way, changes in the electrical 

response due to system size (number of interconnected nanoparticles, length of electrodes, distance 

between electrodes) are eliminated. Furthermore, the normalized conductance and capacitance shown 

in Figure 2 are plotted as a function of the logarithm of the normalized angular frequency ω/ω0, where ω0 

is the frequency at half maximum of the conductance, and is determined only by L0 and Lc(ω) in the 

analytical model (Eq. 1) and by the electrical characteristics of each nano-circuit in the numerical 

simulations (Eq. 9 and Eq. 11). This normalization procedure preserves the general nature of both the 

analytical modeling and the numerical simulations, allowing them to be applied to a variety of disordered 

nano-structured materials. It also restricts the adjustable parameters of the analytic model to the width 

(i.e. parameter s) of the log-normal distribution of path lengths which defines the frequency-dependent 

line-shape of the normalized conductance and capacitance. 

Figure 2 shows that the analytical model and the numerical simulations both account for the 

frequency dependence of the AC conductance and capacitance with the three previously mentioned 

distinct regions: nearly constant low-frequency DC regime, strong frequency variation around ω0 and 

saturation at high frequency, resulting in an AC plateau in the conductance and vanishing capacitance. As 

shown in Figure 2, there is a good agreement between the numerically simulated conductance and 

capacitance and the ones calculated using the analytical model (Eq. 6 and Eq. 7) for s≈1 which corresponds 

to the width of the log-normal distribution of conducting path lengths in the numerically investigated 

nano-particle network, as described by the analytical model.  

 

Figure 2: Comparison between (a) the normalized AC conductance (G(ω)-GDC)/(G-GDC)max and (b) 

capacitance C(ω)/Cmax calculated using the numerical simulations (dotted black line) and the analytical 
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model with a broadening parameter of the log-normal distribution s = 1.5 (crosses), 1 (circles) and 0.5 
(squares). The UPL fitted to the analytical model with parameter s = 0.5 and to the numerical simulations 
of the conductance are shown in solid lines. The corresponding fractional exponents c.a. n = 2.6 and 0.7, 
respectively. 

However, there are some inconsistencies between the numerically simulated and the analytically 

computed conductance and capacitance line-shapes (Figure 2). In particular, the analytic model, 

overestimates the high frequency capacitance because it ignores the capacitance formed by adjacent 

paths, whereas numerical simulations account for both the self-capacitance of a given path and the 

geometric capacitance formed by its first neighbor paths via the inter-particle capacitance term (Eq. 11), 

as will be discussed in more detail below. Furthermore, as it will be shown, the width of the log-normal 

distribution (parameter s in Eq. 4) is substantially frequency dependent, which is not taken into account 

in the analytical model and may influence the frequency dependent conductance and capacitance line 

shapes.  

Furthermore, Nyquist plots are commonly used in impedance spectroscopy experiments as they 

allow for determining the equivalent electric circuit of a conducting system. Figure 3 shows Nyquist plots 

based on the frequency dependent conductance and capacitance calculated using the analytic model (Eq. 

6 and Eq. 7) and on the numerical simulations (Eq. 12). The real q’�ω� 	= 1 ��ω�3  and imaginary Ztt�ω� =
1
ωC�ω�3 	parts of the impedance were normalized to their maximum values to allow for a direct 

comparison between the analytical model and the numerical simulations. In this way, the normalized 

impedance is determined solely by the nature of the electrically equivalent circuit and not by the 

parameters of the log-normal distribution of path lengths (Eq. 4) or by the nano-circuit resistance and 

capacitance (Eq. 8). 
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Figure 3 : Comparison between normalized Nyquist impedance plots (i.e. Z’/|Z|max versus –Z’’/|Z|max) 
calculated (a) using the analytical model based on a log-normal distribution of conducting path lengths 
with s = 1 (black dots) and (b) using the numerical simulations of the interconnected nano-circuit network 
shown in Figure 1. 

The analytic model and the numerical simulations both produce Nyquist plots with a semicircle 

shape which is characteristic of an equivalent circuit composed of frequency-independent parallel 

resistance R and capacitance C. The R and C parameters are the low frequency resistance and capacitance, 

respectively K = 1 ��3  and C = Cmax. The resonance frequency of the parallel circuit is �4 = 1 K�3 . These 

findings are consistent with experimental impedance spectroscopy data from a variety of nano-composite 

materials, including self-organized metal nanoparticle assemblies [33], polymers (PBLG)/metal (Pt) nano-

composites [36], and granular phase change materials [37]. At low frequencies � ≪ �4 the susceptance 

is very small compared to the conductance (ωC << R-1) and the capacitors can be regarded as open circuits; 

the electrical system is thus dominated by the equivalent resistance R of the elementary resistances along 

the different percolation paths across the network (Figure 2). At intermediate frequencies � w �4, 

conductance and susceptance are comparable (ωC~R-1). The conductance increases with increasing 

frequency in this frequency range, which can be described by a UPL, and has been suggested to be linked 

to the capacitive components of the network [9,24]. At high frequencies � ≫ �4, the susceptance far 

outweighs the conductance (ωC >> R-1) and the capacitors act as short circuits between conducting paths, 

increasing the overall conductance. It is worth noting that our simulations show non-divergent 

conductance at high frequencies because the proportion of capacitors (37%) in our network is significantly 

less than the mathematically required 50% for percolation in a two-dimensional (2D) network [38,39]. As 

a result, the conductance of conducting paths is constrained by the presence of resistors, which determine 
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the network's overall conductance. Moreover, the numerical simulations show that the frequency 

dependence of the conductance and capacitance is universal, as indicated by Bouamrane and Almond 

[5,20,21] who showed that the UPL is an « emergent property », i.e. a well-defined characteristic of the 

electrical response that appears to be independent of the arrangement of the resistors and capacitors 

within the network. However, the exponent of the UPL depends on the width of the distribution of the 

conducting paths (Figure 2) and can thus take values greater than 1, as demonstrated experimentally [8–

11] and analytically [7,14]. Fitting the UPL to our numerically simulated conductance (Figure 2) yields a 

fractional exponent c.a. 0.7 for the network with 15% nanoparticle size and position dispersion whereas 

fitting the UPL to the analytic model leads to a fractional exponent increasing from n = 0.65 to 2.6 for log-

normal width parameter decreasing from s = 1.5 to 0.5 (Figure 2). 

Both the analytic model and the numerical simulations are thus capable of capturing the essential 

physics of the charge transport properties of complex nano-composite materials in terms of conducting 

paths (analytic model) or elementary nano-circuits (numerical simulations). However, numerical 

simulations have a superior capability of reconstructing conduction paths and can thus address the 

distribution of path lengths. Indeed, one important assumption of the analytic model is that the lengths 

of the conducting paths follow a log-normal distribution. In the following sections, we will focus on this 

point and show that the distribution of path lengths is frequency dependent and can deviate significantly 

from a log-normal distribution.  

The length of a conducting path and its electric characteristics are extracted from the numerical 

simulations as follows: the spatial distribution of the nano-junctions formed by each pair of first neighbor 

nanoparticles is obtained from the location of the nanoparticles within the network. Then, only the paths 

connecting the injection and the collection electrodes are selected. These percolation paths are directly 

involved in the measured conductivity; non-connecting paths (i.e. with dead ends) are present and may 

influence the charge transport and its frequency dependence, but only indirectly. Finally, the length Lk of 

each individual k-path is calculated and its impedance 1/Gk is calculated as the sum of the local 

impedances of the nano-junctions forming the conduction the path. The so-obtained path lengths and 

conductances can be then represented as histograms. Figure 4 shows the path length histograms 

calculated at low (Figure 4a) and high (Figure 4b) frequencies. 
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Figure 4 : Histograms of conduction path lengths extracted from the numerical simulations of a hexagonal 
lattice network (500 nm x 500 nm) formed by gold nanoparticles including 15% size fluctuations. The 
simulations were performed at (a) low (� �43  = 10-3) and (b) high frequency (� �43 	= 104). Continuous line 

curves are fits of path length log-normal distribution functions (Eq. 4) to the path length histograms using 

parameters (L0=1400 nm, ∆L~ 900 nm) corresponding to s~0.3 in (a) and (L0=600 nm, ∆L~ 175 nm) 
corresponding to s~0.12 in (b). 

The dependence of the path length histograms on frequency originates from the capacitance of the 

nano-circuits (Eq. 8). The capacitive contribution to the conductance has a logarithmic variation with inter-

particle distance (Eq. 11) whereas the resistance contribution decreases exponentially with increasing gap 

between the nanoparticles (Eq. 9). Since the capacitive contribution dominates at high frequency � �43 = 

104, this leads to longer paths compared to the low-frequency case � �43 = 10-3 where the resistance 

favours the shorter paths. At high frequency (Figure 4b), the path length histogram follows rather well a 

log-normal distribution function with parameters L0 = 600 nm and ∆L ~ 175 nm (corresponding to s ~ 0.12 

in Eq. 5). At low frequency (Figure 4a), the path length histogram is shifted upward to larger path lengths 

and spreads over a broader range. The low frequency histogram is not well described by a log-normal 

distribution because of the strong fluctuations of the nano-circuit resistance with inter-particle distance 

(Eq. 9). 
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Figure 5 : (a) Frequency dependence of the length L0 and FWHM ∆L of the log-normal distribution fitted to 
the path length histograms extracted from the numerical simulations of the investigated network. The 
frequency is in log scale. (insert) resonance curve of the normalized imaginary part of the impedance 
obtained using the numerical simulations. The resonance frequency is f0 = 104 Hz for the investigated 
network. 

Figure 5 displays the frequency dependence of parameters L0 and ∆L of the log-normal distribution 

fitted to the path length histograms. As already noticed in Figure 4, L0 and ∆L clearly decrease with 

increasing frequency. This finding indicates that the length distribution of the conducting paths is in fact 

frequency dependent which was not considered in the analytic model. Moreover, the frequency variation 

of L0 does not follow the 1/ω dependence (Eq. 1) assumed in the analytic model. L0 and ∆L rather follow 

an S-shaped frequency dependence (Figure 5) with a clear change of the electric characteristics from 

resistive (at low-frequency) to capacitive (at high frequency) behavior around the resonance frequency 

�4 = 1 2gK�3  of the microscopic electric circuit formed by the inter-connected nano-circuits. In the 

investigated network, f0 = 104 Hz which corresponds to the maximum of -Z’’(ω) and a 45° phase shift 

between the resistive and capacitive components of the equivalent parallel circuit as shown in the inset 

of Figure 5. 

The frequency dependence of L0 and ∆L is partly responsible for the difference between the 

frequency dependent conductance and capacitance calculated using the analytic model and the numerical 

simulations shown in Figure 2. Indeed, the broadening parameters s of the log-normal distribution fitted 
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to the path length histograms (Figure 4) are lower than those (s~1) deduced from the analysis of the 

frequency dependent conductance and capacitance (Figure 2). This is due to (i) the fact that the frequency 

dependence of the log-normal distribution is not considered in the analytical model (Eq. 4), (ii) the 

deviation of L0 from the 1/ω dependence (Eq. 1), and (iii) the dependence of the conductance of an 

individual path on its length (used in Eq. 6 and Eq. 7). 

Indeed, one important assumption of the analytical model is that the conductance and capacitance 

of a particular path are inversely proportional to its length (implicit in Eq. 6and Eq. 7). To test the validity 

of this assumption we have extracted, from the numerical simulations, the dependence of the 

conductance and capacitance on path length. This is performed as follows: once Eq. 12 is solved 

numerically, a particular length, in the frequency-dependent path length histogram (Figure 4), is selected. 

Several different conducting paths with this same length occur in the network. The impedance of each 

path is calculated as the sum of the impedances of the nano-circuits formed by first neighbour 

nanoparticles along the path. Hence, in the numerical simulations, several mesoscopic conductance and 

capacitance values are associated to a path length. Figure 6 depicts the change in conductance and 

capacitance as a function of path length derived from the numerical simulations performed at the 

microscopic circuit's resonance frequency f0.  

 

Figure 6 : (a) Conductance and (b) capacitance as a function of path length for the nano-circuit network 
with 15% nanoparticle size and position dispersion (dots) and for the perfectly ordered network (full line) 
at the resonance frequency f0 = 104 Hz. 

Because of the strong (exponential) dependence of the nanoscopic tunnelling resistance on the 

inter-particle distance (Eq. 9), the values of the conductance associated to a given path length are 

scattered over a wide range (Figure 6). In contrast, the values of the capacitance exhibit less scattering 

because of the weaker (logarithmic) dependence of the nanoscopic capacitance on interparticle distance 

(Eq.11). The conductance and capacitance do decrease with increasing path length (Figure 6). In fact, we 

have discovered that their dependency on path length and frequency are highly influenced by the degree 

of disorder. As a matter of fact, we found that the mesoscopic conductance and capacitance decrease as 
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the inverse path length, as assumed in the analytical model (Eq. 6 and 7), only in the case of a perfectly 

ordered nanoparticle network (full lines in Figure 6). 

The existence of conducting paths and their properties are assumed in the analytic model. In the 

numerical simulations, the conducting paths emerge as a result of the solutions of Eq. 12. They can be 

viewed, compared, and classified which allows for a better understanding of the charge transport 

properties. Figure 7 displays conduction paths chosen from the path length histogram generated at the 

network's resonance frequency f0 = 104 Hz.  

 

Figure 7 : (a) Spatial distribution of five paths selected in the path histogram (b) calculated at the 
resonance frequency f0 = 104 Hz: A = (GA=3.19x10-17 S, LA=718 nm), B = (GB=2.56x10-17 S, LB=738 nm), C = 
(GC=3.12x10-17 S, LC=1100 nm), D = (GD=1.3x10-17 S, LD=1200 nm) and E = (GE=1.26x10-17 S, LE=1750 nm) (c) 
path conductance as a function of path length extracted from the numerical simulations. 

We would like to emphasize that all of the conducting paths in the numerical simulations are 

connecting paths (Figure 7). They start at the injection electrode and terminate at the collection electrode. 

So, the minimum path length is equal to the inter-electrode distance (500 nm in our case). Conduction 

paths A and B in Figure 7 correspond to short connections between the electrodes; their lengths (718 and 

738 nm, respectively) are comparable to the inter-electrode distance (500 nm). The path labelled E in 

Figure 7 contains a greater number of nanoparticles; its length (1750 nm) is nearly three times larger than 

the inter-electrode distance. The paths labelled C and D in Figure 7 are representative of the most 

common paths. Their length is nearly twice as long as the distance between the electrodes. Paths of 

varying lengths may share common segments: for example, paths (D, B) and (C, B, E). Paths A and E 

interact with one another. They do not share common segments, but three of their nanoparticles are first 

neighbours (around x=100 nm, y=100 nm coordinates) which affects the impedance of both paths. Such 

interaction is responsible for inter-path conductance and capacitance (as suggested in the discussion of 

Figure 2). Paths of the same length can have vastly different conductances, as shown in Figure 6. For 
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example, paths C and D (Figure 7) have very similar lengths but very different conductances. Path C has 

nearly three times the conductance of path D. Finally, the conducting paths are frequency dependent. The 

low frequency conducting paths displayed in Figure ESI 1 are longer than the high frequency ones in 

agreement with the path length histograms of Figure 4. 

 

CONCLUSION 

 In conclusion, we compared analytic models and numerical simulations of the charge transport 

properties in networks of self-organized metal nanoparticles. The electric properties were implemented 

in the numerical simulations at the nanoscale by accounting for tunneling resistance and mutual 

capacitance, formed by neighboring nano-particles. These nano-circuits serve as the fundamental building 

blocks of the network micro-circuit. We found a general agreement between the electric properties of the 

nano-particle network predicted by the numerical simulations and the analytic model. The agreement 

with the UPL is limited to the low-frequency range as the UPL is unable to account for the high frequency 

saturation of the conductance. 

 The analytic models are based on assumptions about the electric properties of conducting paths 

and their statistical distribution. The conducting paths, on the other hand, can be extracted and 

investigated in numerical simulations at both the individual (path associated impedance) and global levels 

(path length histograms), allowing the assumptions of the analytic models to be addressed. In particular 

we found that (i) The path length histograms are frequency dependent and they more or less follow the 

log-normal distribution of the analytic model only at high frequencies where the capacitive response of 

the conducting paths dominates. (ii) The conductance and capacitance of a conducting path are inversely 

proportional to its length only for a perfectly ordered nano-particle network, as assumed in the analytic 

model. Fluctuations in nanoparticle size and position result in scattered conductance values for a given 

path length. Conducting paths of the same length can have vastly different electric properties which was 

not considered in the analytic model. (iii) All of the investigated paths in the numerical simulations are 

connecting paths, i.e. percolating paths with lengths greater than the inter-electrode separation. To 

introduce charge accumulation and capacitive effects, non-connecting paths do not need to be invoked 

as in the analytic model [7,14]. Nevertheless, they could be present in the numerical simulations and may 

influence the conductance and susceptance of a conducting path.  

Once the local electric properties (resistance and capacitance) of a composite material are known, 

the approach developed in this work can be applied to predict its macroscopic electric properties 

(frequency dependent conductance and susceptance). The spatial arrangement and relative positions of 

the inter-particles within the network directly determine the local resistance and capacitance, which is an 

important feature of the numerical simulations presented in this work. As a result, both disorder and 

strain effects imposed on the network can be accounted for. Furthermore, using the numerical tool 
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developed in this work, photo-induced charge generation within the nanoparticles and the surrounding 

medium can be addressed by supplementing the local electric resistance and capacitance with 

appropriate electric model components describing the light-matter interaction.  

 

 

SUPPLEMENTARY MATERIAL: 

Mathematical details of the analytical model and figures showing low and high frequency conduction 

paths. 
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