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Perilipins are abundant lipid droplet (LD) proteins present in all metazoans

and also in Amoebozoa and fungi. Humans express five perilipins, which

share a similar domain organization: an amino-terminal PAT domain and an

11-mer repeat region, which can fold into amphipathic helices that interact

with LDs, followed by a structured carboxy-terminal domain. Variations of

this organization that arose during vertebrate evolution allow for functional

specialization between perilipins in relation to the metabolic needs of different

tissues. We discuss how different features of perilipins influence their interac-

tion with LDs and their cellular targeting. PLIN1 and PLIN5 play a direct

role in lipolysis by regulating the recruitment of lipases to LDs and LD inter-

action with mitochondria. Other perilipins, particularly PLIN2, appear to

protect LDs from lipolysis, but the molecular mechanism is not clear. PLIN4

stands out with its long repetitive region, whereas PLIN3 is most widely

expressed and is used as a nascent LD marker. Finally, we discuss the genetic

variability in perilipins in connection with metabolic disease, prominent for

PLIN1 and PLIN4, underlying the importance of understanding the molecu-

lar function of perilipins.

Keywords: amphipathic helix; lipase; lipid droplet; lipodystrophy;

lipolysis; metabolic disease; perilipin; perilipin phylogeny

Perilipins are a family of evolutionarily conserved and

abundant lipid droplet (LD) surface proteins. In prote-

omics studies of LDs isolated from different human or

mouse tissues, one or more perilipins are generally

found to be among the most abundant LD-associated

proteins [1–6]. Their expression is highly regulated by

cellular developmental programs or external factors,

such as attacks by pathogens, and they can serve as

convenient markers to follow LDs or cell differentia-

tion [7–10]. The defining member, perilipin 1 (PLIN1),
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was first identified in 1990 as the most highly phos-

phorylated protein in lipolytically active human adipo-

cyte cells [11]. It was later shown to specifically

localize to the surface of LDs, both in adipocytes and

when heterologously expressed in other cell types,

hence the name perilipin, derived from Greek for ‘sur-

rounding lipid’ [12–15]. In the following years, four

additional members of the family were identified in

human and mouse tissues, now named perilipin 2–5
(PLIN2–PLIN5) [16–21]. All perilipins primarily local-

ize to LDs and are generally thought to function on

the LD surface, despite an initial disagreement in the

case of PLIN3, which was identified as an endosomal

trafficking protein [18], whereas PLIN4 was initially

identified through its association with the plasma

membrane of adipocyte cells [19].

The perilipin family was first defined by homology

in the amino-terminal (N-ter) region, which was

termed the PAT domain (for ‘perilipin, adipophilin,

TIP-47’; the original names for PLIN1, PLIN2, and

PLIN3, respectively) [22]. The PAT homology domain

is also present in PLIN5; in contrast, the N-ter region

is shorter in PLIN4 and lacks significant homology

with other perilipins (Fig. 1). Following the PAT

domain, another feature shared by all perilipins is a

region of 11-amino acid (aa) (11-mer) repeats, which

varies in length between ~ 5 repeats in PLIN5 and 7–9
repeats in PLIN1-PLIN3, whereas it is extended to

~ 90 repeats in the canonical human form of PLIN4

[23–25]. Finally, the perilipins are also related via their

carboxy-terminal (C-ter) domain, which has been

shown to fold into a 4-helix bundle in PLIN3 [26], and

is well-conserved in other perilipins, except for PLIN1

(Fig. 1). Structural and biochemical features of perili-

pins and their cellular targeting are discussed in more

detail below.

In addition to sequence- and structure-based homolo-

gies, notable in Fig. 1 are also differences between the five

perilipins; e.g., the divergence in the C-ter region of

PLIN1; the highly extended repetitive region in PLIN4;

the presence of a mitochondria-interacting sequence in

PLIN5 [27]. These differences immediately suggest that

the different perilipins may have adapted for some special-

ized functions. Perilipins also vary in terms of their tissue

expression, with the two more canonical-looking perili-

pins, PLIN2 and PLIN3, showing a ubiquitous expression

Fig. 1. Comparison of domain structure of the human perilipins. The canonical form of each perilipins is shown with the first and last

residue of each domain indicated.
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pattern, whereas PLIN1 and PLIN4 are highly expressed

in adipocyte and steroidogenic cells, with their levels

increasing during adipocyte differentiation. The function

of PLIN1 in adipocyte cells has been the most extensively

studied. Recent work has identified subpopulations of

adipocyte cells that differ in their perilipin expression

levels, with only AdipoPLIN (adipocytes with high perilipin

expression) showing a response to insulin, suggesting

functional specialization between different adipocyte cells

[28]. PLIN4 is also highly expressed in muscles, and

PLIN5 is expressed in oxidative tissues such as muscle

and brown adipocyte tissue [20].

Perilipins are not known to possess any enzymatic

function. However, they play an important role in the

regulation of lipase activity on the LD surface. This

function has been most studied for PLIN1, and also

for PLIN5, but it is not clear if it is shared by all

members of the family (see below). In addition to their

interaction with lipolytic enzymes and regulators of

lipolytic activity on the LD surface, perilipins also

interact with other LD-regulating proteins and might

participate in LD biogenesis, in physical regulation of

the LD surface or in fatty acid (FA) channeling to

other compartments. Non-lipolytic functions of perili-

pins will be discussed later. Finally, the importance of

perilipins for human metabolism is underscored by the

strong association between genetic variability in the

perilipin genes, particularly in PLIN1 and PLIN4, and

metabolic disease, as discussed in the final section of

this review.

Since their discovery, perilipins have been the subject

of many investigations, and it would be difficult to

cover all work on perilipins in a single Review. For the

physiological and pathological roles of perilipins in dif-

ferent tissues, and their transcriptional regulation, we

refer readers to recent reviews that have covered these

topics extensively [29,30]. Here, we will focus on the

underlying molecular mechanisms of perilipin function,

specifically for the human and mouse proteins. How-

ever, it is useful to first make a short detour into the

phylogeny of the perilipin family to define its family and

how the different perilipins relate to one another.

Phylogenetic analysis of perilipins

Most organisms have developed mechanisms to store

lipids in LDs, primarily as a source of energy [31].

Even though phospholipids are sufficient for separat-

ing the hydrophobic neutral lipids from the surround-

ing cytosol, LD proteins play a crucial role in the

homeostasis of LDs. The Londos and Kimmel group

were the first to propose that perilipins have a distant

ancestral origin, identifying two perilipin homologs,

lipid storage droplets surface-binding protein 1 and 2

(LSD-1 and LSD-2, respectively) in Drosophila melano-

gaster, and a more distant homolog in the social

amoeba Dictyostelium [22,32]. This suggests that the

perilipin gene appeared before the split of metazoans

within the Unikonta group (which groups Amoebozoa

and Opisthokonta, the latter containing Metazoa and

Fungi), as confirmed by subsequent phylogenetic ana-

lyses [29,33] (Fig. 2). Although the sequence similarity

between the dictyostelium and human perilipins is not

very high (18% with human PLIN3), the structures of

these proteins, as predicted by AlphaFold2, contain

both an N-ter triangular helical PAT domain and a

C-ter 4-helix bundle (Fig. 3).

Surprisingly, a perilipin gene was not detected in the

budding yeast Saccharomyces cerevisiae nor in the

nematode Caenorhabditis elegans [22]. Since then, other

groups have identified perilipin-like proteins in

C. elegans as well as in fungi [34–37]. In S. cerevisiae,

two proteins, Sps4 and Pet10p (also known as Pln1),

exhibit similarities with the N-ter perilipin PAT

domain, and Pet10p is found to be abundant on LDs

[35,37,38]. However, the structural resemblance of the

C-ter region is far less obvious, and, if these proteins

are related to the metazoan perilipins, they have sub-

stantially diverged. By contrast, from a predicted

structural point of view, more canonical perilipin-like

proteins appear to exist in several, if not all, major

subkingdoms of fungi, including Dikarya (Basidiomy-

cota and Ascomycota) and other fungi [39] (Fig. 2).

Whole-genome duplication events in early verte-

brates [vertebrate genome duplication (VGD)1 and

VGD2) and in teleostei [teleost-specific genome dupli-

cation (TGD)], along with the specialization in multi-

tissue organisms, can explain why most vertebrates

express multiple perilipins. Consecutive gene duplica-

tion events (exemplified by human PLIN3, PLIN4,

and PLIN5, all located within 400 kbp on Chr19p13–
3, with PLIN4 and PLIN5 being separated by ~ 4 kb)

likely contributed to the divergence of the perilipin

family and the specialization of perilipin protein func-

tions in higher organisms [33]. These fairly recent

duplication events are illustrated by the presence of a

common phylogenetic clade containing PLIN3–PLIN5

(Fig. 2). PLIN4, characterized by a long extension of

the central repetitive region, is only present in mam-

mals and is not found in birds. However, three perili-

pin genes are present on Chr28 in chicken, of which

two are adjacent. This suggests that the gene duplica-

tion occurred earlier in the vertebrate evolution, before

the expansion of the central repeats.

In ray-finned fish (Actinopterygii), a specialized peri-

lipin (Plin6) targets the surface of carotenoid droplets
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in the skin, especially in well-pigmented species [33]. It

is difficult to determine the exact appearance of Plin6

in evolution, but the presence of a Plin6-like protein in

the lancelet Branchiostoma lanceolatum (Bla, Fig. 2)

suggests that this event occurred before the appearance

of Craniata, but was lost in terrestrial species. How-

ever, it cannot be excluded that this is the result of a

later parallel or convergent evolution. Due to the

TGD, most fish genomes contain far more than six

perilipin-like genes (e.g., Dra.plin 2a and Dra.plin 2b,

Fig. 2. Phylogenetic analysis of perilipins. Human PLIN1 (O60240) was used as a query with SHOOT.bio [237] using the Metazoa database

to extract a phylogenetic tree consisting of 196 sequences from 46 organisms. A subset of 22 representative species was selected, and an

additional 7 perilipins from other organisms were added (labeled * below). Species were from the following taxa, as defined by TaxonKit

[238]. Kingdoms are shown in bold, and classes are underlined. Metazoa: Leptocardii: Branchiostoma lanceolatum (Bla); Mammalia: Homo

sapiens (Hsa), Mus musculus (Mmu), Canis familiaris (Cfa), Bos taurus (Bta), Monodelphis domestica (Mdo); Actinopterygii (Fish): Danio

rerio (Dre), Oncorhynchus mykiss (Omy), Solea solea (Sso); Archelosauria (Bird/Reptile): Crocodylus porosus (Cpo), Bubo bubo (Bbu), Gallus

gallus (Gga); Amphibia: Xenopus tropicalis (Xtr); Arthropoda: Daphnia magna (Dma), Drosophila melanogaster (Dme), Apis mellifera (Ame);

Nematoda: Caenorhabditis elegans* (Cel); Tardigrada: Ramazzottius varieornatus* (Rva); Cnidaria: Nematostella vectensis (Nve);

Echinodermata: Strongylocentrotus purpuratus* (Spu); Porifera: Amphimedon queenslandica (Aqu); Placozoa: Trichoplax adhaerens (Tad);

Spiralia: Helobdella robusta (Hro), Octopus bimaculoides (Obi); Fungi: Basidiomycota: Cantharellus anzutake* (Can); Ascomycota:

Protomyces lactucae-debilis* (Pla); Fungi incertae sedis: Mucor circinelloides* (Mci)]; Amoebozoa: Dictyostelium discoideum* (Ddi);

Choanoflagellata: Monosiga brevicollis (Mbr). Muscle5 [239] was used to generate a diversified ensemble, resampled with a minconf of 0%

to retain a complete alignment. FastTree 2 [240] was used to generate 100 trees from the 100 resampled alignments and the newick conf

command was used to generate the final tree file with bootstrap confidence values. The tree (midpoint rooted) and custom coloring

annotations, based on the organism taxonomy, were rendered using the iTOL website [241]. Nodes with bootstrap values above 70 (out of

100) are shown as thicker lines (see Table S1 for details).
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Fig. 2). Interestingly, we note that plin1 has been lost

in fish with low lipid content, such as sole and cod

(and could not be found in any Neoteleostei fish), but

is present in lipid-rich species, such as herring, trout,

and salmon. Overall, phylogenetic analysis of perilipins

offers an interesting perspective on their functional

specialization.

Structural and biochemical properties
of perilipins

Structures of full-length perilipins have so far not been

experimentally determined, due to difficulties associ-

ated with studying multi-domain peripheral membrane

proteins. Although recent advances in structure predic-

tion (e.g., AlphaFold) offer insight into what full-

length perilipins might look like (Fig. 3), caution is

needed as these structures represent proteins in solu-

tion, whereas the LD-bound structures are likely

highly dependent on extended interactions with the

LD surface.

A number of studies have focused on the structures

and behavior of different perilipin segments and

domains. The N-termini of all mammalian perilipins

except PLIN4 show the highest level of sequence simi-

larity within the perilipin sequence (40–60% sequence

identity in the human proteins) and were predicted to

form a-helices, leading to the definition of the N-ter

PAT domain [22,40]. However, the function of the

PAT domain has remained elusive. Early work showed

that the PAT domain of PLIN1–PLIN3 was neither

sufficient nor required for LD binding in cells [41–45].
The Pfeffer group has proposed that the PAT domain

of PLIN3 functions as an oligomerization domain,

based on their observations that purified PLIN3 and

its N-ter 133-aa fragment eluted from a size-exclusion

column at more than 6 or more than 20 times their

expected molecular weights, respectively, whereas

combining the two species led to the formation of even

larger protein complexes or aggregates [46]. The

importance of this oligomerization for PLIN3 LD

binding or function has not been evaluated.

A recent study investigated the structure and the

functional role of the PAT domain in PLIN3 [47].

Based on structure predictions and on hydrogen–
deuterium exchange mass spectrometry analysis of

PLIN3 upon membrane binding, the authors propose a

structural transition from disordered to helical of a region

comprising the PAT domain and the downstream 11-mer

repeats. The PAT domain itself forms a stable triangular

helical structure and displays a high affinity for diacylgly-

cerol (DAG)-enriched phospholipid bilayers, leading to

the proposal that its function is to recognize DAG in

nascent LDs forming at the endoplasmic reticulum (ER)

and to promote the binding of the 11-mer repeat region

to the phospholipid monolayer. DAG was previously

shown to be important for PLIN3 binding to membranes

and LDs [48], but it is not known whether this is also the

case for other perilipins. Heterologous expression of

human PLIN3 in budding yeast confirms its sensitivity to

Fig. 3. Comparison of predicted structures of human PLIN3 and dictyostelium perilipin. Rainbow-colored (from N-ter in blue to C-ter in red)

AlphaFold2 [242] predicted structures of human PLIN3 (left) and perilipin from the amoeba Dictyostelium discoideum (right). Despite low

overall sequence conservation (18% identity), both proteins are predicted to form a very similar structure, with an N-ter PAT domain

consisting of three a-helices forming a triangular structure (in blue) and a C-ter 4-helix bundle. The predicted aligned error (insert) indicates

regions that likely fold into separate domains (in blue), with the N-ter and C-ter in the upper left and lower right corner, respectively. The

different orientation of the PAT domain in the two structures is likely due to the structural unpredictability of the central sequence (in light

blue/dark green).
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DAG levels in the ER and suggests that PLIN3 could

promote the formation of DAG-enriched membrane

domains, although in this case the PAT domain was not

sufficient for DAG enrichment, which required expression

of at least two of the three PLIN3 domains in tandem

[49]. Based on these observations and the fact that DAG

is a precursor in the synthesis of triacylglycerol (TAG),

which forms the core of LDs, it has been proposed that

PLIN3 may play a role in LD biogenesis from the ER

membrane. This hypothesis has not been directly evalu-

ated and the function of PAT domains of different perili-

pins awaits further investigation.

Following the PAT domain, all perilipins contain a

region of 11-aa repeats of variable length (Fig. 1).

These sequences are predicted to be disordered in solu-

tion and have been shown to fold into amphipathic

helices (AHs) in the presence of a lipid surface [24,25].

They are also sufficient to target LDs in a model cell

when expressed by themselves, and increased length

promotes their interaction with LDs, as has been dem-

onstrated with the PLIN4 sequence [25,50]. These

observations are consistent with earlier studies showing

that N-ter regions of PLIN1–PLIN3, comprising the

11-mer repeats, target LDs in cells [24,41,45,51,52]. In

the case of PLIN5, which contains only five 11-mer

repeats, the PAT domain and the 11-mer region are

together required for efficient LD targeting [27,53].

The presence of 11-mer repeats suggests that these

regions could fold into a so-called 3–11 helix, which is

a slightly extended version of the standard a-helix [54].

These types of helices are quite rare and have been

structurally characterized in only two unrelated groups

of proteins, in a-synuclein and in apolipoproteins,

where they have been shown to laterally interact with

the lipid surface [23,55,56]. It is not known what

advantage a 3–11 helix might have over a standard

a-helix, and, given the subtle differences between

the two types of helices, this question is quite difficult

to address. A recent study identified a putative 3–11
helix in another LD protein, spartin, which has been

shown to compete with PLIN3 for binding to the LD

surface [57].

Interestingly, a strong compositional bias exists in

the 11-mer regions of perilipins, which is most promi-

nent in PLIN4: its entire repetitive sequence of

close to 1000 aa-s is almost entirely devoid of bulky

hydrophobic residues but is enriched in the small

neutral-hydrophobic residues valine (V), glycine (G)

and threonine (T) [25]. The absence of large hydropho-

bic residues, also seen in other perilipins [50], is a fea-

ture that promotes LD specificity. Mutations that only

slightly increase the hydrophobicity do not affect AH

binding to LDs, but they make the AH more

promiscuous, invading bilayer membranes [25]. This

finding can be explained by considering the properties

of the LD surface, which is covered by a phospholipid

monolayer and whose surface tension can vary

depending on the density of phospholipid coverage

[58]. In silico studies using molecular dynamics simula-

tions suggest that increased surface tension promotes

AH targeting to LDs, making this a prominent param-

eter that promotes selectivity in LD targeting [59,60].

The central repetitive regions of perilipins may there-

fore have been selected for weak interaction with the

LD surface, allowing them to interact with LDs specif-

ically and in a reversible manner over a large surface

area [50,61]. This may be particularly important for

maintaining LD stability and surface-to-volume ratio.

We have demonstrated that the PLIN4 AH can

replace the phospholipids on LDs in vitro and in a

model cell system, creating a uniform and stable sur-

face that prevents LD fusion or clustering [25]. Fur-

thermore, polar or charged residues in PLIN4 may

mediate intermolecular interactions between adjacent

helices that would promote assembly of a PLIN4 coat

on the LD surface [50].

With regard to the C-ter segments of mammalian

perilipins, the structure of the mouse PLIN3 C-ter

domain has been resolved by X-ray crystallography

[26] and resembles the 4-helix bundle domain found in

apolipoproteins, although there is no sequence homol-

ogy. In apolipoproteins, this domain promotes revers-

ible binding to small lipid particles via conformational

switching between helix–helix or helix–lipid interac-

tions [56]. It has been proposed that such conforma-

tional switching could also take place in perilipins [52],

but this possibility remains to be explored experimen-

tally. HHPred analysis [62] of PLIN2, 3, 4, and 5

sequences, possessing considerable sequence similarity

(from 45 to 61%), suggests that these proteins also

contain 4-helix bundle structural motifs. This predic-

tion is supported by comparison of purified C-ter

from PLIN2 and PLIN3 by limited proteolysis [63].

AlphaFold models of the different human perilipins

(PLIN1: AF-O60240-F1, PLIN2: AF-Q99541-F1, Plin3:

AF-O60664-F1, PLIN4: AF-Q96Q06-F1, PLIN5:

AF-Q00G26-F1) agree with this prediction in all perili-

pins except for PLIN1, whose C-ter sequence is more

divergent (29–35% sequence similarity), and seems less

compatible with a 4-helix bundle structure. Analysis

of the corresponding region in PLIN1, including the

11-mer repeat region (P114–P422), has identified three

hydrophobic segments surrounding an acidic region,

which are important for PLIN1 binding to LD [42,64].

The mode of interaction of this region of PLIN1 with

LDs has been recently explored by Klemm and

1175FEBS Letters 598 (2024) 1170–1198 ª 2023 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

E. Griseti et al. Function of perilipins in lipid droplet metabolism

 18733468, 2024, 10, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.14792 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [13/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



coworkers. They show that the first hydrophobic

segment mediates high lipid-binding affinity of PLIN1,

possibly acting as a hairpin loop to anchor PLIN1 to

the LD surface or the ER bilayer, with an additional

contribution of a downstream hydrophobic region [65].

The C-ter regions of PLIN3, PLIN4, and PLIN5

do not appear to directly contribute to LD binding

in cells because they remain cytosolic when expressed

on their own [25,45,47,52,53]. In contrast, a region

within the 4-helix bundle of PLIN2 appears to con-

tribute to LD binding [43,51,52], which could explain

why, compared to PLIN3 and PLIN4, PLIN2 is

more stably associated with LDs in cells (see below).

For PLIN3, the Kooijman group observed, using

a pendant drop tensiometry system, that both the

full-length protein or its 4-helix bundle were able

to bind to the oil droplet when it was not fully cov-

ered with phospholipids, meaning that it had an

increased surface tension [66]. These experiments also

showed some preference of full-length PLIN3 for

mono-unsaturated phosphatidylcholine or for phos-

phatidylethanolamine in the case of its 4-helix bundle.

Whether perilipins display some phospholipid prefer-

ences in cells is not known.

A lipid-binding pocket, named the hydrophobic

cleft, has been identified within the PLIN3 4-helix bun-

dle domain [26], with a highly conserved sequence

(PL/VxWLVGPF) present in most perilipins, except

for PLIN1. The presence of this cleft as a conserved

structural feature suggests that it is functionally impor-

tant. Direct NBD-stearate binding was described

with purified PLIN2 [67]. A conserved tryptophan

exposed at the bottom of the PLIN2 pocket enabled

the demonstration of its direct interaction with lipids

by tryptophan fluorescence quenching [68]. Modeling

showed possible accommodation of either cholesterol

or stearic acid in the hydrophobic cleft [68]. More

recently, specific binding of mono-unsaturated FAs

in the PLIN5 lipid-binding pocket has been demon-

strated and linked to a putative signaling function of

PLIN5 [69].

In addition to the three segments common to all

mammalian perilipins, PLIN1 and PLIN5 contain

unstructured C-ter extensions that mediate specific

protein–protein interactions, important for regulation

of lipolysis in the case of PLIN1 [70–72], or interaction
between LDs and mitochondria in the case of PLIN5

[27,73]. Three additional isoforms of PLIN1 have been

identified in mice: PLIN1B, present in adipocytes, is

truncated after the 4-helix bundle region (measuring

422 aa, compared to 517 aa for murine PLIN1A), and

the shorter isoforms PLIN1C and PLIN1D (347 and

244 aa, respectively), which lack the 4-helix bundle

region and are expressed in steroidogenic cells [22].

The functions of C-ter tails of PLIN1 and PLIN5 are

further discussed in later sections.

Targeting of perilipins to LDs in cells

In addition to considerable differences in their domain

organization and tissue expression, perilipins also dif-

fer in their interaction with LDs and have been

divided into two groups: constitutive perilipins and

exchangeable perilipins [74]. Constitutive perilipins,

namely PLIN1 and PLIN2, are always observed on

LDs, require LDs for their stability, and are degraded

in their absence. PLIN1 is mainly expressed in white

adipose tissue (WAT) and is detectable on LDs after

several days of adipocyte differentiation of mouse

3 T3-L1 cells [17,75,76] or human [77] or mouse [78]

stem cells. In cultured stereogenic Y-1 adrenal cortical

cells, which also express endogenous PLIN1 [7],

PLIN1 levels highly increase upon addition of oleic

acid and cholesterol, correlating with LD abundance.

This is likely due to an increase in PLIN1 protein sta-

bility [7,79]. PLIN2 levels are likewise increased when

cells are cultured in the presence of oleic acid, whereas,

upon LD depletion, the protein is unstable in the cyto-

plasm and is subject to proteasomal degradation,

which may be initiated by PLIN2 N-ter acetylation

[44,78,80]. Consistently, PLIN2 is found in LD frac-

tions by cell fractionation [17,75,76]. PLIN2 is also

degraded by chaperone-mediated autophagy (CMA),

which facilitates lipolysis [81]. In C2C12 cultured myo-

cytes, PLIN2 levels correlate with LD abundance,

whereas depletion of PLIN2 enhances LD size and

lipolysis, suggesting reciprocal stabilization between

LDs and PLIN2 [82]. To study this relationship, the

Olzmann group [83] generated genome-edited liver cell

lines in which PLIN2 was endogenously labeled with

GFP and performed an extensive CRISPR-Cas9

screening to identify proteins that affect the number

and stability of PLIN2-decorated LDs. This approach

identified known and new factors that regulate PLIN2

abundance under different metabolic conditions and

confirmed the stable association of PLIN2 with LDs.

In contrast to PLIN1 and PLIN2, the exchangeable

perilipins PLIN3, PLIN4, and PLIN5 are stable in the

cytosol [45,75,84], but can relocate to the LD surface

under lipogenic conditions. Protein synthesis is not

required for their localization to LDs in 3 T3-L1

mouse adipocyte cells [75]. Endogenous PLIN3 and

PLIN4 localize to LDs shortly (within minutes) after

treatment with oleic acid to induce LD formation

[45,85]. PLIN3 is used as a marker to detect small/

nascent LDs [86]. As mentioned above, PLIN3 was
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also shown to bind to DAG in the ER bilayer. PLIN5,

which contains a mitochondria-targeting sequence, can

be observed in the cytosol, on mitochondria and at

LD–mitochondria contact sites. The latter appears as

puncti on LDs by super-resolution microscopy and do

not colocalize with PLIN2 puncti [87].

The distinction between constitutive and exchange-

able perilipins has been widely adopted by the research

community. However, this distinction is not always

clear-cut and the underlying molecular mechanisms

remain a matter of investigation. Notably, PLIN2 dis-

plays intermediate features between constitutive perili-

pins and exchangeable perilipins. Tagged PLIN2 has

been observed in the cytosol in a few studies [52,88].

In fluorescence recovery after photobleaching (FRAP)

experiments on heterologously expressed PLIN1,

PLIN2, and PLIN5, the proteins displayed similar

lateral mobilities on LDs, but PLIN2 and PLIN5

exchanged between the cytoplasm and the LDs,

whereas PLIN1 remained bound to LDs [89]. Impor-

tantly, PLIN1 binding to LDs is observed both under

basal and lipolytically stimulated conditions [90]. In

addition, some PLIN1-associated ER signal has been

observed in OP9 adipocyte cells for the endogenous

protein by immunofluorescence and cell fractionation

[48,91], as well as for heterologously expressed GFP–
PLIN1 in liver-derived Huh7 cells [52].

In most general terms, two pathways for protein tar-

geting to LDs have been proposed: the ERTOLD and

the CYTOLD pathway [92]. The ERTOLD pathway

pertains to proteins (also termed class I LD proteins)

that relocate from the ER, the site of LD biogenesis, to

the LD surface. A number of these proteins have been

shown to contain an extended transmembrane-like

helix, which could adopt a hairpin loop in the ER mem-

brane and thus relocate to the phospholipid monolayer

of the budding LD, where the environment would

be energetically more favorable [93,94]. Reference pro-

teins of this group are glycerol-3-phosphate acyltrans-

ferase 4 (GPAT4) and diacylglycerol O-acyltransferase

2 (DGAT2), enzymes involved in the synthesis of TAGs

[95,96]. ERTOLD proteins can also take advantage of

the physical continuity between LDs and the ER or rely

on membrane-fusion machinery to form new membrane

bridges between the cytosolic LDs and the ER mem-

brane. Skinner et al. [91] have proposed that PLIN1

moves from the ER to LDs during lipid synthesis. In

agreement, a recent preprint shows that PLIN1 can

interact with the ER and LDs using hydrophobic seg-

ments in its degenerate C-ter region (Fig. 1), suggesting

that PLIN1 targets LDs via the ERTOLD pathway [65].

A recent study by the Walther and Farese group

explored ERTOLD targeting in a Drosophila cellular

model, identifying at least two distinct groups of

ERTOLD proteins, early and late [97]. Although the

early group is presumed to target LDs during LD bio-

genesis, the late group requires protein machinery that

is not involved in LD budding; for example, the

COPII proteins involved in vesicular transport from

the ER. Earlier studies have implicated the retrograde

COPI vesicular transport in targeting of patatin-like

phospholipase domain-containing protein 2 (ATGL)

or GPAT4 and DGAT2 to the LD surface in mamma-

lian and Drosophila cells [98–100]. The details of this

pathway remain to be elucidated. Interestingly, knock-

down of components of COPI and COPII complexes,

or overexpression of dominant-negative mutants, also

strongly decreased the localization of PLIN2, but not

of PLIN3, to LDs [99,101]. COPI vesicle budding from

LDs has been suggested to decrease phospholipid den-

sity on the LD surface [102], which could provide

more favorable conditions for PLIN2 binding, but

these effects will need to be further explored.

CYTOLD, or class II LD proteins, are recruited to

LDs from the cytosol and in many cases interact with

the lipid surface of LDs utilizing AHs [55,61,103,104].

As discussed above, all perilipins contain 11-mer

repeat regions of significant lengths that can fold into

AHs and contribute to their LD targeting. In addition,

the 4-helix bundle regions could also open up in some

cases, revealing additional AHs that could interact

with LDs [52]. Because AHs bind laterally to the lipid

surface, and are very long in perilipins compared to

other AH-containing proteins [24,50,103], they would

occupy a relatively large surface area, resulting in a

significant influence of protein crowding on perilipin

LD targeting [52,105]. What assures the specificity of

perilipin AH targeting to LDs? Pr�evost et al. [106]

have proposed that bulky hydrophobic residues are

important for AH targeting to LDs, recognizing phos-

pholipid packing defects on the LD surface. However,

this conclusion is difficult to reconcile with the fact

that large hydrophobic residues are present in many

AHs that target the ER, the nuclear envelope, or the

Golgi membrane, inserting into large packing defects

present in these bilayers [61,103,104]. In fact, an

important adaptation of the perilipin central AH

regions is being almost completely devoid of large

hydrophobic residues, decreasing their affinity for bila-

yers while still being able to insert into the LD mono-

layer [25,50]. Surface tension is a parameter that can

vary in LD lipid monolayers, but only negligibly in

lipid bilayers [58,59,107]. Increased surface tension of

LDs may be an important parameter for the selective

recruitment of perilipins via their AHs, which would

imply that their binding to LDs is coupled with larger
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perturbations of the LD surface (LD growth, onset of

lipolysis, etc.).

Despite their general classification into two groups,

the mechanisms of perilipin targeting to LDs in cells

are very complex, due to several factors:

1 perilipins can utilize different domains for LD tar-

geting, which can act in concerted or opposite man-

ners, likely differing between different perilipins;

2 their targeting to LDs is regulated transcriptionally

and post-translationally, with post-translational

modifications leading to changes in their LD surface

affinity or promoting their degradation;

3 the amount of available LD surface in the cell at a

given time is finite and is influenced by lipogenesis,

lipolysis, and perilipins themselves, which have been

shown to stabilize LDs and also depend on LDs for

their stability, leading to non-linear effects;

4 perilipins have been suggested to self-assemble,

which would again result in non-linear effects;

5 perilipins may be sensitive to the LD lipid composi-

tion, and, because LD composition differs between

tissues and metabolic conditions, targeting of perili-

pins to LDs may be cell-type specific.

A striking observation is that, within the same cell,

different perilipins can be observed decorating differ-

ent LDs [75,108,109]. Based on their results in cultured

adipocyte cells, Wolins et al. [74] proposed that perili-

pins bind to LDs in a hierarchical manner, with

PLIN3 and PLIN4 binding to nascent LDs, formed

after addition of oleic acid, PLIN2 to intermediate

LDs, and PLIN1 to large LDs present in mature adi-

pocytes. This model follows an earlier immunofluores-

cence analysis in 3 T3-L1 mouse cultured adipocytes

by Brasaemle et al. [17], who observed that PLIN2

localized to LDs early during differentiation and was

later entirely replaced by PLIN1, with only a small

overlap between the two proteins between day 3 and

day 5. This correlated with an increase in PLIN1 and

a concomitant decrease in PLIN2 protein levels; there-

fore, these authors suggested that perilipins compete

for the LD surface. In relation to this competition

model, Ajjaji et al. compared the affinities of heterolo-

gously expressed PLIN1, PLIN2, and PLIN3 for LDs

in Huh7 cells, concluding that PLIN1 displays the

highest LD affinity, followed by PLIN2 and PLIN3.

In addition to transcriptional regulation, perilipin

levels can be regulated by protein degradation. Besides

previously mentioned studies implicating proteasomal

degradation in the regulation of PLIN2, more recent

work from the Cuervo group implicates CMA as an

important regulator of adipocyte differentiation and

adipogenesis [110]. This study shows that inactivation

of basal CMA, in mouse 3T3L1 cells and in vivo, leads

to a blockage in adipocyte differentiation at an

early commitment step, suggesting that removal of

PLIN2 from the growing LD occurs via CMA and is

required to progress to full differentiation and for

PLIN2–to–PLIN1 exchange. Furthermore, de novo

lipid synthesis (e.g., addition of FAs to cell media) and

lipolysis, which induces PLIN1 phosphorylation and

increases its stability, can also induce differences in

perilipin targeting. In an engineered adipocyte-like cell

system, PLIN2 was observed on LDs in response to

lipolytic stimulation [111].

Finally, perilipin LD affinities and their distribution

on LDs may vary according to LD lipid composition.

Hsieh et al. [109] observed a striking difference

between perilipins in their binding to sterol ester vs.

TAG-enriched LDs when they are present in the same

cell (in Y1 adrenal cells or in macrophages). However,

a subsequent proteomics study on sterol ester or TAG-

enriched rat granulosa stereogenic cells did not show

a strong enrichment of perilipins on LDs under

either condition [112]. Currently, little data are avail-

able regarding the variability in phospholipid composi-

tion of cellular LDs due to difficulties in obtaining

sufficiently pure LDs for reliable analysis of their

phospholipid composition. Recent discoveries of lipid

transfer proteins that may mediate selective transport

of phospholipids to or from LDs suggest that the LD

phospholipid monolayer can be actively remodeled

during the lifetime of an LD [113–116]. How LD

lipid composition affects perilipin targeting remains to

be explored.

Control of the lipolytic process
by PLIN1

Lipid droplets are metabolic hubs controlling energy

supply and lipid homeostasis in adipocytes. It is now

well established that PLIN1 acts as a biological con-

ductor of this metabolic hub, especially by regulating

lipolytic processes. Lipolysis is the cellular process tak-

ing place on the LD to catabolize a TAG molecule

into three FAs and one glycerol moiety. It proceeds in

three steps: first, TAG is hydrolyzed to DAG by the

adipose triglyceride lipase (ATGL); then, DAG is

hydrolyzed into monoacylglycerol (MAG) by the

hormone-sensitive lipase (HSL); and, finally, MAG is

hydrolyzed into glycerol by monoacylglycerol lipase

(MGL). HSL is highly expressed in adipose and breast

tissue, as well as in the gastrointestinal tract, whereas

ATGL and MGL are ubiquitously expressed. In

WAT, the glycerol and FAs produced are liberated

into the circulation to serve as substrates for oxidative
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metabolism or gluconeogenesis, whereas, in oxidative

tissues, they are taken up by the mitochondria for pro-

duction of ATP [117]. Activation of ATGL requires a

co-activator comparative gene identification-58 [CGI-

58; also known as ab hydrolase domain containing 5

(ABHD5)]. It is also subject to inhibition by G0/G1

switch gene 2 (G0S2) and the recently identified

hypoxia-inducible gene 2 (HIG2) [118].

PLIN1 was identified in an investigation of the phos-

phorylation and dephosphorylation processes of HSL

under b-adrenergic stimulation as the most highly phos-

phorylated protein dependent upon cAMP-dependent

protein kinase (PKA) [12]. It was soon recognized as the

main regulator of lipolysis in adipocytes [119]. In agree-

ment, PLIN1 knockout mice show defects in lipolysis

and resistance to obesity, although PLIN2 expression is

increased [120]. During the decades after its discovery,

the role of phosphorylation of PLIN1 in adipocyte lipol-

ysis has been investigated. Six sites of PKA-induced

phosphorylation were identified in murine PLIN1: S81,

S222, S276, S433, S492 and S517 [121], five of which are

conserved in human PLIN1 (S81, S277, S436, S497, and

S522; Fig. 4). However, a PLIN1 mutant with all 6 ser-

ines mutated to alanine still fully supported lipolysis

[122]. This can be explained by more recent large-scale

phosphor-proteomic studies, which have identified a

number of additional phosphorylation sites in PLIN1,

some of them also likely PKA-dependent [123]. The

phosphorylation of PLIN1 under b-adrenergic stimula-

tion allows the translocation of HSL from the cytosol to

the LD [124,125], even though a fraction of HSL might

be LD-associated under basal conditions [122]. Because

HSL itself is phosphorylated by PKA [126], the combina-

tion of these events leads to a large increase in its lipo-

lytic activity. One or more serines in the N-ter region of

PLIN1 were shown to be required for HSL translocation

[89,127] (Fig. 4).

A direct interaction between HSL and PLIN1 was

suggested by immunoprecipitation and Forster energy

transfer (FRET) analyses in a heterologous expression

system [89,128]. The N-ter region of PLIN1 was impli-

cated in the interaction with HSL, although there was a

discrepancy between the two studies in the exact map-

ping of the HSL interaction domain. Wang et al. [89]

showed that the PAT domain was required for the inter-

action with HSL and suggested that this interaction and

mechanism of HSL recruitment to LDs was shared with

PLIN2, PLIN3, and PLIN5, but this result has not been

confirmed by subsequent work. To date, the precise

mode of HSL–PLIN1 interaction is not well understood.

In contrast to its positive role in the activation of

HSL, PLIN1 acts as a repressor of lipolysis under basal

conditions by sequestering the ATGL co-activator

CGI-58/ABHD5 on the LD surface and preventing its

degradation by the proteasome [72]. The C-ter region

from aa 382 to 429 of PLIN1 is required for CGI-58

Fig. 4. PLIN1 function in lipolysis regulation. PLIN1 phosphorylation (P) and O-GlcNAcylation (G) sites and protein domains/regions

implicated in the regulation of lipolysis and interaction with other proteins at basal state versus under b-adrenergic stimulation.
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binding [72,129,130]. PLIN1 phosphorylation under

b-adrenergic stimulation provokes the release of

CGI-58, which then interacts with ATGL, activating

the first step of hydrolysis [118,131]. Phosphorylation of

the C-ter serine residues of PLIN1 (S492 and S517) is

required for CGI-58 dissociation from PLIN1 and

ATGL-dependent lipolysis [70,71] (Fig. 4). Small spe-

cific molecules blocking the PLIN1–CGI-58/ABHD5

interaction were identified in a chemical screen by the

Granneman group [132], providing a useful tool to

study the regulation of lipolysis by PLIN1.

Other types of post-translational modifications have

been implicated in the regulation of PLIN1 activity:

O-GlcNAcylation (O-linked b-D-N-acetylglucosamine

adduct on serine or threonine residues) and sulfhydra-

tion (SH adduct on cysteine residues). An inducible

adipocyte-specific knockout of O-GlcNAc transferase

(OGT) led to elevated PLIN1 phosphorylation on S492

and S517, resulting in enhanced lipolysis in visceral fat

and weight loss in mice [133], whereas OGT overexpres-

sion had the opposite effect and led to insulin resistance.

Interestingly, the PLIN1 residues S492 and S517 were

O-GlcNAcylated under basal conditions, suggesting that

the balance between phosphorylation and glycosylation

of PLIN1 may be important for the lipolytic response in

adipose tissue. O-GlcNAcylation is implicated in the

control of glucose homeostasis and is associated with

insulin resistance and type 2 diabetes. Therefore, it may

also play an important role in controlling lipolysis in

human adipocytes [134]. PLIN1 sulfhydration by the

cystathionine c-lyase on cysteine residues, primarily pre-

sent in the PAT domain, has been associated with

reduced PLIN1 phosphorylation and thus reduced lipol-

ysis by blocking HSL translocation to LDs [135,136].

More studies are needed to analyze the functional

importance of this modification.

PLIN1 is highly regulated at the transcriptional level,

as well as by protein degradation. PLIN1 expression

increases during adipocyte differentiation and is mainly

dependent of PPARc transcriptional regulation [137] via

a PPRE cis-element in its promoter [138]. On the other

hand, PLIN1 can be degraded by either the proteasomal

or the lysosomal pathway [29,79,139]. In adipose tissue

of obese individuals, local pro-inflammatory cytokines

impair TAG storage via autophagy induction. PLIN1

has been identified recently as the major protein

triggered by TNFa-induced autophagy in the omental

adipose tissue of obese individuals [140].

Besides HSL and CGI-58, several other PLIN1

partners that influence lipolysis have been identified.

Two of them, optic atrophy 1 (OPA1) and apolipopro-

tein L6 (ApoL6), have been proposed to influence the

interaction of PLIN1 with HSL. OPA1, an A-kinase

anchoring protein and a mitochondrial GTPase that

organizes mitochondrial fission–fusion events, co-

immunoprecipitates with PLIN1 and two regulatory

PKA subunits, Ria and RIIb [141,142]. OPA1 is upre-

gulated during adipocyte differentiation and it reloca-

lizes from mitochondria to LDs in mature human

adipose stem cells. OPA1 was suggested to anchor

PKA1 to LDs to promote PLIN1 phosphorylation at

S497 and S522 upon b-adrenergic stimulation. In

OPA1-silenced cells, HSL was retained in the cyto-

plasm even after isoproterenol treatment, suggesting

that OPA1 regulates PKA-mediated phosphorylation

of PLIN1. A very interesting recent preprint suggests

that ApoL6 is able to inhibit lipolysis in 3 T3-L1 adi-

pocytes by directly interacting with the N-ter region of

PLIN1, thereby preventing its interaction with HSL

[143]. Interestingly, the ApoL6–PLIN1 interaction

appears to be independent of PLIN1 phosphorylation

state. Mice with a global ApoL6 knockout and fed a

high-fat diet were leaner (with smaller WAT and adi-

pocyte size) and displayed improved insulin and glu-

cose tolerance. Absence of ApoL6 increases lipolysis in

vivo to prevent diet-induced obesity. By contrast, mice

with ApoL6 overexpression displayed larger WAT and

adipocyte size and were more glucose intolerant and

insulin resistant under a high-fat diet. The proposed

physiological mechanism relies on a decrease in ApoL6

levels during fasting, which allows PLIN1 to interact

with HSL.

The role of other putative PLIN1 partners is less

clear. In vivo knockout of inositol hexakisphosphate

kinase-1 (IP6K1), which generates the signaling mole-

cule inositol pyrophosphate, results in lean mice due

to enhanced energy expenditure and basal lipolysis

[144]. By mass spectrometry analysis of mouse WAT

and cultured adipocytes, PLIN1 was identified as an

interacting partner of IP6K1, and PKA/PKC-mediated

phosphorylation of IP6K1, which is increased in

mature adipocytes, was required for this interaction

[145]. PLIN1 was also suggested to interact with aqua-

porins, especially aquaporin-7 (AQP7), plasma mem-

brane channels that have been implicated in the release

of lipolytically produced glycerol from adipocytes

[146]. AQP7 was associated with PLIN1 LDs during

lipogenesis, whereas the PLIN1–AQP7 interaction was

highly attenuated during stimulated lipolysis and was

sensitive to phosphorylation by PKA. Interestingly,

immunofluorescence of primary human adipocytes

shows PLIN1 in a patchy distribution on the unilocu-

lar LD upon insulin treatment, colocalizing with

AQP7, whereas isoprenaline treatment results in

PLIN1 dispersal [147,148]. Finally, a recent preprint

using APEX2 proximity labeling identified about 70
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proteins in the vicinity of PLIN1, including PLIN2,

PLIN3, and PLIN4 [149]. Notable among the

proximal proteins were members of the 14-3-3 protein

family, scaffolding proteins known to bind to phos-

phorylated targets, protecting them from dephosphory-

lation. The PLIN1-14-3-3 interaction was lost under

b-adrenergic stimulation and enhanced in the presence

of insulin, suggesting a potential functional role in the

anti-lipolytic action of insulin. However, the APEX2

proximity screen did not uncover any of the previous

PLIN1 interacting partners, underscoring the difficulty

of applying classical cellular and biochemical approaches

to the atypical nature of LDs.

Function of other perilipins in lipolysis

PLIN1 is not detected in most cell types other than

adipocytes, suggesting that other perilipins may be

important for regulation of lipolysis. PLIN5 has been

recognized as a key player for LD function in oxida-

tive tissues such as the heart, skeletal muscle, liver,

and brown adipose tissue (BAT), where it is highly

expressed [20]. Granneman et al. [71] demonstrated a

direct interaction between PLIN5 and ATGL in

PLIN5-transfected 3T3-L1 cells. They later showed

that PLIN5 interacts with CGI-58 and ATGL in a

mutually exclusive manner [150]. Like PLIN1, PLIN5

is phosphorylated by PKA [27,151]. Pollak et al. [152]

proposed that PLIN5 acts as a lipolytic barrier to pre-

vent uncontrolled lipolysis by sequestering CGI-58 on

LDs, thus preventing its interaction with ATGL. Phos-

phorylation by PKA may act as a switch between the

lipolytic barrier and pro-lipolytic functions of PLIN5.

Intracellular long-chain FA levels also influence

PLIN5–CGI-58 interaction, as long-chain fatty acyl-

CoA binding to CGI-58 has been shown to promote

its interaction with PLIN5 [132]. PLIN5 has also been

shown to associate with HSL on LDs in skeletal mus-

cle [153], and in CHO cells in a constitutive manner

[89]. How PLIN5 coordinates its interactions with

ATGL, CGI-58, and HSL according to cellular needs

remains to be investigated.

What role PLIN2, PLIN3, and PLIN4 play in lipol-

ysis is not well understood. PLIN3 has the widest tis-

sue distribution, followed by PLIN2. Neither of them

has been shown to directly function in the activation

of lipolysis by HSL or ATGL [30]. On the contrary, a

global Plin2 knockout mouse displays decreased TAG

levels in the liver and shows resistance to diet-induced

obesity, although the latter phenotype varies between

different mouse models [29,154]. It was suggested that

PLIN2 prevents the access of ATGL to the LD surface

and thereby protects LDs against lipolysis [108,155].

In liver cells with a knockdown of PLIN2 and PLIN3,

LDs are highly enlarged and fewer in number, whereas

ATGL-dependent lipolysis is increased [108]. These

observations led the authors to suggest that PLIN2

and PLIN3 act as surfactants on the LD surface. In

muscle cells, where PLIN2 is the most abundant perili-

pin, increased PLIN2 expression likewise stabilizes

LDs [82]. Loss of PLIN2 leads to a shift from glucose

towards FA oxidation in cultured myotubes from a

mouse knockout model [156]. Lipolysis can be induced

by degradation of PLIN2 by CMA following its phos-

phorylation by AMPK or choline kinase (CHK) a2
[81,157]. In tumor cells, LD lipolysis is regulated to

support cell survival and proliferation. It has been

demonstrated that, upon glucose deprivation of brain

tumor cells, CHKa2 binds to LDs and phosphorylates

PLIN2 and PLIN3, driving their disassociation from

the LD surface. Thus, CHKa2 promotes LD lipolysis,

b-oxidation, and brain tumor growth [157]. Recently,

PLIN2 has been implicated in the control of pluripo-

tency of embryonic stem cells (ESCs). Wu et al. [158]

have suggested that PLIN2 safeguards pluripotency of

mouse ESCs by suppressing LD mobilization, whereas

CMA leads to degradation of PLIN2, facilitating lipid

hydrolysis and driving ESC exit from pluripotency.

Altogether, these observations point to PLIN2, and

possibly also PLIN3, acting as a shield to prevent

lipolysis; the molecular basis for this shielding effect is

not known.

The lipolytic function of PLIN4 has been explored

even less than for the other perilipins. Although

PLIN4 expression is increased during adipocyte differ-

entiation [75,77], a Plin4 knockout mouse does not dis-

play a significant phenotype in terms of body weight

or adipose tissue mass, with only slightly lower levels

of cardiac TAGs and some reduction in PLIN5 expres-

sion [159]. PLIN4 is also highly expressed in skeletal

muscle, and, like PLIN2, PLIN3, and PLIN5, is more

abundant in type I slow-twitch oxidative fibers, where

it can be found enriched in the sub-sarcolemmal

region, which is also where LDs are predominantly

located [160]. Perilipins relocalize to LDs after lipid

infusion in the muscle, with their levels and dynamics

depending on exercise/training [161]. In cultured neu-

rons from a mouse Parkinson’s disease model, a reduc-

tion in PLIN4 expression correlated with a decrease in

LD abundance [162]. How these observations relate to

the molecular function of PLIN4 is not known, but

they could point to the importance of the long and

repetitive AH of PLIN4, which can coat the neutral

lipid core of LDs and decrease LD size in model

systems [25,50], and could therefore also shield LDs

from lipases.
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Finally, it is interesting to consider the fruit fly

D. melanogaster for possible clues about perilipin func-

tion in lipolysis. The Drosophila genome contains two

perilipin genes, Lsd-1/plin1 and Lsd-2/plin2 (note that

these do not correspond to mammalian PLIN1/PLIN2

but to a separate phylogenetic branch; see Fig. 2).

Lsd-1 mutant flies have large LDs and become obese,

whereas Lsd-2 mutant flies have small LDs, suggesting

that the first protein stimulates and the second pre-

vents lipolysis [163,164]. Drosophila also expresses two

lipases, Brummer/dATGL and dHSL, as well as the

ATGL co-activator CGI-58. LSD-1 is regulated by

PKA-mediated phosphorylation and activates Brum-

mer under stimulated conditions to promote lipolysis,

whereas, in non-phosphorylated states, it prevents

access of dHSL, demonstrating a high degree of func-

tional homology with the mammalian system. Interest-

ingly, Lsd-1/Lsd-2 double knock-out flies displayed

very low body fat levels when they hatched, but were

able to recover as they aged to levels similar to Lsd-2

mutants, and were also able to induce lipolysis upon

starvation [164,165]. Beller et al. [164] concluded that

perilipin-dependent control of cellular body fat in Dro-

sophila is not essential for lipid metabolism, but may

rather serve to fine-tune the system of lipid storage

and mobilization to ensure efficient adjustments to

actual energy requirements and food availability.

Nonlipolytic functions of perilipins

In addition to their regulation of lipolytic activity on

the LD surface, perilipins have been proposed to inter-

act with other LD-regulating proteins, for example

CIDE proteins involved in LD–LD fusion, as well as

proteins involved in LD–mitochondria contacts or in

contacts between LDs and intracellular pathogens.

Lipid droplets form at discrete ER sites marked by

seipin/BSCL2 and its partners, such as LDAF1. Seipin

forms a large oligomeric complex in the ER bilayer

that concentrates TAG and promotes LD nucleation

[166]. As described above, PLIN3 can be observed on

LDs within minutes after addition of oleic acid [45]

and is used as a marker for nascent/early LDs [86]. A

knockdown of PLIN3 in HeLa cells reduced the num-

ber and size of LDs, leading Bulankina et al. [45] to

suggest that PLIN3 was involved in LD formation;

however, this observation can also be explained by a

protective function of PLIN3 in lipolysis, as discussed

in the previous section. Later studies by the same

group showed a recruitment of Plin3 to ER mem-

branes enriched in DAG, the precursor of TAG, upon

treatment with a DGAT inhibitor or addition of DAG

to permeabilized cells [48]. DAG was shown to

accumulate at the site of LD formation and was

shown to promote their nucleation [167,168]. Recent

studies confirmed the affinity of PLIN3 for DAG-

enriched bilayer membranes [47]. Chung et al. [86]

used endogenously tagged HALO–PLIN3 in SUM159

cells and observed colocalization between PLIN3 foci

and both seipin and LDAF1, markers of nascent LDs.

It was suggested that PLIN3 could promote LD for-

mation by stabilizing DAG-enriched domains of the

ER, but these results will require further investigation

[49]. Recent data suggests that PLIN1 could also be

involved in LD biogenesis. Jiao and collaborators

worked on the identification of novel disease-gene

interactions during differentiation in human adipocytes

[169]. By means of multiple approaches, including

immunoprecipitation and bimolecular fluorescence

complementation in cultured human and mouse adipo-

cytes, they found that PLIN1 interacts with seipin at

ER–LD contact sites to promote lipid transfer to

nascent LDs. Using atomic force microscopy, they also

showed that a fraction of seipin dodecamers can bind

directly to PLIN1 at ER–LD contact sites. Finally,

using heterologous expression of PLIN1, PLIN2, or

PLIN3 in yeast incubated with 3H-palmitic acid, Jac-

quier et al. [15] observed accumulation of TAG or ste-

rol ester, leading these authors to suggest that these

perilipins promoted LD formation. Whether perilipins

directly promote LD nucleation or budding requires

further evaluation.

PLIN5 has the ability to tether LDs and mitochon-

dria in different tissues. It contains a C-ter extension

that is not present in other perilipins [27,170,171], with

residues 425–463 with a conserved charged distribution

being sufficient to induce LD–mitochondria contact

sites [73,172]. Deletion of the final C-ter 3 aa of

PLIN5 was sufficient to disrupt LD–mitochondria

interaction, permitting Kien et al. [172] to study this

function of PLIN5 without affecting its interactions

with CGI-58 or ATGL, which also require the C-ter

of PLIN5. Miner et al. [73] reported that PLIN5 inter-

action requires fatty acid transporter 4 (FATP4), a

transmembrane protein involved in transport of long-

chain FAs across membranes. However, the subcellu-

lar localization of FATP4 is currently not clear and

FATP4 is more observed at the ER than at the outer

mitochondrial membrane [173]. Another study showed

that GTP-bound Rab8a was important in mediating

PLIN5 interaction with mitochondria [174]. In both

cases, the interaction with mitochondria depends on

the extreme C-ter of PLIN5, and disrupting this inter-

action dramatically decreases LD–mitochondria con-

tact sites and also impacts the transport of FAs from

LDs to mitochondria in starved myoblasts [73], in L6
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skeletal muscle cells, and in vivo [174]. Other proteins

localized at the surface of mitochondria, such as

mitofusin-2, may also interact with PLIN5 [73], but

the physiological relevance of this interaction has yet

to be established. In addition to PLIN5, a direct inter-

action between PLIN1 and mitofusin-2 was described

in BAT to promote LD–mitochondria contact sites in

response to adrenergic stimulation, and disruption of

this interaction impaired lipolysis in BAT [175].

An increase in mitochondrial abundance surrounding

LDs was observed in PLIN2 knock-out myocytes [82],

which could be compensated by an increase in PLIN5

levels, although this was not directly evaluated. The

physiological relevance of the interaction between

LDs and peridroplet mitochondria, which represent a

distinct mitochondrial population [171], has been under

intense investigation. A straightforward hypothesis is

that the contacts direct FAs from LDs to mitochondria

during lipolysis for b-oxidation or to protect cells

from lipotoxicity [176,177]. This is supported by

observations that LD–mitochondria contacts increase

under conditions of energy stress, for example during

starvation [178–180], or during exercise in muscle [181].

However, cold exposure of BAT reduced the association

of mitochondria with LDs, whereas increased LD–
mitochondria association significantly increased LD size

and TAG levels, suggesting an opposite mechanism,

whereby ATP produced by the mitochondria may pro-

mote FA–coenzyme A production, downstream TAG

synthesis and LD growth. The LD–mitochondria associ-

ation in BAT also at least partially depended on PLIN5

[171]. It is therefore possible that the regulation and

function of PLIN5-mediated LD–mitochondrial con-

tacts depend on the cell type and on specific metabolic

conditions. A recent study in mouse AML12 hepatic

cells or tissue suggests that peridroplet mitochondria

facilitate FA esterification to prevent lipotoxicity and

LD expansion, whereas cytoplasmic mitochondria sup-

port lipid catabolic pathways. A knockdown of PLIN5

reduced the proteomic differences between the two

mitochondrial populations, suggesting that PLIN5 regu-

lates their function [182]. Close contacts between mito-

chondria, LDs, and the ER were observed in this study;

however, PLIN5 did not impact the association between

the ER and the mitochondria. Similar three-way organ-

elle contacts have been observed in 3T3L1 adipocytes

[113] and in other cell lines [114], with an implication of

seipin and some lipid-transfer proteins. How these

contacts affect perilipin distribution or function has not

been further evaluated.

PLIN5 may also have a nuclear function by forming

a complex with PGC-1a/SIRT1, a transcriptional regu-

lator involved in the regulation of reactive oxygen

species production/detoxification by promoting the

expression of genes that mediate mitochondrial biogene-

sis and oxidative function [69,183]. Recently, PLIN5

has been identified as the FA-binding protein that spe-

cifically translocates mono-unsaturated FAs to the

nucleus, leading to PGC-1a/SIRT1 activation [69,183].

It is not known if this function is related to nuclear LDs

(nLDs), which can be observed in the nuclei in some cell

types, for example in hepatocytes after high-fat feeding,

where nLDs are found close to nuclear membrane

invaginations [184,185]. These nLDs are covered with

PLIN3 and are largely devoid of PLIN2. Furthermore,

deletion of PLIN2 does not affect nLDs, whereas it sig-

nificantly decreases cytoplasmic LDs [185]. Sołtysik
et al. [186] suggested that PLIN3 competes with the

phosphatidylcholine synthesis enzyme CTP:phospho-

choline cytidylyltransferase a (CCTa) for the nLD sur-

face and, by displacing it from the surface, induces

downregulation of phosphatidylcholine synthesis.

Members of the CIDE protein family are important

regulators of LD growth and fusion [187]. In mature

white adipocytes, functional interaction between

PLIN1 and FSP27 (CIDEC) has been shown to be

required for efficient LD growth [188,189]. Co-

expression of PLIN1 with CIDEC specifically enhances

CIDEC-mediated lipid transfer and LD fusion,

whereas knockdown of PLIN1 in adipocytes results in

a significant decrease in LD fusion and growth [188].

The function of PLIN1 in controlling LD fusion and

growth is dependent on its interaction with the N-ter

region of CIDEC and is mediated by aa 292–319 in

the acidic-residue-rich region of PLIN1. Recently, it

was observed that the introduction of PLIN1 led to a

noticeable reduction in the concentration of CIDEC

proteins on the LD fusion plate and the authors of

this study proposed that PLIN1 promoted formation

of CIDEC condensates involved in neutral lipid trans-

fer [190]. Further studies are required for a detailed

understanding of this intriguing process.

Lipid droplets also accumulate in cells infected by

pathogens in response to secreted virulence factors,

providing microorganisms and viruses with substrates

for effective growth. At the same time, these newly

induced LDs can function as innate immune hubs that

integrate cell metabolism and host defense and have

been termed defense LDs (dLDs) [8,191]. Analysis of

the dLD proteome revealed profound remodeling, par-

ticularly at the perilipin level, with decreased PLIN5

levels and less contact with mitochondria, and

increased levels of PLIN2 and PLIN3 [8]. In contrast

to their diminished contacts with mitochondria, dLDs

engage in contacts with pathogens. It was suggested

that PLIN2 could organize complex clusters of
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defensive proteins on dLDs [8]. In dendritic cells, the

action of interferon-inducible IGTP, which controls

LD accumulation via action in phagosomal matura-

tion, has been shown to depend on physical interaction

with PLIN2 [192]. Control of lipolysis by perilipins is

essential for proinflammatory molecule production, as

described in adipocytes of Plin1 knock-out mice that

show sustained inflammation [193].

Molecular genetics of perilipins and
human diseases

Members of the human perilipin family are encoded by

five separate single-copy genes. PLIN1 and PLIN2 are

located in the chromosomal region 15q26 and 9p22.1,

respectively, whereas PLIN3, PLIN4, and PLIN5 are

co-localized in tandem in the 19p13.3 region. Analysis

of sequence variations in the general population from

the large genome sequencing aggregation database

(gnomAD) reveals in the perilipin genes a common het-

erogeneity of single-nucleotide variations (SNVs) in

terms of categories and allele frequencies [194]. Interest-

ingly, the number of observed SNVs that predict a loss-

of-function (pLoF) of perilipins is equal to or even

greater than the number of theoretically expected

pLoFs. In statistical terms, this observation means that

the probability for perilipin genes to be intolerant to

pLoFs (pLI) is close to zero. Conversely, genes with a

high pLI score (> 0.9) are considered to be under high

evolutionary pressure [195]. Thus, these epidemiological

data on SNVs suggest that perilipin genes are rather tol-

erant to haploinsufficiency, which may seem counterin-

tuitive, given the key role played by perilipins in the

regulation of lipid storage and therefore in the mainte-

nance of energy homeostasis. This could be explained

by compensatory metabolic mechanisms that would

limit the impact on survival and reproduction. As we

will see below, these genomic epidemiology data are

consistent with recent molecular genetic findings of

perilipin-related pathologies. It is significant that the

two Mendelian disorders linked to PLIN1 and PLIN4

dominant mutations do not result from haploinsuffi-

ciency but from a probable gain-of-function of mutant

perilipin [196]. On the other hand, recent evidence

shows that pLoF mutations of PLIN1 and PLIN4 influ-

ence, favorably or unfavorably, respectively, the distri-

bution of body fat and metabolic health [197].

Mendelian disorders linked to perilipin genes

Only two Mendelian diseases, both with an extremely

low incidence, have so far been linked to mutations

in perilipin genes: a rare subtype of familial partial

lipodystrophy (FPLD4, MIM#613877) for PLIN1, and

a vacuolar myopathy (MRUPAV, MIM#601846) for

PLIN4. Both are autosomal dominant disorders result-

ing from heterozygous mutations responsible for aber-

rant protein synthesis, as explained below.

FPLD4 was first reported in three unrelated pro-

bands by the teams of Savage and Vigouroux, and was

linked to frameshift mutations in PLIN1 that lead

to synthesis of a stably expressed elongated protein

isoform with aberrant C-ter tail [198]. Like other sub-

types of partial lipodystrophies, FPLD4 is character-

ized by the progressive loss of subcutaneous fat from

certain regions of the body (limbs and trunk) and by

metabolic complications resulting from ectopic fatty

deposits, mainly in the muscles and the liver, which

lead to insulin-resistant diabetes and severe hypertri-

glyceridemia (reviewed in [199]). Histological examina-

tion of subcutaneous adipose tissue from patients

revealed a significant decrease in adipocyte size, mac-

rophage infiltration, and increased fibrosis [198]. Since

the first description by Gandotra et al., seven other

families of FPLD4 have been reported, with a total of

five different FPLD4 mutations, three of which are

recurrent [130,200,201] (Fig. 5).

Thus, the 398 fs mutation (c.1191_1192delAG) was

detected in four different families and, for two of

them, the haplotypic analysis led to the conclusion

that they were due to two independent mutational

events [198]. Functional analyses of PLIN1 mutants,

including 398, 404, and 439 fs, have shown decreased

TAG accumulation and increased basal lipolysis in

pre-adipocytes [199,200]. Since the domain between aa

380 and 427 of Plin1 has been shown to be crucial for

binding to the ATGL co-activator CGI-58/ABHD5, it

was hypothesized that mutants that lost this domain

fail to sequester ABHD5, leading to a constitutive acti-

vation of lipolysis [202]. However, this hypothesis was

not verified for the 439 fs mutant, which is able to

bind ABHD5 [130]. These data suggest that the

extended PLIN1 isoform may have special properties

contributing to the pathophysiology of FPLD4. How-

ever, the nature of the deleterious role of the elongated

variants remains elusive.

The involvement of PLIN4 in the very rare MRU-

PAV autosomic dominant myopathy was recently

demonstrated by Ruggieri et al. [203]. Using a multio-

mics approach, they showed in a large Italian family

that an unusual expansion of a 99-nucleotide repeat

sequence encoding the 33-mer unit of the PLIN4 repet-

itive AH domain [25] co-segregated with the myo-

pathic trait. Maggi et al. [204] recently summarized the

clinical characteristics of this slowly progressive adult-

onset myopathy from 15 affected members of this
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exceptional four-generation family. Muscle biopsies of

affected subjects showed the presence of rimmed vacu-

oles with subsarcolemmal aggregates, containing

increased PLIN4 levels as well as the ubiquitinated

protein FK2 and autophagy markers p62/SQSTM1,

which colocalized with PLIN4. Since there was also a

significant positivity in the subsarcolemmae of

aggrephagy-related protein NBR1, Ruggieri et al. [203]

hypothesized that the expansion of the AH domain of

PLIN4 leads to its misfolding and, despite the activa-

tion of autophagy, PLIN4 accumulation, which causes

disorganization and dysfunction of the myofibers and

their atrophy. Three other families and a sporadic case

of MRUPAV have since been reported [205,206]. In

two of these families, the PLIN4 expansion appears

identical in size to the one initially described, contain-

ing 39–40 instead of 29–31 repeat units. Notably,

approximately 10% of carriers of the PLIN4 expan-

sion within the four MRUPAV families have been

reported as asymptomatic, with one such carrier being

over 50 years old [204]. Finally, in the third family, a

larger expansion consisting of 50 repeat units was

identified in more severely affected subjects with an

earlier onset myopathy (in their twenties), suggesting a

correlation between the size of the expansion and the

severity of the disease [205].

Common diseases and complex traits

The causes of common diseases such as obesity and

cardiovascular diseases are multifactorial, resulting

from the combined effects of environmental factors

and genetic susceptibility factors. The latter can be

very numerous but individually they play a weakly

measurable effect in disease determinism. Genome-

wide association studies (GWAS) involving thousands

of single nucleotide polymorphisms (SNPs) make it

possible, by identifying alleles in linkage disequilibrium

among carriers of the trait, to find genetic susceptibil-

ity loci known as quantitative trait loci (QTLs). Hun-

dreds of QTLs have thus been identified in common

polygenic obesity and cardiovascular disease [207].

Fig. 5. Frameshift mutations in PLIN1 associated with the familial partial lipodystrophy FPLD4. Variants indicated above the PLIN1 diagram

(e.g., 93*) are not associated with FPLD4, whereas frameshift variants indicated below the PLIN1 diagram (e.g., 398 fs) are associated with

the FPLD4 phenotype (red color).
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However, the validity of numerous GWAS is weak-

ened by many biases, notably the fact that most ana-

lyzed SNPs are located in non-coding regions of the

genome and their allelic frequency largely depends on

the ethnicity of the studied populations [208]. On the

other hand, candidate gene-association studies target-

ing genes such as the PLINs have been more fruitful,

showing convincing associations between intragenic

SNPs and complex traits. In recent years, the analysis

of aggregated exome data from large cohorts of over

100 000 individuals with clinical and bioclinical infor-

mation, such as the UK Biobank, has shown that rare

coding variants are able to significantly influence quan-

titative traits such as biomarkers or anthropometric

characteristics and thus to play a crucial role in the

genetic determinism of polyfactorial diseases [209,210].

Common obesity

Due to their strong expression in adipose tissue and

their key role in lipid storage regulation, early on, peri-

lipins were the subject of research about the genetic

determinants of obesity and its complications. The first

in vivo findings come from Plin1 knock-out mice,

which are lean, have increased basal lipolysis and are

resistant to diet-induced obesity but have glucose intol-

erance [120]. Conversely, overexpression of PLIN1 in

transgenic mice protects against diet-induced obesity

and glucose intolerance [211]. In humans, clinical stud-

ies over the past two decades have shown that obesity

is accompanied by significant variations in perilipin

expression in adipose tissue [212]. In 2003, Mottagui-

Tabar et al. [213] found a strong association between

the intronic SNP rs894160 of PLIN1 and decreased

PLIN1A content in adipose tissue with increased basal

lipolysis in a group of 117 obese Swedish women. Sub-

sequent studies have provided compelling evidence on

the relationship between some polymorphisms of

PLIN1, such as rs894160 or rs1052700, and obesity

(reviewed in [214]). Whereas several studies have con-

firmed the protective effect of the minor rs894160

allele against obesity in white women [215], others

have shown non-significant results [216]. Divergent

observations have also been reported regarding the

resistance of obese subjects to weight loss based on

their rs894160 genotype [217]. These apparent discrep-

ancies between association studies, based on linkage

disequilibrium with SNPs, reflect the complexity of

interactions influenced by numerous factors, such as

ethnicity, gender, nutritional intake, and lifestyle (die-

tary habits, physical activity, etc.), which likely modu-

late the results [218]. Another limitation arises from

the fact that these SNPs are not directly responsible

for trait variation and that their link to the causal

genetic determinant is statistically valid only for well-

selected populations.

In the past decade, the availability of whole-exome

sequencing (WES) data from thousands of individuals

has paved the way for studies on the epidemiology of

rare coding variants and provided powerful comple-

mentary approaches for new gene-related associations

with complex traits. In 2022, several studies analyzing

genotypic and phenotypic data from large populations

have independently revealed an enrichment of pre-

dicted pLoF mutations in specific genes, including

PLIN1 and PLIN4, within subgroups of individuals

phenotyped for obesity-related quantitative traits

[197,207,219,220]. Koprulu et al. [197] have analyzed

WES data from over 180 000 individuals from the UK

Biobank and found that pLoF variants of PLIN1 and

PLIN4, as well as PDE3B and ACVR1C, were signifi-

cantly linked with waist-to-hip ratio (WHR) adjusted

for body mass index. Notably, pLoF variants in

PLIN1 were associated with a lower WHR and a more

favorable metabolic profile, while PLIN4 pLoF vari-

ants exhibited the opposite effect. This suggests that

PLIN1 haploinsufficiency may positively impact fat

distribution and potential metabolic issues, whereas

PLIN4 haploinsufficiency could have a contrary effect.

Dyslipidemia and atherosclerotic cardiovascular diseases

For two decades, perilipins have been studied as candi-

date genes whose variations might contribute to disor-

ders in lipid metabolism and atheromatosis. In 2004,

Yan et al. [221] reported an association between

PLIN1 polymorphisms and an increased total choles-

terol level in a population of obese and hypertensive

Chinese people. Subsequently, other studies confirmed

that certain alleles of common intronic PLIN1 SNPs

(rs894160 and rs10527000) negatively influenced the

plasma lipid profile [218,222]. However, Perez-

Martinez et al. [223] had shown in two populations

(Spanish and American) an association between minor

alleles of two PLIN1 SNPs, including rs894160, and

reduced post-prandial plasma TAG levels, potentially

lowering the atherogenic risk.

In addition to PLIN1, studies suggest that variations

in PLIN2 and PLIN5 might also influence the develop-

ment of metabolic and cardiovascular diseases. Magn�e

et al. [224] analyzing the S251P coding SNP of PLIN2,

showed that the minor allele (P251) was associated

with reduced plasma TAGs and hepatic very low-

density lipoprotein (VLDL) secretion. After observing

that Plin5�/� mice had a worsened prognosis after

myocardial ischemia, Drevinge et al. [225] investigated

1186 FEBS Letters 598 (2024) 1170–1198 ª 2023 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies.

Function of perilipins in lipid droplet metabolism E. Griseti et al.

 18733468, 2024, 10, D
ow

nloaded from
 https://febs.onlinelibrary.w

iley.com
/doi/10.1002/1873-3468.14792 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [13/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



the influence of a non-coding polymorphism

(rs884164) of PLIN5 in subjects with coronary artery

disease. They found that the minor allele of this SNP

was associated with unfavorable prognostic scores,

suggesting that patients carrying this allele have a

higher risk of cardiovascular morbidity and mortality

after myocardial ischemia.

Recently, several large-scale population studies

focusing on lipid metabolism biomarkers have revealed

convincing associations between certain rare coding

variations in PLIN1 and PLIN4 and plasma choles-

terol and lipoprotein levels. In 2018, Klarin et al. [226]

conducting a GWAS on blood lipids in 300 000 multi-

ethnic individuals from the US Million Veteran Pro-

gram, showed that carriers of the rare missense variant

L90P in PLIN1 exhibited significantly higher plasma

HDL-C levels. This association was subsequently con-

firmed in the UK Biobank cohort [197]. Over the past

2 years, studies using UK Biobank data demonstrated

a strong correlation between the presence of PLIN1

pLoF variants and increased HDL-C levels coupled

with reduced plasma TAG, suggesting that haploinsuf-

ficiency of PLIN1 is associated with a favorable lipid

profile [197,219,220]. These results were consistent with

those from another large multi-ethnic cohort [210].

Moreover, individuals heterozygous for a PLIN1

pLoF variant tended to have lower blood pressure,

fewer diagnoses of hypertension, and fewer myocardial

infarctions, indicating a lower overall risk of develop-

ing cardiovascular disease [197]. Interestingly, while

over 40 pLoF variants scattered throughout PLIN1

have been identified in a heterozygous state in several

hundred individuals from the UK Biobank, none of

the five frameshift variants responsible for the very

rare FPLD4 have been detected. This confirms that

these specific variants are not pathogenic due to hap-

loinsufficiency, but rather through a mechanism that

remains to be elucidated [196,197]. From the same UK

Biobank GWAS, Koprulu et al. [197] found that

PLIN4 pLoF variants were associated with effects on

blood lipids which, like the effects on body fat distri-

bution, were opposite to those of PLIN1 pLoF.

Insulin resistance and type 2 diabetes

PLIN1, through its control of lipase access to TAG

stored in adipose tissue, may contribute in non-

physiological situations to deregulation of lipolysis and

excessive release of circulating FAs, leading progres-

sively to insulin resistance and type 2 diabetes (T2D).

Like GWAS on the adiposity trait, studies looking for

associations between non-coding PLIN1 SNPs such as

rs894160 and the risk of T2D have produced

significant but sometimes discordant results depending

on the ethnic origin of the populations studied

[218,227]. Furthermore, the effect of PLIN1 polymor-

phisms on T2D risk may differ depending on whether

it is associated with obesity [227,228]. Obesity can

deregulate not only lipolytic activity but also the endo-

crine function (adipokine secretion) of adipose tissue,

indirectly contributing to T2D. Nutritional factors are

also a source of bias that may explain the apparent

discrepancy in some association studies. Thus, a strong

correlation has been reported between PLIN1 geno-

type and insulin resistance in subjects having a diet

high in saturated fat and low in carbohydrates, irre-

spective of adiposity or ethnicity [229,230]. Interest-

ingly, although some rare specific frameshift mutations

in PLIN1 are responsible for FPLD4, which includes

severe insulin resistance [231], no association between

many pLoF mutations and T2D has been reported to

date, suggesting that haploinsufficiency of PLIN1 is

not a risk factor for insulin resistance [197].

PLIN2 plays a predominant role in lipid accumula-

tion in the liver, the model of which is high-fat diet

(HFD)-induced nonalcoholic fatty liver disease

(NAFLD). NAFLD and insulin resistance are closely

related conditions. Plin2�/� mice subjected to HFD

are resistant to obesity and hepatic steatosis and have

adipose tissue that is more sensitive to insulin, with a

greater tendency towards browning [232]. In humans,

Sentinelli et al. [233] found in a large cohort of Italian

obese subjects a strong association between the P251

variant of PLIN2 and lower insulin secretion associ-

ated with increased insulin sensitivity. PLIN5 also

plays an important role in liver and muscle, and dele-

tion of PLIN5 in mice on HFD results in steatosis and

insulin resistance in liver [234,235] and skeletal muscle

[236]. However, to date, no association studies have

demonstrated a relationship between PLIN5 polymor-

phisms or coding variants and diabetes in humans.

Conclusion

The cumulated findings of the past two decades from

numerous association studies demonstrate that perili-

pins contribute to the development of common obesity

and atherosclerotic cardiovascular diseases, whose

impact on public health is substantial. However, the

mutational spectrum of the perilipin gene family

appears to be variable and is indicative of the role of

perilipins in the adaptive response of the genome to

environmental constraints. Thus, there is on one hand

a very small number of particular variants causing

extremely rare Mendelian pathologies, the PLIN1-

related FPLD4 and the PLIN4-related MRUPAV.
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These PLIN1 and PLIN4 variants both generate spe-

cific protein isoforms whose pathophysiological mecha-

nisms are still unclear. In contrast, numerous PLIN1

and PLIN4 pLoF variants have been reported in asso-

ciation with common pathologies linked to deregula-

tion of lipid metabolism. However, counter-intuitively,

the haploinsufficiency predicted by PLIN1 pLoF vari-

ants appears to have a protective effect, reducing the

risk of atherosclerotic cardiovascular disease in car-

riers. These observations are consistent with mouse

models in which deletion of perilipin genes is associ-

ated with resistance to HFD-induced obesity. Collec-

tively, these data suggest that the function of perilipins

in promoting fat storage has not been strongly con-

strained during evolution, probably to allow for

greater metabolic plasticity in response to random var-

iations in natural macronutrient resources. Thus, peri-

lipins might contribute to better survival when

resources are low, but become pathogenic by promot-

ing obesity and diabetes when resources are abundant.

This suggests the existence of important epigenetic reg-

ulations that remain to be explored. Finally, the recent

findings on perilipin gene-coding variants are very

encouraging for the development of innovative thera-

peutic and preventive approaches to cardiovascular

diseases and T2D related to metabolic syndrome.
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