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SOME INSIGHTS INTO PARTIAL POLE PLACEMENT METHOD

IN OBSERVERS DESIGN FOR TIME-DELAY SYSTEMS

AHLEM SASSI1, ISLAM BOUSSAADA2, AND SILVIU-IULIAN NICULESCU3

Abstract. This contribution focuses on the use of the pole placement ap-

proach in the design of observers for certain classes of Linear-Time-Invariant
(LTI) systems with time delay. Specifically, depending on how the delay ap-

pears in the system dynamics, two classes of dynamic systems are considered:

state-delayed systems and input-delayed systems, respectively. First, we ad-
dress the problem of designing a full-order Luenberger observer for the con-

sidered systems using partial placement of the error poles. Namely, we exploit

the multiplicity-induced-dominancy (MID) property of the characteristic root
with the maximal admissible nultiplicity of the characteristic function corre-

sponding to the system’s error. After giving the existing condition for the

proposed observer, we use the same MID property but in the so-called generic
case. The performance and effectiveness of the proposed observers are high-

lighted through several illustrative examples.
Keywords. Dynamical systems, Delay systems, Observer design, Exponential

stability.

MSC 2020. 39B05, 93D23, 93C23, 93B53, 93B55.

1. Introduction

Transport, propagation and communication are the main ways in which time-
delay appear in natural phenomena and engineering processes. For instance, delays
are encountered in the modeling of heat exchanges, distillation units, mining pro-
cesses, steel manufacturing, but also in describing heredity in population dynamics
or commodity markets in economics. For further examples and discussions on re-
lated applications, we refer to [23, 37, 39, 49], and the references therein. Such
dynamical systems belong to the class of infinite-dimensional systems and a dis-
tinctive feature of such systems is that their rate of evolution can be described
by differential equations including information about the past history of the sys-
tem. There are several ways to represent such dynamical behaviours and one of
the simplest way is by using differential equations on functional spaces. For an
introduction to the theory of functional differential equations, we refer to [7, 26].

As discussed in [48], the presence of time-delay in a system model may alter its
performances and may even be a source of instability. However, there are cases,
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2 PARTIAL POLES PLACEMENT IN OBSERVER DESIGN

less intuitive, when “large” delays can help stabilize systems while “small” delays
cannot, as highlighted by [22, 23, 43, 48], and the references therein.

In most of the references cited above, it is assumed that the system ”state”
(”piece-of-trajectory”) is fully known and accessible. However, in most of practical
applications, we have only partial information and the state is not fully accessible,
and thus, one needs to estimate the ”state”1 or at least the ”state-vector” at a given
(well-defined) time (moment). It is interesting to mention that the second angle
(i.e. ”state-vector”) opens the perspective to extend ideas from finite-dimensional
systems to our class of delay systems by an appropriate interpretation of the system
trajectory over the time-delay interval.

Roughly speaking, in finite-dimension, the main idea of the state estimation is to
provide an estimate of the internal “state” of a given system based on the system
model and the measured output signal. So far, the state estimation problem has
found successful applications in a broad range of fields, such as aircraft tracking,
smart grids, and bio-processes monitoring. Among a variety of available state es-
timation approaches, the most classic one is the Luenberger-type observer which
has shown suitable results in state estimation from early works of [29, 30, 31] to
the more recent ones [25, 27, 52, 54] extended to many type of dynamical systems.
It is important to emphasize that the Luenberger-type observer is particularly in-
teresting due to its easy implementation because it depends on only one (single)
tuning parameter, which requires a specific condition, to ensure exponential con-
vergence. Despite this simplicity, this observer is far from being a perfect solution
to state estimation. Since the number of state variables in a reduced-order observer
is less than the order of the considered system, the reduced-order observer is par-
simonious, often a desirable engineering quality. But, in addition, a reduced-order
observer may have better properties than a full-order observer, especially with re-
spect to robustness of a control system which uses an observer to implement the
control algorithm in an “observer-based” control design. Reduced-order observers
are well recognized for having faster convergence rates and lower computational
burden, as the only state variables to be estimated are the ones which are actually
not measured (see for instance, [14, 18, 19, 24, 50, 51].

As emphasized above, the idea of observer design is to reconstruct the trajectory
of states of a dynamical system. More precisely, an observer can be interpreted as
an auxiliary system such that the error between the observer state and the system
state decreases asymptotically towards zero. In this framework, stability analysis
methods are necessary in the design of observers.

In the delay case, there exists a lot of extensions that exploits the estimation of
the “state-vector” at a given (well-defined) time (moment). If in such cases, the
construction follows closely ideas from finite-dimensional cases, however, the stabil-
ity analysis methods are based on the stability of the trivial solution of appropriate
functional differential equations that appear when defining the overall system dy-
namics. Without being exhaustive, a lot of works in the design of observers mostly
use the Lyapunov approaches (Krasovskii method of Lyapunov functionals and the
Razumikhin method of Lyapunov functions for time delay systems) in the stability
analysis of the error system. Those methods usually lead to finding solutions of
some appropriate Linear Matrix Inequalities (LMIs) (see [1, 16, 18, 20, 24, 40, 52]
and references there-in). Excepting Lyapunov approaches, among the existing

1Delay systems are infinite-dimensional systems defined on some appropriate functional spaces
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methods, eigenvalue-based methods have become popular in the stabilization of
linear time-invariant (LTI) time-delay systems [37] and recently in observers de-
sign [21, 44, 45]. A recent pole placement analytical paradigm, called Partial
Poles Placement (PPP), has been introduced in [13, 11, 34, 36, 10]. It derives
from two properties called respectively multiplicity-induced-dominancy (MID) and
coexistent-real-roots-inducing-dominancy (CRRID), see for instance [2, 6, 8, 46]. It
ensues from an observation on the effect of multiple spectral values on the stability
of Delay Differential Equations (DDE). Indeed, some works have shown that, for
some classes of time-delay systems, a real root of maximal multiplicity is necessarily
the rightmost root, a property we call generic multiplicity-induced-dominancy, or
GMID for short. This link between maximal multiplicity and dominance has been
suggested in [41] after the study of some simple, low-order cases, but without any
attempt to address the general case. The GMID idea may be particularly adapted
for tuning low-complexity controllers, i.e., controllers including a small number of
parameters (including also the delay among the parameters) with a guarantee on
the location of the remaining characteristic roots for the closed-loop system, see
also [38, 12, 15, 4] for further insights on the use of the partial-poles-placement in
concrete applications.

The remaining of this chapter is organised as follows. Section 2 presents some
prerequisites in complex analysis : Starting by the class of system under interest and
its formulation in the frequency domain. We recall some properties of quasipoly-
nomials and state some technical results needed in the study of the stability of the
error systems. In Section 3, the problem is formulated and the classes of systems
under consideration are presented. The Luenberger-type observer is then given for
each class and its convergence is analyzed using the MID property, following by
simulation results which highlight the performances of the proposed observers. An-
other observer design type is proposed in section 4 for the same classes of systems
considered before. The convergence analysis is detailed using the GMID prop-
erty and two simulation examples are given to verify the efficiency of the proposed
method. Some concluding remarks (Section 5) ends the chapter.

2. Preliminaries and Prerequisites

Consider a generic dynamical system with a single delay described by the DDE:

Ẋ(t) = AX(t) +AdX(t− τ),(2.1)

under appropriate initial conditions, whereX ∈ Rn is the state vector, τ is a positive
constant delay. The matrices A ∈ Rn×n and Ad ∈ Rn×n are known constant
matrices.

It is well known that the asymptotic behavior of the solutions of (2.1) is deter-
mined from its spectrum (see, e.g. [7]), that is the set of the (characteristic) roots
of the associated characteristic function (denoted ∆(s, τ) in the sequel).

The characteristic function ∆ : C × R+ → C corresponding to (2.1) writes as
follows:

∆(s, τ) = det(sIn −A−Ade
−τs)(2.2)

A generic result on the location of spectral values corresponding to (2.2) is given
by the following:
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Proposition 1. [37] If s is a characteristic root of system (2.1), then it satisfies

|s| ≤ ||A+Ade
−τs||2(2.3)

This result combined with the triangular inequality provides a generic envelope
curve around the characteristic roots corresponding to system (2.1).

In the sequel, we are interested in the study of a class of LTI delay systems
characterized by the quasipolynomial function of the form:

∆(s, τ) = P0(s) + P1(s)e
−τs(2.4)

where deg(P0) > deg(P1). More precisely, the problem of the analytical character-
ization of its rightmost root will be an essential ingredient in deriving our results.

2.1. Partial pole placement in delay systems. One of the most natural and
classical ways to stabilize a dynamical LTI delay system is to select the free param-
eters of the controller in order to choose the location of finitely many roots while
also guaranteeing that the dominant root2 is among the chosen ones. This has been
the subject of several recent works, such as [6, 11, 34]. Contrary to the strategy
of FPP used, e.g., in [33], the controllers designed using these techniques do not
render the closed-loop system finite-dimensional, but instead control its rightmost
spectral value. These methods also extend to some partial differential equations,
as detailed, for example, in [35]. In particular, in the sequel, we shall use the MID
property as described in [5]. For linear dynamical systems including delays in their
model representation, spectral methods can be used to understand the asymptotic
behavior of solutions by considering the roots of some characteristic function (see,
e.g., [26, 37, 7, 17, 49, 53]) which, for (2.1), is the function ∆ : C → C defined for
s ∈ C by

(2.5) ∆(s) = sn +

n−1∑
k=0

aks
k + e−sτ

m∑
k=0

αks
k.

More precisely, the exponential behavior of solutions of (2.1) is given by the real
number γ0 = sup{ℜ(s)/s ∈ C, ∆(s) = 0}, called the spectral abscissa of ∆, in the
sense that, for every ε > 0, there exists C > 0 such that, for every solution e of
(2.1), one has |e(t)| ≤ Ce(γ0+ε)t maxθ∈[−τ,0] |e(θ)| [26]. Moreover, all solutions of
(2.1) converge exponentially to 0 if and only if γ0 < 0. An important difficulty in
the analysis of the asymptotic behavior of (2.1) is that, contrary to the delay-free
case, the corresponding characteristic function ∆ has infinitely many roots.

Theorem 2.1 ([9]). Consider the quasipolynomial ∆ given by (2.5). Let s0 ∈ R be
a root of ∆ with maximal multiplicity i.e. M(s0) = deg(∆), then,

(1) (Retarded) If m < n, then s0 is a strictly dominant root of ∆.
(2) (Neutral) If m = n, then s0 is a dominant root of ∆ and, for every other

complex root s of ∆, one has ℜ(s) = s0.

Notice that the GMID consists in forcing a root to reach its maximal multiplicity,
which does not allow any degree of freedom in assigning s0. In order to allow for
some additional freedom when assigning s0, one can relax such a contraint by forcing
the root s0 to have a multiplicity lower than the maximal.

2the rightmost characteristic root in the complex plane
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3. MID Property in the design of Full-order observer Design

3.1. Problem Formulation.

3.1.1. System with delayed states. Consider the system with delayed state described
by the following state space model.

ẋ(t) = Ax(t) +Adx(t− τ) +Bu(t)(3.1a)

y(t) = Cx(t)(3.1b)

x(t) = ϕ(t) t ∈ [0, τ ](3.1c)

where x ∈ Rn, u ∈ Rm, y ∈ Rp are, respectively, the state vector, the control
input and the measurements vector. The non-negative scalar τ is a known constant
delay. Finally, ϕ(t) is a continuous function defined as the initial condition. Matrices
A ∈ Rn×n, Ad ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n are known constant matrices.

For system (2.1), we propose to design a Luenberger-type observer, allowing the
estimation of all the system’s state vector x(t), described by:

˙̂x(t) = Ax̂(t) +Adx̂(t− τ) +Bu(t) + L(y(t)− Cx̂(t))

+ T (y(t− τ)− Cx̂(t− τ))(3.2)

where x̂ ∈ Rn denotes the estimates of x. Matrices L and T are unknown and shall
be determined so that the estimation of the states x̂ converges to its real values x.

3.1.2. System with delayed inputs. Now, we consider a system with a known time
delay in the input as follows

ẋ(t) = Ax(t) +Bu(t− τ),(3.3a)

y(t) = Cx(t),(3.3b)

and for which, we propose the following observer dynamics.

˙̂x(t) = Ax̂(t) +Bu(t− τ) + L(y(t)− Cx̂(t)) + T (y(t− τ)− Cx̂(t− τ))(3.4)

3.1.3. The error equation. Let us denote by e(t) = x(t)− x̂(t) the estimation error
vector. In both cases, the dynamic of the estimation error is described by the
following system.

ė(t) = (A− LC)e(t) + (Ad − TC)e(t− τ).(3.5)

Notice that such an error equation applies in both cases, input-delay or state-
delay. In the sequel, we shall use the notations A = A− LC and Ad = Ad − TC.

Proposition 2. The dynamical system (3.2) (system (3.4)) represents an observer
for the time-delay system described by (3.1) (system (3.3)) if, and only if, the
dynamic error system given by (3.5) is asymptotically stable.

Proof 1. Computing the dynamics of the estimation error ė(t) = ẋ(t)− ˙̂x(t), one
obtains the system given by (3.5) (with Ad = 0 for the second case). This system
needs to be stable, to ensure the convergence of the estimation error e(t) to zero.
□
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3.2. Main results. Let us consider system (3.5) written in the following form.

ė(t)−Ae(t)−Ade(t− τ) = 0.(3.6)

Its characteristic function is ∆ : C× R+ → C is given by

∆(s, τ) = |sIn −A−Ade
−τs|(3.7)

Hence, the error system is characterised by the quasipolynomial function with the
form of equation (2.4) where the polynomial P0 is given by:

P0(s) = |sIn −A| = ans
n + an−1s

n−1 + . . .+ a1s+ a0

The following assumptions are considered:

Assumption 1. rank(Ad) = 1.

Assumption 2. The polynomial P0 is real-rooted.

Remark 3.1. Under the above assumptions we are able to investigate the stability of
the estimation error. Notice that Assumption 1 is a sufficient condition to guarantee
that the quasipolynomial ∆ involves a single delay. The assumption 2 is requested
since we shall apply Theorem 1 in [5].

Let us note s0 a real root with multiplicity at least n of the characteristic function
(2.4). It is known that if s0 < 0 is the corresponding rightmost root then the zero
solution of system (3.6) is asymptotically stable and consequently the estimation
error is stable. The following proposition from [5] gives explicitly the integral
representation of the quasipolynomial.

Proposition 1. If the quasipolynomial (2.4) has a real root s0 with multiplicity
at least n then it can be written as

∆(s) = (s− s0)
n

(
an +

∫ 1

0

e−(s−s0)τt
τRn−1(s0, τ t)

(n− 1)!
dt

)
,

where the family of polynomials Rk(s, τ) is defined as

(3.8) Rk(s, τ) =

k∑
i=0

(
k

i

)
P (i)(s)τk−i, k ∈ N∗ .

The following proposition, also from [5], provides sufficient conditions for the
dominance of the multiple spectral value.

Proposition 2. Let P (s) be real-rooted and sa be the average of its roots. Then
system (2.4) is γ-stabilizable with γ ≤ sa if, and only if, τ ∈]0, τγ [, where τγ is the
smallest positive root of Rn(γ, τ) for τ .

Now we are able to formulate and prove the following result.

Theorem 3.2. Consider that Assumptions 1 and 2 hold and the quasipolynomial
(4.14) admits a root at some complex number s0 with multiplicity n+ 1. Then, s0
is necessarily algebraic and the corresponding characteristic polynomial denoted P
(called in the sequel Elimination-produced polynomial) is real-rooted. Moreover, if
P is the minimal-degree polynomial such that P(s0) = 0 and that s0 is the spectral
abscissa of P, then s0 is the spectral abscissa of (4.14). Furthermore, if P is Hurwitz
then the estimation error described by (3.5) is exponentially stable with s0 as decay
rate and the estimation states vector converges to its real value (in both cases).
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Proof 2. The vanishing of the characteristic function ∆ is equivalent to exp(−sτ) =
−P0(s)/P1(s). Then, one considers the algebraic system of n equations ∆′(s) =
0, · · · ,∆(n)(s) = 0. First, owing to the linearity of the system, one has ∆′(s) =
0, · · · ,∆(n−1)(s) = 0 with respect to the coefficients of P1, then one proceeds by
eliminating them order by order. Next, the values of these coefficients are substi-
tuted in the remaining equation ∆(n)(s) = 0 which gives P the so-called elimination-
produced polynomial in the variable s, the delay τ and the coefficients of P0. Next,
by assuming that assumptions 1 and 2 hold, the proof of the theorem is based on
proposition 2 since the quasipolynomial associated to the error system (3.5) is given
by equation (2.4). □

3.3. Illustrative examples. In this section, we provide some illustrative examples
in both cases: input-delay and state-delay through the problems of Mach number
control in a wind tunnel and an inverted pendulum on a cart.

3.3.1. System with state delay : Transonic flow control. We revisit in this section
the problem of control of a transonic flow in a wind tunnel discussed in [32]. The
analysis of transonic flows is a challenging problem in compressible fluid dynam-
ics, since a full model of the flow would involve the Navier–Stokes equations in
a three-dimensional domain and boundary controls for temperature and pressure
regulation. A further simplified model was presented in [3] in order to analyze the
response of the Mach number of the flow to changes in the guide vane angle. In-
stead of using partial differential equations, propagation phenomena are modeled
in [3] through a time-delay, leading to the time-delay system

(3.9)

{
κm′(t) +m(t) = kϑ(t− τ0),

ϑ′′(t) + 2ζωϑ′(t) + ω2ϑ(t) = ω2u(t),

in which m, ϑ, and u represent, respectively, perturbations of the Mach number
of the flow, the guide vane angle, and the input of the guide vane actuator, with
respect to steady-state values. The parameters κ and k depend on the steady-state
operating point and are assumed to be constant as long as m, ϑ, and u remain
small, and satisfying κ > 0 and k < 0. The parameters ζ ∈ (0, 1) and ω > 0 come
from the design of the guide vane angle actuator and are thus independent from the
operating point. The time-delay τ0 is assumed to depend only on the temperature
of the flow. In the absence of control (u(t) = 0), the open-loop system (3.9) is
exponentially stable.

Equation (3.9) may be written under a state space model as follows

Ẋ(t) = AX(t) +AdX(t− τ) +Bu(t),(3.10)

where X(t) = [ϑ̇(t) ϑ(t) m(t)]T , matrices A, Ad and B are given by

A =

−2ξω −ω2 0
1 0 0
0 0 −1

κ

 , Ad =

0 0 0
0 0 0
0 k

κ 0

 and B =

ω2

0
0

 .

The available measurement vector is described by

y(t) = CX(t) =

[
0 1 0
0 0 1

]
X(t).

As the obtained system fits with system (3.1), in order to estimate the corre-
sponding state vector X(t), we consider an observer in the form (3.2). In this
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example, the error dynamics obey to system (3.5). By choosing the observer ma-
trices in the following fashion

L =

 α1,1 α1,2

0 0
1 α3,2

 and T =

 0 β1,2

0 β2,2
k
κ β3,2


the rank condition (Assumption 1) is satisfied and the associated characteristic
function (2.4) is defined by

P0(s) =s3 +

(
2ξω +

α3,2κ+ 1

κ

)
s2

+

(
ω2 +

(2κξα3,2 + 2ξ)ω

κ
+ α1,1

)
s

+
(α3,2κ+ 1)ω2

κ
+

κα1,1α3,2 − κα1,2 + α1,1

κ
,(3.11a)

P1(s) =β3,2s
2 + (2ωβ3,2ξ − β2,2) s+ ω2β3,2 − 2ωβ2,2ξ

+ α1,1β3,2 − β1,2.(3.11b)

By forcing the multiplicity, one obtains the remaining parameters βi,j and concludes
that s0 is a root with multiplicity n + 1 = 4 if, and only if, s0 is a root of the
elimination-produced polynomial

P(s) = κ s3τ3 +
(
(1 + (2ξω + α3,2)κ) τ

3 + 9κ τ2
)
s2

+
(((

2ωξα3,2 + ω2 + α1,1

)
κ+ 2ξω

)
τ3
)
s

+
(
(6 + (12ξω + 6α3,2)κ) τ

2 + 18κτ
)
s

+
((
α3,2ω

2 + α3,2α1,1 − α1,2

)
κ+ ω2 + α1,1

)
τ3

+
((
6ωξα3,2 + 3ω2 + 3α1,1

)
κ+ 6ξω

)
τ2

+ (6 + (12ξω + 6α3,2)κ) τ + 6κ.

Now, considering the system (3.9) with parameter values as the ones proposed in
[32] where κ = 2 s, k = −0.67036 rad−1, ξ = 1/3, ω = 5 rad/s and τ0 = 1/3, one
obtains α1,1 = 316

9 , α1,2 = 2294
27 , α3,2 = − 5

6 guaranteeing the realrootedness of P0 as
well as that of polynomial P.

In particular, such a choice of αi,j leads to the following observer matrices

L =

 316
9

2294
27

0 0
1 − 5

6

 and T =

 0 − 3536 e−
5
3

9

0 − 554 e−
5
3

9
k
κ

7 e−
5
3

3

 ,

which guarantees that the assignable rightmost multiple root can be achieved at
s0 = −5 as illustrated through Figure 1.
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Figure 1. The spectrum distribution of the quasipolynomial (2.4)
with polynomials P0 and P1 defined in (3.11).

Figure 2 provides the evolution of the Mach numberm(t), the guide vane position
ϑ(t), its derivative and their estimation, in the case where the initial conditions are

given by m(t) = −0.1, ϑ(0) = m(0)
k = 0.15rad, and ϑ̇(t) = 0.

0 1 2 3 4 5 6 7
-5

0

5

0 1 2 3 4 5 6 7
0

1

2

3

0 1 2 3 4 5 6 7

-1

-0.5

0

Figure 2. Evolution of the state vector X(t) (—) and its estimation X̂(t) (–).

3.3.2. Systems with input delay : Inverted Pendulum. In this section, we shall give
an example to show the efficiency and the feasibility of the results obtained in this
paper. Indeed, let us consider a dynamical system modeling a friction-free inverted
pendulum on a cart.
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M
u

θ

m

The model adopted here was discussed in [47]. The dynamics of the inverted
pendulum on a cart can be modelled by a second-order differential equation for the
angular displacement θ of the tip of the pendulum

(3.12)

(
1− 3m

4(m+M)
cos2(θ)

)
θ̈ +

3m

8(m+M)
θ̇2 sin(2θ) + sin θ + u cos θ = 0,

where M is the mass of the cart, m is the mass of the pendulum, and u represents
the control law, which is the horizontal driving force.

We assume that the system is controlled by a delayed input u(t− τ). For small
θ, we can write sin(θ) = θ and cos(θ) = 1. Also dropping all non-linear components

(θ̇2 = 0), equation (3.12) may be rewritten as

(3.13)

(
1− 3m

4(m+M)

)
θ̈(t) + θ(t) + u(t− τ) = 0.

Next, We denote by X(t) =
[
θ̇ θ

]T
, so system (3.13) may be rewritten in the

following state space model

(3.14) Ẋ(t) =

(
0 −a
1 0

)
X(t) +

[
−a
0

]
u(t− τ)

where a =
(
1− 3m

4(m+M)

)−1

. The available measurement is given by y(t) =

[0 1]X(t).
In this case the rank condition (Assumption 1) is satisfied and the associated

characteristic quasipolynomial is given by:

(3.15) ∆(s) = (sβ2,1 + β1,1) e
−sτ + s2 + sα2,1 + a+ α1,1.

Next, the realrootedness of the corresponding P0 (Assumption 2) is guaranteed
by the positivity of its discriminant, that is, δ = α2

2,1 − 4a − 4α1,1. As shown
in [11], if the discriminant δ ≥ 0, then the multiplicity of any given root of the
quasipolynomial function (3.15) is bounded by 3. For an arbitrary positive delay
τ , the quasipolynomial (3.15) admits a real spectral value at s = s± with algebraic
multiplicity 3 if, and only if,

s± =
−τ α2,1 − 4±

√
8 + τ2δ

2 τ
,

and the system parameters satisfy

(⋆±)


β1,1 = (α2,1s± +

α2,1
2

2
− δ

2
+

6α2,1 + 10 s±
τ

+
6

τ2
)eτs± ,

β2,1 =

(
2 s0 + α2,1 +

2

τ

)
eτs± .
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If (⋆+) is satisfied then s = s+ is the spectral abscissa corresponding to (3.15).
Furthermore, the trivial solution is asymptotically stable if, and only if, τ satisfies
the following conditions

τ ∈]0, τ−[ when α1,1 < −a,

or

τ ∈]0, τ−[∪]τ+, ∞[ when α1,1 > −a and α2,1 < 0,

where τ± =
−α2,1±

√
δ+2α1,1+a

α1,1+a .

For instance, choosing α1,1 = −a− 1 and α2,1 = 1, we define the rightmost root
of (2.4) as a function of the delay τ as illustrated in figure 3.

Figure 3. The spectral abscissa of (2.4) as a function of the delay
τ where α1,1 = −a− 1 and α2,1 = 1.

For further discussions on the MID property in second-order delay, the reader
may consider [11].

As a numerical example, we choose m = 0.5 Kg and M = 5 Kg and a time delay
τ = 0.1s. By setting the observer matrices to the latter computation, we obtain

L =

[
−2.0732

1

]
and T =

[
10.803
4.453

]
The initial conditions are given by X(0) = [0 0.5]T . Figure 4 shows the conver-

gence of the estimation state vector to its real values.

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0 0.5 1 1.5 2 2.5 3 3.5 4

-1

-0.8

-0.6

-0.4

-0.2

0

Figure 4. Evolution of the state vector X(t) (—) and its estimation X̂(t)

(- -) with τ = 0.1s.
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4. GMID in the design of Reduced order observer design

4.1. Problem Formulation. For both systems (3.1) and (3.3), we propose to
design a reduced order functional observer, allowing to estimate the states z(t) and
described by the following system

η̇(t) = Nη(t) +Ndη(t− τ) +My(t) +Mdy(t− τ) + Fu(t)(4.1a)

ẑ(t) = η(t) + Ey(t)(4.1b)

where η ∈ Rr. ẑ ∈ Rr is the estimate of z = Lx(t). Without loss of generality, we
assume that rank(L) = r ≤ n. The matrices N , M , Nd, Md, F and E are unknown,
which should be determined later such that the estimation of the states ẑ converge
to its real values z.

Notice that, in the case of system (3.3), the term Fu(t) in the observer dynamic
system becomes Fu(t− τ) with the aim to guarantee the unbiasedness of the error
dynamics in the sequel.

Let us note e(t) = z(t)− ẑ(t) = Ψx(t)−η(t), where Ψ = L−EC. The estimation
error dynamics is described by the following system

ė(t) = Ne(t) +Nde(t− τ) + (ΨA−NΨ−MC)x(t)

+ (ΨAd −NdΨ−MdC)x(t− τ) + (F −ΨB)u(t)(4.2)

Proposition 3. The dynamical system (4.1) represents an observer for both time-
delay systems described by (3.1) and (3.3), if and only if the dynamic error system
given by

ė(t) = Ne(t) +Nde(t− τ)(4.3)

is asymptotically stable and the following equations hold

F −ΨB = 0

ΨA−NΨ−MC = 0

ΨAd −NdΨ−MdC = 0

Proof 3. Let us compute the dynamics of the estimation error, as follows:

ė(t) = Ψẋ(t)− η̇(t)

= ΨAx(t) + ΨAdx(t− τ) + ΨBu(t)−Nη(t)

−Ndη(t− τ)−My(t)−Mdy(t− τ)− Fu(t)

By adding and substracting the terms ±NΨx(t) ± NdΨx(t − τ), system (4.2) is
obtained. By cancelling terms which depend on the state vector x(t) and of the
input vector u(t), one can obtain system (4.3). This latter system needs to be
stable, to ensure the convergence of the estimation error e(t) to zero. □

The first step for the stability analysis of the estimation error is to guarantee
the unbiasedness of system (4.2). In other words,we have to put the terms which
do not depend on the error equal to zero. Thus, the matrix F had to be chosen as

(4.4) F = ΨB

and the following Sylvester equations must hold

ΨA−NΨ−MC = 0(4.5a)

ΨAd −NdΨ−MdC = 0(4.5b)
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4.2. Existing condition of the proposed observer. To ensure the unbiasedness
of the observer, the Sylvester equations described by (4.5) should be verified.

Using the expression Ψ = L− EC, the Sylvester equations are rewritten as

LA = NL+KC + ECA(4.6a)

LAd = NdL+KdC + ECAd(4.6b)

where K = M −NE, and Kd = Md −NdE.
It’s clear that these Sylvester equations (4.6) can be written in the following

compact form

(4.7) V = XW

where V and W contain the known matrices such as

V = [LA,LAd]

W =


L 0
0 L
C 0
0 C

CA CAd


and X is the matrix of the unknown observer’s matrices to be designed, described
as follows

X = [N,Nd,K,Kd, E]

Equation (4.7) admits a solution if and only if the following rank condition is
satisfied

(4.8) rank(W ) = rank([V T ,WT ]T )

and, by defining ℓ = 2(r + p) + p, the general solution is given by

(4.9) X = VW † + Z(Iℓ −WW †)

where Z is an arbitrary matrix with appropriate dimension, which will be chosen in
order to satisfy the convergence of the estimation errors and W † is any generalised
inverse of W , which fulfils the following equation [42]

(4.10) W = WW †W

Then, the observers matrices can be expressed through a single gain matrix Z
as

(4.11)
[
N Nd K Kd E

]︸ ︷︷ ︸
X

=
[
N1 Nd1 K1 Kd1 E1

]︸ ︷︷ ︸
VW †

+ Z
[
N2 Nd2 K2 Kd2 E2

]︸ ︷︷ ︸
Iℓ−WW †
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In other words:

N = N1 + ZN2 = VW †RN + Z(Iℓ −WW †)RN(4.12a)

Nd = Nd1 + ZNd2 = VW †RNd
+ Z(Iℓ −WW †)RNd

(4.12b)

K = K1 + ZK2 = VW †RK + Z(Iℓ −WW †)RK(4.12c)

Kd = Kd1 + ZKd2 = VW †RKd
+ Z(Iℓ −WW †)RKd

(4.12d)

E = E1 + ZE2 = VW †RE + Z(Iℓ −WW †)RE(4.12e)

with

RT
N = [Ir 0r×r 0p×r 0p×r 0p×r]

RT
Nd

= [0r×r Ir 0p×r 0p×r 0p×r]

RT
K = [0r×p 0r×p Ip 0p×p 0p×p]

RT
Kd

= [0r×p 0r×p 0p×p Ip 0p×p]

RT
E = [0r×p 0r×p 0p×p 0p×p Ip]

4.3. Stability of the estimation error. Since the unbiasedness conditions given
in section 4.2 are satisfied, the dynamic of the estimation error satisfies equation
(4.3) and may be rewritten in the following form

ė(t)−Ne(t)−Nde(t− τ) = 0(4.13)

So that the characteristic function associated ∆ : C× R+ → C is given by

∆(s, τ) = |sIn −N −Nde
−τs|(4.14)

Hence, the error system is characterised by the quasipolynomial function with the
form of equation (2.4) where the polynomial P0 is given by:

P0(s) = |sIn −N | = nns
n + nn−1s

n−1 + . . .+ n1s+ n0

In order to check the stability of the estimation error, we assume that

Assumption 3. rank(Nd) = 1.

Notice that this latter assumption is simular to assumption 1, which ensure that
the quasipolynomial ∆ (described by (4.14)) involves a single delay.

In section 3, the intermediate MID property has been exploited for the design
of observer through the result of [5] restricting the observer design to the following
additional assumption 2. The use of the GMID property allows to relax such an
assumption by using the result from [9].

Now we are able to formulate and prove the following result.

Theorem 4.1. Consider that Assumption 3 holds and let a negative s0 be a multiple
root of (4.14) with the maximal multiplicity, then the estimation error described by
(4.13) is exponentially stable with s0 as decay rate and the estimation states vector
converge to its real value.

Proof 4. Since condition 4.8 holds, the error dynamics is written under equation
(4.3). Under the assumption 1, the quasipolynomial (4.14) is a particular case of
(2.5). Thus, following Theorem 2.1, a root s0 of ∆ is necessarily dominant. So
that, it corresponds to the exponential decay of (4.13). □
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Algorithm 1: Reduced order observer design

Compute the matrices N1, N2, Nd1, Nd2 using equations (4.12)
Compute the characteristic polynomial corresponding to the error system ,
Consider assumption 1,
Solve the characteristic polynomial in function of the matrix Z,
Tune the matrix Z,
Deduce the observer matrices N , Nd, M , Md, F and E.

4.4. Illustrative examples. We illustrate our reduced observer design for the
estimation of the intake manifold pressure and the compressor power in a diesel
engine described with a LTI system with delay in the state and the estimation of
the speed in a two-finger robot hand described with a LTI system with input delay.

4.4.1. Systems with state delay : Diesel Engine. A diesel engine with an exhaust
gas recirculation (EGR) valve and a turbo-compressor with a variable geometry
turbine (VGT) was modeled in [28]. The system is subjected to intake-to-exhaust
transport delay. A LTI time-delay model is obtained by linearizing the original non-
linear model under the assumption that the engine operates at a constant speed N
= 1500 RPM. This model is described as

ẋ(t) = A0x(t) +A1x(t− τ) +Bu(t)(4.15a)

y(t) = Cx(t) = [0 1 0]x(t)(4.15b)

where A0 =

−27 3.6 6
9.6 −12.5 0
0 9 −5

, A1 =

 0 0 0
21 0 0
0 0 0


and B =

0.26 0
−0.9 −0.8
0 0.18

 and τ is given as 0.06s at this particular operating point.

The state variables are defined as intake manifold pressure (x1), exhaust manifold
pressure (x2), and compressor power (x3). Furthermore, the system has two control
inputs in which u1 is an input for the EGR valve openning and u2 is an input for
the VGT mass flow rate.

The model includes intake-to-exhaust transport delay τ = 60ms when engine
speed is 1500 RPM. Due to the time-delay assignable to the transport time of
the gas from intake to exhaust manifold, the system is represented a DDE as in
Equation (4.15). Since the observability matrix is full rank matrix, system (4.15)
is observable and the corresponding quasipolynomial function is given by

∆(s, τ) = det(sIr −N −Nde
−τs)

= det(sIr − (N1 + ZN2))− (Nd1 + ZNd2)e
−τs(4.16)

where r = 2, P0(s) is with order 1 and P1(s) is with order 2. The matrix Z is tuned
to get assumption 1.

For instance, choosing Z as :

Z =

[
x 0 0 0 0 0 0
0 0 y 0 0 0 z

]
one can define the rightmost root s0 of (4.16), with a maximal multiplicity 4, as a
function of the delay τ as shown in Figure 5. To show the convergence of the states
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Figure 5. The spectral abcissa of (4.16) as a function of the delay τ .

estimation to their real values, we choose Z with the following numerical values :

Z =

[
−170 0 0 0 0 0 0
0 0 −150 0 0 0 100

]
For the simulation, the initial states are chosen as x(0) =

[
0.3 0.2 −0.3

]T
and

z(0) =
[
0 0

]T
. As shown in Figure 6, the error e(t) of the states and their

estimation converge to zero in a short span of time. Thus, the observer reveals
satisfactory performance.

0 0.5 1 1.5 2

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

Figure 6. Evolution of the errors between the system’s states and
their estimations.
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4.4.2. Systems with input delay : Two-finger robot hand. This example considers
a practical master-slave tele-operated system by a two-finger robot hand, where
the fingers are driven by DC servomotors and a belt-pulley mechanism. Due to the
transmission delay between the master and the slave in the forward path, the control
input at the slave side is subject to a delay τ = 1s By ignoring the disturbance effects
coming from the spring and the delay in the backward path, the mathematical
model of the two-finger robot hand is given as follows

ẋ(t) =

[
0 −1
0 26

]
x(t) +

[
0
4.5

]
u(t− τ)(4.17a)

y(t) = Cx(t) = [1 0]x(t)(4.17b)

The DC servomotor rotation angle is measured by a rotary encoder, and the finger
displacement x1(t) can be obtained by multiplying the pulley radius by the rota-
tion angle. However, in teleoperation of the control system, we need to have also
information of the slave finger velocity. Thus, we call the reduced order observer to
estimate the speed x2(t) = ẋ1(t) of the finger. The resolution of the charactristic
function associated to the error system gives the spectrum distribution in Figure 7
with a choice of a matrix Z = [0, z1, 0, 0, z2]. By tuning z1 = −100 et z2 = 25, the
obtained observer is given by

η̇(t) = −25.5η(t) +−2.210−14η(t− τ) + 12.75y(t) + 1.110−14y(t− τ) + 4.5u(t− τ)

ẑ(t) = η(t)− 0.5y(t)

Figure 7. Evolution of the errors between the system’s states and
their estimations.

The simulation of both the observer and the system is given in Figure 8, which
shows the convergence of the estimated speed of the finger ẑ(t) exponentially to the
actual speed x2(t) = ẋ1(t). The control input chosen as u(t) = 0.45+0.01 sin(t) with
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transport delay τ = 1s. The initial conditions are chosen such that x(0) = [0.5, 0]
and η(0) = 0.

0 1 2 3 4 5

-0.15

-0.1

-0.05

0

0.05

0.1

Figure 8. Evolution of the errors between the system’s states and
their estimations.

5. Conclusion

In this paper, The use of partial pole placement in the design of observers has
been developed. Two types of delayed systems have been considered, systems with
delayed states and systems with delayed inputs. Under sufficient conditions, the
stability of the estimation error systems has been proved in both cases exploiting the
MID and the GMID property. To summarize, the GMID idea may be particularly
adapted for tuning low-complexity controllers, i.e., controllers including a small
number of parameters (including also the delay among the parameters) with a
guarantee on the location of the remaining characteristic roots for the closed-loop
system. Finally, numerical examples are provided to illustrate the design procedure,
practicality and effeciency of the proposed approach for each study case.
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