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Abstract
Orogenic processes encompass a complex interplay of deformation and metamorphic events, which can impact the for-
mation of ore deposits to various degrees. However, distinguishing fluid signatures from orogenic versus post-orogenic 
events presents a significant challenge due to the scarcity of robust geochemical indicators that remain unaffected during 
multiple post-mineral reworking events. This study carefully examines the properties and chemistry of primary and sec-
ondary fluid inclusions (FIs), identifying distinct signatures of two fluid populations linked to different styles of Pb-Zn 
mineralization in the Pyrenean Axial Zone (PAZ) of Southern-France/Northern-Iberia: These included late-Carboniferous 
stratabound epigenetic Pb-Zn deposits and Mesozoic crosscutting Pb-Zn(-Ge) vein systems. Population (I) is identified 
in primary and secondary FIs in a few crosscutting Pb-Zn veins and constitutes a minor component in stratabound epi-
genetic bodies. It exhibits Na-dominated low to intermediate salinity (< 20 wt% NaCl eq.), intermediate temperatures 
(200–350 °C), abundant CO2-rich FIs and shows low homogeneous Cl/Br molar ratios. These characteristics are consis-
tent with a metamorphic origin of the fluids, associated with Late-Variscan metamorphism. Population (II) is commonly 
observed in the crosscutting vein systems where it occurs as primary and pseudosecondary FIs, as well as in stratabound 
epigenetic bodies where it represents the main fluid component of secondary FIs. Population (II) is Ca-dominated with 
intermediate to high salinity (15–35 wt% NaCl eq.), relatively low temperature (< 200 °C), and shows high Cl/Br molar 
ratios with significant variations. This last characteristic is typical of mixing of at least two fluids, one with a probable 
low Cl/Br molar ratio at shallow crustal levels and another with high Cl/Br molar ratio at deeper levels. Characteristics of 
population (II) are consistent with a fluid of basinal origin that interacted with the basement while circulating in the Pyr-
enees during the Mesozoic, although a Pyrenean-Alpine age cannot be excluded. Locally, in sphalerite-hosted secondary 
FIs that form trails in the crosscutting veins, we find evidence of high Ge concentrations (up to few 1000s ppm), which 
correlate with anomalous Pb and Tl concentrations. Very high metal concentrations (up to 1–2 wt% Pb, Zn), which are 
inversely proportional to Cl/Br molar ratios, are found in FIs mainly within veins hosted in deep-seated high-grade meta-
morphic rocks. Based on a compilation of fluid data from the literature, a first-order correlation can be deduced between 
the metamorphic grade of the rocks hosting the mineralization and the Pb and Zn content in the FIs. Early stratabound 
orebodies are considered likely sources of metal for the development of the late crosscutting vein mineralization. This 
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Introduction

Orogens are built during a series of tectono-metamorphic 
events that range from early subduction-collision to late-
orogenic extensional as well as post-orogenic stages (Leach 
and Rowan 1986; Oliver 1986; Rauchenstein-Martinek et 
al. 2014; Burisch et al. 2022; Song et al. 2023; Bertauts et al. 
2024). All these events promote the circulation of many dif-
ferent types of hydrothermal fluids, from high-grade meta-
morphism to metasomatism and depositing metals in deep 
to shallow crust. It is thus a challenging task to track the 
origin of these fluids in polyphased orogens and to link them 
to a specific tectonic event.

Analyzing paleo-fluids, trapped as mineral-hosted fluid 
inclusions (FIs), is an approach that is commonly used to 
untangle fluid signatures and reconstitute tectonic evolution 
(Wilkinson et al. 2009; Fusswinkel et al. 2013; Burisch et 
al. 2016b). However, orogens may be extremely complex 
systems where fluids and minerals are subject to orogenic 
and post-orogenic modifications related to fluid-rock inter-
action, rock buffering and superimposed fluid flow (Oliver 
1986; Dewaele et al. 2004; Fusswinkel et al. 2017, 2022). 
Fluid inclusions can suffer from remobilization/re-equil-
ibration during multiple metamorphic events, resulting in 
data that rarely reflect a fluid’s primary signature and make 
genetic interpretation extremely challenging (e.g., Gold-
stein 1994; Yardley 2005; Fall and Bodnar 2018). Nonethe-
less, a number of components that are present in FIs can 
withstand fluid-rock interactions. An example of these are 
the halogens chlorine (Cl) and bromine (Br), whose system-
atic characteristics have served as successful tracers of fluid 
processes (Walter et al. 1990; Kesler et al. 1995; Fusswinkel 
et al. 2018; Scharrer et al. 2023). This is particularly evident 

in distinguishing between seawater evaporation and halite 
dissolution in modern analogues of paleo fluid-dominated 
environments (Kesler et al. 1995; Banks et al. 2000). The 
Cl/Br ratio has also been instrumental in distinguishing the 
circulation of metal-depleted basinal brines with high Cl/
Br ratios in the upper crust from fluids at deeper crustal lev-
els, which exhibit low Cl/Br ratios and are relatively rich in 
metals (800–1000 ppm Pb + Zn; Bons et al. 2014). In this 
scenario, the metal content of the fluid is inversely propor-
tional to its Cl/Br molar ratio, though the precise origin of 
the metals remains elusive. Nonetheless, several studies 
have emphasized the role of hot fluid-flow in metamor-
phic rocks and interaction with minerals in mobilizing base 
and critical metals (Tomkins 2007; Hammerli et al. 2015; 
Kunz et al. 2022). While the Cl/Br ratio systematic could 
be complemented by iodine measurements to better dif-
ferentiate between basinal and metamorphic fluids, iodine 
concentration in FIs is challenging to measure and remains 
insufficiently studied (Fusswinkel et al. 2018; Scharrer et 
al. 2023).

Mineral deposits are geological objects genetically 
linked to intense fluid activity, making them ideal case stud-
ies for investigating fluid flow in orogenic settings (Bons 
et al. 2014; Fontboté et al. 2017; Burisch et al. 2022). Ore-
forming fluids tend to selectively flow through discontinui-
ties such as faults, shear zones, lithological interfaces, or 
other zones of weakness in the Earth’s crust. A frequently 
observed and extensively documented mineral deposit type 
within orogenic terranes, consists of crosscutting veins con-
taining substantial reserves of lead and zinc (Laznicka 2006; 
Wilkinson 2013; Müller and Ehle 2021; Luo et al. 2022). In 
western European terranes, such epigenetic deposits are fre-
quently related to extensional Mesozoic events (Muchez et 
al. 2005; Guilcher et al. 2021; Burisch et al. 2022). Probably 

study demonstrates the significance and complexity of orogen-scale fluid circulation and supports the importance of pre-
existing metal enrichment in the crust, especially in high-grade metamorphic rocks as a prerequisite for the formation of 
Pb-Zn veins in complex multi-stage orogens.

Highlights
	● Two fluid populations with distinct fluid inclusion types, salinity, temperatures, Ca-Sr and halogen concentrations.
	● Population (I) has a low to medium salinity and high temperature (250–350 °C).
	● Population (II) has a medium to high salinity and low temperature (< 200 °C).
	● The low Cl/Br molar ratios in population (I), along with its Ca-poor and CO2-rich characteristics, are indicative of meta-

morphic fluids.
	● The high and variable Cl/Br molar ratios in population (II), along with its Ca-rich and CO2-poor characteristics, evidence 

a major basinal fluid flow.
	● Correlation between metamorphic grades, Pb-Zn concentration in fluid and Cl/Br ratio.
	● Germanium is locally observed concentrated in Pb-Tl rich sulfosalts phases hosted in FIs trails that intersect deformed 

sphalerite.

Keywords  Fluid inclusions · Orogeny · Pb-Zn mineralization · Remobilization · Sulfide · Pyrenean Axial Zone
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the most significant European occurrence of Pb-Zn cross-
cutting vein deposits is within the Southern-France/North-
ern-Iberia district (Fig. 1A), with resources of about 10 Mt 
of Zn and Pb (Leach et al. 2006). Nevertheless, the origin 
of the mineralizing fluids forming these Pb-Zn veins and the 
timing of their circulation remain unclear. This controversy 
has sparked a debate, giving rise to two potential scenarios: 
fluid flow and mineralization occurring either during peri-
ods of extension or during periods of shortening (Muchez et 

al. 2005; Leach et al. 2006; Cathelineau et al. 2021; Burisch 
et al. 2022; Giorno et al. 2022; Song et al. 2023; Bertauts et 
al. 2024).

In the core of the Southern-France/Northern-Iberia dis-
trict (Fig. 1A and B), the Pyrenean Axial Zone (PAZ) is a 
typical example of a belt that has recorded two major oro-
genic periods, separated by Mesozoic rifting. The first event 
is related to the Variscan orogeny (Carboniferous-Permian), 
while the second took place during the Alpine orogenic 

Fig. 1  A. Simplified structural map of the Pyrenean chain in Western 
Europe, hosting the Southern-France/Northern-Iberia Pb-Zn district, 
stretching from the Atlantic Ocean to the Mediterranean Sea (spatial 
data from BRGM [http://infoterre.brgm.fr] and IGME institutes [http:​​​
//map​as.i​gm​e.es/Se​rv​icios/d​efault.aspx]). The deposits studied are 
shown in red. An inset locates the area shown in A in Europe; B. A 
schematic, hypothetical N-S section through the Pyrenean Axial zone, 
illustrating the structural position of the stratabound epigenetic and 
crosscutting vein deposits (not to scale). For Victoria and Pale Bidau 
districts, multiple orebodies are identified by a letter referring to: Pale 
Bidau district: a-Pale Bidau vein 1; b-Pale Bidau vein 2; c-Argut-des-

sus; d-Pale de Rase; Victoria district: e-Victoria mine; f-Margalida; C. 
Outcrop photograph of stratabound epigenetic Pb-Zn mineralization 
in the Victoria mine. Mineralization is hosted in high-grade metamor-
phic schists (andalusite, staurolite, gahnite), is generally sub-parallel 
to S0-S1 foliation and folded by F2 upright to isoclinal folds, with sub-
vertical S2 superimposed on mineralization; D-E. Two Pyrenean vein 
systems crosscutting S0-Variscan S1 foliation and parallel to Variscan 
S2 cleavage. The superimposed cleavage observed in sphalerite is 
newly interpreted as Alpine in age. In (D), sphalerite quartz vein from 
the Pale Bidau deposit is hosted in low grade metamorphic schists. In 
(E), sphalerite quartz vein from the Arre deposit is hosted in limestone
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by Roedder (1984), using a Linkam THMGS 600 heating–
freezing stage mounted on a BX-51 Olympus microscope. 
The stage was calibrated using synthetic pure H2O FIs (0° 
and 374.1 °C) supplied by SynFlinc and natural pure CO2 
inclusions (− 56.6  °C) from Camperio (Ticino, Switzer-
land). The accuracy of measurements is ± 0.2 °C below ∼
0°C and ± 1 °C above 0 °C. Homogenization temperatures 
were measured at 1 to 5 °C/min heating rates, depending on 
the inclusion size. Cryogenic experiments were carried out 
before heating to reduce the risk of decrepitating the inclu-
sions. Melting temperatures of ice, hydrohalite and eutectic 
estimations (respectively, TmICE, TmHH and TFIRST

−
M) in 

FIs were repeated during several runs for accuracy. Fluid 
salinity data, expressed as wt% NaCl eq.  or wt% CaCl2 
eq., were calculated for aqueous FIs using the H2O-NaCl 
(Steele-MacInnis et al. 2011) and H2O-NaCl-CaCl2 (Steele-
MacInnis et al. 2012) spreadsheets for aqueous FIs and the 
H2O-NaCl-CO2 spreadsheet of Steele-MacInnis (2018) for 
CO2-bearing FIs.

LA-ICP-MS analyses were carried out to quantify major, 
minor and trace element concentrations of FIAs. These anal-
yses were performed at ETH Zurich using the ETH-proto-
type GeoLas system equipped with a 193 nm ArF-Excimer 
Compex 102 F laser ablation system (Lamba Physik-Coher-
ent, Germany) coupled to a Nexion2000 (PerkinElmer, 
USA/Canada) fast-scanning quadrupole ICP-MS for multi-
element analysis. Five sample chips were analyzed in a ca. 
5 cm3 round glass cell. Gas blanks and system contamina-
tion were minimized following the cleaning and setup pro-
cedures proposed by Schlöglova et al. (2017). The cell was 
fluxed with carrier gas consisting of high-purity (5.0 grade) 
He (1.1 L min−1). Sample gas consisting of 6.0 grade Ar (ca. 
1 L min−1) was admixed downstream of the ablation cell 
prior to injection in the plasma. The ICP-MS was optimized 
for maximum sensitivity on the entire mass range and low 
oxide rate formation (248ThO+/232Th + < 0.5%). The con-
tents of Na and Cl were calculated based on microthermo-
metric results. In order not to overestimate the Na content 
with respect to Cl, and to provide a balance between cations 
and anions, the sum of total cations was subtracted from 
the value of Na. Chlorine contents were calculated by sub-
tracting the total salinity obtained from microthermometry 
from the calculated Na contents. The amount of Cl associ-
ated with Ca in the form of CaCl2 (based on Ca content from 
LA-ICP-MS measurements) was added to total calculated 
Cl content. The glass standard NIST SRM 610 (Jochum et 
al. 2011) was used as a primary reference material except 
for Br. The Sca-17 scapolite standard (Seo et al. 2011) was 
used as the primary reference material for Br (ESM1). Both 
standards were analyzed with 40  μm pit size, repetition 
rates of 10 Hz and energy densities of ca. 5 J.cm− 2, during 
ca. 1 min measurement consisting of 30 s gas blank + 30 s 

period (Late-Cretaceous-Miocene) (Zwart 1979; Vergés et 
al. 2002). In the PAZ, Pb-Zn mineralization shows evidence 
of complex multistage formation (Reyx 1973; Pouit and Bois 
1986; Johnson et al. 1996; Cugerone et al. 2018b, 2021a, 
2024). A first mineralization stage consists of stratabound 
epigenetic veins that were emplaced and deformed during 
the Variscan orogeny (i.e., Late-Carboniferous U-Pb age on 
monazite; Bentaillou stratabound Pb-Zn deposit; Cugerone 
et al. 2022). These orebodies consist of replacement veins 
that are structurally and lithologically controlled, exhibit-
ing evidence of secondary remobilization, characterized by 
saddle-reef textures recurring in the cores of folds (Fig. 1C; 
Cugerone et al. 2018b). A second mineralization stage com-
prises epigenetic crosscutting veins (Fig. 1D and E) that, in 
addition to Pb and Zn, are enriched in critical metals such as 
Ge and Ga (Castroviejo Bolibar and Serrano 1983; Johnson 
et al. 1996; Cugerone et al. 2018b, 2020). These undated 
vein systems may locally intersect the earlier formed strat-
abound orebodies (Cugerone et al. 2018b).

In this study, we employ microthermometric and LA-
ICP-MS data from FI assemblages in several stratabound 
and vein orebodies from the PAZ to identify two distinc-
tive episodes of fluid flow, each characterized by specific 
metamorphic and basinal fluid signatures. We compare our 
findings with published data on similar mineralization types 
worldwide to develop a genetic model for these two major 
epochs of fluid circulation. Additionally, we discuss the sig-
nificance of these fluid-flow episodes in the formation of 
Pb-Zn deposits.

Analytical methods

Eight representative samples from the seven deposits stud-
ied were prepared (cf. details about the deposits studied 
below). They were sampled in the main mineralized sys-
tems of each deposit, and systematically contain sphalerite 
and/or galena. The eight samples selected were prepared as 
doubly polished Sect. (150 μm-thick) to carry out detailed 
FI petrography using a standard microscope as well as hot 
cathodoluminescence (CL). Fluid inclusion assemblages 
(FIA) were defined according to Goldstein and Reynolds 
(1994) and primary and secondary origin were identified 
using the criteria of Roedder (1984). Cathodoluminescence 
(CL) imaging was performed using a HC6-LM hot cathode 
system by Lumic Special Microscopes at the Géosciences 
Environment Toulouse (GET) laboratory at 14  kV and a 
current density of ca. 10 µA mm2 (Neuser 1995). Cathodo-
luminescence images were captured with a very-high sensi-
tivity Olympus XC10 camera.

Microthermometric measurements were performed at 
the GET laboratory, according to the procedures outlined 
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et al. 2018b). No significant hydrothermal alteration is 
observed around the orebodies. Sphalerite and galena fre-
quently occur as millimetric polygonal crystals, a texture 
suggesting static recrystallization with widespread presence 
of annealing twins and low amount of intra-granular duc-
tile deformation (Cugerone et al. 2024). Locally, sphalerite 
shows lobate textures and is more concentrated in the core 
of folds (saddle-reef) related to Variscan orogeny, which 
was interpreted to represent remobilization during Variscan 
stages (Fig.  3Cugerone et al. 2022). Quartz is frequently 
fractured and displays evidence of recrystallization with 
bulge nucleation (Fig. 3A-C). Minor occurrences of pyrrho-
tite and chalcopyrite are found in these two deposits with a 
notable absence of Ge-minerals.

Epigenetic crosscutting Pb-Zn veins were sampled at 
the Pale Bidau (Pale Bidau mine, Pale de Rase and Argut-
dessus mine) and at the Arre districts (Figs. 1D and E and 
2). These veins are subvertical and are interpretated to post-
date the stratabound Pb-Zn orebodies. They share a simi-
lar mineralogy and sphalerite texture with the sub-vertical 
veins that crosscut stratabound orebodies in the Liat deposit, 
Central Pyrenees (Cugerone et al. 2018b, 2022). In the Pale 
Bidau and Arre districts, the vein mineralogy mostly con-
sist of quartz, sphalerite, galena, pyrite, barite and graphite. 
At Pale Bidau, the vein system is generally parallel to the 
Variscan E-W S2 cleavage and hosted in upper-crustal lev-
els consisting of Late-Ordovician muscovite calc-schists, 
conglomerate and marbles (Fig.  1B and D) (Cugerone et 
al. 2018a). The Arre vein district is hosted in upper-crustal 
levels composed of Devonian low-grade metamorphic lime-
stone. In these veins, quartz is not significantly recrystal-
lized and is locally fractured (Fig. 3D-F). The main sulfide 
mineral observed in these crosscutting veins is sphalerite, 
which postdates quartz (Fig. 3D). Sphalerite shows a highly 
heterogeneous texture and chemistry, largely affected by 

ablation. Fluid inclusions in quartz were analyzed by slowly 
incrementing the spot size using an opening aperture (“iris 
diaphragm”) to prevent cracking (Guillong and Heinrich 
2007). Laser repetition rates of 10 Hz and energy density on 
sample of ca. 10 J.cm− 2 were applied. Sphalerite was ana-
lyzed with a laser repetition rate of 5 Hz and energy density 
of ca. 9 J.cm− 2. In total, 35 elements were measured with a 
dwell time of 5 ms for 7Li, 11B, 23Na, 25Mg, 29Si, 39K, 55Mn, 
85Rb, 88Sr, 93Nb, 133Cs, 138Ba, 140Ce, 203Tl, 208Pb, 74Ge, 
232Th, 238U, 10 ms for 34S, 35Cl, 43Ca, 57Fe, 63Cu, 66Zn, 75As, 
107Ag, 111Cd, 115In, 121Sb and 20 ms for 78Br. The elements 
Mg, Nb, Ce, Th, U, S, As, and In were not detected in the 
FIs. The total sweep time was 180 ms. Data were reduced 
with the SILLS software (Guillong et al. 2008), using the 
salinity determined by microthermometry as internal stan-
dard for the FIs and stoichiometric contents of major ele-
ments as internal standard to correct the contribution of the 
host mineral (Si for quartz and Zn-Fe for sphalerite).

Sampling strategy and characterization

Stratabound epigenetic Pb-Zn orebodies were sampled in 
the Victoria district, including Victoria mine and Margalida 
mine, and in the Crabioules district (Figs.  1B and C and 
2). These form structurally and lithologically controlled 
replacement veins hosted in lower-crustal levels (Fig.  1B 
and C). In Victoria, Ordovician high-grade metamorphic 
schist (andalusite, staurolite) host the mineralization, with 
local Zn-rich gahnite observed (Cugerone et al. 2018b). 
In Margalida, mineralization is hosted in highly deformed 
marble, in the damaged zone of the regional Bossòst fault 
(García-Sansegundo and Alonso 1989; Cochelin et al. 
2017), and in Crabioules, Pb-Zn mineralization is hosted in 
muscovite-biotite Ordovician schist (Pouit 1985; Cugerone 

Fig. 2  Major characteristics of 
quartz-hosted fluid inclusion 
(FIs) types from the studied 
deposits. All the photomi-
crographs are taken at room 
temperature (T°= 25 °C) except 
the L-LCO2 FIs with visible VCO2 
taken at T°= − 8 °C
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Fig. 3  Microphotographs of the studied samples in transmitted plane 
polarized light and in cathodoluminescence (CL). Sections used for 
cathodoluminescence and FIs analyses are from the same sample but 
in different thick sections (Abbreviations: Cal: calcite; Qz: quartz; 
Sp: sphalerite): A. Folded (Variscan F2 folds) sphalerite and quartz 
stratabound veins hosted in gahnite-schist from Victoria. Note the FIs 
trails close to the dislocated sphalerite bodies in the F2 fold hinge; B-
C. Cathodoluminescence and transmitted cross polarized light photos 
with early deformed quartz compared to sphalerite in stratabound min-
eralization from Victoria. Note in (B), the non-uniform tints of blue 
in quartz grains, opaque black color for sphalerite and orange color 

for a small crystal of calcite on the right; D. Crosscutting vein from 
Arre with sphalerite and quartz. Note the presence of late fractures 
crosscutting growth zones in quartz. These two textures host primary 
and secondary FIs, respectively. Sphalerite is also intensely fractured 
with local presence of FIs. E-F. Cathodoluminescence and transmit-
ted cross polarized light photos showing textural relationships between 
quartz, calcite and sphalerite at Arre. Growth zones in different quartz 
generations (I, II, III) differ by cathodoluminescence colors with tints 
of dark red to blue. Sphalerite shows an opaque black color with cath-
odoluminescence and is late compared to quartz
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In addition to quartz, FIs were also studied in sphalerite. 
However, FIs-bearing sphalerite crystals were only found 
at Arre (36 individual FIs in 7 FIAs). Here, sphalerite is 
composed of coarse parental grains and small recrystal-
lized grains. FIAs occur exclusively in the dark domains 
of the parental grains where they mostly consist of single 
inclusions aligned in fractures. The light domains, whether 
coarse or recrystallized crystals, are systematically devoid 
of FIs (Fig.  5E and F). Despite multiple efforts, micro-
scopic observations in coarse grains, both in visible and 
near infrared light, did not allow for proper identification of 
the phases present in the sphalerite-hosted FIs, as most of 
them remained opaque. It is considered that the opacity of 
FIs in sphalerite is due to the negative crystal shape of the 
inclusion vacuoles (Bonev and Kouzmanov 2002), which 
prevents the light to exit the FIs.

Based on petrography and microthermometry, we distin-
guished four types of FIs in quartz (Figs. 2, 4 and 5): (A) 
aqueous liquid-vapor FIs (L-VH2O) are < 40 μm in size and 
contain 10 to 15 vol% vapor. These were found in all cross-
cutting vein sites within primary to pseudosecondary FIAs, 
and in stratabound epigenetic orebodies only as secondary 
FIAs (Crabioules and Victoria; Fig. 2); (B) Liquid-vapor-
halite FIs (L-V-H) measure up to 60  μm in diameter and 
contain 10 to 15 vol% vapor and a small halite crystal occu-
pying 5 to 10 vol% of the inclusion volume. This type was 
only identified as secondary FIAs in quartz from stratabound 
epigenetic orebodies (Fig.  5A-C); (C) Aqueous-carbonic 
liquid-liquid FIs (L-LCO2) measure up to 40 μm and contain 
variable amounts of CO2 (20–80 vol%, optical microscopy). 
In quartz from stratabound epigenetic orebodies (Crabioules 
and Victoria district), these FIs form either secondary trails 
associated with L-V-H FIs or pluri-millimetric isolated clus-
ters (Fig. 5A-D). In crosscutting veins from Pale Bidau and 
Argut-dessus mines, L-LCO2 FIs are pseudosecondary in ori-
gin, and are associated with L-VH2O FIs (Fig. 5A and B), but 
in the Arre crosscutting veins, no L-LCO2 FIs were observed 
(Fig. 5C and D); (D) Vapor-rich inclusions (V) measure up 
to ∼  15  μm and are of primary origin in the Arre cross-
cutting veins. Similar inclusions were also observed in the 
stratabound epigenetic orebodies, where they are secondary 
in nature (Fig. 5C).

Microthermometric runs evidenced two compositional 
populations (Fig.  6), both of which observed in the strat-
abound epigenetic as well as in the crosscutting vein ore-
bodies (Fig.  6). Population (I) was found as primary to 
pseudosecondary FIAs from Pale Bidau veins and sec-
ondary FIAs from the Victoria district (Victoria mine and 
Margalida; Fig.  6A). It consists of aqueous (L-VH2O) or 
aqueous-carbonic (L-LCO2) FIs of low to intermediate salin-
ity (∼  1–18 wt% NaCl eq.). High ThCO2 (from 0 to 20 °C) 
were found in L-LCO2 FIs from Victoria, Crabioules and 

dynamic recrystallization. Coarse grains shows wide color 
variations from dark- to light-brownish domains in plane 
polarized transmitted light (Cugerone et al. 2020). Com-
pared to quartz, sphalerite has a “ductile” behavior and 
recrystallizes at relative low temperature (200–300  °C; 
cf., Cugerone et al. 2024). The light-brown regions in this 
mineral commonly show evidence of recrystallization with 
neo-formation of small pluri-micrometric crystals. The dark 
brown zones were only observed in the coarse parental 
grains and are enriched in Ge, Cu, and Ga (i.e., Cugerone et 
al. 2021a). This contrasts with the light sphalerite domains, 
which are significantly depleted in these elements (i.e.; < 
100 ppm Ge; Cugerone et al. 2021). Ge-minerals such as 
briartite (GeCu2(Fe, Zn) S4) are observed at the micro- and 
nanoscale (Fougerouse et al. 2023).

In the Pale Bidau, Pale de Rase and Argut-dessus cross-
cutting veins, quartz systematically precipitates prior to 
sphalerite. At Pale de Rase, quartz exhibits comparatively 
limited fracturing in contrast to the Pale Bidau and Argut-
dessus quartz. In these three crosscutting vein systems, 
sphalerite is essentially fine-grained, almost entirely recrys-
tallized, and has low Ge, Ga and Cu contents (i.e., < 20 ppm 
Ge). In contrast to the sphalerite found in the Arre veins, 
this sulfide recorded significant variations in Fe content (up 
to 2–4 wt% Fe), resulting in millimeter-size chemical zon-
ing, visible as light- to dark-brown bands that are unrelated 
to grain boundaries (Cugerone et al. 2018a). In addition, 
Ge-minerals such as brunogeierite (GeFe2O4) and argutite 
(GeO2) are found along sphalerite grain boundaries. They 
are commonly grouped in the more porous domain hosted in 
the main schistosity, which corresponds to the Variscan S2 
cleavage (Cugerone et al. 2021a, 2024).

Results

Fluid inclusion petrography and microthermometry

From the four districts studied, quartz grains were selected 
in close association with sphalerite. In quartz from strat-
abound epigenetic Pb-Zn orebodies (Victoria and Crabio-
ules districts), only secondary FIs assemblages (FIAs) were 
identified (Figs.  2 and 3A). Specifically, quartz from the 
Victoria mine is commonly observed with secondary FIs 
trails next to the sphalerite aggregates (Figs. 3A and 4). In 
crosscutting veins from Pale Bidau and Arre districts, quartz 
shows abundant growth zones containing primary and pseu-
dosecondary FIAs, as well as sealed fractures containing 
secondary FIAs (Figs.  2, 3D and 5A-D). A total of 383 
individual FIs, grouped in 68 FIAs, were analyzed in quartz 
from eight samples from the four districts studied (the full 
dataset is provided in the ESM1).
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L-V-H FIs in the Victoria and Crabioules districts within the 
same FIs trails (Fig. 4C) and show high ThCO2 (from 0 to 
20 °C). Only in this population (II), up to 6–13 wt% CaCl2 
eq. is reported, indicative of compositions belonging to the 
H2O-NaCl-CaCl2 system. Homogenization temperatures of 
L-VH2O FIs are moderate (ThAQ = 150–250 °C; Fig. 6A).

Fluid composition and halogen concentrations

In quartz and sphalerite, 230 individual FIs grouped in 91 
FIAs were analyzed by LA-ICP-MS to obtain composi-
tional information (full dataset is reported in ESM1). These 
results confirm the existence of two populations as already 

Pale Bidau districts associated with L-VH2O, whereas low 
ThCO2 (from − 45 to -30 °C) occur in clusters of L-LCO2 FIs 
in Victoria and Crabioules, isolated from L-VH2O or L-V-H 
FIs (Figs. 4A and 6B). Aqueous (L-VH2O) and aqueous-car-
bonic (L-LCO2) FIs have ThH2O and ThTOT reaching moder-
ate to high temperatures, respectively (200–350 °C; Fig. 6A 
and B). Population (II) is trapped as primary and secondary 
FIs in Arre veins, in secondary FIs in a Pale Bidau vein, 
and in secondary FIs in the Crabioules and Victoria strat-
abound epigenetic orebodies (Figs. 4, 5 and 6). It consists of 
aqueous (L-VH2O), aqueous with halite (L-V-H) of moder-
ate to high salinity (10–32 wt% NaCl eq.). Minor aqueous-
carbonic (L-LCO2) FIs were locally found associated with 

Fig. 4  Petrography of FIs in quartz from stratabound epigenetic min-
eralization (Abbreviations: Qz: quartz; Sp: sphalerite). All photomi-
crographs are taken in transmitted light: A. Secondary L-V-H FIs in 
secondary trails with small halite crystals and local clusters of L-VCO2 
FIs (Victoria (a), focus stacking); B-C. Secondary L-V-H FIs associ-

ated with L-VCO2 FIs in fractures (Crabioules; focus stacking). Zoom 
in (C) with no focus stacking shows association of L-V-H and L-VCO2 
FIs; D. Secondary FIs with association of L-V-H and L-VCO2 FIs in 
trails close to sphalerite (Margalida; focus stacking)

 

1 3



Mineralium Deposita

Fig. 5  Petrography of FIs in quartz (A-D) and in sphalerite (E-F) from 
crosscutting vein mineralization (Abbreviations: Qz: quartz; Sp: sphal-
erite). A. L-VH2O FIs filling fracture or occurring as pseudosecondary 
FIs associated with L-LCO2 FIs (Pale Bidau, focus stacking); B. Pri-
mary L-VH2O FIs associated with L-VCO2 FIs in growth zones. Minor 
L-V FIs are hosted in late-factures (Argut-dessus; focus stacking); C. 

Primary L-VH2O FIs associated with V FIs in growth zones (Arre); D. 
Secondary L-VH2O FIs aligned along fractures (Arre; stacked image). 
E. Dark and light domains in sphalerite with local late fracture (Arre). 
F. Zoom in sphalerite from area in (E), showing secondary FIs. Loca-
tion of LA-ICP-MS spots is mentioned and each LA-ICP-MS spot 
names are reported in ESM1

 

1 3



Mineralium Deposita

Fig. 6  Fluid inclusion microthermometric data obtained in quartz from 
stratabound epigenetic and crosscutting vein orebodies. Frequency 
histograms are also shown; A. Salinity vs. homogenization tempera-

ture for L-V-H and L-VH2O FIAs. a FIA; B CO2 homogenization tem-
perature vs. total homogenization (°C) for L-LCO2 FIAs
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characterized by intermediate to high NaCl-CaCl2 contents, 
high Sr/Ba ratio and high Cl/Br molar ratio with significant 
variations (14–2000). Our results suggest that the fluid rep-
resented by population (I) was the main mineralizing fluid at 
Pale Bidau, Argut-dessus, Pale de Rase, while the fluid rep-
resented by population (II) was responsible for depositing 
the ore at Arre (Figs. 6 and 8). This can be deduced from the 
fact that the two types of fluids were found in primary FIs, 
respectively in each of these deposits. However, in strat-
abound epigenetic orebodies, exemplified by the case of the 
Victoria, Margalida and Crabioules, we could not detect any 
primary FIA and both fluid types were detected only in FIAs 
of secondary origin (Figs. 6, 8 and 10A).

An enrichment in Ca and Sr in fluid (II) was not only 
found in samples from the marble-hosted deposit at Arre, 
but also at Crabioules and Victoria, which are hosted in 
schist. This infers that the Ca-Sr enrichment cannot be sim-
ply related to interaction of the fluid with the host rock, 
and that this signature is likely a regional mark, probably 
due to fluid flow within carbonate units at a regional scale 
(Fig. 8A and B). Both fluids have been shown to be enriched 
in metals (mainly Pb, Zn, Mn), however but they cannot be 
discriminated based only on their Pb and Zn concentrations 
(Fig. 8C). For FIs hosted in quartz at Arre (fluid II), micro-
thermometry and LA-ICP-MS data indicate similar NaCl-
CaCl2, Ca-Sr, and metal concentrations whether the FIs are 
hosted in growth zones (i.e., primary) or in fractures (i.e., 
secondary) (Fig.  9). At Arre, sphalerite postdates quartz 
(Fig. 3D), but the same fluid composition was found in FIs 
from both minerals, implying that a similar fluid system was 
active during the formation of quartz and sphalerite and con-
tinued during deformation of the latter. Presence of neck-
ing-down or any other evidence implying post-entrapment 
equilibration were not observed. Therefore, we interpret the 
similarity between the chemistry of primary and secondary 
FIs at Arre as indicative of comparable fluid-flow conditions 
and compositions from deposition to deformation.

Tracing fluid origin using halogen signatures

Identifying diagnostic geochemical indicators, such as the 
Cl/Br signature, enrichment in Na or Ca enrichment or the 
presence of CO2-rich FIs, is particularly useful for deter-
mining the origin of a fluid (i.e., metamorphic, basinal 
fluids) in complex orogenic systems. The Cl/Br molar 
ratio of population (I) is relatively homogeneous, suggest-
ing the presence of only one type of fluid. The low Cl/Br 
trend (Fig. 8D) is not consistent with a seawater or halite 
dissolution origin (Channer et al. 1997; Fusswinkel et al. 
2022). Such low Cl/Br molar ratio might be associated with 
repeated interactions between a fluid and the host-rock, as 
may occur during fluid flow through fine-grained infill in 

deduced based on microthermometric data. Population (I) is 
systematically depleted in Ca compared to population (II) 
(Figs. 7 and 8A). The two populations also differ in Sr and 
Ba contents, defining two distinct trends marked mostly by 
higher Ba values for the former (Fig. 8B). Both populations 
showed extremely high Pb and Zn contents in some cases 
(up to 1 and 2 wt%, respectively; Figs. 7 and 8C). The laser 
ablation time-integrated signals (Fig. 8A-B) shows that Pb 
and Zn peaks are slightly displaced compared to the main 
Na and Cl peaks, which appear upon FIs breach. This pat-
tern is indicative of the presence of nano to micro-sized 
solid inclusions that are ablated slightly after the fluid is 
vaporized. In both FIs populations, Pb and Zn concentra-
tions follow roughly a 1:1 mass ratio in all localities studied 
(Fig. 8C). In the one sphalerite crystals where FIs could be 
measured (at Arre), the inclusions locally exhibited remark-
ably high Ge concentrations, reaching up to few thousands 
of ppm Ge. In the time-integrated LA-ICP-MS signals, Ge 
spikes were systematically observed in the FIs intervals 
where high Ge values may or may not correlate with other 
metals (Pb, Tl; Fig. 7C-D).

Halogen data exhibit distinct signatures for populations 
(I) and (II). In Fig. 8D, normalized using Na and Cl val-
ues, population (I) shows low Cl/Br (52 ± 34) and Na/Br 
(51 ± 34; nFIAs = 9) molar ratios close to the 1:1 line. Popu-
lation (II) lies between the 1:1 and 10:1 lines, indicating Na 
loss related to significant Ca-rich FIs. Population (II) has 
high and variable Cl/Br (216 ± 200) and Na/Br (178 ± 174) 
molar ratios, with an upper Na-Cl-Br trend close to seawater 
composition (nFIAs = 45). Some data present large 1 sigma 
errors for the concentrations of metals, Cl and Br, possibly 
due to heterogeneous entrapment and presence of tiny solids 
in the FIs (Fig. 8D-E), which were not identified optically.

Discussion

Two distinct fluid populations in pyrenean Pb-Zn 
deposits

The findings from the FIs study, particularly the pat-
terns defined by FIs types (CO2-rich, halite-rich), salinity, 
homogenization temperatures, Ca-Sr-Ba concentrations 
and halogen concentrations underscore the existence of two 
FIs populations, occurring in both stratabound and cross-
cutting vein orebodies. This clearly implies the involve-
ment of distinct fluid types in the genesis of these deposits. 
Fluid inclusion population (I) shows medium to high tem-
peratures (200–350  °C), is rich in CO2, has low salinity 
(NaCl + CaCl2), low Sr/Ba ratio and low homogeneous Cl/
Br molar ratio (Figs.  6 and 8). Population (II) is indica-
tive of a low- to medium-temperature brine (< 250  °C) 
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On the other hand, the Cl/Br vs. Na/Br trend of popula-
tion (II) is typically Ca-rich (trend between 1:1 and 10:1) 
and is offset to the lower left from the SW reference in 
Fig.  8D, which is indicative of evaporation or other Br-
enriching processes such as residual evaporitic fluids 
(Kesler et al. 1995; Bons et al. 2014). Such huge Cl/Br com-
positional range (14–2000; Fig. 11) implies the presence of 
both a residual brine and a halite dissolution brine compo-
nent that underwent mixing processes, and certainly cannot 
be due to a single fluid type. Halite dissolution may have 
been inherited during fluid percolation in basement litholo-
gies, such as Triassic evaporitic levels of regional extent 
(Figs. 8D and 9A and B; Cathelineau et al. 2021). Compar-
ing our results from population (II) as well as those from 
published studies of another Pyrenean Pb-Zn vein deposit 
(Johnson et al. 1996) and compilation of data from fluids 
trapped in syn-orogenic Alpine quartz (Banks et al. 1991; 
McCaig et al. 2000), reveals striking similarities in salin-
ity, temperature, Na-Ca composition and Cl/Br signatures 
(Figs.  8D-E and 9A). Plotting Cl/Br vs. Na/Br data from 
the Southern-France/Northern-Iberia district as well as from 
the extensively studied carbonate-hosted deposits in the US 
and the Schwarzwald district in Germany, reveals several 
similarities in trends (Fig.  10B). This compilation show 
broadly comparable Cl/Br vs. Na/Br trends in late-Paleozoic 
to Mesozoic veins of several carbonate-hosted deposits in 
the US and the Schwarzwald district, as well as to several 
Pb-Zn districts in Spain (Maestrat and Basque-Cantabrian 
basins; Grandia et al. 2003a, b), syn-rift Early-Cretaceous 
metasomatism in the Pyrenees (Quesnel et al. 2019), and in 
the Cévennes basement in the Southern French Massif Cen-
tral (Leach et al. 2006). These trends are generally typical 
of basinal fluids and aligns with the signature of population 
(II), which supports the hypothesis that these mineralizing 
fluids originated from basinal fluids that interacted with 
basement rocks (i.e., Fig. 10B). While the absence of geo-
chronological data precludes speculation on the precise 
timing of mineralization (Fig.  9B), resemblances in fluid 
composition between primary FIs in quartz growth zones 
at Arre and secondary FIs in fractures related to late-Alpine 
sheer zones (Fig. 9B), including the presence of a Ca-rich 
system, poor content in L-LCO2 FIs and similar metal and 
halogen concentrations, could suggest an Alpine-related 
origin for population (II) and the corresponding crosscut-
ting veins (Fig. 10B). Nonetheless, circulation of mineral-
ized brines interacting with the basement (unconformity 
type; Bons et al. 2014) during widespread rifting events of 
Mesozoic age at Arre and similar vein systems cannot be 
excluded (e.g., Johnson et al. 1996).

cataclastic fractures (Burisch et al. 2016a). Alternatively, it 
could represent an influence on the fluid from Br-enriched 
organic matter during metamorphism (Miron et al. 2013; 
Fusswinkel et al. 2017, 2018, 2022; Scharrer et al. 2023). 
If the former is an unlike scenario given the settings of the 
deposits, sedimentary sequences in the PAZ commonly do 
contain abundant organic matter. For instance, in the Pale 
Bidau deposit, abundant graphite is found associated with 
sulfides (Cugerone et al. 2018b) and in Victoria, graphite 
is locally present in sphalerite-quartz vein. A compilation 
of FIs LA-ICP-MS data from metamorphic terranes in vari-
ous settings and basinal fluids (Fig. 10B) shows significant 
variations in the Na-Cl-Br signature, generally following 
the 1:1 line. This shows that the low Cl/Br signature related 
to Br enrichment is not, alone, a diagnostic indicator of a 
metamorphic fluid origin because a similar Br enrichment 
could occur in residual evaporitic brines (Fusswinkel et al. 
2022; Scharrer et al. 2023), which in our dataset is also con-
firmed by the presence of local Br-rich FIs in population (II)
(i.e., data with low Cl/Br and Na/Br values from Arre FIs; 
Fig. 8D and E). In the case where iodine measurements are 
not available as an additional constraint, other geochemi-
cal indicators become necessary (Scharrer et al. 2023). 
One such indicator is the fact that metamorphic fluids are 
generally Na dominated and commonly induce entrapment 
of CO2-rich FIs (Yardley and Bodnar 2014; Yardley and 
Cleverley 2015). In contrast, basinal fluids often show a 
significant Ca enrichment and lower amounts of dissolved 
CO2 (Bons et al. 2014). In our samples, population (I) is 
Na-dominated and frequently contains CO2-rich FIs, which, 
together with a low Cl/Br molar ratio, is strongly indica-
tive of a metamorphic origin. Such fluid may have perco-
lated through various organic-rich rocks, such as regional 
Silurian black-schist levels which are typically enriched in 
graphite, and formed most of the vertical veins in the Pale 
Bidau district. Although geochronological data are currently 
not available for these veins, no evidence for metamorphism 
has been reported in the literature for the PAZ during the 
Pyrenean-Alpine orogeny, with the possible exception for 
local Early-Cretaceous Mg metasomatism that only exhibits 
a Cl/Br molar signature typical of basinal fluids (100–500 
Cl/Br molar ratio; Quesnel et al. 2019; Fig. 10B). It is thus 
reasonable to suggest that fluid population (I) was related 
to the main Variscan metamorphic period that affected the 
PAZ (Zwart 1963; Mezger and Passchier 2003) during the 
Early-Permian.

Fig. 7  Time-integrated LA-ICP-MS signals for selected elements in 
quartz (A-B) and sphalerite (C-D). Concentrations in Zn are indicated 
for each quartz-hosted inclusion. A. Four FIs in stratabound epigenetic 
mineralization from the Victoria mine. B. One FI in crosscutting vein 
from the Arre deposit; C. Three FIs in crosscutting vein from the Arre 
deposit. D. One FIs in crosscutting vein from the Arre deposit
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Fig. 8  A. Relative proportions of Na-Ca-K for individual FIs; data are 
presented as mass concentrations. Date references: metamorphic fluid 
field: Marsala et al. 2013; Miron et al. 2013; Rauchenstein-Martinek 
et al. 2014, 2016; Fusswinkel et al. 2022; basinal fluids that interacted 
with basement rocks in Pb-Zn rich deposits: Heijlen et al. 2008; Stof-
fell et al. 2008; Wilkinson et al. 2009; Appold and Wenz 2011; Bouhlel 
et al. 2016; Mu et al. 2021; B. Relative proportions of K-Sr-Ba for 
individual FIs; data are presented as mass concentrations. C. Dia-
gram plotting Pb vs. Zn concentrations in all FIAs (FIs in sphalerite 
are not considered because of host-contamination for Zn). Published 

data for the Pyrenees (grey circles), with crush-leach data acquired 
in the Pyrenean-Alpine shear zones (Banks et al. 1991; McCaig et 
al. 2000) are also shown for comparison; D. Cl/Br vs. Na/Br (molar 
ratio) systematic for all FIAs from our study. Published data from 
Pyrenean shear zones (Banks et al. 1991; McCaig et al. 2000) and 
Cierco Pb-Zn deposit (Johnson et al. 1996) are also shown; E. Cl/Br 
vs. (Pb + Zn + Mn)/(Na + Ca + K) (mass ratio) diagram for all FIAs, 
with data from the Pyrenean-Alpine shear zones in gray for compari-
son (Banks et al. 1991; McCaig et al. 2000)
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(II) fluids are trapped as secondary FIAs in dark domains 
of coarse parental sphalerite grains. Comparing data from 
quartz- and sphalerite-hosted FIs shows higher Ge, Mn, 
Pb, Li, and Sb concentrations in inclusions from sphaler-
ite, values that are not due to contamination from the FIs 
host. Noteworthy, the occurrence of isolated, small corre-
lated Ge-Pb-Cl-K-(-Tl) spikes in the LA-ICP-MS signals 
are likely due to the presence of Ge-rich sulfosalt crys-
tals that precipitated inside the FIs (Fig. 7C and D), rather 
than indicating high amounts of Ge, Pb and Tl in solution 
as suggested by Sośnicka et al. (2023) in a study of Zn-Pb 

Lead, zinc and germanium mobility in orogenic and 
post-orogenic systems

Fluid inclusion studies, when coupled with detailed struc-
tural analysis, offer a valuable tool for tracking fluid-
assisted metal mobility in orogenic systems. By analyzing 
the composition and characteristics of FIs, it becomes pos-
sible to gain valuable insights into the nature of fluids that 
flowed through the system and on the mechanisms driving 
metal mobilization at different stages of tectonic activity. 
In the sphalerite sample from the Arre deposit, population 

Fig. 9  Comparison of element concentration data from FIs between: A. FIs in growth zones and fractures in Arre quartz (vein); B. FIs in sphalerite 
and quartz in Arre (vein); C. FIs in Victoria (stratabound) and Arre (vein) quartz; D. FIs in Pale Bidau and Arre quartz (vein)
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symbols in Fig.  11A and B, are clearly inversely propor-
tional to the metal content (Pb, Zn) in the fluids, excluding 
local variations related to fluid mixing.

In the Arre veins, which contain FIs population (II), metal 
concentrations (Pb, Zn) are relatively low (mostly < 100 
ppm; Fig.  8C). These veins are hosted in very low-grade 
metamorphic rocks (limestone) and were emplaced at upper 
crustal levels (Fig. 1B). In carbonate-hosted deposits formed 
by low-temperature basinal fluids that interacted with base-
ment rocks (< 250 °C), such as the Irish Pb-Zn deposits or 
some MVT deposits in the United States, Pb and Zn have 
similar concentrations (up to few 100s ppm) in quartz-
hosted FIs (Yardley 2005; Stoffell et al. 2008; Wilkinson 
et al. 2009). Such low concentrations are interpretated to 
be related to the significant uptake of metals from the fluid 
by precipitating sulfides (sphalerite, galena; Stoffell et al. 
2008; Wilkinson et al. 2009). In contrast, in the Victoria, 
Crabioules and Pale Bidau deposits, secondary FIs (Fig. 4; 
Cugerone et al. 2018b) of the population (I) and (II) are sig-
nificantly enriched in metals, probably in the form of micro 
to nanoscale Pb-Zn solid phases, imparting concentrations 
up to 1–2 wt% Pb and Zn to the fluid (Figs. 8C and 11A). 
These stratabound and crosscutting veins are hosted in mod-
erate- to high-grade metamorphic rocks (up to andalusite-
staurolite stability), which are indicative of deep crustal 
levels (Fig.  1B). Data from barren metamorphic quartz 
veins reported in the literature (Fig. 11B) indicate a simi-
lar depth/metamorphic grade dependency of metal tenor, 

mineralization from the North German basin. Albeit a corre-
lation is reported between Ge and Pb in Cu-poor colloform 
sphalerite (Luo et al. 2022; Sun et al. 2023), their chemical 
behavior in a fluid and incorporation mechanisms in sphal-
erite are not well understood. The sporadic occurrence of 
Ge-rich sulfosalts only in secondary FIs that are hosted in 
healed fractures crosscutting deformed sphalerite supports 
local, fluid-assisted remobilization of Ge. This probably 
occurred shortly after the redistribution of Ge in sphalerite 
which only caused the formation of Ge-Cu sulfides (briar-
tite; Fougerouse et al. 2023). Additional Ge input from an 
external source is not considered plausible because of the 
systematically low Ge concentrations (mostly < LOD) mea-
sured in quartz-hosted primary and secondary FIs from the 
same samples. Moreover, while these micro-fractures have 
been documented as being parallel to a Variscan cleavage 
trend in sphalerite, their age is undoubtedly Alpine rather 
than Late-Variscan as previously suggested. This conclu-
sion arises from the implication of a Mesozoic to Alpine age 
for vein emplacement, as clearly evidenced, for instance, at 
Arre (Cugerone et al. 2021a).

A compilation of LA-ICP-MS data from FIs providing 
metal contents (Pb, Zn; obtained by salinity normalization 
using Na + Ca + K) in basinal fluids that interacted with the 
basement (Fig. 11A) and from metamorphic quartz veins in 
various settings (Fig. 11B) shows a similar Pb-Zn correla-
tion with molar ratios ranging from 1:1 to 1:100. The Cl/
Br molar ratios, represented by the size of circle or triangle 

Fig. 10  A. Compilation of microthermometry data from the Southern-
France/Northern-Iberia district from the literature and this study. Data 
references: Banks et al. 1991Munoz et al. 1994, 1997, 2016; Johnson 
et al. 1996; Fanlo et al. 1998; Subias et al. 1999; McCaig et al. 2000; 
Grandia et al. 2003a, b; Leach et al. 2006; B. Literature compilation 
for Cl/Br systematics including LA-ICP-MS and crush-leach data for 
basinal fluids that interacted with basement rocks and quartz veins 
related to metamorphic fluids (field with light green color). Data from 

this study are also plotted with trends illustrated by dashed dark-green 
and blue lines. The low Cl-/Br signature related to Br enrichment is 
not, alone, a diagnostic indicator of a metamorphic fluid origin. Data 
references: Banks et al. 1991; Johnson et al. 1996; McCaig et al. 2000; 
Grandia et al. 2003a, b; Leach et al. 2006; Stoffell et al. 2008; Wilkin-
son et al. 2009; Fusswinkel et al. 2013, 2022; Marsala et al. 2013; 
Miron et al. 2013; Rauchenstein-Martinek et al. 2016; Quesnel et al. 
2019; Scharrer et al. 2023
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mineralized Pb-Zn veins, with higher Pb-Zn concentrations 
in fluids from veins located near Pb-Zn mineralization.

In population (II), the variations in Cl/Br molar ratio (not 
observed in population (I) combined with metal concentra-
tions in the fluid (Figs. 11 and 12), may reflect changes in 
mixing ratios between a deeper brine rich in metals and Br 

with barren quartz veins in high-grade metamorphic rocks 
typically containing higher metal concentrations. However, 
metal concentrations in barren quartz veins from high-
grade metamorphic setting also correlate with those found 
in low-grade veins from Arre. This discrepancy could be 
attributed to differences in metal stock between barren and 

Fig. 11  Compilation of Pb and Zn trace 
element data (LA-ICP-MS) from FIs in 
the literature compared with the data from 
this study (see ESM1 for full dataset). 
The Pb and Zn data are normalized with 
Na + Ca + K and presented in molar con-
tents. A. Comparison between data from 
this study and data from unconformity-
type deposits with close Pb-Zn ore. Data 
are generally included between the ratio 
Pb: Zn = 1 and Pb: Zn = 0.01. Data from 
Arre show similar Pb-Zn contents com-
pared to other unconformity-type deposits 
(Schwarzwald) but Victoria, Pale Bidau 
and Crabioules show higher Pb and Zn 
contents. Dataset references: McCaig et 
al. 2000; Heijlen et al. 2008; Stoffell et al. 
2008; Fusswinkel et al. 2013; Bouhlel et 
al. 2016; Mu et al. 2021; B. Comparison 
between metamorphic barren quartz vein 
and quartz vein close to Pb-Zn ore from 
our study. Fluid in barren quartz veins 
hosted in high-grade metamorphic rocks 
(> 400 °C) show higher Pb-Zn contents 
compared to barren quartz vein hosted in 
low grade metamorphic rocks (< 400 °C). 
Similarly, fluid from Victoria quartz veins 
hosted in high-grade metamorphic rocks 
show higher Pb and Zn content compared 
to Arre, Crabioules and Pale Bidau hosted 
in low grade metamorphic rocks. Dataset 
references: Miron et al. 2013; Rauchen-
stein-Martinek et al. 2016
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Fig. 12  Schematic cross-section based on Fig. 1B through the Pyre-
nean axial zone (PAZ) representing the two main fluid populations 
reported in this study. Location of the studied deposits is indicated as 
well as Cierco (Johnson et al. 1996). The main Paleozoic and Mesozoic 
lithologies are represented with superimposed deformation structures 

(thrust, S0-S1 foliation, S2 cleavage). On the right, general variations in 
Pb-Zn and Cl/Br ratio in fluid at crustal scale are represented. A rela-
tive timescale indicates the characteristics of the two fluid populations 
and their proposed chronology
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2016a). In the Pyrenees, numerous Variscan calc-alkaline 
magmatic stocks are found near mineralized veins. How-
ever, the significant metal enrichment (Pb, Zn) observed in 
metasedimentary rocks, associated with stratabound epi-
genetic Pb-Zn ore bodies across the PAZ (Cugerone et al. 
2018b), suggests a direct potential source for metal leaching 
into these crosscutting veins.

Conclusion

In the Pyrenean Pb-Zn deposits, two types of fluids with 
distinct FI population types, salinity, temperatures, Ca-Sr 
and halogen concentrations are identified. Population (I) is 
CO2-rich with a low to medium salinity and high tempera-
ture (250–350 °C), is Na-dominated with poor Ca content, 
and has a homogeneous Cl/Br ratio with rather low val-
ues. Population (II) shows a medium to high salinity and 
lower temperature (< 200  °C), is Ca-dominated and has a 
high Cl/Br ratio in average, although, significant variations 
suggest fluid mixing. Comparison with other deposits from 
the region and globally indicates that the characteristics of 
population (I), i.e., low Cl/Br ratio, abundant CO2-bearing 
FIs and Na-dominated, are consistent with a metamorphic 
origin for the fluid. In contrast, the Ca-dominated system 
with fewer CO2-bearing FIs and higher Cl/Br ratio typifying 
population (II), most likely reflects a basinal fluid that inter-
acted extensively with basement rocks, presumably during 
the Mesozoic or Alpine periods. In FIs from both population 
(I) and (II), Pb-Zn concentrations can reach up to 1–2 wt% 
Zn-Pb in high-grade metamorphic rocks and progressively 
decrease at shallower levels (lower metamorphic grades). 
Based on a compilation of data from metamorphic and 
basinal fluids, we propose a correlation between the metal 
content in the fluid and the metamorphic grade or crustal 
level of the host rock, which is inversely proportional to 
the Cl/Br ratio. In our samples, secondary FIs crosscutting 
deformed sphalerite locally contain high Ge concentrations 
which correlate with Pb and Tl, suggesting the formation 
of Ge-rich sulfosalts within the fluid. This indicates that Ge 
may have been remobilized from Ge-rich sphalerite dur-
ing deformation. This study highlights the importance of 
pre-existing metal enrichment in the crust, such as found 
in stratabound bodies and metamorphic rocks for the forma-
tion of Pb-Zn vein mineralization in multistage orogens.
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