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HECKE ALGEBRAS FOR p-ADIC REDUCTIVE GROUPS AND
LOCAL LANGLANDS CORRESPONDENCE FOR BERNSTEIN
BLOCKS

ANNE-MARIE AUBERT AND YUJIE XU

ABSTRACT. We study the endomorphism algebras attached to Bernstein compo-
nents of reductive p-adic groups and construct a local Langlands correspondence
with the appropriate set of enhanced L-parameters, using certain “desiderata”
properties for the LLC for supercuspidal representations of proper Levi subgroups.
We give several applications of our LLC to various reductive groups with Bernstein
blocks cuspidally supported on general linear groups.

In particular, for Levi subgroups of maximal parabolic of the split exceptional
group G2, we compute the explicit weight functions for the corresponding Hecke
algebras, and show that they satisfy a conjecture of Lusztig’s. Some results from
84 are used by the same authors to construct a full local Langlands correspondence
in [AX22]. Moreover, we also prove a reduction to depth zero case result for the
Bernstein components attached to regular supercuspidal representations of Levi
subgroups.
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1. INTRODUCTION

1.1. Background. Let F be a non-archimedean local field. Let G be a connected
reductive group defined over F', and G its group of F-points. Let M be the Levi
subgroup of a parabolic subgroup P of G.
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Let s = [M,o]g be the inertial class attached to the pair (M, o), where o is
a supercuspidal irreducible representation of M. Recall that this means that s is
the G-conjugacy class of (M, X, (M) - o), where X, (M) - o is the orbit of o under
X (M) —the group of unramified characters of M. Let B(G) be the set of such s’s.
We denote by Irr®(G) the Bernstein series of irreducible representations of G whose
cuspidal support lies in s (see §2.1 for a precise definition).

Let W denote the extended finite Weyl group Ng(sar)/M, where sy = [M, o],
and let WZ" be the stabilizer of z € Irr®™ (M) in W§. By [Sol22], there exists a
collection (f; ), of 2-cocycles for z € Irr®™ (M),

(1.1.1) ho: WE" x W5" — CX,
such that we have a bijection
(1.1.2) £ Irr*(G) — (Ier®™ (M) //WE )y,

where (Irr®™ (M)//W§), is a twisted extended quotient in the sense of [ABPS17a,
§2.1] (see 1.3.1 for the precise definition).

A parallel picture to (1.1.2) exists on the Galois side. Let Wr be the absolute
Weil group of F' and I its inertia subgroup. Let M be the Langlands dual group of
M, i.e. it is a complex Lie group with root datum dual to that of M. It is equipped
with an action of Wr, and we write “M := MV x Wg. The group MV acts on the
set of cuspidal M-relevant enhanced L-parameters for M—a terminology based on
Lusztig’s notion of cuspidal pairs (see Definition 3.1.8 for more details). Let ®$(M)
be the set of MV-conjugacy classes of cuspidal enhanced L-parameters for M.

Let Zpsv g, be the center of MY xIp. The group X (PM) = (ZMVMF)“’,VF, which
is naturally isomorphic to the group X,.(M) (see [Hail4, §3.3.1]), acts naturally
on the set of cuspidal M-relevant enhanced L-parameters for M. We denote by
sV = [FM, ¢c, 0c)gv the GV-conjugacy class of the orbit of (¢, 0.) € (M) under
the action of X, (*M). Let BY(G) be the set of such 5.

In [AMS18], the first author, with Moussaoui and Solleveld, constructed a partition—
a la Bernstein—of the set ®¢(G) of G-relevant enhanced Langlands parameters:

(1.1.3) e(G)= || @),
sVeBY(Q)

where ®"(G) consists of enhanced Langlands parameters for G whose cuspidal sup-
port lies in 5. Let M be a Levi subgroup of G and let s}, := [FM, ¢c, 0clpv €
BY(M). Analogous to the group side W§,, we denote by Wévv the stabilizer of s},

in Ngv(MVY)/MY, and by W&Y the stabilizer of y € O (M) in Wg. By [AMSIS,
Theorem 9.3], there is a bijection

(1.1.4) g8 B (G) —> (@ (M) [/ WE )Ly,

where the right-hand side (@ZX”(M )// ngv)Lu is a twisted extended quotient with
respect to a collection (Lt,), of 2-cocycles

(1.1.5) Ly WEY x WY — C.
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1.2. Main Results. Axiomatic setup: we suppose the existence of a map
g ™ (M) —  DY(M)
o = (@0, 00)
such that the following properties are satisfied for any o € Irr®™ (M):
(1) For any x € X, (M), we have

(1.2.1)

(@x@aa Qx@a) = Xv : (9007 Qa)y

where x + x is the canonical isomorphism X, (M) = X, (*M).
(2) For any w € W (M), we have

\
v (9007 QU) = (90“’07 Qwa)a
where w — w" is the canonical isomorphism W (M) = W (MV).
We suppose that the collections of 2-cocycles § and 'y satisfy the following

(1.2.2) Ly v =18, forany o €sand any x € Xp, (M)/Xne(M, ).
We establish the following result.
Theorem 1. (Theorem 3.1.32)

(1) There is a natural isomorphism

(1.2.3) e: I (M) //WE 5 O (M) //WE.
(2) The map
(1.2.4 €= (&) Toeod: Ir'(G) — @ (G)

is a bijection.

We suppose in the rest of this introduction that the group G splits over a tamely
ramified extension of F' and that the residual characteristic p of F' does not divide
the order of the Weyl group of G. Then there exists a compact mod center subgroup
Kpr of M and an irreducible representation p‘f\/[ of it such that o = ind%M p‘fw.

Let H*(G) denote the endomorphism algebra of the Bernstein progenerator of s
(see (2.1.5)) and let H(G, pp) be the intertwining algebra of an s-type (Kp, pp). We
prove in Proposition 2.1.58 that the algebras H*(G) and H(G, pp) are isomorphic.

From now on, we suppose that o is regular in the sense of [Kall9a], which allows
us to attach a supercuspidal Langlands parameter o,: Wr — “M to o. Applying
Theorem 1 to the map £°¥ : 0 — (p,, 1) as in (1.2.1), we obtain the following result:

Proposition 1.2.5. When the L-packet of o is a singleton, the properties (1) and
(2) are always satisfied.

On the other hand, the construction of Ky involves notably a depth zero su-
percuspidal irreducible representation ¢° of a Levi subgroup M° of a twisted Levi
subgroup G° of G. We denote by 5% = [M?, 0% 0 the inertial class of ¢°.

Suppose that p is good for G (in the sense of [Car93]) and does not divide the
order of the fundamental group of Gge;, and that the representation o is regular.
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Theorem 2. (Theorem 2.2.14) There is a bijection

(1.2.6) 0% I (G) — Irrso(GO),
which induces a bijection
(1.2.7) Irr(HS(G)) — Trr(H (GY))

between the sets of equivalence classes of simple modules for the algebras H*(G) and

7 (GO).

Theorem 2 proves the validity of [AM21, Conjecture 1.1], under the above as-
sumption on p, for all regular supercuspidal representations of M. The bijection o7,
is defined as

(1.2.8) 0% 1= (E850) F o1y 0 8,

where (Irr®m© (M) // Wé% )po is the twisted extended quotient with respect to a certain
collection §° of 2-cocycles, the definition of which is recalled in (2.2.13), and

(1.2.9) [y (Ire*™ (M) /W)y — (Irr*u0 (M) // W )0
is the isomorphism constructed in [AM21].

In Section 4, we study in greater detail the case when G is the exceptional group
of type Go. Recall that for split p-adic groups, the principal series case, i.e. M =T,
is due to [Roc98], therefore it suffices to consider the cases where M ~ GLy(F) is
a maximal Levi subgroup. The Go(F')-covers of the supercuspidal types in M were
computed explicitly in [Blo99] when M corresponds to the long simple root of G, and
in [Des21] when M corresponds to the short simple root of Gg, but the intertwining
algebras of these types were still unknown. We compute these intertwining algebras
later in §4.2.2, and in particular, by computing their parameters explicitly, we show
that they satisfy a conjecture of Lusztig’s in [Lus20, 1.(a)].

Acknowledgements. The authors would like to thank Maarten Solleveld for
valuable comments on a previous version of the manuscript. Y.X. was supported by
the National Science Foundation under Award No. 2202677 at MIT.

1.3. Notations and Definitions. Let I’ be a non-archimedean local field. Let op
denote the ring of integers of F, pp the maximal ideal in o and kr := op/pp the
residue field of F'. We assume that kg is finite and denote by ¢r its cardinality. Let
valp: F' — Z U {oo} be a valuation of F' and let vg the character of F'* defined by

vp(a) = qgvalF(a) for any a € F'*.

We fix a separable closure Fy., of F. Denote by Wr C Gal(Fyep/F) the absolute
WEeil group of F' and I its inertia subgroup. We denote by F},; the maximal unram-
ified extension of F' inside Fy, and by Frp the element of Gal(F,,/F) that induces
the automorphism a + a? on the residue field kr of Fy,. Then W = I x (Frg).
Let I;E denote the wild inertia group of F (i.e. the maximal pro-p open normal sub-
group of Ip). We have It = Gal(Fiep/F;) ~ Ir/I}:, where F; is the tame closure of
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F in Fyp. The group It is pro-cyclic and we denote by (r a generator of it. Let
W} := Wr x SLy(C) be the Weil-Deligne group of F.

Let G be a connected reductive algebraic group defined over F, and G := G(F) its
F-rational points. We denote by Gge, the derived group of G. Let Gy (resp. Gaq)
be the simply connected cover (resp. adjoint quotient) of Gge. Let Zg be the center
of G, and Ag the maximal F-split torus contained in Zg.

Fix a maximal torus T of G, and let (X, R,Y, RV) denote the root datum of G
with respect to T. Thus X = X*(T) is the character group of T, and R C X is
the set of weights of T on the Lie algebra g of G. Fix A C R a system of simple
roots. When R is irreducible, the root with maximal height (with respect to A) will
be denoted a. Write a = nye A ¢y for positive integers ¢,. A prime number p is
said to be good for G if it does not divide any c¢,. We may simply list the bad, i.e.
not good, primes: p = 2 is bad unless R is of type A, p = 3 is bad if R is of type Go,
Fy, E,, and p = 5 is bad if R is of type Eg. The prime p is good for a general R just
in case it is good for each irreducible component of R.

Suppose that H is a group, Hy a subgroup of H and h an element of H. We set
hH, := hH h™'. If 7 is a representation of H;, we denote by "7 the representation
hy + w(h~'hih) of "Hy. We denote by Irr(H) the set of of equivalence classes of
irreducible representations of H.

The category of right modules over an algebra A is denoted A—Mod. We write
Irr(\A) for the set of equivalence classes of simple modules of A.

1.3.1. Tuwisted extended quotients. Let I' be a group acting on a topological space X
and let I'; denote the stabilizer in I' of z € X. Let § = (8z)zex be a collection of
2-cocycles

fe: Ty x Ty — C*,
such that f,, and 7., define the same class in H Q(va C*), where v,: I'y = I'p
sends a to yay~!. Let C[[;, ] be the group algebra of T, twisted by b,. We set

)N(h ={(z,7) : z€ X, 7 €lir C[T'y,h,]},

and topologize Xb by decreeing that a subset of Xb open if its projection to the first
coordinate is open in X.
We require, for every (v,z) € I' x X, an algebra isomorphism

¢'y,x: C[an ux] — C[P'\/xa u'yx]
satisfying the conditions
(a) if yo = x, then ¢, , is conjugation by an element of C[I';, §,]*;
(b) Oyt vz © Gyz = 1y for all o',y €T and 2 € X.

Define a I'-action on th by v (z,7) = (yz,7 0 ¢;1m) The spectral twisted extended
quotient of X by T with respect to f is defined to be

(1.3.1) (X//T); == X, /T.

In the case when the 2-cocycles b, are trivial, we write simply X //T" for (X//I"); and
refer to it as the spectral extended quotient of X by I'.
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2. HECKE ALGEBRAS AND BERNSTEIN CENTER

2.1. General framework.

2.1.1. Let RR(G) denote the category of all smooth complex representations of G. It
is an abelian category admitting arbitrary coproducts. Let M be a Levi subgroup
of a parabolic subgroup P of G. We denote by M; the subgroup of M generated by
all its compact subgroups. Recall that a character of M is said to be unramified if it
is trivial on M, and let Xy, (M) be the group of unramified characters of M. Let o
be an irreducible supercuspidal smooth representation of M. We write s := [M, o]g
for the G-conjugacy class of the pair (M, Xn(M)-0), it is called a Bernstein inertial
class. Let B(G) denote the set of Bernstein inertial classes s. We set sy := [M, o].

We denote by R°(G) the full subcategory of 53(G) whose objects are the represen-
tations (m, V') such that every G-subquotient of 7 is equivalent to a subquotient of
a parabolically induced representation ig(a’ ), where ig is the functor of normalized
parabolic induction and ¢’ € X, (M)-o. We write Irr*(G) for the class of irreducible
objects in R*(G), i.e. representations whose supercuspidal support lies in s.

2.1.2. The categories R*(G) are indecomposable and split the full smooth category
MR(G) in a direct product (see [Ber84, Proposition 2.10]):

RG) = [[ ®©.
s€B(G)

If II° is a progenerator of R*(G), then the functor V' — Homg(II%,V) is an equiva-
lence from R*(G) to the algebra Endg (II°) (see for instance [Roc02, § 1.1]).

Let s = [M,0]g € B(G) and let V' be the underlying vector space for the super-
cuspidal representation o of M and o7 an irreducible component of the restriction
of o0 to M;. We denote by ind%1 the functor of compact induction. As noticed in
[Roc02, § 1.2], the isomorphism class of

(2.1.3) I3 := ind}], (o1)

is independent of the choice of 1. It was shown by Bernstein that
(2.14) 2 = G

is a progenerator of R*(G) (see [Roc02, §1.6]). We write

(2.1.5) H*(G) := Endg(I1).

Hence we have an equivalence of categories of right modules
(2.1.6) R*(G) ~ H*(G) — Mod.

Let B := C[M/M;] and Vi := V ®c B. Then i%(Vp) is also a progenerator of
R (G), and we have an equivalence of categories of right modules given by

£ R(G) — Endg(ig(VB))—Mod.

(2.1.7) V —  Homg(i%(Vg),V)
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2.1.8. Consider

(2.1.9) X(M,0) ={x eXn(M) : x®o ~0c},

which is a finite subgroup of X, (M).

Remark 2.1.10. In the case where M = GL,,(F') with n a positive integer, there is
a simple type (J,\) in the sense of [BK93, (5.5.10)] such that the restriction of the
supercuspidal representation o to J contains A\. The order of X,,,(M, o) is n/e(L|F),

where e(L|F) is the ramification index of the extension L/F involved in the definition
of (J,A) (see [BK93, (6.0.1) and (6.2.5)].

We denote by O the orbit of o under the action of X,,(M). The map x — x ® o
defines a bijection

(2.1.11) X(M) /%0 (M,0) SO ={x®0 : x € Xne(M)} = Irr*™ (M),
We set W (M) := Ng(M)/M and define
(2.1.12) W =W (M,0) :={neNg(M) : "O~0} /M.

Recall that Aj; is the maximal split torus contained in the center of M. We
denote by X(Ap) C X*(Apr) the set of nonzero weights occurring in the adjoint
representation of Ay on the Lie algebra of G, and by X,eq(Ans) be the set of indi-
visible elements therein. (Recall that a root 7 in a root system X is called indivisible
if 1y ¢ %))

For every v € Yied(An), let My, O M denote the centralizer of kery in G (it is
a Levi subgroup of G whose semisimple rank is one larger than that of M). Let
pC be the Harish-Chandra p-function for G (see [Sil79, §1] or [Wal03, §V.2]). The
restriction of 4“ to O is a rational W (M, O)-invariant function on O [Wal03, Lemma
V.2.1]. By [Heill, Propositionl.3], the set

(2.1.13) Sou = {7 € Srea(An) : 1M has a zero on 0}

is a root system. Let Wy denote the Weyl group of Y ,,.

Let P = M N be a parabolic subgroup of G with Levi factor M. Denote by X(P)
the subset of ¥(Aps) of roots which act on the Lie algebra of N. Let Yo ,(P) =
Yo, NE(P). By [Heill, 1.12], the group W (M, O) decomposes as

(2.1.14) W(M,0) =Wo x R(O),
where
(2.1.15) R(O) :={w e W(M,0O) : w(Xo,,.(P)) =Xo0,uP)}.

The action of every element w of W§ can be lifted to a transformation w of Xy, (M).
Let W (M, o, Xn:(M)) be the group of permutations of X, (M) generated by X, (M, o)
and the w’s. We have

(2.1.16) W (M, 0, Xne(M))/Xne (M, 7) ~ WE,.
Let K(B) := C(Xp(M)) denote the quotient field of B := C[X,,(M)]. Let
CIW (M, 0, X, (M)), K]
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be the twisted group algebra of W (M, o, Xn:(M)) with basis elements ¢,, that mul-
tiply as tyty = k(w, w )ty . By [Sol22, Corollary 5.8], there is a 2-cocycle

(2.1.17) K: W(M,0,Xn(M)) x W(M, 0, X, (M)) — C*,
such that we have an algebra isomorphism
(2.1.18) K(B) ®p Endg(i%(Vg) ~ K(B) x C[W (M, 0, X4 (M)), K].

Here the symbol x denotes the crossed product: as a vector space, it just means the
tensor product, with multiplication rules determined by the action of W (M, o, Xy, (M))
on K(B). Note that the cocycle & is trivial on Wp.

Remark 2.1.19. If R(O) has order at most 2, the intertwining operators can be
normalized such that the cocycle & is trivial (see [Sol22, Proposition 5.2 & above
Lemma 5.7]). This is indeed the case for G = Ga(F).

For any x € Xp (M), let Wg;’X@U denote the stabilizer of x ® o in W§. Let §, be
the 2-cocycle denoted i, in [Sol22, (9.13)]. Let (Irr® (M) //W¢ )y denote the twisted
extended quotient (as in §1.3.1) with respect to the collection f of the 2-cocycles f,.

Proposition 2.1.20. There is a bijection
(2.1.21) £ Iir®(G) — (TIex™ (M) /)W)y
Proof. By [Sol22, Theorem 9.7], there are bijections

" (G) <5 Trr(End (18 (Vi) <5 Trr(C[X e (M)] x C[W (M, o, X (M), ],

where £ is induced by the equivalence of categories defined in (2.1.7). On the other
hand, by [Sol22, Lemma 9.8], Irr(C[Xy, (M)] x C[W (M, o, X, (M)), k] is canonically
isomorphic to (Irr®™ (M) //Wg)y, where sy := [M, o] O

Corollary 2.1.22. Let s = [M,0]g € B(G). There is a bijection
(2.1.23) I (H(G)) —— (I (M) //WE)s.
Proof. The result follows from the proof of Proposition 2.1.20 by using (2.1.6). O

Remark 2.1.24. As observed in [Sol22, (10.12)], if the restriction of ¢ to M; is
multiplicity free, we have

Xnr(M,0)
)

(2.1.25) 11§, = (i%(Vp) and  Endg(i%(Va)) ~ H*(G) @c Mat|yr.a1,) (C),

where Maty/.7,1(C) is the algebra of square matrices of size [M : M,] (the index of
My, in M) with entries in C. Note that if o is generic, then its restriction to M is
multiplicity free (see [Roc09, Remark 1.6.1.3]). In particular, if o is a supercuspidal
irreducible representation of a proper Levi subgroup M of G, since M is isomorphic
to either F'* x F* or GLo(F'), the representation o is generic, and hence its restriction
to My is multiplicity free.
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2.1.1. Theory of types. We fix a Haar measure on G. Let H(G) be the space of
locally constant, compactly supported functions f: G — C and view H(G) as a C-
algebra via convolution relative to the Haar measure. The algebra H(G) is called
the Hecke algebra of G.

Let (p,V,) be a smooth representation of a compact open subgroup K of G, and
let (p, V5) denote its contragredient. We define H (G, p) to be the space of compactly
supported functions f: G — Endg(V;) such that

(2.1.26) f(kgk") = p(k)f(g9)p(K'), where k,k' € K and g € G.

The convolution product gives H(G, p) the structure of a unitary associative C-
algebra. The algebra H (G, p) is called the p-spherical Hecke algebra or the inter-
twining algebra of (K, p).

Let e, € H(G) be the function defined by

dim p -1 .

0 ifgeG,g¢ K.
Then e, is idempotent, and e, * H(G) x e, is a sub-algebra of H(G) with unit e,. By
[BK98, (2.12)], there is a canonical isomorphism
(2.1.28) H(G, p) @c Endc(V,) = e, * H(G) % e,.
The algebras H(G, p) and e, x H(G) e, are therefore canonically Morita equivalent.
Hence, we get an equivalence of categories:
(2.1.29) H(G,p) —Mod ~ e, xH(G) * e, —Mod.
Let R,(G) be the full subcategory of 93(G) whose objects are those V' satisfying
V =H(G) xe,xV, ie. R,(G) is generated over G by the subspace e, x V.

(2.1.27)

Definition 2.1.30. (1) The pair (K,p) is called an s-type for G if the category
R,(G) is closed under subquotients.
(2) A supercuspidal type for G is an s-type where s = [G, 0]q.

If (K,p) is an s-type for G, then R,(G) = R°(G) by [BK9IS, (4.1)-(4.2)], where
M*(@G) is equivalent to the category of modules for H(G, p) by [BK98, Theorem 3.5]:

(2.1.31) R (G) ~ H(G, p)— Mod.
Combining (2.1.31) and (2.1.6), we obtain an equivalence
(2.1.32) H*(G)—Mod ~ H(G,p) — Mod.

Let (K7, par) be an sy-type for sy, € B(M). If the pair (K, p) is a G-cover of
(K, par) as defined in [BK98, Definition 8.1], then K decomposes with respect to
M in the sense of [BK98, Definition 6.1] (in particular, Kj; = KNM and py = plk,, )
and the equivalence of categories (2.1.31) commutes with parabolic induction and
parabolic restriction in the appropriate sense (see [BK98, Corollary 8.4]).

Proposition 2.1.33. Let (K, par) be an syr-type for sy € B(M), such that I} ~
C—Ind][‘(/[M(pM,VpM). Let (K, p) be a G-cover of (Kar, par). Then

(2.1.34) I, ~ c-Ind% (p, V,,).
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As a consequence, we have
(2.1.35) H*(G) := Endg(I1y) ~ H(G, p).
Proof. See [BS20, Lemma B.3]. O

2.1.36. In this section, in order to be able to apply the constructions of [YuO1] and
[KY17], we assume that G splits over a tamely ramified extension of F', and that p
does not divide the order of the Weyl group of G. By a Levi subgroup of G, we mean
an F-subgroup of G which is a Levi factor of a parabolic F-subgroup of G. Let L/F
be a finite extension. By a twisted L-Levi subgroup of G, we mean an F-subgroup
G’ of G such that G’ ®p L is a Levi subgroup of G ®p L. If L/F is tamely ramified,
then G’ is called a tamely ramified twisted Levi subgroup of G. A tamely ramified
twisted Levi sequence in G is a finite sequence G = (GY,G1, ... ,Gd) of twisted
E-Levi subgroups of G, with E/F tamely ramified (see [Yu0l, p 586]).
Let B(G, F) denote the (enlarged) building of G:

(2.1.37) B(G,F) = B(G/Zg, F) x X.(Z¢) ®z R,

where X, (Z¢) is the set of F-algebraic cocharacters of Z¢. Recall that when G’ is a
tamely ramified twisted Levi subgroup of G, there is a family of natural embeddings
of B(G/, F) into B(G, F)).

For z a point in B(G, F), let G denote the associated parahoric subgroup, and
let G o+ denote the pro-p unipotent radical of Gz 0. In general, for  a positive real
number, G, is the corresponding Moy-Prasad filtration subgroup of G 0.

Definition 2.1.38. [KY17, § 7.1] A depth-zero G-datum is a triple

(2.1.39) (G, M), (y,¢), (Knr, prr))

satisfying the following

e G is a connected reductive group over F', and M is a Levi subgroup of G;

e y is a point in B(M) such that M, is a maximal parahoric subgroup of
M, and v: B(M) — B(G) is a 0-generic embedding relative to y (see [KY17,
Definition 3.2]);

e Ky is a compact open subgroup of M containing M, o as a normal subgroup,
and pps is an irreducible smooth representation of Ky such that pas|M, o
contains the inflation to M, o of a cuspidal representation of My /M, o+

Let G = (GO, G1, ... ,Gd) be a tamely ramified twisted Levi sequence in G. To
é, we associate a sequence of Levi subgroups M = (MO, ... ,Md), where M’ is a
Levi subgroup of G? given as the centralizer of Ay in G¥, with Ay the maximal
F-split torus of the center Zygp of MY.

Definition 2.1.40. A G-datum is a 5-tuple

(2.1.41) D = ((G,M°), (y, {1}), 7, (K0, paso), &)
satisfying the following:
D1. G = (GY,G1, ... ,Gd) is a tamely ramified twisted Levi sequence in G, and

M?O a Levi subgroup of G. Let M be associated to G as above;
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D2. yis a point in B(MY), and {¢} is a commutative diagram of 5-generic embed-
dings of buildings relative to y in the sense of [KY17, Definition 3.5], where
§= (0,7‘0/2, te ,Td_1/2);

D3. 7 = (rg,r1,--- ,74) is a sequence of real numbers satisfying 0 < 79 < 7 <
o< rg1 <rgifd>0,and 0 < rg if d = 0;

D4. (K0, ppo) is such that D° := ((G°, M?), (y, 1), (K0, paso)) is a depth zero
G -datum;

—

D5. ¢ = (¢o, ¢1,- . ,0q) 1s a sequence of quasi-characters, where ¢; is a quasi-
character of G* such that ¢; is G'*1-generic of depth r; relative to z for all
x € B(G") in the sense of [Yu0l, § 9].

The construction. For a given G-datum D as in (2.1.41), we write

(2.1.42) Kpo i= KpoGY -

We recall that G?(y) o is the parahoric subgroup of GV associate to the building point

t(y). Let G?(y)70+ be the pro-p unipotent radical of G?(y)’o.

By [KY17, Proposition 4.3(b)], we have
(2.1.43) Kpo /Gy o0r = Kapo /Moy,

and we define ppo to be the representation of Kpo obtained by composing the iso-
morphism (2.1.43) with pjyo.

Definition 2.1.44. A Kim-Yu type in the sense of [KY17, §7.4], which builds on
earlier construction in [Yu01], is a pair (Kp, pp) where

e Kp is an open compact subgroup given by

— 1 d
(2145) Kp = KDOGL(y),sO T Gb(y),8d71

e pp is an irreducible representation of Kp.
To G, we associate a tamely ramified twisted Levi sequence M = (MO, ..., M)
of M, where M is the centralizer of Apg in G*. Consider

(2146) Dy = (1\7[,@/,77, PM‘%‘E)-

When K0 = Mg the datum Dj; gives a supercuspidal type in M as follows.
Let Kj‘\l/[ = KpN M. Let K]‘@ denote the normalizer in M of Kj‘@. This group
K j‘\l/[ is a compact modulo center subgroup of M. Let pﬁ/j := pp| K4, and consider

(2.1.47) oDy 1= ind%M Pl

Theorem 2.1.48. [KY17] Suppose that Ko = M??. Then

(1) (Kj‘\z,p‘fw) is a supercuspidal type on M (as in Definition 2.1.30), and op,,
s an irreducible supercuspidal representation of M ;
(2) (Kp,pp) is a G-cover of (K]Cf/[,pﬁlv[), thus it is an s-type for s = [M,op,, |G-
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Proposition 2.1.49. Let D and D be two G-data

D= ((éa M0)7 (y7 L)7F7 (KMO,pMO), (5) and D = ((G7M0)7 (y7 L)aﬁ (KM07PM0)7¢)

such that Kypo = MY and Ko = MJ). Let s := [M,op,]a, and § = [M, 05 ]a.
Then we have s = § if and only if there exists g € G such that

(2.1.50) IK o = Kyo  and 9(pyo @ ¢) = prjo @ b,

where ¢ = Hf:0(¢i|Mo) and ¢ == Hf:0(¢i|Mo).
Proof. Tt is a reformulation of [KY17, Theorem 10.3]. Indeed, when K0 = MS and

Ky = M;O, we have s = § if and only if the types (Kp,pp) and (Kp,pp) are

equivalent in the sense of [KY17, Definition 10.1]. Note that [KY17, Theorems 10.2

and 10.3] still hold without assuming the hypothesis C(G) of [HMO08, Remark 2.49
& above], since [Kall9a, §3.5] shows that [HMO08, Theorems 6.6 and 6.7] are valid

without assuming C'(G). O

Remark 2.1.51. If G = M, it follows from [HMO8, Theorems 6.6 and 6.7] that

sy = &) if and only the data Dy = (M, y,7, pao, ) and Dy = (M,y,ﬁpMo,q.S)
are equivalent in the sense of [HMO08, Definition 5.3].

2.1.52. For any s = [M,0]g € B(G), consider
(2.1.53) o ={neNgM)(F) : "o ~ x®0c for some x € X,,(M)}.

Corollary 2.1.54. We suppose that p does not divide the order of the Weyl group of
G. Let s € B(G) be an arbitrary Bernstein inertial class. For every n € Ng, there
exists an m € M such that

"MK po = Kpoand " (papo @ @) = ppgo @ ¢,
where ¢ := H?:0(¢i’MO)'

Proof. By [Fin21], we have 0 = op,,, for some M-datum D) = (M, y, 7, paro, &). Let
n € Ng. Thus "o ~ x®o for some x € Xy (M). Let Dpy := (M, y, 7, paro®@X|K 05 P)-
By (2.1.47), we have

(2.1.55) x®o = (indf pi)®x=indg (o @ xlg,,)-

Since x is unramified, we have ind%M (pl; @ x| %) = Op,,- Therefore x®o ~ o5 .

Applying Remark 2.1.51 to the M-data "Dy and Dy, one can see that these data
are equivalent. Hence there exists an m € M such that

Ky = Ky and " (pp0 ® ¢) = ppo @ XK, ® ¢ = pao @ &,

where the last equality holds because x is trivial on K, 0. Here ¢ := H?:0(¢i| MO)-
]



HECKE ALGEBRAS FOR p-ADIC GROUPS 13

2.1.56. As shown in [HMO08], it follows from the original construction in [Yu01] that
pﬁ/j is of the form pﬁ/j = ppo @ K, where the representation x = kg depends only on

5. Suppose K0 = Mz(/]' Let K0 denote the normalizer of K0 in M°. Consider
0._ : qM°
(2.1.57) o= mdf(MO PAo-

The representation ¢¥ is a depth-zero irreducible supercuspidal representation of M?.

Let 59 := [MY 6% 0. Let Hé)o be defined as in (2.1.4), i.e. it is a progenerator for
the category R (G9). Set H*" (GO) := End(H"’GOO).

Proposition 2.1.58. (1) The algebras H*" (G°) and H(GP, ppo) are isomorphic.
(2) The algebras H*(G) and H(G, pp) are isomorphic.

Proof. We verify the assumptions in Proposition 2.1.33. Firstly, (Kpo, ppo) is a G-
cover of (Ko, ppo) (see [KY17, §7.1]) and (Kp, pp) is a G-cover of (K¢, pd,) (see
[KY17, Theorem 7.5)).

Secondly, since ¢ and ¢ are supercuspidal irreducible representations, an element
m? of MY intertwines pp 0 if and only if m? € K, 0, and an element m of M
intertwines pys if and only if m € Kj;. Then the proof of [BS20, Lemma B.4]
applies, and shows that Hj\% ~ c—Ind%M (pasVpy, ). Then the result follows from
Proposition 2.1.33. O

Proposition 2.1.59. If WS, = {1}, then there is an algebra isomorphism
H(G, pp) = H(M, pfy),
which preserves support of functions, and the algebra H(G, pp) is commutative.

Proof. Since W¢ = {1}, we have Ng(s) C M. Then the first assertion follows from
[BK98, (12.1)]. On the other hand, the algebra H(M, p%,) is commutative (see for
instance [BK98, (5.6)]). O

Remark 2.1.60. Applying Proposition 2.1.59 to the group G, we see that if Wé% =
{1}, then there is an algebra isomorphism

(2.1.61) H(GO, ppo) = H(MP, p%0)
that preserves support of functions; thus the algebra H (G, ppo) is also commutative.

2.2. Bernstein blocks. We assume that G splits over a tamely ramified extension,
and that the residual characteristic p of F'is odd, good for G and does not divide the
order of the fundamental groups of Gger. Let M be an F-rational Levi subgroup of
an F-rational parabolic subgroup of G. Then p satisfies the same assumptions with
respect to M, i.e. p is good for M and does not divide the order of the fundamental
groups of Mye,.

Let (S, 0) be a pair consisting of a tamely ramified torus S in M, and a character
f: S — C*. For any positive real number r, consider

(2.2.1) S0 ={y€eS(M,S) : (0oNg/p)(v(E))) =1}.
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We have E?’e C E,S’G for s < r. Set Ef_’f = ﬂ8>r E?’e. Then r — E§’€ defines a
Gal(Fgep/F)-invariant filtration. Let rq—; > rg_9 > -+ > rg > 0 denote the breaks
of the filtration, i.e. the 7’s such that Ef’e =+ fo. We set r_1 := 0, and let 74 be
the depth of 8. We have ry > rq_1. For each ¢ such that 0 < i < d, we denote by
M’ the connected reductive subgroup of M with maximal torus S and root system
Efi’fﬁ. By definition, the root system of M is £(M, S), and thus M? = M. The
M?%s are tame twisted Levi subgroups of M by [Kall9a, Lemma 3.6.1]. Moreover,
the root system of MO is Z(?f; if the latter is empty, we have M? = S.

Denote M* := M!(F). By [Kall9a, Proposition 3.6.7], the pair (S,6) has a
Howe factorization with respect to a sequence (¢—_1, ¢o, ..., dq) of characters, where
¢_1: S — C* and ¢;: M" — C* for 0 < i < d. More precisely, we have

d
(2.2.2) 0=1] ¢

1=—1

e for any i € {0,...,d}, the character ¢; is trivial on (M?)4e, has depth r; and
is M‘*1-generic for any i # d;
® ¢4 is trivial if ry = ry_1, and has depth r4 otherwise.

2.2.3. From now on, we make the following assumptions: S is an elliptic maximal
torus of M; the splitting extension of S is tamely ramified; S is maximally unrami-
fied inside M, i.e. S coincides with its maximal unramified subtorus as in [Kall9a,
Definition 3.4.2]; 6 is kp-reqular with respect to M, in the sense of [Kall9b, Defi-
nition 3.1.1].

For any point x in the building of M, let [x] be the projection of = onto the reduced
building Byeq(M). Let M, (resp. M) be the subgroup of M fixing x (resp. [z]).
Recall that M|, = Ny (M) by [YuOl, Lemma 3.3]. As in [Kall9a, Lemma 3.4.3],
we can then associate to S a vertex [y]| of Byeq(M), which is the unique Gal(F™ /F)-
fixed point in the apartment A;eq(S, F™) of Brea(M).

Let Sy be the unique maximal bounded subgroup of S (which is also the unique
maximal compact subgroup of S). Denoting by &° the connected Néron model of S,
we write S := 6&°(0f) C Sy, (see [Kall9a, §3.1] for more details). Let Mg,o be the
connected reductive kp-group such that

(2.2.4) My o := My o(kr) = My /M), .

There exists an elliptic maximal kp-torus S of M270 such that for every unramified
extension F’ of F, the image of S(F")y in M(F"), 0/M(F’)y 0+ is equal to S(kp»)
(see [Kall9a, Lemma 3.4.4]). By [Kall9a, Lemma 3.4.14], the character ¢_1|g, fac-
tors through a regular character ¢_; of S := S(kp) as defined in [Kall9a, Defini-
tion 3.4.16]. In particular, ¢_; is in general position in the sense of [DL76, Defi-
nition 5.15]. Then it follows from [DL76, Proposition 7.4, Theorem 8.3] that the
Deligne-Lusztig character

0
(225) (_1)Y(ngo)—r(S)RISVIy,O (¢_1)
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can be represented by a cuspidal, i.e. which cannot be obtained from a proper
parabolic induction, M(y],()—module K. _,, where r(7) denotes the kp-rank of 7. Then
Kgs_, is irreducible (see [DL76, Definition 5.15]), and its pull-back to M;O extends
uniquely to a representation kg4 , of SM;?,o- We define

0.

MP 0
(2.2.6) psS,f = Indsz{}]oo ks, and o = c—Ind%&] PS.6-
Y,

Then ¢V is a depth-zero irreducible regular supercuspidal representation of M (see
[Kall9a, Definition 3.4.19 & Proposition 3.4.20]). Set 5,0 := [M?, 5] /0.

More generally, we define an irreducible supercuspidal representation o of M by
using the twisted Yu construction of [FKS21]. As observed in [Kall9b, §3.4], it
has the same effect as using the original Yu construction from [YuO1l] applied to
the character € - €, where e: S — {£1} is the product of the characters eé\/l M
of [FKS21, Theorem 3.4]. The representation o is regular, i.e. satisfies [Kall9a,
Definition 3.7.13]. Then x ® o is regular for any x € X,.(M), and we say that the
inertial class s = [M, o] is regular.

2.2.7. For s); = [M, o] and sy0 = [M°,0°]3/0, the map
fio Tr™ (M) — Trr*mo (MO)

2.2.
(22.8) oRYX = 0 ® x| o

;X € X (M),

is an isomorphism of varieties by [Mis19, Theorem 6.1]. Let O° be the orbit of
o under the action of X, (M°). Let Wé% = Weo x R(O°) be the decomposition
analogous to (2.1.14). Then (2.2.8) and (2.1.11), applied to both s, and syy,, show
that the orbits O and O are isomorphic. The following is a consequence of [AM21,
7.3, 9.3].

Lemma 2.2.9 (Adler-Mishra). Suppose that p is good for G and does not divide
the order of the fundamental group of Gaer. Let s = [M,o0]q € B(G) be a regular
inertial class. Then (1) there is a group isomorphism

(2.2.10) W W& — W,

where 50 = [M°, 0% ¢o, and | is equivariant with respect to to,.
(2) there is an isomorphism

(2.2.11) Ly s (Ier™ (M) J/WE)y — (Trr®a® (M) // Wi )s0.

The collection §” of 2-cocycles is defined as follows. For x € Irr®™ (M), let WS*
denote the stabilizer of x in W*. Since § is equivariant with respect to tv,, the latter
restricts to an isomorphism

0
(2.2.12) 05|y s WET — Weg'™,
and every 2-cocycle f: W5* x W5" — C* defines a 2-cocycle
(2.2.13) Dyt Wea ™ x WeT®) —s .
Consequentially, we obtain in Theorem 2.2.14(2) new cases of [AM21, Conjecture 1.1].
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Theorem 2.2.14. Suppose that p is good for G and does not divide the order of the
fundamental group of Gaer. Let s = [M,0]c € B(G) be a regular inertial class.

(1) Then
(2.2.15) (E50) o ly 0 &8 Tr*(G) —> Trr(GO)Y

is a bijection.
(2) We have a bijection

(2.2.16) Irr(H°(G)) — Trr(H (G9)).

Proof. (1) This follows from the fact that the map {g defined in (2.1.21) and the
analogous map

(2:2.17) Eo: Tin(G)Y — (T*s0 (M) )/ W)

are isomorphisms.
(2) By [Sol22, Theorem 9.7] applied to both G and G, we have

¥ (G) 2 Irr(End(i$ (V) and  Trr*’ (G) 2 Ier(End(i) (Vo).

Thus by (1), we have Irr(End(i%(Vg)) = Irr*(G) = IrrﬁO(GO) = Irr(End(igg (Vgo)).
Then the result follows by applying Corollary 2.1.22 to both s and s°. g

Remark 2.2.18. The algebras H*(G) and ’Hso(GO) are not always isomorphic, as
shown in [GRO05, Example 11.8] for G = SL,(F'). However, we show in Theo-
rem 4.2.23 that they are isomorphic when G = Go and M is a maximal Levi sub-

group.

2.2.19. We end this section with brief recollections on non-singular supercuspidals
in the sense of [Kall9b], as we will consider non-singular Bernstein blocks in §3.1.50.

Let 0: S(kr) — Q, be a non-singular character. Let Ng(S)(kr)g denote the sta-
bilizer of the pair (S,6). By [Kall9b, Proposition 2.3.3], the character 6 extends
to the group Ng(S)(kr)s. Let U C G be the unipotent radical of a kp-rational
Borel subgroup of G, containing S, and let Y{; be the corresponding Deligne-Lusztig
variety. Let g g) be the isomorphism class of the representation H, fU (Yu, Qp)g. For
simplicity of expositions, we only describe the depth-zero situation. The represen-
tation (g ) = c—Indgx infgi K(s,0) 1s supercuspidal but not necessarily irreducible.
When it is indeed irreducible, we return to the case where 6 is regular as in [Kall9a].
When 7(g gy is reducible (e.g. when ¢ is non-singular non-regular), it decomposes as
[Kal19b, 3.3.3]

(2.2.20) T(s,0) = > dim(0)7(s g,0)
o€lir(Ng(S)(kr)o,0)

where the constituents T(S,0.,0) = c—Indgx infgi K(3,0,0)" constructed from K(g 9,0) 35 N
[Kal19b, Definition 2.7.6], are irreducible non-singular supercuspidal representations.
Here Irr(Ng (S)(kFr)g, ) denotes the set of irreducible representations of Ng (S)(kr)g
whose restriction to S(kp) is f-isotypic € is a fixed coherent splitting of the family
of 2-cocycles {ny u} as in [Kall9b, §2.4]. The positive-depth supercuspidals can



HECKE ALGEBRAS FOR p-ADIC GROUPS 17

be described similarly, by applying Yu'’s construction [YuOl] to the representation
T(e,8,6_1) Of G associated to the pair (S, ¢_1) [Kall9b, (3.2)].

3. LocAL LANGLANDS CORRESPONDENCE FOR BERNSTEIN BLOCKS

3.1. Axiomatic construction of the correspondence. Let GV denote the Lang-
lands dual group of G, i.e. the complex Lie group with root datum dual to that of
G. Let Zgv be the center of G¥ and G the quotient G¥/Zgv. The L-group of G
is defined to be G := GV x Wg. Similarly, M" denotes the Langlands dual group
of M. Let Zpsvuy, be the center of MY x I, and define

(3.1.1) e (MM) = (Zorv st )iy,

The group X,.(“M) is naturally isomorphic to the group X,.(M). We denote the
isomorphism X, (M) = X (*M) by x — xV.

3.1.2. An L-parameter is a continuous morphism ¢: Wy — L@ such that

e o(w) is semisimple for each w € Wp;
e the