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HECKE ALGEBRAS FOR p-ADIC REDUCTIVE GROUPS AND
LOCAL LANGLANDS CORRESPONDENCE FOR BERNSTEIN
BLOCKS

ANNE-MARIE AUBERT AND YUJIE XU

ABSTRACT. We study the endomorphism algebras attached to Bernstein compo-
nents of reductive p-adic groups and construct a local Langlands correspondence
with the appropriate set of enhanced L-parameters, using certain “desiderata”
properties for the LLC for supercuspidal representations of proper Levi subgroups.
We give several applications of our LLC to various reductive groups with Bernstein
blocks cuspidally supported on general linear groups.

In particular, for Levi subgroups of maximal parabolic of the split exceptional
group G2, we compute the explicit weight functions for the corresponding Hecke
algebras, and show that they satisfy a conjecture of Lusztig’s. Some results from
84 are used by the same authors to construct a full local Langlands correspondence
in [AX22]. Moreover, we also prove a reduction to depth zero case result for the
Bernstein components attached to regular supercuspidal representations of Levi
subgroups.
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1. INTRODUCTION

1.1. Background. Let F be a non-archimedean local field. Let G be a connected
reductive group defined over F', and G its group of F-points. Let M be the Levi
subgroup of a parabolic subgroup P of G.
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http://arxiv.org/abs/2202.01305v2

2 ANNE-MARIE AUBERT AND YUJIE XU

Let s = [M,o]g be the inertial class attached to the pair (M, o), where o is
a supercuspidal irreducible representation of M. Recall that this means that s is
the G-conjugacy class of (M, X, (M) - o), where X, (M) - o is the orbit of o under
X (M) —the group of unramified characters of M. Let B(G) be the set of such s’s.
We denote by Irr®(G) the Bernstein series of irreducible representations of G whose
cuspidal support lies in s (see §2.1 for a precise definition).

Let W denote the extended finite Weyl group Ng(sar)/M, where sy = [M, o],
and let WZ" be the stabilizer of z € Irr®™ (M) in W§. By [Sol22], there exists a
collection (f; ), of 2-cocycles for z € Irr®™ (M),

(1.1.1) ho: WE" x W5" — CX,
such that we have a bijection
(1.1.2) £ Irr*(G) — (Ier®™ (M) //WE )y,

where (Irr®™ (M)//W§), is a twisted extended quotient in the sense of [ABPS17a,
§2.1] (see 1.3.1 for the precise definition).

A parallel picture to (1.1.2) exists on the Galois side. Let Wr be the absolute
Weil group of F' and I its inertia subgroup. Let M be the Langlands dual group of
M, i.e. it is a complex Lie group with root datum dual to that of M. It is equipped
with an action of Wr, and we write “M := MV x Wg. The group MV acts on the
set of cuspidal M-relevant enhanced L-parameters for M—a terminology based on
Lusztig’s notion of cuspidal pairs (see Definition 3.1.8 for more details). Let ®$(M)
be the set of MV-conjugacy classes of cuspidal enhanced L-parameters for M.

Let Zpsv g, be the center of MY xIp. The group X (PM) = (ZMVMF)“’,VF, which
is naturally isomorphic to the group X,.(M) (see [Hail4, §3.3.1]), acts naturally
on the set of cuspidal M-relevant enhanced L-parameters for M. We denote by
sV = [FM, ¢c, 0c)gv the GV-conjugacy class of the orbit of (¢, 0.) € (M) under
the action of X, (*M). Let BY(G) be the set of such 5.

In [AMS18], the first author, with Moussaoui and Solleveld, constructed a partition—
a la Bernstein—of the set ®¢(G) of G-relevant enhanced Langlands parameters:

(1.1.3) e(G)= || @),
sVeBY(Q)

where ®"(G) consists of enhanced Langlands parameters for G whose cuspidal sup-
port lies in 5. Let M be a Levi subgroup of G and let s}, := [FM, ¢c, 0clpv €
BY(M). Analogous to the group side W§,, we denote by Wévv the stabilizer of s},

in Ngv(MVY)/MY, and by W&Y the stabilizer of y € O (M) in Wg. By [AMSIS,
Theorem 9.3], there is a bijection

(1.1.4) g8 B (G) —> (@ (M) [/ WE )Ly,

where the right-hand side (@ZX”(M )// ngv)Lu is a twisted extended quotient with
respect to a collection (Lt,), of 2-cocycles

(1.1.5) Ly WEY x WY — C.
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1.2. Main Results. Axiomatic setup: we suppose the existence of a map
g ™ (M) —  DY(M)
o = (@0, 00)
such that the following properties are satisfied for any o € Irr®™ (M):
(1) For any x € X, (M), we have

(1.2.1)

(@x@aa Qx@a) = Xv : (9007 Qa)y

where x + x is the canonical isomorphism X, (M) = X, (*M).
(2) For any w € W (M), we have

\
v (9007 QU) = (90“’07 Qwa)a
where w — w" is the canonical isomorphism W (M) = W (MV).
We suppose that the collections of 2-cocycles § and 'y satisfy the following

(1.2.2) Ly v =18, forany o €sand any x € Xp, (M)/Xne(M, ).
We establish the following result.
Theorem 1. (Theorem 3.1.32)

(1) There is a natural isomorphism

(1.2.3) e: I (M) //WE 5 O (M) //WE.
(2) The map
(1.2.4 €= (&) Toeod: Ir'(G) — @ (G)

is a bijection.

We suppose in the rest of this introduction that the group G splits over a tamely
ramified extension of F' and that the residual characteristic p of F' does not divide
the order of the Weyl group of G. Then there exists a compact mod center subgroup
Kpr of M and an irreducible representation p‘f\/[ of it such that o = ind%M p‘fw.

Let H*(G) denote the endomorphism algebra of the Bernstein progenerator of s
(see (2.1.5)) and let H(G, pp) be the intertwining algebra of an s-type (Kp, pp). We
prove in Proposition 2.1.58 that the algebras H*(G) and H(G, pp) are isomorphic.

From now on, we suppose that o is regular in the sense of [Kall9a], which allows
us to attach a supercuspidal Langlands parameter o,: Wr — “M to o. Applying
Theorem 1 to the map £°¥ : 0 — (p,, 1) as in (1.2.1), we obtain the following result:

Proposition 1.2.5. When the L-packet of o is a singleton, the properties (1) and
(2) are always satisfied.

On the other hand, the construction of Ky involves notably a depth zero su-
percuspidal irreducible representation ¢° of a Levi subgroup M° of a twisted Levi
subgroup G° of G. We denote by 5% = [M?, 0% 0 the inertial class of ¢°.

Suppose that p is good for G (in the sense of [Car93]) and does not divide the
order of the fundamental group of Gge;, and that the representation o is regular.
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Theorem 2. (Theorem 2.2.14) There is a bijection

(1.2.6) 0% I (G) — Irrso(GO),
which induces a bijection
(1.2.7) Irr(HS(G)) — Trr(H (GY))

between the sets of equivalence classes of simple modules for the algebras H*(G) and

7 (GO).

Theorem 2 proves the validity of [AM21, Conjecture 1.1], under the above as-
sumption on p, for all regular supercuspidal representations of M. The bijection o7,
is defined as

(1.2.8) 0% 1= (E850) F o1y 0 8,

where (Irr®m© (M) // Wé% )po is the twisted extended quotient with respect to a certain
collection §° of 2-cocycles, the definition of which is recalled in (2.2.13), and

(1.2.9) [y (Ire*™ (M) /W)y — (Irr*u0 (M) // W )0
is the isomorphism constructed in [AM21].

In Section 4, we study in greater detail the case when G is the exceptional group
of type Go. Recall that for split p-adic groups, the principal series case, i.e. M =T,
is due to [Roc98], therefore it suffices to consider the cases where M ~ GLy(F) is
a maximal Levi subgroup. The Go(F')-covers of the supercuspidal types in M were
computed explicitly in [Blo99] when M corresponds to the long simple root of G, and
in [Des21] when M corresponds to the short simple root of Gg, but the intertwining
algebras of these types were still unknown. We compute these intertwining algebras
later in §4.2.2, and in particular, by computing their parameters explicitly, we show
that they satisfy a conjecture of Lusztig’s in [Lus20, 1.(a)].

Acknowledgements. The authors would like to thank Maarten Solleveld for
valuable comments on a previous version of the manuscript. Y.X. was supported by
the National Science Foundation under Award No. 2202677 at MIT.

1.3. Notations and Definitions. Let I’ be a non-archimedean local field. Let op
denote the ring of integers of F, pp the maximal ideal in o and kr := op/pp the
residue field of F'. We assume that kg is finite and denote by ¢r its cardinality. Let
valp: F' — Z U {oo} be a valuation of F' and let vg the character of F'* defined by

vp(a) = qgvalF(a) for any a € F'*.

We fix a separable closure Fy., of F. Denote by Wr C Gal(Fyep/F) the absolute
WEeil group of F' and I its inertia subgroup. We denote by F},; the maximal unram-
ified extension of F' inside Fy, and by Frp the element of Gal(F,,/F) that induces
the automorphism a + a? on the residue field kr of Fy,. Then W = I x (Frg).
Let I;E denote the wild inertia group of F (i.e. the maximal pro-p open normal sub-
group of Ip). We have It = Gal(Fiep/F;) ~ Ir/I}:, where F; is the tame closure of
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F in Fyp. The group It is pro-cyclic and we denote by (r a generator of it. Let
W} := Wr x SLy(C) be the Weil-Deligne group of F.

Let G be a connected reductive algebraic group defined over F, and G := G(F) its
F-rational points. We denote by Gge, the derived group of G. Let Gy (resp. Gaq)
be the simply connected cover (resp. adjoint quotient) of Gge. Let Zg be the center
of G, and Ag the maximal F-split torus contained in Zg.

Fix a maximal torus T of G, and let (X, R,Y, RV) denote the root datum of G
with respect to T. Thus X = X*(T) is the character group of T, and R C X is
the set of weights of T on the Lie algebra g of G. Fix A C R a system of simple
roots. When R is irreducible, the root with maximal height (with respect to A) will
be denoted a. Write a = nye A ¢y for positive integers ¢,. A prime number p is
said to be good for G if it does not divide any c¢,. We may simply list the bad, i.e.
not good, primes: p = 2 is bad unless R is of type A, p = 3 is bad if R is of type Go,
Fy, E,, and p = 5 is bad if R is of type Eg. The prime p is good for a general R just
in case it is good for each irreducible component of R.

Suppose that H is a group, Hy a subgroup of H and h an element of H. We set
hH, := hH h™'. If 7 is a representation of H;, we denote by "7 the representation
hy + w(h~'hih) of "Hy. We denote by Irr(H) the set of of equivalence classes of
irreducible representations of H.

The category of right modules over an algebra A is denoted A—Mod. We write
Irr(\A) for the set of equivalence classes of simple modules of A.

1.3.1. Tuwisted extended quotients. Let I' be a group acting on a topological space X
and let I'; denote the stabilizer in I' of z € X. Let § = (8z)zex be a collection of
2-cocycles

fe: Ty x Ty — C*,
such that f,, and 7., define the same class in H Q(va C*), where v,: I'y = I'p
sends a to yay~!. Let C[[;, ] be the group algebra of T, twisted by b,. We set

)N(h ={(z,7) : z€ X, 7 €lir C[T'y,h,]},

and topologize Xb by decreeing that a subset of Xb open if its projection to the first
coordinate is open in X.
We require, for every (v,z) € I' x X, an algebra isomorphism

¢'y,x: C[an ux] — C[P'\/xa u'yx]
satisfying the conditions
(a) if yo = x, then ¢, , is conjugation by an element of C[I';, §,]*;
(b) Oyt vz © Gyz = 1y for all o',y €T and 2 € X.

Define a I'-action on th by v (z,7) = (yz,7 0 ¢;1m) The spectral twisted extended
quotient of X by T with respect to f is defined to be

(1.3.1) (X//T); == X, /T.

In the case when the 2-cocycles b, are trivial, we write simply X //T" for (X//I"); and
refer to it as the spectral extended quotient of X by I'.
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2. HECKE ALGEBRAS AND BERNSTEIN CENTER

2.1. General framework.

2.1.1. Let RR(G) denote the category of all smooth complex representations of G. It
is an abelian category admitting arbitrary coproducts. Let M be a Levi subgroup
of a parabolic subgroup P of G. We denote by M; the subgroup of M generated by
all its compact subgroups. Recall that a character of M is said to be unramified if it
is trivial on M, and let Xy, (M) be the group of unramified characters of M. Let o
be an irreducible supercuspidal smooth representation of M. We write s := [M, o]g
for the G-conjugacy class of the pair (M, Xn(M)-0), it is called a Bernstein inertial
class. Let B(G) denote the set of Bernstein inertial classes s. We set sy := [M, o].

We denote by R°(G) the full subcategory of 53(G) whose objects are the represen-
tations (m, V') such that every G-subquotient of 7 is equivalent to a subquotient of
a parabolically induced representation ig(a’ ), where ig is the functor of normalized
parabolic induction and ¢’ € X, (M)-o. We write Irr*(G) for the class of irreducible
objects in R*(G), i.e. representations whose supercuspidal support lies in s.

2.1.2. The categories R*(G) are indecomposable and split the full smooth category
MR(G) in a direct product (see [Ber84, Proposition 2.10]):

RG) = [[ ®©.
s€B(G)

If II° is a progenerator of R*(G), then the functor V' — Homg(II%,V) is an equiva-
lence from R*(G) to the algebra Endg (II°) (see for instance [Roc02, § 1.1]).

Let s = [M,0]g € B(G) and let V' be the underlying vector space for the super-
cuspidal representation o of M and o7 an irreducible component of the restriction
of o0 to M;. We denote by ind%1 the functor of compact induction. As noticed in
[Roc02, § 1.2], the isomorphism class of

(2.1.3) I3 := ind}], (o1)

is independent of the choice of 1. It was shown by Bernstein that
(2.14) 2 = G

is a progenerator of R*(G) (see [Roc02, §1.6]). We write

(2.1.5) H*(G) := Endg(I1).

Hence we have an equivalence of categories of right modules
(2.1.6) R*(G) ~ H*(G) — Mod.

Let B := C[M/M;] and Vi := V ®c B. Then i%(Vp) is also a progenerator of
R (G), and we have an equivalence of categories of right modules given by

£ R(G) — Endg(ig(VB))—Mod.

(2.1.7) V —  Homg(i%(Vg),V)
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2.1.8. Consider

(2.1.9) X(M,0) ={x eXn(M) : x®o ~0c},

which is a finite subgroup of X, (M).

Remark 2.1.10. In the case where M = GL,,(F') with n a positive integer, there is
a simple type (J,\) in the sense of [BK93, (5.5.10)] such that the restriction of the
supercuspidal representation o to J contains A\. The order of X,,,(M, o) is n/e(L|F),

where e(L|F) is the ramification index of the extension L/F involved in the definition
of (J,A) (see [BK93, (6.0.1) and (6.2.5)].

We denote by O the orbit of o under the action of X,,(M). The map x — x ® o
defines a bijection

(2.1.11) X(M) /%0 (M,0) SO ={x®0 : x € Xne(M)} = Irr*™ (M),
We set W (M) := Ng(M)/M and define
(2.1.12) W =W (M,0) :={neNg(M) : "O~0} /M.

Recall that Aj; is the maximal split torus contained in the center of M. We
denote by X(Ap) C X*(Apr) the set of nonzero weights occurring in the adjoint
representation of Ay on the Lie algebra of G, and by X,eq(Ans) be the set of indi-
visible elements therein. (Recall that a root 7 in a root system X is called indivisible
if 1y ¢ %))

For every v € Yied(An), let My, O M denote the centralizer of kery in G (it is
a Levi subgroup of G whose semisimple rank is one larger than that of M). Let
pC be the Harish-Chandra p-function for G (see [Sil79, §1] or [Wal03, §V.2]). The
restriction of 4“ to O is a rational W (M, O)-invariant function on O [Wal03, Lemma
V.2.1]. By [Heill, Propositionl.3], the set

(2.1.13) Sou = {7 € Srea(An) : 1M has a zero on 0}

is a root system. Let Wy denote the Weyl group of Y ,,.

Let P = M N be a parabolic subgroup of G with Levi factor M. Denote by X(P)
the subset of ¥(Aps) of roots which act on the Lie algebra of N. Let Yo ,(P) =
Yo, NE(P). By [Heill, 1.12], the group W (M, O) decomposes as

(2.1.14) W(M,0) =Wo x R(O),
where
(2.1.15) R(O) :={w e W(M,0O) : w(Xo,,.(P)) =Xo0,uP)}.

The action of every element w of W§ can be lifted to a transformation w of Xy, (M).
Let W (M, o, Xn:(M)) be the group of permutations of X, (M) generated by X, (M, o)
and the w’s. We have

(2.1.16) W (M, 0, Xne(M))/Xne (M, 7) ~ WE,.
Let K(B) := C(Xp(M)) denote the quotient field of B := C[X,,(M)]. Let
CIW (M, 0, X, (M)), K]
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be the twisted group algebra of W (M, o, Xn:(M)) with basis elements ¢,, that mul-
tiply as tyty = k(w, w )ty . By [Sol22, Corollary 5.8], there is a 2-cocycle

(2.1.17) K: W(M,0,Xn(M)) x W(M, 0, X, (M)) — C*,
such that we have an algebra isomorphism
(2.1.18) K(B) ®p Endg(i%(Vg) ~ K(B) x C[W (M, 0, X4 (M)), K].

Here the symbol x denotes the crossed product: as a vector space, it just means the
tensor product, with multiplication rules determined by the action of W (M, o, Xy, (M))
on K(B). Note that the cocycle & is trivial on Wp.

Remark 2.1.19. If R(O) has order at most 2, the intertwining operators can be
normalized such that the cocycle & is trivial (see [Sol22, Proposition 5.2 & above
Lemma 5.7]). This is indeed the case for G = Ga(F).

For any x € Xp (M), let Wg;’X@U denote the stabilizer of x ® o in W§. Let §, be
the 2-cocycle denoted i, in [Sol22, (9.13)]. Let (Irr® (M) //W¢ )y denote the twisted
extended quotient (as in §1.3.1) with respect to the collection f of the 2-cocycles f,.

Proposition 2.1.20. There is a bijection
(2.1.21) £ Iir®(G) — (TIex™ (M) /)W)y
Proof. By [Sol22, Theorem 9.7], there are bijections

" (G) <5 Trr(End (18 (Vi) <5 Trr(C[X e (M)] x C[W (M, o, X (M), ],

where £ is induced by the equivalence of categories defined in (2.1.7). On the other
hand, by [Sol22, Lemma 9.8], Irr(C[Xy, (M)] x C[W (M, o, X, (M)), k] is canonically
isomorphic to (Irr®™ (M) //Wg)y, where sy := [M, o] O

Corollary 2.1.22. Let s = [M,0]g € B(G). There is a bijection
(2.1.23) I (H(G)) —— (I (M) //WE)s.
Proof. The result follows from the proof of Proposition 2.1.20 by using (2.1.6). O

Remark 2.1.24. As observed in [Sol22, (10.12)], if the restriction of ¢ to M; is
multiplicity free, we have

Xnr(M,0)
)

(2.1.25) 11§, = (i%(Vp) and  Endg(i%(Va)) ~ H*(G) @c Mat|yr.a1,) (C),

where Maty/.7,1(C) is the algebra of square matrices of size [M : M,] (the index of
My, in M) with entries in C. Note that if o is generic, then its restriction to M is
multiplicity free (see [Roc09, Remark 1.6.1.3]). In particular, if o is a supercuspidal
irreducible representation of a proper Levi subgroup M of G, since M is isomorphic
to either F'* x F* or GLo(F'), the representation o is generic, and hence its restriction
to My is multiplicity free.
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2.1.1. Theory of types. We fix a Haar measure on G. Let H(G) be the space of
locally constant, compactly supported functions f: G — C and view H(G) as a C-
algebra via convolution relative to the Haar measure. The algebra H(G) is called
the Hecke algebra of G.

Let (p,V,) be a smooth representation of a compact open subgroup K of G, and
let (p, V5) denote its contragredient. We define H (G, p) to be the space of compactly
supported functions f: G — Endg(V;) such that

(2.1.26) f(kgk") = p(k)f(g9)p(K'), where k,k' € K and g € G.

The convolution product gives H(G, p) the structure of a unitary associative C-
algebra. The algebra H (G, p) is called the p-spherical Hecke algebra or the inter-
twining algebra of (K, p).

Let e, € H(G) be the function defined by

dim p -1 .

0 ifgeG,g¢ K.
Then e, is idempotent, and e, * H(G) x e, is a sub-algebra of H(G) with unit e,. By
[BK98, (2.12)], there is a canonical isomorphism
(2.1.28) H(G, p) @c Endc(V,) = e, * H(G) % e,.
The algebras H(G, p) and e, x H(G) e, are therefore canonically Morita equivalent.
Hence, we get an equivalence of categories:
(2.1.29) H(G,p) —Mod ~ e, xH(G) * e, —Mod.
Let R,(G) be the full subcategory of 93(G) whose objects are those V' satisfying
V =H(G) xe,xV, ie. R,(G) is generated over G by the subspace e, x V.

(2.1.27)

Definition 2.1.30. (1) The pair (K,p) is called an s-type for G if the category
R,(G) is closed under subquotients.
(2) A supercuspidal type for G is an s-type where s = [G, 0]q.

If (K,p) is an s-type for G, then R,(G) = R°(G) by [BK9IS, (4.1)-(4.2)], where
M*(@G) is equivalent to the category of modules for H(G, p) by [BK98, Theorem 3.5]:

(2.1.31) R (G) ~ H(G, p)— Mod.
Combining (2.1.31) and (2.1.6), we obtain an equivalence
(2.1.32) H*(G)—Mod ~ H(G,p) — Mod.

Let (K7, par) be an sy-type for sy, € B(M). If the pair (K, p) is a G-cover of
(K, par) as defined in [BK98, Definition 8.1], then K decomposes with respect to
M in the sense of [BK98, Definition 6.1] (in particular, Kj; = KNM and py = plk,, )
and the equivalence of categories (2.1.31) commutes with parabolic induction and
parabolic restriction in the appropriate sense (see [BK98, Corollary 8.4]).

Proposition 2.1.33. Let (K, par) be an syr-type for sy € B(M), such that I} ~
C—Ind][‘(/[M(pM,VpM). Let (K, p) be a G-cover of (Kar, par). Then

(2.1.34) I, ~ c-Ind% (p, V,,).
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As a consequence, we have
(2.1.35) H*(G) := Endg(I1y) ~ H(G, p).
Proof. See [BS20, Lemma B.3]. O

2.1.36. In this section, in order to be able to apply the constructions of [YuO1] and
[KY17], we assume that G splits over a tamely ramified extension of F', and that p
does not divide the order of the Weyl group of G. By a Levi subgroup of G, we mean
an F-subgroup of G which is a Levi factor of a parabolic F-subgroup of G. Let L/F
be a finite extension. By a twisted L-Levi subgroup of G, we mean an F-subgroup
G’ of G such that G’ ®p L is a Levi subgroup of G ®p L. If L/F is tamely ramified,
then G’ is called a tamely ramified twisted Levi subgroup of G. A tamely ramified
twisted Levi sequence in G is a finite sequence G = (GY,G1, ... ,Gd) of twisted
E-Levi subgroups of G, with E/F tamely ramified (see [Yu0l, p 586]).
Let B(G, F) denote the (enlarged) building of G:

(2.1.37) B(G,F) = B(G/Zg, F) x X.(Z¢) ®z R,

where X, (Z¢) is the set of F-algebraic cocharacters of Z¢. Recall that when G’ is a
tamely ramified twisted Levi subgroup of G, there is a family of natural embeddings
of B(G/, F) into B(G, F)).

For z a point in B(G, F), let G denote the associated parahoric subgroup, and
let G o+ denote the pro-p unipotent radical of Gz 0. In general, for  a positive real
number, G, is the corresponding Moy-Prasad filtration subgroup of G 0.

Definition 2.1.38. [KY17, § 7.1] A depth-zero G-datum is a triple

(2.1.39) (G, M), (y,¢), (Knr, prr))

satisfying the following

e G is a connected reductive group over F', and M is a Levi subgroup of G;

e y is a point in B(M) such that M, is a maximal parahoric subgroup of
M, and v: B(M) — B(G) is a 0-generic embedding relative to y (see [KY17,
Definition 3.2]);

e Ky is a compact open subgroup of M containing M, o as a normal subgroup,
and pps is an irreducible smooth representation of Ky such that pas|M, o
contains the inflation to M, o of a cuspidal representation of My /M, o+

Let G = (GO, G1, ... ,Gd) be a tamely ramified twisted Levi sequence in G. To
é, we associate a sequence of Levi subgroups M = (MO, ... ,Md), where M’ is a
Levi subgroup of G? given as the centralizer of Ay in G¥, with Ay the maximal
F-split torus of the center Zygp of MY.

Definition 2.1.40. A G-datum is a 5-tuple

(2.1.41) D = ((G,M°), (y, {1}), 7, (K0, paso), &)
satisfying the following:
D1. G = (GY,G1, ... ,Gd) is a tamely ramified twisted Levi sequence in G, and

M?O a Levi subgroup of G. Let M be associated to G as above;
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D2. yis a point in B(MY), and {¢} is a commutative diagram of 5-generic embed-
dings of buildings relative to y in the sense of [KY17, Definition 3.5], where
§= (0,7‘0/2, te ,Td_1/2);

D3. 7 = (rg,r1,--- ,74) is a sequence of real numbers satisfying 0 < 79 < 7 <
o< rg1 <rgifd>0,and 0 < rg if d = 0;

D4. (K0, ppo) is such that D° := ((G°, M?), (y, 1), (K0, paso)) is a depth zero
G -datum;

—

D5. ¢ = (¢o, ¢1,- . ,0q) 1s a sequence of quasi-characters, where ¢; is a quasi-
character of G* such that ¢; is G'*1-generic of depth r; relative to z for all
x € B(G") in the sense of [Yu0l, § 9].

The construction. For a given G-datum D as in (2.1.41), we write

(2.1.42) Kpo i= KpoGY -

We recall that G?(y) o is the parahoric subgroup of GV associate to the building point

t(y). Let G?(y)70+ be the pro-p unipotent radical of G?(y)’o.

By [KY17, Proposition 4.3(b)], we have
(2.1.43) Kpo /Gy o0r = Kapo /Moy,

and we define ppo to be the representation of Kpo obtained by composing the iso-
morphism (2.1.43) with pjyo.

Definition 2.1.44. A Kim-Yu type in the sense of [KY17, §7.4], which builds on
earlier construction in [Yu01], is a pair (Kp, pp) where

e Kp is an open compact subgroup given by

— 1 d
(2145) Kp = KDOGL(y),sO T Gb(y),8d71

e pp is an irreducible representation of Kp.
To G, we associate a tamely ramified twisted Levi sequence M = (MO, ..., M)
of M, where M is the centralizer of Apg in G*. Consider

(2146) Dy = (1\7[,@/,77, PM‘%‘E)-

When K0 = Mg the datum Dj; gives a supercuspidal type in M as follows.
Let Kj‘\l/[ = KpN M. Let K]‘@ denote the normalizer in M of Kj‘@. This group
K j‘\l/[ is a compact modulo center subgroup of M. Let pﬁ/j := pp| K4, and consider

(2.1.47) oDy 1= ind%M Pl

Theorem 2.1.48. [KY17] Suppose that Ko = M??. Then

(1) (Kj‘\z,p‘fw) is a supercuspidal type on M (as in Definition 2.1.30), and op,,
s an irreducible supercuspidal representation of M ;
(2) (Kp,pp) is a G-cover of (K]Cf/[,pﬁlv[), thus it is an s-type for s = [M,op,, |G-
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Proposition 2.1.49. Let D and D be two G-data

D= ((éa M0)7 (y7 L)7F7 (KMO,pMO), (5) and D = ((G7M0)7 (y7 L)aﬁ (KM07PM0)7¢)

such that Kypo = MY and Ko = MJ). Let s := [M,op,]a, and § = [M, 05 ]a.
Then we have s = § if and only if there exists g € G such that

(2.1.50) IK o = Kyo  and 9(pyo @ ¢) = prjo @ b,

where ¢ = Hf:0(¢i|Mo) and ¢ == Hf:0(¢i|Mo).
Proof. Tt is a reformulation of [KY17, Theorem 10.3]. Indeed, when K0 = MS and

Ky = M;O, we have s = § if and only if the types (Kp,pp) and (Kp,pp) are

equivalent in the sense of [KY17, Definition 10.1]. Note that [KY17, Theorems 10.2

and 10.3] still hold without assuming the hypothesis C(G) of [HMO08, Remark 2.49
& above], since [Kall9a, §3.5] shows that [HMO08, Theorems 6.6 and 6.7] are valid

without assuming C'(G). O

Remark 2.1.51. If G = M, it follows from [HMO8, Theorems 6.6 and 6.7] that

sy = &) if and only the data Dy = (M, y,7, pao, ) and Dy = (M,y,ﬁpMo,q.S)
are equivalent in the sense of [HMO08, Definition 5.3].

2.1.52. For any s = [M,0]g € B(G), consider
(2.1.53) o ={neNgM)(F) : "o ~ x®0c for some x € X,,(M)}.

Corollary 2.1.54. We suppose that p does not divide the order of the Weyl group of
G. Let s € B(G) be an arbitrary Bernstein inertial class. For every n € Ng, there
exists an m € M such that

"MK po = Kpoand " (papo @ @) = ppgo @ ¢,
where ¢ := H?:0(¢i’MO)'

Proof. By [Fin21], we have 0 = op,,, for some M-datum D) = (M, y, 7, paro, &). Let
n € Ng. Thus "o ~ x®o for some x € Xy (M). Let Dpy := (M, y, 7, paro®@X|K 05 P)-
By (2.1.47), we have

(2.1.55) x®o = (indf pi)®x=indg (o @ xlg,,)-

Since x is unramified, we have ind%M (pl; @ x| %) = Op,,- Therefore x®o ~ o5 .

Applying Remark 2.1.51 to the M-data "Dy and Dy, one can see that these data
are equivalent. Hence there exists an m € M such that

Ky = Ky and " (pp0 ® ¢) = ppo @ XK, ® ¢ = pao @ &,

where the last equality holds because x is trivial on K, 0. Here ¢ := H?:0(¢i| MO)-
]
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2.1.56. As shown in [HMO08], it follows from the original construction in [Yu01] that
pﬁ/j is of the form pﬁ/j = ppo @ K, where the representation x = kg depends only on

5. Suppose K0 = Mz(/]' Let K0 denote the normalizer of K0 in M°. Consider
0._ : qM°
(2.1.57) o= mdf(MO PAo-

The representation ¢¥ is a depth-zero irreducible supercuspidal representation of M?.

Let 59 := [MY 6% 0. Let Hé)o be defined as in (2.1.4), i.e. it is a progenerator for
the category R (G9). Set H*" (GO) := End(H"’GOO).

Proposition 2.1.58. (1) The algebras H*" (G°) and H(GP, ppo) are isomorphic.
(2) The algebras H*(G) and H(G, pp) are isomorphic.

Proof. We verify the assumptions in Proposition 2.1.33. Firstly, (Kpo, ppo) is a G-
cover of (Ko, ppo) (see [KY17, §7.1]) and (Kp, pp) is a G-cover of (K¢, pd,) (see
[KY17, Theorem 7.5)).

Secondly, since ¢ and ¢ are supercuspidal irreducible representations, an element
m? of MY intertwines pp 0 if and only if m? € K, 0, and an element m of M
intertwines pys if and only if m € Kj;. Then the proof of [BS20, Lemma B.4]
applies, and shows that Hj\% ~ c—Ind%M (pasVpy, ). Then the result follows from
Proposition 2.1.33. O

Proposition 2.1.59. If WS, = {1}, then there is an algebra isomorphism
H(G, pp) = H(M, pfy),
which preserves support of functions, and the algebra H(G, pp) is commutative.

Proof. Since W¢ = {1}, we have Ng(s) C M. Then the first assertion follows from
[BK98, (12.1)]. On the other hand, the algebra H(M, p%,) is commutative (see for
instance [BK98, (5.6)]). O

Remark 2.1.60. Applying Proposition 2.1.59 to the group G, we see that if Wé% =
{1}, then there is an algebra isomorphism

(2.1.61) H(GO, ppo) = H(MP, p%0)
that preserves support of functions; thus the algebra H (G, ppo) is also commutative.

2.2. Bernstein blocks. We assume that G splits over a tamely ramified extension,
and that the residual characteristic p of F'is odd, good for G and does not divide the
order of the fundamental groups of Gger. Let M be an F-rational Levi subgroup of
an F-rational parabolic subgroup of G. Then p satisfies the same assumptions with
respect to M, i.e. p is good for M and does not divide the order of the fundamental
groups of Mye,.

Let (S, 0) be a pair consisting of a tamely ramified torus S in M, and a character
f: S — C*. For any positive real number r, consider

(2.2.1) S0 ={y€eS(M,S) : (0oNg/p)(v(E))) =1}.
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We have E?’e C E,S’G for s < r. Set Ef_’f = ﬂ8>r E?’e. Then r — E§’€ defines a
Gal(Fgep/F)-invariant filtration. Let rq—; > rg_9 > -+ > rg > 0 denote the breaks
of the filtration, i.e. the 7’s such that Ef’e =+ fo. We set r_1 := 0, and let 74 be
the depth of 8. We have ry > rq_1. For each ¢ such that 0 < i < d, we denote by
M’ the connected reductive subgroup of M with maximal torus S and root system
Efi’fﬁ. By definition, the root system of M is £(M, S), and thus M? = M. The
M?%s are tame twisted Levi subgroups of M by [Kall9a, Lemma 3.6.1]. Moreover,
the root system of MO is Z(?f; if the latter is empty, we have M? = S.

Denote M* := M!(F). By [Kall9a, Proposition 3.6.7], the pair (S,6) has a
Howe factorization with respect to a sequence (¢—_1, ¢o, ..., dq) of characters, where
¢_1: S — C* and ¢;: M" — C* for 0 < i < d. More precisely, we have

d
(2.2.2) 0=1] ¢

1=—1

e for any i € {0,...,d}, the character ¢; is trivial on (M?)4e, has depth r; and
is M‘*1-generic for any i # d;
® ¢4 is trivial if ry = ry_1, and has depth r4 otherwise.

2.2.3. From now on, we make the following assumptions: S is an elliptic maximal
torus of M; the splitting extension of S is tamely ramified; S is maximally unrami-
fied inside M, i.e. S coincides with its maximal unramified subtorus as in [Kall9a,
Definition 3.4.2]; 6 is kp-reqular with respect to M, in the sense of [Kall9b, Defi-
nition 3.1.1].

For any point x in the building of M, let [x] be the projection of = onto the reduced
building Byeq(M). Let M, (resp. M) be the subgroup of M fixing x (resp. [z]).
Recall that M|, = Ny (M) by [YuOl, Lemma 3.3]. As in [Kall9a, Lemma 3.4.3],
we can then associate to S a vertex [y]| of Byeq(M), which is the unique Gal(F™ /F)-
fixed point in the apartment A;eq(S, F™) of Brea(M).

Let Sy be the unique maximal bounded subgroup of S (which is also the unique
maximal compact subgroup of S). Denoting by &° the connected Néron model of S,
we write S := 6&°(0f) C Sy, (see [Kall9a, §3.1] for more details). Let Mg,o be the
connected reductive kp-group such that

(2.2.4) My o := My o(kr) = My /M), .

There exists an elliptic maximal kp-torus S of M270 such that for every unramified
extension F’ of F, the image of S(F")y in M(F"), 0/M(F’)y 0+ is equal to S(kp»)
(see [Kall9a, Lemma 3.4.4]). By [Kall9a, Lemma 3.4.14], the character ¢_1|g, fac-
tors through a regular character ¢_; of S := S(kp) as defined in [Kall9a, Defini-
tion 3.4.16]. In particular, ¢_; is in general position in the sense of [DL76, Defi-
nition 5.15]. Then it follows from [DL76, Proposition 7.4, Theorem 8.3] that the
Deligne-Lusztig character

0
(225) (_1)Y(ngo)—r(S)RISVIy,O (¢_1)
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can be represented by a cuspidal, i.e. which cannot be obtained from a proper
parabolic induction, M(y],()—module K. _,, where r(7) denotes the kp-rank of 7. Then
Kgs_, is irreducible (see [DL76, Definition 5.15]), and its pull-back to M;O extends
uniquely to a representation kg4 , of SM;?,o- We define

0.

MP 0
(2.2.6) psS,f = Indsz{}]oo ks, and o = c—Ind%&] PS.6-
Y,

Then ¢V is a depth-zero irreducible regular supercuspidal representation of M (see
[Kall9a, Definition 3.4.19 & Proposition 3.4.20]). Set 5,0 := [M?, 5] /0.

More generally, we define an irreducible supercuspidal representation o of M by
using the twisted Yu construction of [FKS21]. As observed in [Kall9b, §3.4], it
has the same effect as using the original Yu construction from [YuO1l] applied to
the character € - €, where e: S — {£1} is the product of the characters eé\/l M
of [FKS21, Theorem 3.4]. The representation o is regular, i.e. satisfies [Kall9a,
Definition 3.7.13]. Then x ® o is regular for any x € X,.(M), and we say that the
inertial class s = [M, o] is regular.

2.2.7. For s); = [M, o] and sy0 = [M°,0°]3/0, the map
fio Tr™ (M) — Trr*mo (MO)

2.2.
(22.8) oRYX = 0 ® x| o

;X € X (M),

is an isomorphism of varieties by [Mis19, Theorem 6.1]. Let O° be the orbit of
o under the action of X, (M°). Let Wé% = Weo x R(O°) be the decomposition
analogous to (2.1.14). Then (2.2.8) and (2.1.11), applied to both s, and syy,, show
that the orbits O and O are isomorphic. The following is a consequence of [AM21,
7.3, 9.3].

Lemma 2.2.9 (Adler-Mishra). Suppose that p is good for G and does not divide
the order of the fundamental group of Gaer. Let s = [M,o0]q € B(G) be a regular
inertial class. Then (1) there is a group isomorphism

(2.2.10) W W& — W,

where 50 = [M°, 0% ¢o, and | is equivariant with respect to to,.
(2) there is an isomorphism

(2.2.11) Ly s (Ier™ (M) J/WE)y — (Trr®a® (M) // Wi )s0.

The collection §” of 2-cocycles is defined as follows. For x € Irr®™ (M), let WS*
denote the stabilizer of x in W*. Since § is equivariant with respect to tv,, the latter
restricts to an isomorphism

0
(2.2.12) 05|y s WET — Weg'™,
and every 2-cocycle f: W5* x W5" — C* defines a 2-cocycle
(2.2.13) Dyt Wea ™ x WeT®) —s .
Consequentially, we obtain in Theorem 2.2.14(2) new cases of [AM21, Conjecture 1.1].
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Theorem 2.2.14. Suppose that p is good for G and does not divide the order of the
fundamental group of Gaer. Let s = [M,0]c € B(G) be a regular inertial class.

(1) Then
(2.2.15) (E50) o ly 0 &8 Tr*(G) —> Trr(GO)Y

is a bijection.
(2) We have a bijection

(2.2.16) Irr(H°(G)) — Trr(H (G9)).

Proof. (1) This follows from the fact that the map {g defined in (2.1.21) and the
analogous map

(2:2.17) Eo: Tin(G)Y — (T*s0 (M) )/ W)

are isomorphisms.
(2) By [Sol22, Theorem 9.7] applied to both G and G, we have

¥ (G) 2 Irr(End(i$ (V) and  Trr*’ (G) 2 Ier(End(i) (Vo).

Thus by (1), we have Irr(End(i%(Vg)) = Irr*(G) = IrrﬁO(GO) = Irr(End(igg (Vgo)).
Then the result follows by applying Corollary 2.1.22 to both s and s°. g

Remark 2.2.18. The algebras H*(G) and ’Hso(GO) are not always isomorphic, as
shown in [GRO05, Example 11.8] for G = SL,(F'). However, we show in Theo-
rem 4.2.23 that they are isomorphic when G = Go and M is a maximal Levi sub-

group.

2.2.19. We end this section with brief recollections on non-singular supercuspidals
in the sense of [Kall9b], as we will consider non-singular Bernstein blocks in §3.1.50.

Let 0: S(kr) — Q, be a non-singular character. Let Ng(S)(kr)g denote the sta-
bilizer of the pair (S,6). By [Kall9b, Proposition 2.3.3], the character 6 extends
to the group Ng(S)(kr)s. Let U C G be the unipotent radical of a kp-rational
Borel subgroup of G, containing S, and let Y{; be the corresponding Deligne-Lusztig
variety. Let g g) be the isomorphism class of the representation H, fU (Yu, Qp)g. For
simplicity of expositions, we only describe the depth-zero situation. The represen-
tation (g ) = c—Indgx infgi K(s,0) 1s supercuspidal but not necessarily irreducible.
When it is indeed irreducible, we return to the case where 6 is regular as in [Kall9a].
When 7(g gy is reducible (e.g. when ¢ is non-singular non-regular), it decomposes as
[Kal19b, 3.3.3]

(2.2.20) T(s,0) = > dim(0)7(s g,0)
o€lir(Ng(S)(kr)o,0)

where the constituents T(S,0.,0) = c—Indgx infgi K(3,0,0)" constructed from K(g 9,0) 35 N
[Kal19b, Definition 2.7.6], are irreducible non-singular supercuspidal representations.
Here Irr(Ng (S)(kFr)g, ) denotes the set of irreducible representations of Ng (S)(kr)g
whose restriction to S(kp) is f-isotypic € is a fixed coherent splitting of the family
of 2-cocycles {ny u} as in [Kall9b, §2.4]. The positive-depth supercuspidals can
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be described similarly, by applying Yu'’s construction [YuOl] to the representation
T(e,8,6_1) Of G associated to the pair (S, ¢_1) [Kall9b, (3.2)].

3. LocAL LANGLANDS CORRESPONDENCE FOR BERNSTEIN BLOCKS

3.1. Axiomatic construction of the correspondence. Let GV denote the Lang-
lands dual group of G, i.e. the complex Lie group with root datum dual to that of
G. Let Zgv be the center of G¥ and G the quotient G¥/Zgv. The L-group of G
is defined to be G := GV x Wg. Similarly, M" denotes the Langlands dual group
of M. Let Zpsvuy, be the center of MY x I, and define

(3.1.1) e (MM) = (Zorv st )iy,

The group X,.(“M) is naturally isomorphic to the group X,.(M). We denote the
isomorphism X, (M) = X (*M) by x — xV.

3.1.2. An L-parameter is a continuous morphism ¢: Wy — L@ such that

e o(w) is semisimple for each w € Wp;
e the restriction ¢[gr,,(c) is @ morphism of complex algebraic groups.

An L-parameter ¢ is said to be discrete if o(W},) is not contained in any proper Levi
subgroup of GV. The group GV acts on the set of L-parameters. We denote by ®(G)
the set of GV-classes of G-relevant L-parameters. Attached to each L-parameter ¢
for G, we define several (possibly disconnected) complex reductive groups as follows.

Set Zgv (¢) == Zav (p(Wr)). Let Z%;svc(qﬁ) be the inverse image of Zgv (¢)/Zav (¢)N
Z¢gv (viewed as a subgroup of GY;) under the quotient map Gy, — G;. Then we set

We also define the following component group
(3.1.4) Sp 1= T (9) /2 (0"

An enhancement of ¢ is an irreducible representation ¢ of S,,. Pairs (¢, 0) are called
enhanced L-parameters (for G and its inner forms).

3.1.5. Let GV act on the set of enhanced L-parameters via

(3.1.6) 9 (9.0 = (9997 ",9 0)-

We denote by ®.(G) the set GV-conjugacy classes of enhanced L-parameters. We
define an action of X, (¥*M) on ®.(M) as follows. Given (g, 0) € ®(M) and & €
%nr(LM), we define (g, 0) € Pe(M) by ¢ := ¢ on Ir x SLy(C) and (§¢)(Frr) ==
§p(Frp). Here § € Z3,v g, represents z.

For an L-parameter ¢ of G, we denote by u, the image of (1, (1)) under ¢. By
[AMS18, (92)], we have u, € G, and

(3.1.7) Sy~ ng(ucp)/ng (up)° == Ag; (uyp)-
Let o be an irreducible representation of Agg (up). The pair (uy, ) is said to be

cuspidal if there is an G°-equivariant cuspidal (in the sense of Lusztig [Lus84]) local
system on the GZ-conjugacy class of .
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Definition 3.1.8. An enhanced L-parameter (p, ) is said to be cuspidal if ¢ is
discrete and (uy, 0) is a cuspidal pair in Gg.

3.1.9. From now on, we use the subscript ¢ to denote “cuspidal”. Let (¢, oc) be a
cuspidal enhanced L-parameter for M, we denote by
(3.1.10) sV ="M, gc, 0l

the GV-conjugacy class of (*M,0V), where OV is the orbit of (¢, 0.) under the
action of Xp (Y M). Let BY(G) be the set of such 5¥. Set s}, := [FM, pc, 0c]arv. Let
(3.1.11)

S = {n e Ngv(MY) : ™(¢e, 00) = (@e, 00) @ X for some x¥ € X (PM)} .

Denote

(3.1.12) 5y = W(MY,0Y) = N&, /M.
The group Wévv is a finite extended Weyl group, i.e. it decomposes as
(3.1.13) Wen = Wov x R(OY),

where Wov is a finite Weyl group, and R(OV) is a finite abelian group (see (3.2.8)).

3.1.14. Let ®S(M) denote the set of M"Y-conjugacy classes of cuspidal enhanced
L-parameters for M. By [AMSI18, (115)], there is a decomposition of ®.(G) into
series of enhanced L-parameters indexed by the set BY(G):

(3.1.15) o(G)= || @),
sVeEBV(G)

where <I>fc’v(G) consists of enhanced L-parameters whose cuspidal support lies in s".
Moreover, for any (¢, 0c) € (M), we have

(3.1.16) B (M) = Xne (“M) - (e, 00).

For 5V = [ M, ¢c, 0c]av € BY(G), there exists a bijection [AMS18, Theorem 9.3]
(3.1.17) e @3 (G) — (@ (M) /) WE )1,

where 1 = (Lhz)zexm(LM)/xnr(LM,(wmpc)) is a collection of 2-cocycles, and
(3.1.18) Xur ("M, (¢o, 00)) = {z € Xue("M) : 2 (5, 05)) = (¢5,00) } -

3.1.19. Let n: M — M be an F -morphism of connected reductive F-groups with
abelian kernel and cokernel. Then by [Bor79, §1.4], n induces a map from the root

datum of MV to that of M. We denote by n¥: MY — MV the associated morphism
of algebraic groups as in [Bor79, §2.1].

Ly LM — Py
(3.1.20) (m,w) — (n¥(m),w) form e M".

We recall [Bor79, Desideratum 10.3(5)]: Let ¢: Wp x Wp — MY be an L-parameter

for M and set ¢ := o @. Then for any 7 € IIz, the representation 7 o7 is the
direct sum of finitely many irreducible representations belonging to IL,.
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3.1.21. Let Irr* (M) C Irr(M) denote the set of equivalence classes of irreducible
supercuspidal representations of M. Let g € Ng(M)(F). For any o € Irr®* (M), we
have 90 € Irr®*(M). We denote by ¢, the isomorphism

(3.1.22) cg: (M,0) 5 (M,90).

Let Lcy: EM — LM be the morphism defined by (3.1.20). Let w +— w" be the
canonical isomorphism from W (M) := Ng(M)(F)/M to W (M) := Ngv (M) /MY
defined in [ABPS17a, Proposition 3.1]. Let n, (resp. n,v) be a representative

of w (resp. w¥) in Ng(M)(F) (resp. Ngv(MY)). With these notations, we have

g (mY) ="wvmY.

For o € Irr(M), since the equivalence class of "¢ does not depend on the choice of
the representative n,,, we will simply denote it by “o. Similarly, we use the notation
wY, instead of n,v, to denote the action of Ngv(MY) on ®(M).

Property 3.1.23. Let M be a Levi subgroup of G. Let sy := [M, o]y € B(M).
There exists a map
gy Iir’™ (M) —  PE(M)
o = (o, 00)
such that the following properties are satisfied for any o € Irr®™ (M):
(1) For any x € X (M), we have

(3.1.24)

(3.1.25) ((-PX®07 Qx®cr) = XV (o, 05),

where x + x" is the canonical isomorphism Xn (M) = Xn (L M).
(2) For any w € W(M), we have

v
(3126) v (9007 Qo) = (‘p“’cr’ chr)a

where w — w" is the canonical isomorphism W (M) = W (MY).

Remark 3.1.27. (1) Property 3.1.23(1) is closely related to [Bor79, Desidera-
tum 10.3.(2)].
(2) Property 3.1.23(2) is a stronger version of [Bor79, Desideratum 10.3.(5)] for
n = ¢4, and can be viewed as an analogue of [Hail4, Conjecture 5.2.4] for
enhanced L-parameters for supercuspidal representations. In the special case
where the L-packet of o is a singleton, Property 3.1.23(2) is in fact equivalent
to [Bor79, Desideratum 10.3.(5)] for n = c,.

Lemma 3.1.28. Let s = [M, o]y € B(G) satisfy Property 3.1.23. Then there is a
group isomorphism

(3.1.29) v WS Wf;vv, where sV := [V M, £ ()] qv .
Moreover, £°M s equivariant with respect to t.

Proof. Let w € W& C W(M). By the definition of W, we have Yo ~ x ® o for
some Y € X, (M). By Property 3.1.23, we have

Vv
(3'1'30) v (9007 Qo) = (‘:0“’07 Q“’cr) = (‘:DX®U, Qx@o) = Xv : (‘poa Qo)'
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Thus w" € Wévv, and the map w — w" gives a group morphism from W¢ to Wévv
Reversing the argument, we see that it is an isomorphism. O

We suppose that Property 3.1.23 holds, and that the collections of 2-cocycles f
and Lt satisfy the following

(3.1.31) Ly v =1, forany o €sand any x € Xp(M)/Xp (M, 0),
Theorem 3.1.32. (1) We have a canonical isomorphism
(3.1.33) e: (™™ (M) // W), <> (O (M) [/ WE )y,
(2) There is a bz’jection
(3.1.34) = (&) toeoly: Ir*(G) — @ (G).
Proof. Let = [M,o]g. Consider (¢s,0,) := £°(0). Then the isomorphism
Xnr(M) ~ X (M) combined with (3.1.16) shows that
(3.1.35) BI(M) = {x" @ (9o, 00) : X € Xne(M)} .
By Property 3.1.23(1) and (2.1.11), we have
(3.1.36) DM (M) = {(y®0, Ox@o) : X € Xnr(M)} == Trr®™ (M).

Recall that ng®o denotes the stabilizer of x ® o in W. By construction of the
extended quotients in (1.3.1), we have

(3.1.37) (™ (M) [/ W)y = L (Lre(CIWE™?, b))/ W

Xexnr(M)/xnr(Myo')

For x € X, (M), let ngv’xv'(%’g") denote the stabilizer of xV - (s, 0s) in Wévv By
Property 3.1.23(1), we have

(3.1.38) X (MY, (0, 00)) = Xne(M, 0).
Again by (1.3.1), we have
(3.1.39)
(PE (M) [ WE ey = L (WG 0 ) WG

Xvexnr(Mv)/an(Mv7(@0‘790‘))

X®0

For any w € W5 , by Property 3.1.23, we have

(3.1.40) (X (o, 00)) =" (Px@0: 0x@0) = (tpw(X®o), Ov(xQo) = (Px®0> Ox®0)-

Thus the morphism t from (3.1.29) restricts to an isomorphism

(3.1.41) WEXET 2y W X (Peree),
Combined with (3.1.37) and (3.1.39), we obtain an isomorphism
(3.1.42) e: (™ (M) // W), —> (B (M) [/ WE )y,

Then (2) follows from the combination of (1) with Proposition 2.1.20 and (3.2.15).
U
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Remark 3.1.43. When G is a split classical group, F' has characteristic zero and
£5M is the LLC defined by Arthur in [Art13], then Lemma 3.1.28 was proved in
[Moul7a, Theorem 4.1], and Theorem 3.1.32 follows from [Moul7b, §3.2 & 3.3].

Remark 3.1.44. The 2-cocycles in f§ and ©§ are expected to be often trivial: (1)
They are trivial if the groups R(O) from (2.1.14) and R(OV) from (3.1.13) have
cardinality at most 2, and hence when M is a Levi subgroup of a maximal parabolic
subgroup of G.

(2) The 2-cocycles are also trivial when G is a symplectic group or a split special
orthogonal group by [Heill, Theorem 7.7] on the group side and [Moul7b, §4.5] on
the Galois side. They are trivial for principal series representations of split groups
by [Roc98, Corollary 7.9 and Theorem 8.2] on the group side and [ABPS17¢, Theo-
rem 13.1] on the Galois side.

(3) However, there exist cases when these 2-cocycles are not trivial: e.g. see
[ABPS17b, Example 5.5] for an example where f is non-trivial, and [AMS18, Ex-
ample 9.4] for an example where “f is non-trivial.

3.1.45. Let o be a regular supercuspidal irreducible representation of M. Let
©o: Wp — LM be the L-parameter of ¢ as constructed in [Kall9b].

Proposition 3.1.46. Let s = [M,o|q be such that the L-packet for o is a singleton.
Let sV = [MV, (pg,1)]qv. Assume that the collections of 2-cocycles f and 4 are both
trivial. We have the following bijection

(3.1.47) £: I (G) — 2 ().
Proof. Let £°M be the map
(3.1.48) LM g (o5, 1).

By Proposition 3.1.51, Property 3.1.23(1) is satisfied.

The validity of [Bor79, Desideratum 10.3(5)] has been established in [BM21, The-
orem 1.1] when the L-parameter ¢ is supercuspidal, and G is quasi-split. Since the
L-packet for o is a singleton, Property 3.1.23 (2) holds by Remark 3.1.27. The result
thus follows from Corollary 3.1.32. d

Remark 3.1.49. Proposition 3.1.46 is sufficient for the case of G = Gy (as also
exemplified in [AX22]), since M is either GLg or a torus, both only having singleton
L-packets for their supercuspidals.

3.1.50. Suppose now o is a non-singular supercuspidal irreducible representation
of M. Let p,: W — “M be the L-parameter of ¢ defined in [Kall9b, §4.1], with
enhancement g,.

More precisely, consider the 71557979) recalled in §2.2.19. We fix a coherent splitting
€. We recall the construction of the non-singular L-parameter ¢(gg) in [Kall9b,
§4.1] (we drop o from the notation as the L-parameter does not depend on p), which
is given as a composition Wp 22 Lg L—j> L@G. Here pg: Wr — S is Langlands
parameter for the character 6, and “j: 'S — LG is a certain L-embedding arising
from the y-data as part of some torally wild L-packet datum (S,j, X0, 0) as loc.cit..
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Proposition 3.1.51. The map £°: 0 — (¢, 0,) satisfies Property 3.1.23 (1).

Proof. By [Kall9b, Proposition 3.4.6], we have y ® FESG o) = FES X Ox®p)" On the
other hand, by [Kall5, Proposition 4.5.3], we have ¢(g.9) = (¢x - ¢s) © Lj (since

the L-embedding ©j stays the same after twisting by ), where ox: Wi — Zg is the
corresponding 1-cocycle as defined loc. cit. O

Remark 3.1.52. Property 3.1.23 (2) of the map £¥: ¢ — (¢s,0,) follows from
[Kal22, Conjecture 2.12], which is expected to hold for LLC for non-singular super-
cuspidal representations. The authors intend to return to this question in future
work.

3.2. Matching of simple modules of extended affine Hecke algebras. In
this section, we use Corollary 3.1.32 to obtain a bijection between simple modules
of extended affine Hecke algebras for the p-adic group and Galois sides, assuming
Property 3.1.23. Note that this is a completely reasonable assumption, as many
groups satisfy this property. Therefore, our main results give a new approach to
constructing local Langlands correspondances “inductively”, building from LLC’s
on the Levi subgroups’.

3.2.1. We now recall the construction of a (possibly twisted) extended affine Hecke
algebra H°' (GV) constructed in [AMS17]. Consider

(3.2.2) M, =Ly (pc(WF)).
Let A, be the identity component of the center of M, . We set
(3.2.3) T =JT5" = Zav(o(IF)).

Let 3(J, Ag,) be the set of a € X*( Ay, )\ {0} which appear in the adjoint action of
Ay, on the Lie algebra of Jg. It is a root system by [AMS17, Proposition 3.9]. Let
Y (Jg; Ag.)" be the positive root system defined by an F-rational Borel subgroup of
Jg. Let A be a basis of the reduced root system ¥(Jg, Ay, )rea- Let a € Ay, be such
that a(a™?!) is an eigenvalue of Ad(p(Fr)) for any o € A. We define ¢, € ®(M) by

(3.2.4) PalIpxS1a(C) = Pelipxsie@) and  @q(Frr) :=a- @ (Frrp).

By [AMS17, Proposition 3.9], we have ¥(Gy,, Ay, )red = X(J3, Ag. )red; Where G, =
Zav(eqa(Wr)). Consider

(3.2.5) Xnr (MY, 0q) = {z € X0 (M) : (20a)mv = (Ya)mv } -

Set Tov := Xur(MY) /X0 (MY, @q). For each a € X(Tg, Ap, )red, let ma € Zsg be
the smallest integer such that

(3.2.6) ker(maa) D {a' € Ay, : (d'a) v = (o) v}
We set
(3.2.7) Sov = {ma : @ € X(TZ, Ap)rea} C X*(Tov).

Then Wev from (3.1.13) is the finite Weyl group of Ypv, and
(3.2.8) R(OY) := {w ceW(MY,0Y) : w- E(J;,Agoc)Jr = E(JS,A%)JF}.
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Let
(3.2.9) AV Yov — ZZO and A\*V: {maa € Xov : (maa)v S 2X*(Tsv)} — ZZO

be the two parameter functions defined in the proof of [AMS17, Lemma 3.12]. Recall
from [AMS17, (28)] that A*V(a) = AV () unless « is a short root in a type B root
subsystem of Rpv.

The algebra H¢ (GV) is defined to be

(3.2.10) 1 (GY) 1= Hag (O, Sov, A, AV*, 2) x C[R(OY), k"],

where z is a positive real number, H,g(GV,5Y) := Hag(OV, Tov, AV, A*V, 2) is the
corresponding affine Hecke algebra with affine Weyl group Wov x X*(Tpv), and "
a 2-cocycle on R(OV).

Theorem 3.2.11. We suppose that the collections of 2-cocycles f and ™4 are both
trivial. Let s = [M,o]q and s¥ = [ M, p,,1)qv. There is a bijection

(3.2.12) Irr(H5(G)) «— Irr(H° (GVY)).
Proof. By Corollary 2.1.22, we have a bijection

(3.2.13) Irr(H*(G)) — (Ier*™ (M) [/ W)y
By Corollary 3.1.32, we have

(3.2.14) LS (M) /) WE = &M (M) /) WE.
On the other hand, by (3.1.17) we have a bijection
(3.2.15) O (M) JWE, — 02 (G).
Finally, by [AMS17, Theorem 3.18], there is a bijection
(3.2.16) 33 (G) =5 Irr(HE (GY)).

Combining equations (3.2.13), (3.2.14), (3.2.15) and (3.2.16), we obtain the desired
bijection. 0

Corollary 3.2.17. With the same assumption as in Theorem 3.2.11.
Irr(H (GY)) — Trr(HED (GO)Y)).

Proof. This follows from combining Theorems 3.2.11 and 2.2.14. O

4. APPLICATIONS TO Go

In this section, we introduce notations and background specifically for the Go case.
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4.0.1. General background.

4.0.1. Let aps be the real Lie algebra of Ang, and aj, its dual. Let a}kv[’(c be the
complexification of a},. Let |- |p be the modulus of F'. Let Hys : M — aps be such

that ¢~ Hm(Mm):@) — |o(m)|p for every rational character a of M and every m € M.
Note that the kernel of Hj is equal to M (recall from §2.1.1). Consider

(4.0.2) M, = ﬂ ker x,

XEXnr(M,0)
which has finite index in Mj. Recall X,,;(M, o) from (2.1.9), and we have
(4.0.3)

Trr(M, /M) ~ X (M) /X0(M,0) and  C[M, /M) ~ C[Xne(M)/Xne (M, 0)].

Set (My/My)Y := Homy (M, /My, Z). Composing Hy; with the R-linear extension of
Hy (M, /M) — 7Z gives an embedding

(4.0.4) Hyr: (My/My)Y — a}y.

For m € M, let b, be the element of C[X,,(M)] defined by b,,(x) := x(m) for any
X € Xnr(M). Let hy be the unique generator of M, /M such that valp(a(hy)) > 0.
We define X, € C(X(M)/Xn (M, 0) by

(4.0.5) Xa(x) = x(ha),
for x € X (M) /X0 (M, 0).
4.0.6. For a complex number s, let x5 be the character defined by

(4.0.7) Xs(m) = |det(m)| for any m € M.
In particular, x5 € X, (M), and we have
(4.0.8) Xa(xs) = |det(ha)|p.

Let & be the element of a}, defined by & := (pp,a") 1 pp, where pp is half the sum
of the roots of Ajs in Lie N, with P = M N. Then sa € aj; ®r C.

We recall the description of the Plancherel measure from [Sil79] (see also [Sol21]
or [Heill] for the notations used here): for a € ¥p ,, where ¥o , is the root system
defined in (2.1.13), there exist ¢qa, gor € R>1,¢),, € Ryg for a € Xp ,, such that

1-X,)(1 - X1 1+ X))+ X1
(4.0.9) pM(o®)=c,, ( — I < )_1 L — I . )_1 :
(1-¢a Xa)(1—ga Xa™) (1+4quXa)(1+g,-Xa)
4.0.10. For a € Yo, by [Sol22, Proposition 3.1] there is a unique of € (M, /M;)Y
such that Hy, (o) € Ra and (h,, o) = 2. We set

Yoi={af i a€You} and %fi={a?: he€Tou}

The quadruple (X%, M, /My, X0, (M, /M;)Y) is a root datum with Weyl group Wo.
It has a natural action of the group W (M, O), and R(Q) is the stabilizer of its basis
determined by P (see loc.cit.). We endow this based root datum with the parameter
qr and the labels

(4.0.11) AMa) :=log(qaqa+)/log(qr) and N (a):= log(qaq;})/log(qp).




HECKE ALGEBRAS FOR p-ADIC GROUPS 25

To the above data we associate the affine Hecke algebra
(4.0.12) sz()\, )\*, qF) = HaH(ZV s MU/Ml, 2(9, (MJ/Ml)V, )\, )\*, qF).
It is defined as the vector space C[Wp|®cC[M, /M;] with the following multiplication
rules:
e C[Wo] = span{T, : w € Wp} is embedded as H(Wo, q3), the Twahori-Hecke
algebra of Wp, i.e.
TwTy =Ty if L(w) 4+ £(v) = L(ww),

(T, + 1)(Ts, — ) ™) =0 ifa € Ao,

where £(w) is the word length of w;
o C[M,/M;] ~ C[O] is embedded as a subalgebra;
o for « € Ap , and x € M, /M, (corresponding to 0, € C[M,/M]):

(4.0.13)

(42" () (@)=2* ) \ O — 0
esza - Tsaesa(m) = < }(a) -1 + Xojl(qA +2A - q>\ ZA > 1’7&1(%)

1- X%
4.0.14. We set
(4.0.15) S5 = Wo X ZX 5.

From now on we assume that the parabolic subgroup P is maximal. Then we have
M, = G, and W (M) is either trivial or of order 2.

Remark 4.0.16. (1) The groups W (M, O), Wo, and R(O) are either trivial or
of order 2. In particular, ¥ , is either empty or {o, —a}.
(2) For G = Go, if 0 £ ¢V, then W (M, Q) = 1. It suffices to only check the case
where o ~ oV.

In general, if W (M, Q) = 1, then the parabolically induced representation
is irreducible, so we do not need to work with the case. In the case of Go, the
condition W(M,O) # 1 happens to be characterized by the condition that
o is self-dual. See [Sha89] for more details.

4.0.17. If o, # 0, then W (M) # {1} and the group Wo is generated by the unique
non-trivial element of W (M), say sp. Then we have Wp = W(M,0) = W(M). In
particular, if o, # 0, we have R(O) = {1}.

The condition ¥, = () is equivalent to the following

(4.0.18) pC(x®a)#0 for any x € Xy (M).
We recall the following Harish-Chandra theorem.

Theorem 4.0.19. (Harish-Chandra) [Sil79, 5.4.2.2 and 5.4.2.3] Let M be a Levi
subgroup of a mazimal parabolic subgroup of G and let o be a supercuspidal irreducible
representation of M.

(a) If uG(o) = 0, then W(M) = {1,sp} # {1}, and sy;0 ~ 0.

(b) Suppose W (M) # {1}. Then u%(c) # 0 if and only if the representation i% (o)
is reducible. In this case, the representation i%(c) is the direct sum of two non-

isomorphic irreducible representations.

1i.e., £(w) is the smallest integer ¢ > 0 such that w is a product of £ generators sq.
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Corollary 4.0.20. Suppose W (M) # {1}. Then Wo = {1} if and only if, for any
X € Xur(M), the representation i%(x ® o) is reducible.

4.0.2. Some background on Gs,. In the case where G is the split G, we obtain
more precise results than in previous sections. Let T' be a maximal split torus in G.
Let R be the set of roots of G with respect to T'. Let (€1, €2, €3) be the canonical basis
of R3, equipped with the scalar product ( | ) for which this basis is orthonormal.
Then {« :=¢e; — 3,8 := —2e1 + 2 + €3} defines a basis of R, and

(4.0.21) RT ={a,B8,a+ B,2a + B,3a + §,3a + 28}
is a subset of positive roots in R. We have
(4.0.22) (ala) =2, (B|B)=6 and (a|B)=-3.

Hence « is a short root, while 5 is a long root.

4.0.23. As in [Mui97], we fix an isomorphism:

(4.0.24) Na: T —5 F* x F*

(4.0.25) t— (2a+B)(@), (a+ B)(1)).

Under this identification we have

(4.0.26) a¥(a) =n (a,at) and BY(a) =7n,%(1,a) for any a € F*.

Let GV be the dual group of G over C, obtained via an identification of the roots of
GV with the coroots of Go and vice versa. Then GV is a complex reductive group
of type Go, with simple roots a¥ and Y. Note that aV (resp. 8V) is the long
(resp. short) root of G¥. Consider the torus TV dual to T. Then TV is a maximal
torus of G¥. We fix an isomorphism:

(4.0.27) ngv: T — C* x C*

(4.0.28) t— ((@¥ 4+ 28Y)(1), (¥ + B8Y)(t)).

We have

(4.0.29) a’(a) = nﬁ_vl(l,a) and BY(a) = nﬁ_vl(a,a_l) for any a € F*.

4.0.30. For each root v € R(G), we fix root group homomorphisms z: F' — G and
Z-homomorphisms ¢y : SLo(F) — G as in [BT72, (6.1.3) (b)]. We have
(4.0.31)

=6 (5 1) = () ]) ma o-6 (5 %)

For v € {«, B}, let P, be the maximal standard parabolic subgroup of G generated
by . Let M, be the centralizer of the image of (7/)" in G, where 4/ is the unique
positive root orthogonal to 7, i.e.

a+p  ify=q,

(4.0.32) T {3a 128 ify=8

Then M, is a Levi factor for P,. Moreover, M, and Mg are representatives of the
two conjugacy classes of maximal Levi subgroups of G.
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We extend (,: SLy(F) — M, to an isomorphism (,: GLo(F) — M, by

wosy ot D) me((t ). e

Then the restriction of ¢ 1'to T coincides with the isomorphism

(4.0.34) Ny: T — F* x F*,
where 7, has been defined in (4.0.24), and
(4.0.35) ng: t = ((a+ B)(t), at).

4.1. Explicit Hecke algebra parameters.

4.1.1. The long root case. Let 1) be a fixed nontrivial additive character of F', and
1) be the dual of 1. Assume for now the Levi factor M of P = MN is generated
by the long root of GG. Let ¢ be an irreducible unitary supercuspidal representation
of M. We denote by w := w, the central character of 0. Let L/F be a quadratic
extension. Let y be a character of L*. Let x’ be the conjugate of x, i.e. x'(a) = x(@).
Let II(o) denote the Gelbart-Jacquet lift of o as defined in [GJ78]. Our notations
follow [Sha89]. The Plancherel measure pu(sa, o) has the following four possibilities
([AEFT21)).

4.1.1. Case I. If w is unramified, and if 0 = o(7) with 7 = Ind%ﬁ X, with x%x’
unramified, then

(4.1.2)
(1 —w(@)gp™)(1 —w ™ (@)gF)
(1 —w(@)gp ) (1 — w(w)gp' ™)
(1 — x> Nwr)qr*) (1 — x 2 (wr)q})

(5@, o) = (G P)2 g tex1e)=n()

(4.1.3) :

(1= x2x'"Ywr)ar =) (1 = x2x(wr)q; ' +*)

Comparing (4.1.2) with the Plancherel formula in (4.0.9), we have

(4.1.4) {X‘“(s) -l
Xa(s) =X wr)a,",
which implies that
(4.1.5) w(wp)gr>® + XX Hwr)q;® = 0.
Since gz, = ¢/(“/F) (4.1.5) only has a solution when f(L/F) = 2 and
(4.1.6) w(wr) + XX (@) = 0,
which is satisfied in our case. In particular, we have
(4.1.7) o= ar, o =aqr=qn'".
Therefore we have
(4.1.8) AMa) =log(gaga=)/log(qr) =1+ f(L/F),

X*(a) = [log(gage+)/ log(ar)| = |1 — f(L/F)|.
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Hence the parameters for the extended affine Hecke algebra in this case are q},ff (L/F)

and q\;—f(L/F)I‘
4.1.9. Case II. If w, is ramified and o = o(7) with 7 = Ind%f X, and x2x’ unram-
ified,
(4.1.10)
~ n(o o))—n(o 1- X2X/_1 WL q—s 1 - X_2X/ wL)q;
(s, ) = A(G/ P2 ¥ @) =n(o) ( XX ( _)1_Ls )( - /( ) _L1)+S
(I =x*X"Mwr)a, *)A —x*X(wr)ap ™)

We compare (4.1.10) to the Plancherel formula (4.0.9) and obtain

(4.1.11) dor =1, ga=aqp =g &
Recall the definition of X, as
(4.1.12) Xa(x) = x(hg)

where x € X" (M)/X" (M, o). Since the map 15: m — |det(m)|} is an unramified
character of M, we have

(4.1.13) Xa(®s) = 03X N(wr)ap®
Recall from (4.0.11) that
(4.1.14) q}(a) = ¢afor € R>.

Thus by (4.1.11), we have q;}(a) =qL = ql];(L/F), where f(L/F) is the residue degree

and is thus 1 if L/F is ramified, and 2 if L/F is unramified. In particular

(4.1.15) Na) = f(L/F), XN(a) = f(L/F).
Note that for w € W(M, O), one may check that
(4.1.16) w(Xa) = Xu(a)

Since w(a) = a for w € W(M,O) when G = Gog, (4.1.16) is simply w(X,) = Xa-
On the other hand, by [Sol21, Prop 1.1] we have

wXa(x) = w(Xa(x)) = wx(he)) = x(w(hy)) = x(Aya) = x(he) = Xa(x)
Thus wX, = Xo = Xy(a)- This reduces to check, in the long root case, that

(4.1.17) s20+8(0X " (@r)ar”) = X*X " (wi)ap®

Since £, = {1,2a + B} in the long root M = M?# case, we have

(4.1.18) W(S5) = {1, 82045}

Thus the Iwahori-Hecke algebra of W (X)), as defined in (4.0.13), is given by

(4.1.19) HOW (S, ¢) = {H({1,82a+5},qF), L/F %s ramiﬁe.d
H({1, s2a+5},q%), L/F is unramified

Therefore, the affine Hecke algebra in this case is given by

(4.1.20) Hat (M) = H({1, 52045}, a1 "7 % ClO]
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4.1.21. Case III. If w is unramified and o # o(7) or x?Y’ is ramified,
(4.1.22)

3. o) — 2 n(@in(oxt(e)-n() (1 —w(@)gp™) (1 —w  (@)qF)
M( ’ ) ’Y(G/P) g (1 _ w_l(w)qgl—l-%)(l _ w(w)q}—?l—23)

In this case, we have

Xa(s) = W(W)QE2S

Gor =1, Ga=qr

Thus A(a) =1 and A*(a) = 1. The parameters in this case are simply g.
4.1.24. Case IV. If w ramified and o # o (1) or %)’ is ramified,

(4.1.23)

(4.1.25) p(sa, o) = ,Y(G/p)2qz(axﬂ(0)))—n(o)
In this case, we have
(4.1.26) Go=1, g =1

Thus A(a) = 0 and A*(«) = 0. Thus the parameters in this case are trivial.

4.1.2. The short root case. Now we give the explicit computation in the short
root case. Assume the Levi factor M of P = MN is generated by the short root
of split Go. Let o be an irreducible unitary supercuspidal representation of M. Let
w = w, be its central character. Then by [Shadl, Proposition 6.2] the Plancherel
measure u(sa, o) is given by the formula

(4.1.27)

if w is unramified

n(o)+n(oc@w 1—w(@)qm2%) (1—w(w) g2

R T R P S

M(3a7g) = (1-w(w)g )(1—w(w) qdr )
V(G/P )2‘J?r(g)+n(w)+n(g®w) otherwise

Here n(o), n(w) and n(oc ® w) are the corresponding conductors.
4.1.28. Case I. If w is unramified,

(1 - w(@)gp>) (1 —w(@) 'gi¥)
(1 - w(@)ap ) (1 — w(w) "l )
Comparing (4.1.29) with (4.0.9) implies that

(4.1.29) u(sa,o) = 'V(G/P)2q?;(0)+n(g®w)

(4.1.30) o = qF, Qo =1
Since x5 is an unramified character of M, we have
(4.1.31) Xao(xs) = w(@)gp?.

Recall from (4.0.11) that q;}(a) = ¢aga+ € Rs1. Thus by (4.1.30), we have q;‘,(a) =qF

and thus A(a) =1 and A\*(«) = 1. Note that for w € W (M, O), one may check that
(4.1.32) w(Xa) = Xw(oe)'

Since w(a) = a for w € W(M, O) for G = Go, (4.1.32) is simply w(X,) = Xo. On
the other hand, by [Sol21, Prop 1.1] we have

(4.1.33)

wXo(x) = w(Xa(x) = w(x(ha)) = X(W(ha)) = X (M) = X(ha) = Xa(X)-
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Thus wX, = Xo = Xy(a)- Since E(VQ = {3a + 24} in the short root M = M, case
(see [Sha9l, p.389]), we have

(4.1.34) W(E5) = {1, s3a+26}
Therefore we have the affine Hecke algebra

(4.1.35) Hat(Ma) = H({1, s30+428}, ar) x C[O].
4.1.36. Case II. In the other case,

(4.1.37) u(s@, o) = y(G/P)2gno)nwtn(osw)
Comparing (4.1.37) and (4.0.9) gives us

(4.1.38) Go=1, qor=1.

Therefore we have ¢ = 1 and thus A(a) = 0 and A*(a) = 0. Therefore the affine
Hecke algebra in this case is given by

(4.1.39) Hat (M) = H({1, 830425}, 1) x C[O)].

Remark 4.1.40. The computations of Hecke algebras with explicit parameters in
this section will be collected into tables in §4.2.2.

4.2. Intertwining algebras.

4.2.1. For b € F*/F*2 let Uy(1,1) be the quasi-split unitary group, and Uy(2) the
compact unitary group in two variables in F'(v/b). We write F*/F*? = {1,¢, w,cw},
and the possible unitary groups in 2 variables are:

U:(1,1), U (2), Ugp(1,1), Ug(2), Uerw(1,1), Uerr(2).

The group Uc(1,1) is an unramified group. The group U,/(1,1) is ramified, where
w' € {w,ew}.

4.2.2. We now classify the twisted Levi sequences in Go (up to conjugacy) for M =
M, with v € {«, 8}
(1) Essentially depth zero case: If py;,, is an essentially depth-zero supercuspidal
type on M, then X,/ is of the form (M,y,¢,r, pr) (hence in particular
M° = M), where Ky, = y,0 =~ GLa(op) is a maximal compact subgroup
of GLy(F') and r = depth(py,,) is an integer. If r = 0, we may assume that
¢ = 1 without loss of generality.
(a) 6} (G) (here G% = G, it is a depth zero case: r = 0),
(b) G =(M° G) (here G" =M = M" and r # 0).
(2) Positive depth cases [AEFT21]:

(a) G =(U(1,1),G),

(b) G = (Uy ( 1),G), with @’ € {w,ew},
() G=(M )

(d) G=(M G),

where MY is a torus in GY.
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When M = M,,, we have three possibilities for MO, denoted Tye, Ty o and T, 5. If
¢o has trivial restriction to Z3,, then it can be extended to to a character of U, and
we use the same notation ¢g to denote the extended character.

Let GY) denote the reductive quotient of GY. Let @’ € {w,ew}. We have

{U(l, 1) if GO =TU.(1,1),

4.2.3 GO =
(4.23) SO if GO = U (1,1).

Y

Remark 4.2.4. The central character w, of o can be either ramified or unramified.
It is unramified if and only if wo is trivial. When w,, is ramified, w,o is quadratic.

Lemma 4.2.5. We have
(4.2.6) Wg ~ Wy,
Proof. The representation o is regular and p is good for G, i.e. p # 2,3 and does

not divide the order (= 1) of the fundamental group of Gge;. Hence Lemma 2.2.9
applies and gives the desired isomorphism. O

4.2.1. The intertwining algebras of types attached to G°.

4.2.7. The case GY = MY. It occurs in both the essentially depth-zero case with
r # 0 and in the positive depth cases. We have two possibilities for M9: either
MO ~ GLy(F) or M is a torus. In both cases, the algebra H(G°, ppo) = H(M°, ppo)
is commutative by [BK98, 5.5,5.6].

4.2.8. The case G° = U.(1,1). If Wé% = {1}, then H(G", ppo) is commutative,

as seen in Remark 2.1.60. From now on we suppose that Wg% # {1}. Let a — @ be
the non-trivial element of Gal(L/F"). Set

0. 0 1 o 0 521 L Uz oy, 0
(4.29) w’ = <1 O>’ wy = <w'L R and P := pr o NG .

Recall that ppo denotes the contragredient representation of p°. By [Bad20, §3.1],
the Iwahori-Matsumoto presentation of H(U.(1, 1), ppo) is given by: H(U.(1,1), ppo)
is the space spanned by functions

(4.2.10) Ty,: G° = Endg(Vs;), for i€ {0,1},

satisfying

(4.2.11) Tw;(pgp’) = ppo(p)Tw, (9)ppo ('),  where p,p’ € P and g € G°.

Here T, is supported on Pw;P, and satisfies the quadratic relation

(4.2.12) (Tw, — qr)(Tw, +1) = 0.

One can then deduce the Bernstein presentation of H(U.(1,1), ppo) using [Lus89,
§3]. In particular, we have ql);(a) =qp.

4.2.13. The case G = U,/(1,1). Let @’ € {w,ew}. Since Uy (1,1) is ramified,
by [Bad20, §5.1.1], the algebra H (U (1,1), ppo) has trivial parameters with R(O°) #
1 and Wpo = 1 if wy| 0% # 1; and the Hecke algebra has parameter gr otherwise, in

which case Weo # 1 and R(OY) = 1.
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4.2.2. The intertwining algebras of types attached to G.

4.2.14. Long root essentially depth zero case.
(a) r =0, x3 =1 case and 0 = o(7) for 7 = Ind%fx:

We have pj self-dual, o and 7 correspond via LLC for GLg(F'). Since o has depth
zero, L/F is unramified (so e(L/F) =1 and f(L/F) = 2). We have the following
four cases:

e The central character w, = 1 and x?x’~! unramified. This corresponds to
Case 4.1.1, in which case the Plancherel formula has a zero, and the Hecke
algebra is affine non-commutative, with parameters q% and qr. We have
Wo # 1 and R(O) = 1. Since G = G in this case, Wo = Wpo and
R(O) = R(OY).

e The central character w, # 1 is ramified, and x?x’~! is unramified. This
corresponds to Case 4.1.9, in which case the Plancherel formula has a zero,
and the Hecke algebra is affine non-commutative, with parameters q%. We
have Wo # 1 and R(O) = 1. Since G = G in this case, Wo = Weo and
R(O) = R(OY).

e The central character w, = 1 and y?x'~! ramified. This corresponds to
Case 4.1.21, in which case the Plancherel formula has a zero, and the Hecke
algebra is affine non-commutative, with parameter gr. We have Wy # 1 and
R(0O) = 1. Since G = GY in this case, Wo = Weo and R(O) = R(O°).

e The central character w, # 1 is ramified, and y?x'~! is ramified. This
corresponds to Case 4.1.24, in which case the Plancherel formula has no
zero, and the Hecke algebra is affine commutative of the form C[R(O)] plus
the translation part C[O]. We have Wy = 1 (and we don’t know what R(O)
is in this case). Since G = G in this case, Wo = Wo and R(O) = R(O°).

(b) r = 0 and 0 # o(r): We have ¢ = o(7') where 7/ = Ind%f( for ¢ such
that (! = ¢ (the Galois conjugate). Since o is still depth zero, we still have L/F
unramified.

1

1

e The central character w, = 1. This corresponds to Case 4.1.21, in which
case the Plancherel formula has a zero, and the Hecke algebra is affine non-
commutative, with parameters gr. We have Wy # {1} and R(O) = {1}.
Since G = G in this case, Wp = Wpo and R(O) = R(OY).

e The central character w, # 1 ramified. This corresponds to Case 4.1.24, in
which case the Plancherel formula has no zero, and the Hecke algebra is affine
commutative of the form C[R(O)] plus the translation part C[O]. we have
Wo = {1} (and we don’t know what R(O) is in this case). Since G = G in
this case, Wo = Weo and R(O) = R(OV).

(c) r # 0 essentially depth zero case: Recall from §4.2.7 that GY = M = M°. Thus
we have

Wo C Ngo(MO) /MO = Ny (M)/M = {1}.
By Lemma 4.2.5, we get W& = {1}. In this case, W(M,0) = W(M°,0°%) = 1.
Thus the algebras H (G, p) and H(GY, p°) are both of the form C[O], and they are

isomorphic.
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4.2.15. Table for long root essentially depth zero cases.
r D [we [ XAXT JRO)JRO)] L/F  [#Xu(M,0) [ Wo [ Weo | H(G, p) \ H(GY, %) \
ified . . .
=1 m)l:iil};ice =1 =1 | unramified 2 #1| #1 | non-comm, q‘}, ¢r | non-comm, q‘}, qr
r=0 (G, M), (y,0), (My0, par)) #1 m:‘zlilf:d =1 =1 | unramified 2 #1]| #1 | non-comm, ¢%, ¢% | non-comm, ¢%, g%
ramified .
=1 1)?1({,1111})?(7 =1 =1 | unramified 2 # 1| #1 | non-comm, gp, ¢gr | nON-comm, qr, ¢r
#1 ;Mgﬁglecd * * unramified 2 =1| =1 | C[R(O)|xC[O] | CIR(0)]x C|O]
= X not cubic =1 =1 | unramified 2 #1| #1 | non-comm,gp,qr | non-comm,qr,qp
£1 N/A * * unramified 2 = =1 | C[R(O)] x C[O] C[R(0)] x C|O]
r#0 | ((M,G),M),(y,¢),(r,0),($,1),(Myo,pnm)) | #1 N/A =1 =1 | unramified 2 = = ClO] ClO]
TABLE 4.2.15.
4.2.16. Long root positive depth case
(a) Ugr(1,1) case: o = o(7') # o(r), where 7’ is induction of some quadratic

character. (Note that the cubic character only occurs in depth zero, because we
are assuming p # 2,3. There are two possibilities, ¢0’Z(}M could be either trivial or

non-trivial:

When ¢0|Z9u = 1 unramified, since ¢ = o(7’) # o(7), this corresponds to
Case 4.1.21, in which case the Plancherel formula has a zero, and the Hecke
algebra is affine non-commutative, with parameters qrp. We have Wp # {1}
and R(O) = 1. By 4.2.13, the Hecke algebra for G° also has gr parameter.
Thus we have Wpo # {1} and R(O%) = 1.

When ¢0|Z‘}w = sign character ramified, since ¢ = o(7') # o(7), this cor-
responds to Case 4.1.24, in which case the Plancherel formula has no zero,
and the Hecke algebra is of the form C[R(O)] x C[O]. We have Wy = {1}.
By 4.2.13, we have Weo = {1} and R(O°) # 1. Thus R(O) = R(O°) # 1 by
Lemma 2.2.9.

(b) Uc(1,1) case: o = o(7') # o(r), where 7’ is the induction of some quadratic
character.

When ¢y 20, = 1 unramified, since o = o(1') # o(7), this corresponds to
4.1.21, in which case the Plancherel formula has a zero, and the Hecke algebra
for G is affine non-commutative, with parameters q. We have Wy # {1} and
R(O) = {1}. From 4.2.8, we have Wyo # {1} and R(O°) = {1}. Note that
the cardinality of X,,(M,c(7")) is 2 (see Remark 2.1.10).

4.2.17. Table for long root positive depth cases. We summarize the above in
the following table:
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| MO | Bolzs, | o1 | G | R(O) | ROO%) | L/F | #Xu(M,D) [ Wo |Woo |  H(G,p) | HEG ) |
. C}Tarzlcgtlér £1| (Up(1,1),G) | #1 | #1 | ramified 1 =1| =1 | C[R(0)] x C[O] | C[R(O)] x C[O]
By’ 7& 1 0 .n 0
£ sign character | — 1 (M°,G) =1 =1 ramified 1 =1|=1 ClO] C[0"]
both £1] (MY, M,G) | =1 =1 ramified 1 =1|=1 ClO] ClOY]
-1 -1 1.1 -1 -1 ﬁ 9 1 1 non-comin. non-comim.
(U:(1,1),G) unramified # # . .
T3, #1 =1 (M, @) =1 =1 | unramified 2 =1|=1 C[O] CcloY]
both #1| (M M,G) | =1 | =1 | unramified 2 =1]=1 C[O] Cl[0Y]
TABLE 4.2.17.
4.2.18. Short root essentially depth zero case.
(a) r =0, there are only two cases:
e When py| z3, = 1, this corresponds to the central character being unramified
case, and in this case the Plancherel formula in 4.1.28 has a zero. Thus
thus Wp # 1 and thus R(O) = 1. In this case the Hecke algebra is non-
commutative, and the g-parameter is just ¢ = ¢p. The case for G° again
follows from 4.2.13.
e When py/] z3, = 1, this corresponds to the central character being ramified
case, and in this case the Plancherel formula in 4.1.36 has no zero, and
thus Wo = {1}. In this case the Hecke algebra is commutative, and the
g-parameter is trivial.
(b) r # 0 essentially depth zero case. The same argument as in §4.2.14(c) applies.
4.2.19. Table for short root essentially depth zero cases.
] D [w, [ROO)[RO")]| L/F [ #Xu(M,0) | Wo | Wen | H(G, p) [ HG ) ]
_ | ) =1| =1 =1 | unramified 2 #1| #1 | non-comm, ¢p, ¢gr | non-comm, qr, q
r=0 (G, M), (y,0), (My,0, par)) Z1[ + + | unramified 3 LT CRO < o] T ClRO) <o)
r#0 | (M, G), M), (y,0), (,0), (¢, 1), (My.0, par)) ;1 =1 | =1 |unramificd 2 =1 = Clo] ClO°]
TABLE 4.2.19.

4.2.20. Short root positive depth case.

(a) GO

=Ug(1,1) case:

When ¢0’Z(}M = 1, the Plancherel formula on the Go side in 4.1.28 has a
zero, and thus Wp # {1} and thus R(O) = {1}. In this case the Hecke
algebra H(G, p) is non-commutative, and the g-parameter is just ¢ = gp. By
Lemma 2.2.9, we have W (M? 0% +# 1, and since Wpo # 1 by 4.2.13, we
have R(O°) = 1. Moreover, the Hecke algebra H(GP, p°) has parameter qr
by 4.2.13.

When the central character (of GLS™) ¢ 29, = sign character # 1 is ram-
ified, the Plancherel formula on the G2 side in 4.1.36 has no zero, and thus
Wo = {1}. In this case the Hecke algebra H(G,p) = C[R(O)] x C[O] has
trivial g-parameter. On the other hand, since I(o) is reducible by [Sha9l,
Proposition 6.2], we have R, # 1. Since W, x R, = W(M,0) C W(M,0) =
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Wo x R(O) and Wp = 1, we have R, C R(O) and thus R(O) # 1. By
Lemma 2.2.9, we also have R(O°) # 1 since Wpo = 1 by 4.2.13.
(b) G° = U.(1,1) case: When ¢0|z9w = 1 the Plancherel formula on the Go side in

4.1.28 has a zero, and thus Wy # {1} and thus R(O) = {1}. In this case the Hecke
algebra H(G, p) is non-commutative, and the g-parameter is just ¢ = ¢p. From 4.2.8,
we have Wpo # {1} and R(OY) = {1}.

4.2.21. Table for short root positive depth cases. We summarize the above in

the following table:

(M ] Bolzs, | &1 ] G RO)[RO)] L/IF [ Xu(M,0)[Wo [Weo [ H(G,p) H(GO, o)
=1 =1 =1 =1 ramified 1 #1| #1 | non-comm, gp non-comm, qr
= sign (U (1,1),G) . . . 0
To,= character #1 #£1 #1 ramified 1 =1| =1 | C[R(O)] x C[O] | C[R(O)] x C[O"]
# 1 _ 0 _ _ : N 0
£ sign character | — 1 (M°,G) =1 =1 ramified 1 =1| =1 ClO] C[o"]
both 1| (M°,M,G) | =1 =1 ramified 1 =1]|=1 ClO] CloY]
—1 =1| (U(1,1),G) | =1 | =1 |unramified 2 A1 | A1 | Bowcom Hon-eotm.
qF qar
T #1 =1 (M°, @) =1 | =1 | unramified 2 =1|=1 Clo] CloY]
both A1 (M°M,G) =1 =1 | unramified 2 =1|=1 ClO] CJ[O"]
TABLE 4.2.21.

4.2.22. We keep the notations of §2.1. The following theorem establishes the va-
lidity, for Go, of a generalization of a conjecture of Yu’s [Yu0l, Conjecture 0.2] for
supercuspidal types, which was proved by Ohara in [Oha21]. The following result
shows that a stronger version of Theorem 2.2.14(2) holds for the group Go.

Theorem 4.2.23. Let p # 2,3. The algebras H*(G) := Endg(II;) and H(GO) =
Endgo (Hﬂgo) are isomorphic.

Proof. By Proposition 2.1.58, it is equivalent to show that the algebras H(G, pp) and
H(GY, ppo) are isomorphic. The latter can be read directly from the tables 4.2.15,
4.2.17, 4.2.19 and 4.2.21. g

The following corollary is a stronger version of Lemma 4.2.5 for G = Go.
Corollary 4.2.24. The groups R(O) ~ R(O%) and Wo ~ Weo.

Proof. This can be read directly from our tables 4.2.15, 4.2.17, 4.2.19 and 4.2.21,
with explanations given in the sections immediately preceding the tables. O

4.2.25. On Lusztig’s conjecture. Let L°: W2; — N be the weight function? on
W3¢ defined by

(4.2.26) L°(sq) == Ma) and L°(s)) :== \*().

In [Lus20, §1.a], Lusztig made the following conjecture.

2ie., L*(w) > 0 for all w €
that £(ww") = £(w) + £(w’).

=z — {1}, and L*(ww') = L*(w) + L*(w') for any w,w’ € Wjg such
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Conjecture 4.2.27. (Lusztig) The function L* on the affine Weyl group W7 is in
the collection of weight functions described in [Lus91, Lus95, Lus02].

Many cases of Conjecture 4.2.27 have been proved in [Sol21], e.g. for principal
series representations of G.

Theorem 4.2.28. Conjecture 4.2.27 holds for the group Go.

Proof. 1t follows from Tables 4.2.15, 4.2.17, 4.2.19 and 4.2.21. O

5. APPLICATIONS TO OTHER GROUPS

Let N be a positive integer. Let J}, denote the N x N-matrix - . When

N =2n, let Jy := (—OIn Ig).

5.1. Symplectic group. The F-rational points of the symplectic group Sp,,, are
given by

(5.1.1) Spon(F) = {9 € GLon(F) : 'gJong = Jon } -

Let P be the maximal parabolic subgroup of GSp,,, (F'), consisting of matrices whose
lower left n x n-block is zero. The Levi factor of P is isomorphic to GLy,(F).

5.2. General symplectic group. The F-rational points of the algebraic group
GSp,,, are given by

(5.2.1) GSpy, (F) = {9 € GL2n(F) : 'gJong = pin(9) J2n; in(g) € F*}.

Let P be the maximal parabolic subgroup of GSp,,, (F'), consisting of matrices whose
lower left n xn-block is zero. The Levi factor of P is isomorphic to GL,,(F') x GL1 (F).

5.3. Special orthogonal group. The F-rational points of the algebraic group SOy
are given by

(5.3.1) SON(F) ={g € GLN(F) : 'gJng = Jy, det(g) = 1}.

Let P be the maximal parabolic subgroup of SOy (F'), consisting of matrices whose
lower left N x N-block is zero. The Levi factor of P is isomorphic to GL,,(F’), where
N=2n+1or N = 2n.

The LLC for GL,(F'), established in [HT01, Hen00, Sch13], shows that the L-
packets are always singletons in this case. Thus, by Proposition 1.2.5, the properties
(1) and (2) are satisfied in the three cases above.
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