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Abstract 

The mitigation of pollution resulting from industrial waste gas emissions is a 

challenging academic and industrial problem. This study focused on the successful 

preparation of Au/g-C3N4 composite material by photodeposition of Au nanoparticles 

onto the surface of g-C3N4. The composite catalyst exhibited robust photooxidation 

activity and stability in the oxidation of nitric oxide (NO) when subjected to visible 

light irradiation. As cocatalysts, Au nanoparticles in-situ grow on the surface of g-C3N4, 

forming a tight heterostructure with Schottky junction through van der Waals force, 

which enhances the SPR effect of Au nanoparticles, thereby enhancing the light 

absorption capacity of g-C3N4 within the visible region, promoting the separation of 

electron-hole pairs generated during photooxidation, prolonging the lifetime of 

photogenerated carriers and enhancing the photooxidation capacity of the composites. 
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The mechanism of NO photooxidation has been proposed based on in-situ infrared 

spectroscopy and DFT calculations. This research serves as a valuable reference for the 

construction of semiconductor-cocatalyst systems and their behavior in NO 

photooxidation, contributing to the advancement of this field. 

Key words: Carbon nitride; Au nanoparticles; Photodeposition; SPR; Photooxidation 

NO  

1.Introduction 

In recent years, as society and science have advanced, the release of industrial 

waste gas and water has caused serious pollution deteriorating our ecological 

environment [1]. As a common acid gas pollutant, NO poses numerous concerns 

including the generation of acid rain, depletion of the ozone layer, the formation of 

photochemical smog and haze, and the potential harm to human lung tissue [2-5]. 

Traditional methods such as the physical and chemical treatments, thermal catalytic 

reduction and biochemical method have obvious defects and limitations, such as high 

operational expenses, low efficiency, inadequate selectivity, incomplete degradation 

and transformation of pollutants, as well as a propensity to generate secondary 

pollutants [6]. Therefore, the exploration of environmentally friendly, efficient and non-

secondary pollution degradation technologies has emerged as a focal point of research. 

Among these, semiconductor photocatalysis technology has garnered significant 

attention as a green, non-toxic, and sustainable degradation method. 

As a typical 2D non-metallic polymer semiconductor photocatalyst, graphite-phase 

carbon nitride (g-C3N4) possesses several key advantages including its affordability, 

robust chemical stability, and straightforward synthesis process [7]. However, single 

component g-C3N4 has non-ignorable disadvantages such as low utilization efficiency 

under visible light and easy recombination of photogenerated carriers, which limits its 

application in photocatalysis [8]. In order to overcome the defects of g-C3N4, researchers 

have proposed effective strategies [9-13] to improve its photocatalytic performances. For 

example, Zhang et al. [14] successfully incorporated WOx layers with oxygen vacancies 

into Au-modified g-C3N4 nanosheets to form heterojunctions with excellent CO2 
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photoreduction properties. Wang et al. [15] effectively promoted the separation of 

photogenerated electrons and holes using composite of TiO2 and g-C3N4. However, 

TiO2 has poor optical absorption performance in the visible range. Noble metal 

nanoparticles have a surface plasmonic resonance effect (SPR), wherein the localized 

electric field they generate enhances the absorption of composite materials to visible 

light. Meanwhile, noble metal nanoparticles can be used as a trap to capture 

photoexcited electrons in semiconductors to improve the separation efficiency of 

photogenerated electron-hole pairs in semiconductor catalysts [16]. Therefore, loading 

noble metal can improve the photocatalytic performances of semiconductors. The Pt/ 

g-C3N4 composite prepared by Zhu et al. [17] through in-situ photoreduction improved 

the photocatalytic hydrogen evolution performances, compared with pure g-C3N4. The 

Ag/g-C3N4/TiO2 and Ag/ZSM-5/g-C3N4/TiO2 catalysts prepared by Wang et al. [18] can 

significantly improve the degradation efficiency of formaldehyde. Li et al. [19] 

synthesized Au/g-C3N4 nanocomposites by in-situ wet chemical reduction method. The 

introduction of Au NPs improved the photocatalytic nitrogen oxide removal activity of 

g-C3N4. Faisal et al. [20] prepared an Au/g-C3N4 composite photocatalyst, which showed 

high photocatalytic activity for the degradation of methylene blue dye and the drug 

Gemefloxacin mesylate within the range of visible light. Therefore, Au nanoparticles 

are considered a suitable cocatalyst to improve the photocatalytic efficiency of g-C3N4. 

In this study, g-C3N4-Au composite photocatalyst was synthesized by 

photodeposition strategy. With NO as the target pollutant, the photocatalytic 

performances of the composite were studied. The material structure, elemental 

composition, morphology, optical properties and photooxidation activity of the best 

composite specific photocatalyst was analyzed by a series of characterization 

methods. Compared with pure g-C3N4, the photooxidation removal efficiency of g-

C3N4-Au-3 under visible light can reach 77.4 % within 30 min. The test results show 

that the SPR effect of precious metals promotes the absorption of visible light by the 

sample, and it is easier to generate photogenerated charge carriers. AuNPs with a 

particle size of about 10 nm are in-situ grown on the surface of g-C3N4. Thus, the 

Au-g-C3N4 heterojunction was constructed, and the tight interface enhanced the SPR 
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effect of Au and helped charge transport, promotes the separation of photogenerated 

electron-hole pairs, prolongs the lifetime of photogenerated carriers, and 

significantly improves the photooxidation activity. The mechanism of NO 

photooxidation was preliminarily revealed by in-situ infrared spectroscopy. DFT 

calculation shows that the introduction of Au nanoparticles can promote the 

photooxidation reaction. 

2. Experimental section 

2.1 Materials 

Urea (CH4N2O，purity≥99.0 %), chloroauric acid (AuCl3·HCl·4H2O，

purity≥99.0 %), ethanol (C2H6O，purity≥99.7 %) are supplied by the McLean's reagent. 

Also, secondary distilled water is utilized for all experiments. All gas purchase from 

Stone Head Gas Products LLC. The NO (10 ppm) bottle contains N2 equilibrium NO. 

2.2 Photocatalyst preparation 

Preparation process of g-C3N4: 10 g urea was put into a ceramic crucible with a 

lid, which was heated in a box Muffle furnace at 550 °C for 2 h at a heating rate of 

2.5 °C·min-1. The crucible was cooled to room temperature and then ground to obtain 

light-yellow powders of g-C3N4. 

Preparation process of g-C3N4-Au: g-C3N4-Au were prepared by photo-deposition 

method. In a typical process ,0.5 g prepared g-C3N4 were dispersed to 100 ml secondary 

distilled water by ultrasonic treatment for 30 min, a certain amount of chloroauric acid 

(0.025 mol·L-1) were added into the suspension drop by drop under magnetic stirring, 

and continue stirring for 60 min. At room temperature, the mixed solution was stirred 

under xenon lamp with 350 W and illuminated for 1.5 h, the product was centrifuged at 

8000 rpm for 10 min and washed repeatedly with deionized water and ethanol, then 

dried in 333 K constant temperature oven for 24 h. The g-C3N4-Au composites with 

mass fraction of Au about 1 %, 3 % and 5 % were named g-C3N4-Au-1, g-C3N4-Au-3 

and g-C3N4-Au-5, respectively. 

2.3 Characterizations 

Phase analysis was performed by X-ray diffractometer (D8, Bruker AXS GmbH, 

Germany). The Cu target is the radiation source (λ= 0.15418 nm), the voltage is 40 
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kV, the current is 40 mA, and the 2θ range of X-ray diffraction detection is 10°-80°. 

Scanning electron microscopy (SEM, JSM 7401F, JEOL, Japan) and transmission 

electron microscopy (TEM, Tecnai G2 TF30, FEI, USA) were used to characterize 

the micromorphology of the composites. The elemental composition of the 

composites was analyzed by energy dispersive X-ray spectrometer (EDS) equipped 

with transmission electron microscope. The surface compositions, chemical valence 

states and valence band spectrum of the composites were analyzed by X-ray 

photoelectron spectroscopy (XPS, XSAM-800). The composites were diluted with 

potassium bromide powder, and the changes of functional groups of the 

photocatalysts were analyzed by Fourier Transform infrared spectrometer (FT-IR, 

Tensor27, Bruker) at the wave number of 400-4000 cm−1. Photoluminescence (PL) 

spectra were measured using a fluorescence spectrometer (F-7000 FL, Hitachi, Japan) 

with an excitation wavelength of 325 nm. The UV-visible diffuse reflectance 

spectrum (DRS) of the photocatalyst was measured by UV-2550, Shimadzu, Japan. 

After the composites were degassed at 200℃ for 6 h, the N2 adsorption-desorption 

isotherm was measured by adsorption analyzer (Mike ASAP2460). Electron spin 

resonance (ESR) spectra were obtained using A300 spectrometers ( Bruker, Germany) 

for the detection of free radical active species. The electrochemical characteristics of 

the composites were analyzed on CHI 604E electrochemical analyzer (CH 

Instruments Inc.). Platinum wire was used as the counter electrode, calomel reference 

electrode and working electrode. Using 0.5 mol/LNa2SO4 as electrolyte, the 

photoelectric response was tested by turning on and off the light source regularly. 

2.4. Photocatalytic performance test 

2.4.1 Photooxidation NO Oxidation  

NO gas was oxidized in a quartz tube reactor at room temperature in order to 

evaluate the photocatalytic activity of the prepared composites. A 300 W xenon lamp 

was used to simulate a visible light source, in which the UV was cut off by a filter (λ＞

420 nm) placed vertically above the reactor. An on-line NOx detector (Model 

HNAG1000-4ST, Honeyeagle) was used to continuously record the concentration of 

NO at the reactor outlet. The specific experimental reaction system is shown in S1. The 
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0.025 g photocatalyst was weighed and placed in the quartz tube, the flow rate of 

compressed air and NO was controlled at 350 mL·min−1 and 70 mL·min−1, respectively, 

by a mass flow controller. NO/Air flow passes through the reactor after complete 

premix through the humidification chamber. After the adsorption and desorption 

equilibrium is completed and the concentration of mixed gas was stable to 300 ppb, 

light is turned on for photooxidation reaction. The concentration of NO at the outlet of 

the reactor was continuously recorded by NO detector, and the removal ratio of NO 

oxidation was calculated as Eq. (1): 

𝜂 (%) =
𝐶0 − 𝐶

𝐶0
× 100%                                          (1) 

Where 𝜂 is the removal ratio of NO oxidation, 𝐶0 is the initial concentration of 

NO, ppb; 𝐶 is the final concentration of NO, ppb. 

2.4.2 Capture experiment  

The mechanism of photocatalysis was studied by the trapping experiment of active 

components. P-benzoquinone (BQ), disodium ethylenediamine tetraacetate (EDTA-

2Na), and isopropanol (IPA) are used as inhibitors of •O2
−, h+, and •OH produced in 

photooxidation reactions. Under the same conditions, the 0.025g photocatalyst was 

ultrasonically dispersed in 10 mL H2O with 0.001 mol of BQ, EDTA-2Na or IPA, 

respectively. It was dried at 60 ° C until the moisture was completely removed, and 

samples were collected for oxidative removal of 300 ppb of NO under visible light. 

2.4.3 In-situ infrared spectroscopy study of photoinduced NO oxidation process 

The photooxidation pathway and reaction mechanism of NO under visible light 

were studied by in-situ Fourier transform infrared spectroscopy. The TENSOR II FT-

IR spectrometer (Brüker) was tested alongside a high-temperature reaction chamber 

(HVC) and an in-situ diffuse reflection unit (Harrick). The 0.5 g sample was put into 

the reaction chamber and heat-treated at 110 ℃ for 1 h to drain the residual gas. The 

infrared diffuse reflection spectrum was used as the background, and the baseline was 

collected under dark conditions. Then the NO mixed gas was first passed through the 

humidification chamber and then into the reaction chamber (10 ppm NO cylinder, 

nitrogen as carrier gas, air mixing diluted NO concentration to 5 ppm). After adsorption 
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for 30 min, the visible light source 300 W xenon lamp (> 420 nm filter) is open, and 

irradiates the photocatalyst, the infrared spectral data is record every 2 min, and scan in 

the range of 4000-800 cm-1 [19]. 

2.4.4 DFT Computational Details 

All the density functional theory calculations were performed by using the Vienna 

ab initio Simulation Program (VASP) [21, 22]. The generalized gradient approximation 

(GGA) in the Perdew-Burke-Ernzerhof (PBE) form and a cutoff energy of 500 eV for 

planewave basis set were adopted [23]. A 3 × 3 × 1 Monkhorst-Pack grid was used for 

sampling the Brillouin zones at structure optimization [24]. The ion-electron interactions 

were described by the projector augmented wave (PAW) method [25]. The convergence 

criteria of structure optimization were chosen as the maximum force on each atom less 

than 0.01 eV/Ǻ with an energy change less than 1 × 10-5 eV. The DFT-D3 semiempirical 

correction was described via Grimme’s scheme method [26].  

3. Results and discussion 

The g-C3N4-Au photocatalyst was successfully prepared by photo-deposition 

method (Fig. 1(a)). From Fig. 1(b), g-C3N4 shows an obvious sheet stacking structure 

with no obvious change after the introduction of Au (Fig. 1(c)). Further observations of 

the composites by transmission electron microscopy (TEM) show that Au nanoparticles 

with a size of about 10 nm are well distributed on the surface of g-C3N4 (Fig. 1(d)). The 

high-resolution transmission electron microscopy (HR-TEM) image (Fig 1(e)) reveals 

a lattice spacing of 0.235 nm, which corresponds to the crystal plane of face-centered 

cubic Au (1 1 1) [27]. The element mapping (Fig. 1(f)) shows the uniform distribution of 

C, N and Au in the catalyst [28].  
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Fig. 1 Preparation process and microstructure of samples: (a) synthesis of g-C3N4 and 

g-C3N4-Au, (b, c) SEM patterns of g-C3N4 and g-C3N4-Au nanocomposites, (d)TEM 

image of g-C3N4-Au-3 nanocomposites, € HR-TEM image, (f) the elemental mapping 

images  

As shown in Fig. 2(a), all materials show characteristic diffraction peaks at 13.3o 

and 27.4o of (1 0 0) and (0 0 2) lattice planes of g-C3N4, respectively, reflecting the in-

plane structure stacking motif and the interlayer structure stacking [29]. As the loading 

percentage of Au nanoparticles (AuNPs) on g-C3N4 increases to 5 %, the X-ray 

diffraction (XRD) pattern exhibits distinct peaks at 38.23°, 44.24°, and 64.73° 

corresponding to the crystallographic planes of (1 1 1), (2 0 0), and (2 2 0) of the Au 

nanoparticles, respectively [30]. The chemical state of the composite surface was studied 

by X - ray photoelectron spectroscopy (XPS). Fig 2b shows the characteristic peaks at 

284.8 eV, 286.4 eV and 288.2 eV in the C 1s high-resolution map of the composite, 

which are attributed to the C-C, C-O-H and N-C=N in g-C3N4, respectively [14]. The N 

1s spectrum contains peaks at 398.8 eV and 400.5 eV corresponding to sp2 hybrid 
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nitrogen (CN=C) and sp3 bonded nitrogen N-(C)3, respectively. Fig. 2(d) displays that 

the Au 4f high-resolution map of the composite material has two symmetric peaks near 

84.2 eV and 87.8 eV, corresponding to Au 4f7/2 and Au 4f5/2, which is consistent with 

the standard binding energy of zero-valence Au [31]. This indicates that Au nanoparticles 

are successfully loaded on g-C3N4 matrix [32]. FTIR was used to study the surface 

functional groups and structural changes of the composites. The FTIR spectra of pure 

g-C3N4 and g-C3N4-Au composites are shown in Fig. 2(e). The peak of all composites 

at 810 cm-1 corresponds to the respiratory vibration of the tri-s-triazine ring in g-

C3N4. Peaks in the 1200-1650 cm-1 range (located at 1238, 1317, 1404, 1572 and 

1637 cm-1) are caused by vibrations of aromatic C-N heterocyclic rings. The peaks 

of the sample in the range of 3100~3600 cm-1 are attributed to the signals of O–H or 

N–H vibrations [33, 34]. 

 

Fig. 2 Phase structure and chemical composition of samples: (a) XRD spectra of g-

C3N4 and g-C3N4-Au nanocomposites, XPS spectra of g-C3N4-Au-3 nanocomposites: 

(b) C 1s, (c) N 1s, (d) Au 4f, (e) FT-IR spectra of g-C3N4 and g-C3N4-Au 

nanocomposites, (f) the N2 adsorption–desorption isotherms 

The N2 adsorption-desorption isotherms and the pore size distribution curve 

depicted in Fig. 2(f) were utilized for assessing the pore structure of the composites. By 

employing the Brunauer-Deming-Deming-Teller (BDDT) classification, it was 

determined that both pure g-C3N4 and g-C3N4-Au composites exhibited IV-type curves 
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and displayed H3 hysteresis rings. These characteristics indicate the presence of 

mesoporous pores in the composites, which are formed between sheets of g-C3N4. 
[35, 

36]. This is consistent with the g-C3N4 morphology observed by SEM in Fig. 1(a). 

To assess the photooxidation properties of the composites under visible light, g-

C3N4, g-C3N4-Au-1, g-C3N4-Au-3 and g-C3N4-Au-5 were used for oxidation of NO gas 

at a concentration of 300 ppb. Under visible light irradiation, the photocatalytic 

conversion rate of NO decreases rapidly within the first 5 min to stable catalytic activity.  

As shown in Fig. 3(a), g-C3N4 modified with Au NPs enhanced the NO oxidation 

activity .The highest conversion rate of NO is observed over g-C3N4-Au-3 at 77.4 %, 

while the conversion rate of a pure g-C3N4 under the same conditions is only 33.2 %, 

When the content of Au reached 5 %, the conversion ratio of NO decreased to 54.4 %.，

which indicated that a proper amount of AuNPs doping could improve the 

photocatalytic activity of g-C3N4 for NO removal, this may be due to photodeposition 

forming tight Au-g-C3N4 heterostructures on the g-C3N4 surface, enhances the charge 

transfer, improves the separation efficiency of electron-hole pairs, and prolongs the life 

of photogenerated carriers, which is conducive to improve the photocatalytic activity 

[37]. 

The catalytic results can be fitted by (Fig. 3(b)) the first-order kinetic model [38] 

(Eq.2)  

ln(𝐶 𝐶0⁄ ) = 𝑘𝑡                                                （2）， 

 The kinetic constants decrease in the row g-C3N4-Au-3 (0.02705 min−1)> g-C3N4-Au-

1 (k = 0.1232 min−1) ≈ g-C3N4-Au-5 (k = 0.1311 min−1)> g-C3N4. The kinetic results 

further indicate that the introduction of Au nanoparticles plays a key role in enhancing 

the performance of photooxidation capacity. 

The catalyst stability is an important factor for practical applications. To test this, 

we reused g-C3N4-Au-3 and exposed it to visible light for five cycles. Fig. 3(c) shows 

that while the activity of g-C3N4-Au-3 decreased slightly, it remained mostly unchanged. 

This suggests that it has good photostability and can be used again. 

In order to explore the photooxidation removal mechanism of NO by g-C3N4-Au, 

trapping experiments were conducted to determine the formation of active free radicals 



11 

 

involved in the oxidation removal of NO. P-benzoquinone (BQ), disodium 

ethylenediamine tetraacetate (EDTA-2Na), and isopropyl alcohol (IPA) were used as 

scavengers of •O2
−, h+, and •OH produced in photocatalytic reactions. As can be seen 

from Fig. 3(d), the photooxidation efficiency of g-C3N4-Au-3 composite decreases from 

77.4 % to 6 %, 50 % and 70 %, respectively, after the addition of BQ, EDTA-2Na and 

IPA. The results show that •O2
− is the main active radical in the photooxidative 

degradation of NO. •O2
− can be obtained by photogenerative electron reduction of O2 

adsorbed on the surface of the composite. Meanwhile, h+ at the VB of g-C3N4-Au 

cannot oxidize H2O to •OH due to potential differences. Therefore, we speculate that 

h+ generated by photocatalysis can directly oxidize NO and enhance the photooxidation 

performance to a certain extent [39]. 

We analyzed the FTIR patterns and XRD patterns of the materials before and after 

recycling. Fig. 3(e, f) illustrates that the surface functional groups and crystal structure 

of the catalysts remained largely unchanged after cycling. Additionally, Table 1 

provides a comparison of the NO removal performance of g-C3N4-Au-3 with other 

photocatalysts reported in previous studies. Li et al. [19] successfully loaded Au 

nanoparticles on g-C3N4-Au by reducing chloroauric acid with sodium borohydride, 

and the degradation rate reached 41% by using NO gas flow of 500 ppb. In this work, 

g-C3N4 was excited under visible light to generate reducing electrons to effectively 

reduce chloroauric acid, and the deposited Au NPs had good dispersion and stability, 

which made the formation of a tight heterostructure between AuNPs and g-C3N4, which 

can improve the photooxidation activity of NO. 
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Fig. 3 Performance and stability analysis of samples: (a)time-dependent oxidation 

removal of NO, (b) first-order kinetic curves of NO oxidation removal, (c) catalytic 

stability test for the g-C3N4-Au-3 photocatalyst, (d) effect of the trapping reagent on the 

oxidation removal of NO, (e) FTIR spectra and (f) XRD spectra of fresh and used g-

C3N4-Au-3 composite  
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Table 1 NO removal performance of g-C3N4-Au-3 compared with other photocatalysts 

reported in the reference. 

Photocatalyst Initial 

concentration 

of NO 

Oxidation 

removal 

ratio 

light source references 

Pd/g-C3N4 2.2 ppm 56.30% A 300W Xe lamp [40] 

S-doped g-C3N4 600 ppm 53% A 150 W visible light 

LED lamp with filter 

(λ > 400 nm) 

[13] 

Au/g-C3N4 500 ppb 41% A 150 W commercial 

halogen tungsten lamp 

with filter (λ > 420 nm) 

[19] 

Pd/g-C3N4 12 ppm 83% A 300 W xenon lamp 

with filter (λ > 380 nm) 

[41] 

WOx/Au/g-C3N4 600 ppb 61% A 500 W Xe lamp [14] 

Ag/Bi2S3 500 ppb 31.12% A 300 W solar lamp 

with filter (λ > 300 nm) 

[4] 

Ag3PO4/g-C3N4 2 ppm 41.76% A mercury lamp with 

filter (>290 nm) 

[42] 

black P/g-C3N4 600 ppb 74% Two 300 W Xe lamps 

with filter (λ > 420 nm) 

[43] 

Graphene 

quantum dots/g-

C3N4 

20 ppm 87% A 300 W Xe lamp with 

filter (λ > 380 nm) 

[44] 

Au/ZnIn2S4/g-

C3N4 

600 ppb 59.70% A 300 W Xe lamp [45] 

TiO2/C/g-C3N4 100 ppm 94% A 500 W Xe lamp with 

filter (λ > 420 nm) 

[46] 

NiCoP/g-C3N4 600 ppb 78% A 500 W Xe lamp [47] 

AgVO3/g-C3N4 600 ppb 65% A 300 W Xe lamp [48] 

Au/g-C3N4 300 ppb 77.4% A 300 W Xe lamp (λ > 

420 nm) 

This work  
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PL spectra were used to characterize the separation and recombination of electron-

hole pairs in composites [49]. The fluorescence intensity serves as an indicator of the 

separation rate of photogenerated carriers, with higher intensity indicating lower 

separation. In Fig. 4(a), it is observed that the fluorescence emission peak intensity of 

g-C3N4-Au-3 composites is significantly weaker compared to pure g-C3N4. This 

suggests that the introduction of Au effectively inhibits the recombination of 

photogenerated electron-hole pairs, thereby extending the lifespan of the 

photogenerated carriers. Furthermore, the photocurrent response and electron migration 

rate were analyzed using photocurrent and electrochemical impedance spectroscopy 

(EIS). In Fig. 4(b), it can be observed that the photocurrent response intensity of the 

composite is notably greater compared to pure g-C3N4. This indicates that the migration 

rate of photogenerated carriers in this sample is higher, which is advantageous for 

facilitating efficient photocatalytic reactions [50]. Furthermore, as depicted in Fig. 4(c), 

a smaller radius of curvature observed in the electrochemical impedance spectroscopy 

(EIS) indicates a lower impedance for the composite material [51]. This reduced 

impedance is favorable for the transmission of photogenerated carriers, aligning with 

the results obtained from the photocurrent tests. The photochemical characterization 

results demonstrate that the introduction of Au nanoparticles effectively enhances the 

separation of photogenerated electron-hole pairs, prolongs the lifetime of 

photogenerated carriers, reduces the resistance for carrier migration, and improves the 

photocatalytic performance. The optical properties of the samples were assessed using 

UV-vis measurements. Fig. 4(d) illustrates that the composite material exhibits 

significantly enhanced light absorption capacity within the visible light wavelength 

range compared to pure g-C3N4. This enhancement suggests that the surface plasmon 

resonance (SPR) effect of the noble metal (Au) improves the sample's response to 

visible light and enhances its photocatalytic performance [46]. In Fig. 4(e), the tauc 

diagram represents the band gap width spectrum of g-C3N4 and g-C3N4-Au-3, 

calculated using the Kubelka-Munk formula. The tangents intersecting the X-axis 

indicate band gap widths of 2.7 eV and 2.78 eV for the g-C3N4-Au-3 and g-C3N4, 

respectively. Narrowing the band gap width allows for a broader range of light response, 
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thereby generating more excited electrons, which is beneficial for enhancing 

photocatalytic activity [52]. Apart from the number of surface holes and electrons, the 

photocatalytic activity of a photocatalyst is also influenced by the redox potential of 

surface holes and electrons. Therefore, the XPS valence band spectrum was measured 

to analyze the valence band potential of g-C3N4-Au-3. As shown in Fig. 4(g), the 

valence band potential of g-C3N4-Au-3 is 1.82 eV, and its band gap is 2.7 eV, as depicted 

in the tauc diagram. The conduction band potential (Ec) can be calculated using the 

formula Eg = Ev – Ec. 

 

Fig. 4 Analysis of charge separation, charge transfer and light adsorption: (a) the 

photoluminescence spectra, (b) the transient photocurrent response and (c) 

electrochemical resistance spectra of g-C3N4 and g-C3N4-Au -3 nanocomposites, (d) 

UV–vis absorbance spectra, (e) Eg of g-C3N4 and g-C3N4-Au -3 nanocomposites and 

(f) the XPS valence band spectrum  

EPR was utilized to detect the reactive species produced during the 

photooxidation reaction under irradiation of visible light. 5, 5-dimethyl-1-pyrrolin-

n-oxide (DMPO) acts as a trapping agent to trap •O2
- and •OH [53]. It can be seen 

from Fig. 5(a, b), the composites exhibit obvious •OH and •O2
- characteristic signals 

under visible light irradiation. Compared with pure g-C3N4, g-C3N4-Au-3 has a 

higher signal intensity, which indicates that g-C3N4-Au-3 can produce more •O2
- and 
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•OH to participate in the photocatalytic reaction. This is consistent with the results 

of PL and photochemical characterizations. The introduction of Au NPs promote the 

separation of photogenerated electron-hole pairs, extends the life of the carrier, and 

shows better photooxidation activity. Combined with the experimental results of free 

radical capture (Fig. 5(d)), as the signal of •OH detected by EPR, it can be inferred 

that •O2
-, as the main active free radical in the photocatalytic reaction process, can 

oxidize H2O to obtain •OH, thus enhancing the photooxidation activity. 

The photo-oxidation of NO using g-C3N4 and g-C3N4-Au-3 photocatalysts 

under visible light, as well as the reaction mechanism, were further investigated 

through in-situ Fourier transform infrared spectroscopy. In Fig. 5(c), the bands at 

951cm-1 and 2970cm-1 correspond to nitrogen dioxide (NO2) after illumination. The 

peak position of 907 cm-1 corresponds to N2O4, NO2
- is represented at 1106 cm-1, and 

(NO3
-) are observed at 1000 cm-1 and 1048 cm-1. During this time, NO is primarily 

adsorbed on the catalyst's surface, and oxidation results in the formation of NO2. 

Pure g-C3N4 exhibits high photogenerated electron-hole pair recombination 

efficiency, low visible light absorption capacity, and fewer active free radicals, 

leading to a single product and poor photocatalytic activity. Upon the introduction of 

Au nanoparticles, a new characteristic peak appears in the in-situ infrared spectrum 

of g-C3N4-Au-3, as shown in Fig. 5(d). This includes N2O4 (907 cm-1), NO2 (1067 

cm-1), NO2
- (1125 cm-1), and NO3

- (1031 cm-1, 1048 cm-1, 1148 cm-1). Notably, 

compared to Fig. 5(c), the addition of AuNPs increases the peak intensity attributed 

to nitrate ions at 1048 cm-1, and new characteristic peaks of nitric acid at 1031 cm -1 

and 1148 cm-1 emerge. Furthermore, the strong peak of NO2 at 951 cm-1 disappears 

in Fig. 5(d). It is speculated that the presence of AuNPs facilitates the oxidation and 

conversion of NO2 to nitrate. The formation of new intermediates contributes to a 

more complex photocatalytic reaction process. Equation (1-9) is a proposed 

representation of the photooxidation removal pathway of NO: 

g-C3N4-Au + hν → g-C3N4-Au + e- + h+                                 (1) 

O2 + e- → •O2
-                                                    (2) 

H2O → H+ + OH-                                                    (3) 
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OH- + •O2
- → •OH                                                  (4) 

•O2
- +2NO → 2NO2 → N2O4                                              (5) 

NO + •O2
-→ NO3

-                                                (6) 

2•OH + NO → NO2 + H2O                                         (7) 

•OH + NO → HNO2                                             (8) 

•OH + NO2 → HNO3                                            (9) 

According to the above-mentioned experiment results, the photocatalytic 

mechanism is proposed in Fig. 5(e). Under the irradiation of visible light, g-C3N4 

generates photogenerated electron-hole pairs, which are concentrated in the 

conduction band and valence band of g-C3N4. Au nanoparticles are anchored on the 

carbon nitride surface in-situ by photodeposition, and the contact surface form a 

heterojunction with Schottky junction due to the difference in the Fermi level, and 

excited electrons at the conduction band of g-C3N4 are easily transferred to Au 

nanoparticles, which act as a trap for photogenerated electrons to promote electron 

transfer and improve the photogenerated carrier separation efficiency of 

semiconductor catalysts [54]. More importantly, as a cocatalyst, Au nanoparticles 

directly in contact with g-C3N4 experience SPR under certain wavelength of light 

excitation, generate "hot electrons" that can cross the Schottky junction, and are 

injected into the conduction band of g-C3N4 to participate in the photocatalytic 

reaction, as a result, the band gap energy decreases from 2.78 eV to 2.7 eV, which 

promotes the absorption of visible light by the composite, thus the photocatalytic 

efficiency of the photocatalyst is improved. Electrons can reduce the surface 

chemisorbed O2 to •O2
-, and then react with H2O to generate •OH. Due to potential 

differences, •OH cannot be generated at the valence band of g-C3N4 
[55]. Therefore, 

the main active free radicals in this reaction is •O2
-, which NO can be oxidized to 

NO2、NO2
-and NO3

- and accumulate on the surface of the composites [42, 48]. 
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Fig 5. Radicals monitoring and simulation and photocatalysis reaction process: EPR 

spectra of (a) DMPO•OH and (b) DMPO•O2
−over the g-C3N4 and g-C3N4-Au -3 

nanocomposites，in-situ DRIFTS spectra of NO removal by photooxidation of (c) g-

C3N4 and (d) g-C3N4-Au (e) photocatalytic mechanism diagram of g-C3N4-Au 

composite 
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Table 3 Assignments of the IR bands during photooxidation of NO process during 

visible-light irradiation 

Wavenumbers（cm-1） Assignment  References 

907 N2O4 [3] 

951 NO2 [56] 

1000 bridging nitrates [57] 

1031 NO3
- [56] 

1048 NO3
- [58] 

1067 NO2 [39] 

1106 bi/monodentate nitrites [56] 

1125 NO2
- [39] 

1148 monodentate nitrates [57] 

2970 NO2 [59] 

In order to explore the effect of the introduction of AuNPs on the adsorption 

activation of NO by g-C3N4, charge density difference (CDD), adsorption energy of 

NO and effective charge of Bader were simulated based on DFT. Fig. 6(a) shows the 

g-C3N4 and g-C3N4-Au models constructed for calculation. Fig. 6(b) shows the 

charge difference distribution of g-C3N4 and g-C3N4-Au, with yellow areas 

indicating charge depletion and blue areas indicating charge accumulation. The 

change of charge in g-C3N4 indicates that there is NO obvious electron transfer 

between the photocatalyst and NO, while there is obvious charge accumulation and 

charge consumption on g-C3N4-Au. The calculated Bader charge difference is used 

to study the charge conversion and electron redistribution between NO and 

photocatalysts. The accepted electron of NO increased from 0.19 e (g-C3N4) to 0.43 

e (g-C3N4-Au), while the adsorption energy of NO molecule (Eads) decreased from -

0.46 eV on g-C3N4 to -2.31 eV on g-C3N4-Au. This indicates that NO, as an electron 

acceptor, is more likely to acquire electrons from g-C3N4-Au for adsorption and 

activation [13, 56]. The introduction of AuNPs not only reduces the band gap, but also 

facilitates the adsorption of NO, promotes electron transfer and thus promotes the 

photooxidation reaction. Fig. 6(c) and Fig. 6(d) show the calculated results of the 

main reflection pathways. We chose one main reaction: NO + •O2
-→ NO3

-, and the 

Gibbs free energy of the lowest transition state (ΔGTS)and Gibbs free energy of the 

reaction (ΔGrea) in the photocatalytic reaction on g-C3N4 and g-C3N4-Au were 

mailto:Au@g-C3N4
mailto:Pd@g-C3N4
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calculated. Fig. 6(c) shows that the ΔGTS and ΔGrea in the reaction are 0.92 eV and -

0.83 eV, respectively. The ΔGTS and ΔGrea of the reaction on g-C3N4-Au are 0.46 eV 

and -1.70 eV, indicating that the reaction requires a lower activation energy barrier 

and is more likely to occur. The negative ΔGrea indicates that the reaction can occur 

spontaneously, and the more negative the reaction is, the more likely it is to occur, 

and the energy release process exists in the reaction path. The calculation results 

proved that the reaction (7) on the photocatalyst surface was easier to carry out after 

the introduction of AuNPs, so more nitrate ions were generated and the 

photocatalytic activity of the catalyst was improved [41]. 

 

Fig. 6 Analysis of the adsorption process of reactant molecules and reaction process: 

(a) the geometric structure of g-C3N4 and g-C3N4-Au; red, blue, brown and yellow 

spheres represent O, N, C and Au atoms respectively; (b) the charge difference 

distribution when g-C3N4 and g-C3N4-Au adsorb NO, where yellow represents 

charge depletion, blue indicates charge build-up. Eads and Δq represent the 

calculated results of adsorption energy and Bader electron, respectively, (c, d) the 

calculated results of the main reaction pathways  

4. Conclusion 

In this study, the g-C3N4-Au composite photocatalyst was successfully prepared 
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by photo-deposition method. Due to the SPR effect of Au nanoparticles, the visible 

light absorption capacity of the composites was significantly improved. By 

introducing Au nanoparticles to construct a heterojunction between Au nanoparticles 

and carbon nitride, a tight interface is formed between metal and semiconductor, 

promoting the SPR effect of Au, then enhanced the transfer of charge, improved the 

separation efficiency of electron-hole pairs, and prolonged the life of photogenerated 

carriers, so that the efficiency of NO oxidation removal was significantly improved. 

In addition, the main active species of catalytic oxidation process was confirmed by 

capture experiment as •O2
-. By optimizing the loading capacity of Au nanoparticles, 

under visible light irradiation, the oxidation removal ratio of NO remained 77.4 %, 

and the kinetic ratio constant was 4.32 times that of g-C3N4. In addition, g-C3N4-Au-

3 composites still maintain high oxidation activity, indicating that it has excellent 

stability. after four cycles. In addition, in-situ infrared spectroscopy and DFT 

calculation were used to explore the oxidation pathway of NO. The results indicate 

that the introduction of Au nanoparticles reduced the activation energy of the 

oxidation reaction, made the reaction easier to proceed, and the intermediate products 

were reduced, and most of NO was eventually converted into nitrate, and 

accumulated on the surface of the composites. 
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