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Abstract

This paper investigates self-oscillation behaviours occurring in a class of piecewise affine (PWA) systems.We address a particular
case of PWA systems with two subsystems and a linear switching surface. Conditions are given for characterizing forward
invariant sets containing self-oscillating solutions and domains of attraction. Rather than relying on purely computational
tools, we provide conditions taking into account the structure of the system.
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1 Introduction

Piecewise affine (PWA) systems represent an important
class of hybrid dynamical systems [18, 29]. They are
characterized by a set of affine dynamics together with
a state-dependent switching law. Such systems can
be found in several engineering applications: power
converters [31], robotics [23], relay control systems
[6, 27], electromechanical systems with non-smooth
phenomena [24]. PWA models are also interesting since
they allow to approximate complex nonlinear dynamics
[15]. Analysis of PWA systems is a classical topic in
hybrid control theory [33, 40]. Although they are rather
simple in structure, the analysis of such systems is a
complex problem. For such systems, one needs to handle
phenomena such as sliding dynamics [5], non-common
equilibria [28], non-uniqueness of solutions [22, 39]
and self-oscillations [5, 19]. In the literatures, several
numerical methods have been provided for investigating
global stability of the null equilibria [9, 26, 28, 33, 38].
The provided conditions generally lead to investigating
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the feasibility of a set of Linear Matrix Inequalities
(LMIs) [7]. Alternatively, some necessary and sufficient
analytic conditions for checking the quadratic stability
of null equilibrium can be found in [12, 37].

The studies concerning the stability of the null equi-
librium are relevant in several practical domains. How-
ever, a theoretical challenging and interesting case is
provided by PWA systems with oscillating behaviors [3].
The study of oscillating behaviours in PWA systems
is precisely the focus of our paper. Such oscillating
behaviors may include limit cycles [2, 19], but also
aperiodic oscillations where multi-sliding bifurcations
may occur [3, 25]. In the literature, pioneering results
concerning the stability of limit cycle for planar PWA
systems can be found in [17, 30]. Stability conditions
have been provided by investigating Poincaré map
[41] and Lyapunov function on switching surfaces [34].
Few results exist for PWA systems beyond the two-
dimensional case. In [14], the author considered the
the case of three-dimensional piecewise linear systems
and characterized bifurcations. A canonical transforma-
tion for generic n-dimensional bimodal piecewise linear-
continuous vector fields was proposed in [4]. In [19], a
method for estimating the region of attraction around
a limit cycle have been proposed based on the use of
invariant ellipsoids on the switching surfaces. Neverthe-
less, the provided conditions lead to checking an infinite
number of matrices inequalities parameterized by the
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switching times. Although not directly connected the
mathematical study of oscillations in continuous-time
PWA systems, this topic can also be related to the
works concerning switched affine systems with time-
dependent switching [11], convergent PWA systems [32]
and discrete-time PWA systems [20, 36]. In general,
investigating the stability and characterizing the domain
of attraction around the oscillating solution remain
difficult problems.

In this paper, we focus on bimodal PWA systems with
linear switching surfaces. Conditions for characterizing
forward invariant sets and domains of attraction are
proposed. Rather than relying on purely computational
tools, the conditions provided in this work take into
account system structures. More precisely, we rewrite
the PWA system as a system with a relay-like input
and we exploit passivity [8] and output stabilizability
property of the system with respect to an artificial
output corresponding to switching surface. As a side
result, we provide some new conditions allowing to check
the local asymptotic stability of the null equilibrium.

This paper is organized as follows. Section 2 describes the
problem to be solved and gives the concepts of solutions
and the stability notions. Section 3 presents the main
result of this paper followed by numerical examples in
Section 4. Finally, a conclusion is stated in Section 5.

Notations: The Euclidean vector norm inRn is denoted
by ∥ · ∥. R+ denotes the set of positive reals. For a set
S, the symbol Conv{S} denotes the closed convex hull
of the set and Int(S) denotes the interior of S. B(x, δ) is
the open ball centered at x of radius

√
δ. In a matrix, ⋆

denotes the elements that can be inferred by symmetry.

2 Preliminaries

Consider the following piecewise affine system with two
modes and a linear partitioning of the state space:

ẋ = X (x) :=

{
A1x+ b1, Cx < 0

A2x+ b2, Cx ≥ 0
(1)

where X : Rn → Rn, x ∈ Rn is the vector of the state
variables and Cx is a switching hyperplane. A1, A2 ∈
Rn×n, b1, b2 ∈ Rn×1, C ∈ R1×n are known matrices.
The system under study is a differential equation with
discontinuous right-hand side [10]. In order to define the
system solutions and take into account sliding dynamics,
we use the Filippov regularization procedure [13].

Definition 1 [13]: Consider system ẋ = X (x) with X :
Rn −→ Rn locally bounded. A Filippov solution over the
interval [ta, tb] ⊂ [0,∞) is an absolutely continuous map

ς : [ta, tb] −→ Rn satisfying: ς̇(t) ∈ F [X ](ς(t)) for almost
all t ∈ [ta, tb] with

F [X ](x) =
⋂
δ>0

⋂
µ(S)=0

Conv{X (B(x, δ)\S)}, (2)

with µ(S) being the measure, in the sense of Lebesgue,
of the set S.

Basic conditions for the existence of solutions can be
found in [13]. For system (1), Filippov solutions are
always defined on [0,+∞) (see [35] or [16], page 169).
Note that for differential equations with discontinuous
right-hand side, other concepts of system solution can
be used [10]. Since the system is piecewise affine with the
particular structure (1), the results in the paper also hold
when the Krasovskii regularization procedure is used.
We recall [1, 18] as follows some properties of sets with
respect to solutions of discontinuous systems.

Definition 2 A compact set S ⊂ Rn is forward invari-
ant for (1), if for every Filippov solution x(·) to (1) with
x(0) ∈ S, x(t) ∈ S for all t ∈ [0,∞).

Remark 1 Let us recall that a point x∗ ∈ Rn is an
equilibrium point for system ẋ = X (x) when solutions
are considered in the sense of Filippov, if 0 ∈ F [X ](x∗).

Definition 3 The equilibrium x∗ = 0 of system (1) is
said to be locally asymptotically stable if (a) for all ε > 0,
there exists ϕ > 0 such that for any Filippov solutions
x(·) with ∥x(0)∥ ≤ ϕ, ∥x(t)∥ < ε for all t > 0; (b) there
exists δ > 0 such that any Filippov solution x(·) with
∥x(0)∥ ≤ δ, ∥x(t)∥ → 0 as t → ∞.

Consider a positive definite C1 function V : Rn → R+

and the sets DA := {x ∈ Rn : V (x) ≤ γ} and
S := {x ∈ Rn : V (x) ≤ ε} for positive scalars ε < γ. We
recall [1, 18] that for a system ẋ = X (x), x(0) ∈ Rn, with
X : Rn −→ Rn locally bounded, if supς∈F [X ](x)

∂V
∂x ς ≤

−αV (x),∀ x ∈ DA \ Int (S) , and for some α > 0, then
the set S is forward invariant for the system. In addition,
the set S is attractive with a domain of attraction DA

in the sense that the solutions x(·) of the systems with

x(0) ∈ DA converge to S at most in 1
α ln

V (x0)
ε time.

Global/local asymptotic stability/attractivity can be
obtained by modifying the sets DA and S.

3 Main results

In this section, we present our main results. First,
in Section 3.1, conditions are provided for estimating
a forward invariant set which is globally attracting
oscillating solutions. Next, in Section 3.2, as a side
result, we provide local asymptotic stability conditions
for the null equilibrium. At last, in Section 3.3, we built
upon the results provided in Sections 3.1 and 3.2 to
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provide conditions for characterizing forward invariant
sets locally attracting oscillating solutions.

In the approach considered in this paper, oscillations are
studied as the result of perturbations with respect to
systems that exhibit asymptotic convergence of solutions
towards the origin. The following assumptions will be
considered:

Assumption 1 None of the subsystems have an equilib-
rium at the origin, i.e. bi ̸= 0,∀i ∈ {1, 2}.

Assumption 2 The origin x∗ = 0 is a Filippov equilib-
rium, i.e. 0 ∈ F [X ](x∗).

Remark 2 The results may also be used for systems

ż = H(z) :=

{
A1z + b1, Cz < d

A2z + b2, Cz ≥ d
(3)

where A1, A2 ∈ Rn×n, b1, b2 ∈ Rn×1, C ∈ R1×n and d is
a scalar, provided that there exists a non-trivial Filippov
equilibrium somewhere on the switching surface: ∃ z∗ ∈
Rn s.t. 0 ∈ F [H](z∗) while Aiz

∗ + bi ̸= 0,∀i ∈ {1, 2}.
This leads to ∃ (z∗, α∗) ∈ Rn × (0, 1) s.t.

A(α∗)z∗ + b(α∗) = 0, Cz∗ = d (4)

where A(α∗) := α∗A1+(1−α∗)A2, b(α
∗) := α∗b1+(1−

α∗)b2. Then using η = z − z∗, we obtain a system

η̇ =

{
A1η + b̄1, Cη < 0

A2η + b̄2, Cη ≥ 0
(5)

where b̄1 := A1z
∗+b1, b̄2 := A2z

∗+b2, which is a system
of the form (1) that satisfies Assumptions 1 and 2. The
study of system (3) can be expressed as one for system
(1), modulo a translation of the state space. For the
particular case of system (1), using similar arguments,
Assumptions 1, 2 lead to the following property:

Property 1 Consider Assumptions 1, 2. Then there
exist α∗ ∈ (0, 1), s.t. b1α

∗ + b2(1− α∗) = 0.

3.1 Global results

In order to take into account the relation between the
terms b1, b2 and the switching surface, we rewrite system
(1) as a model with a relay-like input.

Lemma 1 Consider system (1) and Property 1. Denote
A0 = α∗A1+(1−α∗)A2, N = A1−A2 and B = b1−b2.
Then system (1) can be expressed as

ẋ = X (x) = A (u(x))x+Bu(x), (6)

with A(θ) = A0 +Nθ for all θ ∈ {−α∗, 1− α∗} and

u(x) =

{
1− α∗, Cx < 0,

−α∗, Cx ≥ 0.
(7)

Proof: Consider the function α(x) = 1 if Cx < 0 and
α(x) = 0 otherwise. System (1) is represented as

ẋ = (A1 −A2)xα(x) +A2x+ (b1 − b2)α(x) + b2. (8)

From Property 1, ∃α∗ ∈ (0, 1), s.t. (b1 − b2)α
∗ + b2 = 0.

Remark that u(x) = α(x)−α∗. Using α(x) = u(x)+α∗

in (8), we have ẋ = X (x) = A0x + (Nx+B)u(x) +
Bα∗ + b2. Note that Bα∗ + b2 = (b1 − b2)α

∗ + b2 = 0.
Then, (1) is equivalent to (6) and (7). ■

In the following proposition, we present simple condi-
tions for computing a forward invariant set which is
globally attractive for system’s (1) solutions.

Proposition 1 Consider system (1) and Property 1.
Denote v1 = 1− α∗, v2 = −α∗.

I. Let there exist P⊤ = P ≻ 0 and α > 0 s.t.

A⊤
i P + PAi ≺ −αP, i ∈ {1, 2}. (9)

Then for all δ ∈ (0, α), the set S := {x ∈ Rn : x⊤Px ≤
ε} with

ε > max
v∈{v1,v2}

ρ(v), (10)

where ρ(v) =
4(C−(b1−b2)

⊤P)P−1

(
C⊤−P (b1−b2)

)
v2

(α−δ)2
is

forward invariant for system (1) and globally attractive.

II. IfP can be taken such that (9) holds and (b1−b2)
⊤P =

C, then system (1) is globally asymptotically stable at the
origin.

Proof of Proposition 1. Using Lemma 1, system
(1) is represented in the form (6) and (7). Note that
A(vi) = Ai, i = 1, 2. Then the Filippov set-valued map
(2) associated with (6), (7) is:

F [X ](x) =


{A1x+Bv1} , if Cx < 0,

{A2x+Bv2} , if Cx > 0,

Conv
{
Aix+Bvi, i ∈ {1, 2}

}
, if Cx = 0,

(11)
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Consider V (x) = x⊤Px with P = P⊤ ≻ 0 satisfying
(9). We want to show that

sup
ς∈F [X ](x)

∂V

∂x
ς < −δV (x), ∀x ∈ Rn\Int (S) . (12)

According to (11), we get the following three cases:

1. If Cx < 0, from (6)-(7), we obtain

sup
ς∈F [X ](x)

∂V

∂x
ς = x⊤ (

A⊤
1 P + PA1

)
x+ 2x⊤PBv1

+ 2x⊤(C⊤ − PB)v1 − 2x⊤(C⊤ − PB)v1. (13)

Since v1 = 1− α∗ > 0 we have 2x⊤C⊤v1 < 0. Then

sup
ς∈F [X ](x)

∂V

∂x
ς <− 2x⊤(C⊤ − PB)v1 − αx⊤Px, (14)

where (9) has been used for i = 1.

2. If Cx > 0, then using similar arguments we have

sup
ς∈F [X ](x)

∂V

∂x
ς < −2x⊤(C⊤ − PB)v2 − αx⊤Px. (15)

3. If Cx = 0, by using a continuity argument and
considering that (9) holds for i ∈ {1, 2}, we have

sup
ς∈F [X ](x)

∂V

∂x
ς < max

i∈{1,2}

{
−2x⊤ (

C⊤ − PB
)
vi
}

− αx⊤Px. (16)

Since (10) holds, we have

ε >
(C −B⊤P )P−1(C⊤ − PB)v2

(α− δ − α1)α1
(17)

for all v ∈ {v1, v2} and α1 = α−δ
2 . By using the Schur

complement on (17), we have[
(α− δ − α1)P (C⊤ − PB)v

⋆ α1εI

]
≻ 0, (18)

for all v ∈ {v1, v2}. Therefore,[
x

1

]⊤ [
(α− δ − α1)P (C⊤ − PB)v

⋆ α1εI

][
x

1

]
> 0,

(19)

for all v ∈ {v1, v2}, which is the same as

(α− δ)x⊤Px+ 2x⊤(C⊤ − PB)v + α1(ε− x⊤Px) > 0,

with α1 = α−δ
2 > 0. When x⊤Px ≥ ε, we get

(α− δ)x⊤Px+ 2x⊤(C⊤ − PB)v > 0, (20)

for all v ∈ {v1, v2}. From (14), (15), (16) and (20), we
have supς∈F [X ](x)

∂V
∂x ς < −δV (x), whenever x⊤Px ≥ ε.

Hence, (12) is guaranteed whenever ε is taken such that
(10) holds, which proves statement I.

Proof of statement II. The proof follows the same
steps. One can directly see that if P is such that
(b1 − b2)

⊤P = C, then in (14), (15) and (16) we get
supς∈F [X ](x)

∂V
∂x ς < −δV (x), for all x ∈ Rn. ■

Remark 3 Proposition 1 provides conditions for char-
acterizing a forward invariant set S for system (1) which
is attractive. Some similarities can be found between this
result and the result in Proposition 1 from [11] for the case
of switched affine systems with time-dependent switching.
However, here the set is characterized by an ε level-set of
the Lyapunov function V (x) = x⊤Px while taking into
account the switching hyperplane. In Proposition 1, the
scalar α can be interpreted as an estimation of the decay
rate for the set of linear systems ẋ = Aix, i ∈ {1, 2}. The
parameter δ corresponds to an estimation of the decay
rate towards the set S. Note that by using the Schur
complement, (10) can be expressed as[ (

α−δ
2

)
P

(
C⊤ − P (b1 − b2)

)
v

⋆ α−δ
2 εI

]
≻ 0, v ∈ {v1, v2}.

(21)

Then for prescribed α and δ, (9) and (21) can be solved
jointly as LMI problems in P and ε. Minimizing ε
for prescribed decay rates α and δ, allows to increase
the accuracy of the forward invariant set S. Based on
this LMI problem formulation, we may imagine various
computational procedures for optimizing the estimation
of the forward invariant set. For some particular cases,
we can also prove asymptotic stability of the origin (as
seen in point II in Proposition 1). The intuition is that
when (b1 − b2)

⊤P = C, the bound ε characterizing the
forward invariant set can be chosen arbitrary small.

Remark 4 We present as follows some interpretations
of the conditions of Proposition 1. Let us first remark
that the representation of system (6), (7) (in Lemma 1)
can be seen as an interconnection between the system{

ẋ = A (u(x))x+Bup,

y = Cx
(22)
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Fig. 1. Representation of system (6), (7) as an interconnec-
tion.

Fig. 2. Representation as a system controlled by a perturbed
relay.

with u(x) as in (7) and an artificial input up connected to
a scalar relay-like function r(.) defined by r(y) = 1− α∗

if y < 0, and r(y) = −α∗ otherwise. (see Fig. 1).
When we are able to show the asymptotic stability of the
origin (point II in Proposition 1), we use the fact that
system (22) is passive (see [8, 21]) w.r.t. the artificial
input up and the output y = Cx (characterising the
switching surface). This is reflected by requiring B⊤P =
(b1 − b2)

⊤P = C. In the first case, when studying the
forward invariance, the switching surface y = Cx is
considered as a perturbed output with respect to a nominal
passive output sp = B⊤Px (see Fig. 2). If the state is
sufficiently far form the origin (V (x) ≥ ε), then the
difference (∆ = y − sp in Fig. 2) between the perturbed
output y = Cx and the passive output sp = B⊤Px can be
neglected. This is reflected in condition (20) in the proof.
More precisely, the forward invariant set S is found such
that the function g(x, v) = αx⊤Px+2x⊤(C⊤−PB)v =
αx⊤Px+2(y− sp)

⊤v is positive for x /∈ Int (S) and for
all inputs v ∈ {v1, v2}. Note that in this case Property
1 is a technical artifact, since the size of the set S is
computed by considering the system under study as a
perturbation to a passive system. Let us remark that in
the previous proposition, the matricesA1, A2 are required
to be Hurwitz and to share a common Lyapunov matrix
P . In addition, for asymptotic stability, the passivity
condition B⊤P = (b1 − b2)

⊤P = C is required. In the
next sections, we will see that these conditions can be
alleviated when considering local stability properties.

3.2 Local Asymptotic Stability of the null equilibrium

As follows, we provide conditions for checking the local
asymptotic stability. Before introducing the main result,
we provide a useful lemma as follows:

Lemma 2 Consider system (1), Property 1 and the
notations v1 = 1 − α∗, v2 = −α∗, A0 = α∗A1 + (1 −
α∗)A2, N = A1 −A2, A(θ) = A0 +Nθ for θ ∈ {v1, v2},
and B = b1 − b2. Let k be a positive scalar. System (1)
can be expressed as the interconnection between a plant

G :


ẋ = A (u(x))x+Buc(y) +Bω,

uc(y) = −ky,

y = Cx,

(23)

with u(x) := v1 if Cx < 0, u(x) := v2 if Cx ≥ 0, and a
nonlinearity ω = z(y) with

z(y) =

{
ky + v1, y < 0,

ky + v2, y ≥ 0.
(24)

Proof: Consider the function σ(x) := 1 if Cx < 0 and
σ(x) := 2 if Cx ≥ 0. Using Lemma 1, system (1) can be
expressed in the form

ẋ = X (x) := A(u(x))x+Bvσ(x). (25)

Adding−kBCx+kBCx to the right side of system (25),
we have

ẋ = (A(u(x))− kBC)x+ kBCx+Bvσ(x). (26)

Then (26) can be further rewritten as follows

ẋ = A(u(x))x+Buc(Cx) +Bz(Cx), (27)

where z(Cx) = kCx+ vσ(x). ■

Remark 5 In Lemma 2 the perturbation z(y) represents
the difference between the relay-like function r(.) defined
by r(y) = 1 − α∗ if y < 0, and r(y) = −α∗ otherwise,
and a linear static output feedback uc(y) = −ky, that is
z(y) = r(y)−uc(y). Taking into account the properties of
this perturbation ω = z(y) allows us to derive conditions
for checking local stability of system (1).

Lemma 3 Consider a function z : R → R defined as
in (24) where k > 0, v1 > 0, v2 < 0. Then we have
z(y) < 0 if y ∈

(
0, −v2

k

)
and z(y) > 0 if y ∈

(
−v1

k , 0
)
.

Proof. The proof uses simple arguments and is
omitted. ■

Lemma 3 shows that the function z presents a local
anti-passivity property. More precisely, when |y| <
min{|−v2

k |, |−v1
k |} and y ̸= 0, we have z(y)y < 0. In the

following proposition, we use Lemmas 2 and 3 to provide
conditions for checking the local asymptotic stability.
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Proposition 2 Consider system (1) and Property 1.
Assume that there exist k > 0 and P⊤ = P ≻ 0 satisfying

(
Ai − k (b1 − b2)C

)⊤
P + P

(
Ai − k (b1 − b2)C

)
≺ 0,

i ∈ {1, 2}, (28)

(b1 − b2)
⊤
P = C. (29)

Then, system (1) is locally asymptotically stable at the
origin. An estimation of the domain of attraction is
given by DA = {x ∈ Rn : x⊤Px ≤ γ}, where γ <

min
v∈{v1,v2}

(
v
k

)2 1
CP−1C⊤ .

Proof. Based on Lemma 2, the piecewise affine system
(1) can be written as the interconnection between the
plant G in (23) and a perturbation ω = z(y) defined
in (24) (see also Fig. 3). Considering this model and
the particular form of the perturbation ω = z(y), we
are able to provide local stability conditions. In Step
1, we consider a Lyapunov function V (x) = x⊤Px and
we compute a level-set γ around the origin such that
x⊤Px ≤ γ implies z(y)y < 0 when y ̸= 0. In Step 3, the
Lyapunov function V is shown to be decreasing along
the directions of the Filippov inclusion computed in Step
2. This is done by using a passivity relation between the
plant G and the interconnection ω.

Step 1: Estimation of the domain of attraction.

We show that for γ < min
v∈{v1,v2}

(
v
k

)2 1
CP−1C⊤ , x⊤Px ≤ γ

implies y = Cx ∈
(
−v1

k ,−v2
k

)
. Let us denote µ :=

min
v∈{v1,v2}

{
(v/k)

2
}
. From γ < µ

CP−1C⊤ , we have µ −

C (P/γ)
−1

C⊤ > 0. Using the Schur complement, we

have

[
µ C

C⊤ P
γ

]
≻ 0. Using again the Schur complement

P/γ −C⊤C/µ ≻ 0, that is P
γ ≻ C⊤C

µ . Then, if x⊤ P
γ x ≤

1, we have x⊤C⊤Cx
µ < 1, that is x⊤C⊤Cx < µ. This

means that when x⊤Px ≤ γ, we have |Cx| < √
µ, which

proves the statement.

Step 2: Filippov differential inclusion. Consider
system (23), the nonlinearity z(y) in (24), the function
σ(x) := 1 if Cx < 0 and σ(x) := 2 otherwise, and

the notation Ãi := Ai − kBC, i ∈ {1, 2}. Using
simple manipulations the closed system (23), (24) can
be expressed as

ẋ = X (x) := Ãσ(x)x+Bz(Cx). (30)

The set valued map of the differential inclusion associ-

ated with (23), (24) is given by

F [X ](x) =



{
Ã1x+Bz(Cx)

}
, if Cx < 0,{

Ã2x+Bz(Cx)
}
, if Cx > 0,

Conv

{
Ã1x+Bv1,

Ã2x+Bv2

}
, if Cx = 0.

(31)

Step 3: Lyapunov analysis. Consider the candidate

Lyapunov function V (x) = x⊤Px. We want to show that

sup
ς∈F [X ](x)

∂V

∂x
ς < 0,∀x ∈ DA \ {0}. (32)

Define D1 = {x ∈ Rn : x⊤Px ≤ γ,Cx ̸= 0} and
D0 = {x ∈ Rn : x⊤Px ≤ γ,Cx = 0}. Then we get the
following two cases:

1. If y = Cx ∈
(
−v1

k , 0
)
∪
(
0,− v2

k

)
, from (31) we obtain

sup
ς∈F [X ](x)

∂V

∂x
ς =2x⊤Ã⊤

σ(x)Px+ 2z⊤(Cx)B⊤Px. (33)

According to (29), 2z⊤(Cx)B⊤Px = 2z⊤(Cx)Cx.
Using Lemma 3, we have z⊤(Cx)Cx = z⊤(y)y < 0
whenever Cx ∈

(
−v1

k , 0
)
∪

(
0,−v2

k

)
. From Step 1,

x⊤Px ≤ γ implies Cx ∈
(
−v1

k ,−v2
k

)
. Using (28) and

(24), (33), it yields

sup
ς∈F [X ](x)

∂V

∂x
ς < 0, ∀x ∈ D1\{0}. (34)

2. If y = Cx = 0, from (31), we have

F [X ](x) = Conv
{
Ãix+Bvi, i ∈ {1, 2}

}
. (35)

Using 2z⊤(Cx)B⊤Px = 2z⊤(Cx)Cx and (29), it holds

sup
ς∈F [X ](x)

∂V

∂x
ς = max

i∈{1,2}

{
2x⊤Ã⊤

i Px+ 2viCx
}
. (36)

Since Cx = 0 and Ãi = Ai−k(b1− b2)C satisfying (28),
we have

sup
ς∈F [X ](x)

∂V

∂x
ς = max

i∈{1,2}

{
2x⊤Ã⊤

i Px
}
< 0 (37)

for all x ∈ D0\{0}. Since D0

⋃
D1 = DA, from (34) and

(37) the inequality (32) is verified. ■

Remark 6 Proposition 2 provides simple conditions for
checking the local asymptotic stability of the piecewise
affine system (1). The result is based on rewriting the
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Fig. 3. Representation as a perturbed system.

initial piecewise affine system (1) as an interconnection
between a nominal switched linear plant G, and a
nonlinear perturbation z(y) (see Lemma 2 and Fig. 3).
This allows to take into account the case of non-Hurwitz
matrices Ai, i ∈ {1, 2}. Here y = Cx (the system
switching surface) is seen as an artificial output. In
the conditions of Proposition 2, the parameter k can be
interpreted as the gain of a linear static output feedback
controller (uc = −ky). Condition (28) corresponds to
the fact that the system ẋ = A(u(x))x + Buc with
B = b1−b2 is stabilized by the static output feedback uc =
−ky. Condition (29) can be interpreted as a passivity
condition [8, 21] . On the other hand, Lemma 3 is used
to characterize the local anti-passivity property of the
nonlinearity z. Using these two passivity-like properties,
we are able to show the local asymptotic stability of the
interconnection. In summary, the proposition shows that
system (1) is locally asymptotically stable if one can find
a stabilizing output feedback uc = −ky for the piecewise
linear systemG in (23) such that the closed-loop system is
passive with respect to the output y = Cx (the switching
surface) and the input ω. When A1 = A2 = A, (28) and
(29) are equivalent to the fact that C(b1−b2) > 0 and the
zero dynamics of the system ẋ = Ax+(b1−b2)ω, y = Cx
is asymptotically stable (see Th. 3.35 in [8]), which is a
very simple condition for making an LTI system passive.

Remark 7 Let Q = P−1. Then, (28)-(29) lead to

QA⊤
i +AiQ− 2k (b1 − b2) (b1 − b2)

⊤ ≺ 0,

i ∈ {1, 2}, (38)

(b1 − b2)
⊤
= CQ. (39)

Therefore, conditions (28)-(29) can be transformed into
simple matrix constrains that can be checked numerically
using convex optimization procedures with variables Q ≻
0 and k > 0. The estimation of the domain of attraction

is given with γ = min
v∈{v1,v2}

(
v
k

)2 1
CQC⊤ . We may remark

that minimizing k (the output feedback gain in system
(23)) such that (38) and (39) hold, allows to enlarge the
estimate of the domain of attraction.

3.3 Locally attractive forward invariant sets

Using the ideas in Proposition 1 and 2, we now provide
sufficient conditions allowing to characterize forward
invariant sets for system (1) which are locally attractive.

Proposition 3 Consider system (1) and Property 1. Let
v1 = 1 − α∗ and v2 = −α∗. Assume that there exist
k, α > 0 and P⊤ = P ≻ 0 satisfying(

Ai − k(b1 − b2)C
)⊤

P + P
(
Ai − k(b1 − b2)C

)
≺ −αP, i ∈ {1, 2}, (40)

Let γ = min
v∈{v1,v2}

(
v
k

)2 1
CP−1C⊤ and

ε > max
v∈{v1,v2}

ρ(v), (41)

where ρ(v) =
4(C−(b1−b2)

⊤P)P−1

(
C⊤−P (b1−b2)

)
v2

(α−δ)2
for

some δ ∈ (0, α). If ε < γ, then the set S := {x ∈
Rn : x⊤Px ≤ ε} is forward invariant for system (1) and
locally attractive. An estimate of the domain of attraction
is given by DA = {x ∈ Rn : x⊤Px ≤ γ}.

Proof: Consider the function V (x) = x⊤Px and
the set valued map (31). We want to show that
supς∈F [X ](x)

∂V
∂x ς < −δV (x), ∀x ∈ DA\Int (S) . Using

similar arguments as in Step 1 of Proposition 2, x ∈ DA

implies Cx ∈
(
−v1

k ,−v2
k

)
. According to (31), we get

the following two cases:

1. If y = Cx ∈
(
−v1

k , 0
)
∪
(
0,− v2

k

)
, from (31) we obtain

sup
ς∈F [X ](x)

∂V

∂x
ς = 2x⊤Ã⊤

σ(x)Px+ 2z⊤(Cx)B⊤Px

+ 2z⊤(Cx)(C −B⊤P )x− 2z⊤(Cx)(C −B⊤P )x.

Using Lemma 3, we have 2z⊤(Cx)Cx = 2z⊤(y)y < 0
whenever Cx ∈

(
−v1

k , 0
)
∪
(
0,−v2

k

)
. By using condition

(40), it yields

sup
ς∈F [X ](x)

∂V

∂x
ς = 2x⊤Ã⊤

σ(x)Px+ 2z⊤(Cx)Cx

− 2z⊤(Cx)(C −B⊤P )x

<− 2z⊤(Cx)(C −B⊤P )x− αx⊤Px. (42)

From the definition of z, that z(Cx) ∈ [v2, v1] when
Cx ∈

(
−v1

k ,−v2
k

)
. Therefore,

sup
ς∈F [X ](x)

∂V

∂x
ς < max

v∈{v1,v2}

{
−2v(C −B⊤P )x

}
− αx⊤Px

(43)
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2. If y = Cx = 0, from (31), we have

F [X ](x) = Conv
{
Ãix+Bvi, i ∈ {1, 2}

}
. (44)

Then, we have

sup
ς∈F [X ](x)

∂V

∂x
ς = sup

i∈{1,2}

{
2x⊤Ã⊤

i Px+2viB
⊤Px

}
= sup

i∈{1,2}

{
2x⊤Ã⊤

i Px+ 2viB
⊤Px+ 2vi(C −B⊤P )x

−2vi(C −B⊤P )x
}

= sup
i∈{1,2}

{
2x⊤Ã⊤

i Px+2viCx− 2vi(C −B⊤P )x
}
.

Since Cx = 0 and (40) holds for i ∈ {1, 2}, we have

sup
ς∈F [X ](x)

∂V

∂x
ς < max

i∈{1,2}

{
−2vi

(
C −B⊤P

)
x
}
− αx⊤Px.

(45)

Using the same arguments as in Proposition 1, when
x⊤Px ≥ ε, we get

(α− δ)x⊤Px+ 2x⊤(C⊤ − PB)v > 0, (46)

for all v ∈ {v1, v2}. Using (46), together with (43)
and (45), we have supς∈F [X ](x)

∂V
∂x ς < −δV (x),∀x ∈

DA\Int (S) .

Remark 8 Proposition 3 provides conditions for char-
acterizing forward invariant sets S which are locally at-
tractive for (1). An estimate of the domain of attraction is
characterized byDA. The sets S andDA are characterized
as the level sets of the Lyapunov function V (x) = x⊤Px
where P is a matrix to be found using the conditions
of Proposition 3. Let Q = P−1. Then, using the Schur
complement, (40) and (41) are equivalent to

QA⊤
i +AiQ− kQC⊤ (b1 − b2)

⊤ − k (b1 − b2)CQ

≺ −αQ, i ∈ {1, 2}, (47)

[ (
α−δ
2

)
Q

(
QC⊤ − b1 + b2

)
v

⋆ α−δ
2 εI

]
≻ 0, v ∈ {v1, v2}.

(48)

Therefore, for given k (static output feedback gain in
system (23)), α (decay rate of system (23) with the
given gain k) and δ (estimation of the decay rate),
the constraints (40)-(41) are transformed into LMI
constraints with variables Q ≻ 0 and ε > 0. Then
minimizing ε allows to minimize the forward invariant
set S. The estimation of the domain of attraction is

Fig. 4. Phase plot for the system in Example 1.

γ = min
v∈{v1,v2}

(
v
k

)2 1
CQC⊤ . From this expression, we

may remark that minimizing k such that (47) and (48)
hold, allows to enlarge the estimation of the domain of
attraction. Note also that by minimizing k, the allowable
decay rate α of the piecewise linear systems (23) is
decreasing and therefore the upper bound ε (the level set
characterizing the forward invariant set S) is increasing.
Based on the relations between these parameters in (40)
and (41), we can imagine various iterative procedures to
minimize the estimation of the forward invariant set or
to maximize the estimation of the domain of attraction.

Remark 9 In order to take into account oscillating
behaviours, the equality condition (29) in Proposition 2
is replaced with the condition (41). This condition takes
into account the difference between the parameter C of
switching surface and B⊤P (characterizing the passive
output sp = B⊤Px). We emphasize that this approach
does not require the matrices A1 and A2 to be Hurwitz.

4 Numerical examples

In this section, we present some numerical examples to
illustrate the criteria we proposed in Section 3.

Example 1. Consider system (1) with A1 =[
0.1 0

0 −3

]
, A2 =

[
−2 0

0 0.1

]
, b1 =

[
2.4 −1.6

]⊤
,

b2 =
[
−3.6 2.4

]⊤
, and a switching surface described

by C =
[
0.5 −0.85

]
. The system phase plane is

illustrated in Figure 4. The system presents two unstable
equilibrium points x∗

1 = −A−1
1 b1 = [−24,−0.53]⊤ and

x∗
2 = −A−1

2 b2 = [−1.8,−24]⊤ (marked with red stars in
Figure 4). Property 1 holds with α∗ = 0.6. We apply
Proposition 2 to estimate the domain of attraction and
to prove the stability of the null equilibrium obtained
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Fig. 5. Phase plot for the system in Example 2 and estimates
obtained based on several values of k (k = 1.3 × 10−3 -
magenta, k = 0.003 - green, k = 0.007 - black, k = 0.02 -
blue; solid line - DA, dashed line - S).

by sliding dynamics. The conditions of Proposition 2
are satisfied with a Lyapunov function characterized by

P =

[
8.5 0.25

⋆ 21.6

]
× 10−2

and k = 0.04. These parameters were found by solving
jointly the matrix inequalities (38) and (39) in Remark 7
while minimizing k. The domain of attraction (the green
ellipsoid in Figure 4) is characterized by γ = 15.6. From
Figure 4 we can see that starting from the domainDA :=
{x ∈ Rn : V (x) ≤ γ}, the trajectories of the switched
system converge to the origin. The two red stars (∗)
in Figure 4 correspond to the two unstable equilibrium
points of the two subsystems. The distance between the
unstable equilibria and the bound of DA illustrates the
conservatism of our method.

Example 2. Consider system (3) with the matrices

A1 =

[
−2 3

−3 2

]
, A2 = 0.95 · A1, b1 =

[
−0.154 1

]⊤
,

b2 =
[
−1.514 0.95

]⊤
, and C =

[
28.28 −16.97

]
,

d = 11.31. Figures 5 and 6 show the phase plot of
the PWA system. Both of the matrices A1, A2 have
purely complex eigenvalues. The system has two stable
equilibria z∗1 = [0.66, 0.49]⊤, z∗2 = [1.24, 1.36]⊤ and
an unstable (Filippov) equilibrium at z∗ = [1, 1]⊤.
According to initial conditions, solutions may reach the
switching surface and next oscillate either around z∗1 or
z∗2 (sometimes after sliding on the switching surface - see
Figure 6). We want to characterize the forward invariant
set S containing both of the oscillating behaviours. In
addition, we intend to estimate the domain of attraction
DA of solutions that converge towards S with a decay
rate of at least of δ = 10−5. Condition (4) is satisfied with

Fig. 6. Zoom on the phase plot for the system in Example 2
and estimates obtained based on k = 0.02 and α = 0.77. The
cyan line is the solution with an initial value z0 = [0.13, 0.15]
and the red line is the solution with an initial value
z0 = [1.95, 1.5]. z∗1 , z

∗
2 are the equilibriums of the two

subsystems.

α∗ = 0.4 and z∗ = [1, 1]⊤. Based on the condition (5),
we obtain a system of the form (1) satisfying Property
1. Condition (40)-(41) in Proposition 3 were tested for
various values of k (the gain of the linear static output
feedback controller uc = −ky for the transformed system
(23)). For k = 1.3 × 10−3 and α = 0.05, we obtain
ε = 237.11 characterizing a forward invariant set and
γ = 2.35 × 103 characterizing the domain of attraction
based on a Lyapunov function with

P =

[
20.1 −13.57

⋆ 20.31

]
.

The domain of attraction and the forward invariant set
are represented in magenta in Figure 5 (solid and dashed
lines, respectively). Choosing a stronger decay rate α =
0.77 (based on k = 0.02), we have ε = 7.46, γ = 9.66
with

P =

[
20.83 −16.71

⋆ 24.21

]
.

A zoom of the phase plot is illustrated in Figure 6. As
expected, imposing a stronger gain k (stronger decay
rate α for the of piecewise linear systems) allows a tighter
estimates of the forward invariant set. However, it leads
to a smaller estimated of the domain of attraction (to be
compared with the other estimates provided in Figure
5). Patching together the different estimates allows to
get an idea about the actual domain of attraction and
forward invariant set.

5 Conclusion

In this paper, we proposed methods for analyzing
the stability properties of self-oscillating solutions for
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a class of PWA systems with two subsystems and
linear switching surfaces. Conditions were provided
to characterise attractive forward invariant sets and
domains of attraction. For some particular cases, we have
given, as a side result, new methods for checking the
local asymptotic stability of the origin. The approach
provides some analytical insights on the properties
of PWA systems. The proposed condition are based
on passivity and output stabilizability of a relay-like
systemwith respect to an artificial output corresponding
to the switching surface. In the future, we plan to
extend our methods to PWA systems with several
subsystems. In addition, since the approach is essentially
based on quadratic Lyapunov functions, it would be
interesting to investigate the extension to more general
classes of Lyapunov functions. This perspective might
be interesting for reducing the conservatism and for
enlarging the estimates of the domains of attraction.
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