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Abstract

Motivation: Modular response analysis (MRA) is a well-established method to infer biological networks from per-
turbation data. Classically, MRA requires the solution of a linear system, and results are sensitive to noise in the data
and perturbation intensities. Due to noise propagation, applications to networks of 10 nodes or more are difficult.

Results: We propose a new formulation of MRA as a multilinear regression problem. This enables to integrate
all the replicates and potential additional perturbations in a larger, over-determined, and more stable system of
equations. More relevant confidence intervals on network parameters can be obtained, and we show competitive
performance for networks of size up to 1000. Prior knowledge integration in the form of known null edges further
improves these results.

Availability and implementation: The R code used to obtain the presented results is available from GitHub: https://
github.com/J-P-Borg/BioInformatics

1 Introduction

Biological systems are orchestrated by a multitude of interaction
networks. At a cellular scale, the knowledge of protein physical
interaction networks, phosphorylation cascades, or gene regulatory
networks is central in our understanding of homeostasis, disease,
reaction to environmental changes, and many other situations. The
inference of biological networks from experimental data has thus
attracted much attention from the computational biology commu-
nity (Huynh-Thu and Sanguinetti 2019).

A common experimental design to learn about the connectivity
between a set of molecules of interest is to measure their activity
under different conditions. Molecules can be for instance genes,
transcripts, proteins, or metabolites, and the notion of activity might
relate to their abundance or state, e.g. the phosphorylation level of a
protein. Modular response analysis (MRA) is a versatile framework
allowing to infer connectivity between molecules (or groups of
molecules called modules) X1; . . . ;XN simply assuming that they
are related by an equation of the form dX=dt ¼ f Xð Þ,
X ¼ ðX1; . . . ;XNÞT, and a particular experimental design. This de-
sign requires that measures of Xi activities are obtained under the
systematic perturbation of each molecule activity, and the system
finds itself in a steady state for each of those perturbations. The

elegance of MRA is that the steady-state assumption enables apply-
ing the implicit function theorem leading to a first-order approxima-
tion of f ðXÞ without knowing this function explicitly (Kholodenko
et al. 2002). Except for the steady-state hypothesis, which is not ful-
filled by every system obviously, MRA provides a generic solution
involving linear algebra only to explore biological networks quanti-
tatively. It has been applied and extended by a number of research-
ers (Dorel et al. 2018; Santra et al. 2018; Jimenez-Dominguez et al.
2021; Mekedem et al. 2022). However, MRA is sensitive to meas-
urement noise and to the intensity of the perturbations exerted on
network nodes (Andrec et al. 2005; Thomaseth et al. 2018).
Different approaches have been suggested to alleviate these prob-
lems (Santra et al. 2018), e.g. to perform a bootstrap followed by an
estimation of confidence intervals (CIs) of the connectivity coeffi-
cients (Santos et al. 2007; Jimenez-Dominguez et al. 2021).

In this report, we combine MRA with multilinear regression.
Indeed, MRA equations can be interpreted as a linear regression
problem (see below) thus enabling the use of any linear regression
strategy. This new formulation hence defines a family of methods,
which we will illustrate employing classical algorithms such as the
least square, LASSO, or STEP. One advantage of the regression ap-
proach is to integrate the treatment of the experimental noise with
the model accuracy estimation in terms of residual variance. That is,
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how well the linear MRA model approximates the potentially non-
linear biological system and how accurate are the estimated network
parameters. Using data from DREAM 4 Challenge, we show that
we can apply MRA modeling to 10- to 100-node networks with
competitive performance, while a standard resolution of MRA equa-
tions already encounters difficulties with 10-node networks. Using
realistic synthetic networks of sizes up to 1000 nodes (Carré et al.
2017) and varying noise in the data, we confirm those results. We
further compare MRA and our multilinear regression variants
against general-purpose network inference algorithms such as
ARACNE (Margolin et al. 2006), CLR (Faith et al. 2007), and
MRNET (Meyer et al. 2007), which we largely outperform.

2 Materials and methods

2.1 Fundamental definitions
We consider a putative biological network comprised of N modules
that potentially interact. A module can be a molecule (transcript,
protein, . . .) or it can represent the contribution to the network of a
set of molecules such as a pathway or part of a pathway. In the latter
case, one measurement reports for the activity of the whole module.
MRA aims at determining signed connectivity coefficients between
the modules. The module activity levels are represented as a time-
dependent function X : Rþ7!R

N. In case the modules were gene
transcripts, XðtÞ could for instance represent their abundance over
time. We assume the existence of a continuously differentiable func-
tion f : RN�RM 7!R

N and a vector of intrinsic parameters P 2 R
M,

at least one per module (hence M � N), such that

dX
.

dt
¼ f X;Pð Þ: (1)

The function f is usually unknown. P0 represents the biological
system in its basal state, i.e. in the absence of any perturbation. We
suppose the existence of a time t0 after which the system has reached
a steady state (including all the perturbed states):

dX
.

dt
¼ 0; 8t � t0: (2)

Let X ¼ XðP0Þ be a solution of the system (2). The application
of the implicit function theorem gives us an exact formula for the
connectivity coefficient representing the influence of a module j on
another module i (Kholodenko et al. 2002; Jimenez-Dominguez
et al. 2021):

re
ij ¼ �

Xj
@fi

@Xj

Xi
@fi

@Xi

0
@

1
A ¼ Xj

Xi

@Xi

@Xj

� �
; 1 � i 6¼ j � N (3)

Note that re
ii is not defined by Equation (3). By convention, we

set re
ii ¼ �1, see Jimenez-Dominguez et al. (2021) for an algebraic

justification.
Taylor’s development at the first order enables us to write an ex-

pression for the system under perturbation DP.

Xi P0 þ DPð Þ �Xi P0ð Þ
Xi

¼ þ
XN

j ¼ 1; j 6¼ i

Xj

Xi

@Xi

@Xj

� �
Xj P0 þ DPð Þ �Xj P0ð Þ
� �

Xj

þ 1

Xi

XN
j ¼ 1

@Xi

@Pj

� �
DPj þ o DPj jj jð Þ;

(4)

for 1 � i � N and with o hð Þ ¼ heðhÞ, lim
h!0

eðhÞ ¼ 0, eðhÞ continu-
ous in the vicinity of 0.

2.1.1 Standard MRA formulation

Only one perturbation per module is considered implying M ¼ N.
Experimental measurements obtained under perturbation qi result

from the modification of the intrinsic parameter Pi that directly
affects node i only. Accordingly,

@Xi

@Pj
6¼ 0 if i ¼ j and

@Xi

@Pj
¼ 0 if i 6¼ j: (5)

We introduce the notation

DXi

Xi

� �
qk

¼ 2�Xi P0 þ DPkð Þ �Xi P0ð Þ
Xi P0 þ DPkð Þ þXi P0ð Þ

: (6)

Using the mid-point in the denominator of Equation (6) right-
term instead of Xi P0ð Þ is customary to avoid divisions by 0. Thanks
to Equations (4) and (5), we obtain the system of equations with
1 � i � N and k 6¼ i:

DXi

Xi

� �
qk

¼
XN

j ¼ 1; j 6¼ i

re
ij

DXj

Xj

 !
qk

þ o DPj jj jð Þ: (7)

Ignoring the error term o DPj jj jð Þ in (7) that represents departure
from linearity, we obtain its linear approximation

DXi

Xi

� �
qk

¼
XN

j ¼ 1; j 6¼ i

rij
DXj

Xj

 !
qk

(8)

that is solved by MRA (note that rij replaces the exact re
ij). In particu-

lar, writing matrices r ¼ ðrijÞ and R ¼ DXi

Xi

� �
qk

� �
, the connectivity

coefficients are obtained by:

r ¼ � diag R�1ð Þ� 	�1
R�1 (9)

an N �N system (Kholodenko et al. 2002).

2.2 A multilinear regression formulation
Equation (9) does not take into account the existence of replicates in
the data. It requires a single value for each perturbed state and each
module. In practice, ad hoc procedures must be added to exploit rep-
licates properly and estimate CIs for the rij computed after Equation
(9). Typically, bootstrap approaches are used that apply Equation
(9) to resampled data or Equation (9) is applied to averaged data
perturbed by an appropriate noise function (Andrec et al. 2005;
Santos et al. 2007; Thomaseth et al. 2018; Jimenez-Dominguez et al.
2021).

An alternative approach is to consider Equation (8) as the homo-
geneous multilinear regression of DXi

Xi

� �
with regression parameters

rij. In that case, the system to solve is not limited to N � 1 equations.
We can have one equation per replicate with any number of repli-
cates. It is even possible to integrate multiple perturbations at each
node, e.g. at different intensities or by different means, and hence
M � N. The number of perturbations is also no longer required to
be identical at each node. Obviously, we have N such regressions to
perform (N � 1 variables each) and the regression approach let us
estimate rij variability, directly taking advantage of all the tools pro-
vided by the regression literature (Hastie et al. 2009).

2.3 Considered regression methods
To solve Equation (8) with a regression approach leaves the choice
of the specific regression method free. Here, we considered several
standard methods. An obvious choice was least square estimation
(LSE) applied to multilinear regression. Because most biological net-
works are rather sparse and they can reach a certain size, we primar-
ily considered methods able to eliminate the least significant
regression parameters. Accordingly, we defined the LSE_CI method
as the application of LSE followed by an elimination of all the rij

whose 95% CI included 0.
A second method was threshold linear regression (TLR), which

also starts with LSE but eliminates coefficients differently. The rule
is to compute a threshold Th as the 25th percentile of all the
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estimated values rijj j and to set to 0 those rij that are below threshold
in absolute value.

The third method was LASSO, a shrinkage estimator. Using
LASSO for a node i (the ith of the N systems of size N � 1 to solve)
is defined by:

rLasso
ij ¼ argmin

ri:

X
k¼1;K

DXi

Xi

� �
qk

�
XN

j ¼ 1; j 6¼ i

rij
DXj

Xj

 !
qk

0
BB@

1
CCA

2

þ ki

XN
j ¼ 1; j 6¼ i

rijj j

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA
(10)

The choice of the hyper-parameter ki is determined by cross-
validation (CV) (Hastie et al. 2009), and it is hence necessary to
have experimental replicates or multiple perturbations at certain
nodes.

The fourth option was methods integrating a variable selection
scheme. Namely, we used STEP forward (STEP-Fo), STEP backward
(STEP-Ba), and Stepwise regression (STEP-Bo) combining both
backward and forward (Hastie et al. 2009). They essentially consist
in finding subsets of variables minimizing the sum of the residual
squares while ignoring the other variables according to different se-
lection strategies. This selection process introduces a bias in the solu-
tion, but here, this bias should remain modest because the networks
are sparse (roughly 80% of null edges).

2.4 Network inference methods
We considered ARACNE (Margolin et al. 2006), CLR (Faith et al.
2007), and MRNET (Meyer et al. 2007). We used their implementa-
tion in the Bioconductor R package minet (Meyer et al. 2008).

2.4.1 Selection and discretization of connectivity coefficients

Standard MRA and the regression-based variants we propose all esti-
mate real-valued connectivity coefficients ri;j. Methods such as
LASSO, LSE_CI, TLR, and STEP-xx include a mechanism to identify
coefficients deemed to be significant, the other ones being set to 0.
MRA usually outputs coefficients ri;j that are all or almost all nonzero.
We applied two techniques to assess standard MRA connectivity coef-
ficient significance. For very small networks (the 6-kinase example),
we used a bootstrap (100 repetitions) to estimate a CI on each ri;j and
set ri;j to 0 as soon as the CI included 0. For larger networks, this pro-
cedure was too slow and we applied a heuristics: we defined a thresh-
old T equal to the top x% of the ri;j in absolute value, and set each ri;j

to 0 as soon as ri;jj j < T. The choice of x was either variable to obtain
ROC curves or set to a chosen value specified in Section 3.

In cases where it was necessary to compare with a reference net-
work where only the existence and sign of edges were known, we
had to discretize the nonzero connectivity coefficient produced by
each method to f�1; 0; 1g. To compare performance with network
inference algorithms such as ARACNE, CLR, and MRNET, we also
had to discretize the connectivity coefficients of some reference net-
works. We applied the following rules. We denote Solution the ma-
trix of exact coefficients re

ij of the reference network, and MatrCc
the matrix of approximated rij after selection of significant coeffi-
cient above. For each row (iRow) and column (iCol) indexes:

• Reference network: Solution[iRow, iCol] sign(Solution[iRow,

iCol]), with sign(0) ¼ 0.
• MRA and regression-based variants: MatrCc[iRow, iCol]  

sign(MatrCc[iRow, iCol]).
• In case a reduction to f0; 1g is necessary (edge existence only),

the �1 in the above rules are replaced by 1.

To compute specificity and sensitivity when comparing with a
reference network after discretization, we defined Tþ as the number

of (iRow, iCol) such as MatrCc[iRow, iCol] ¼ 1 and Solution[iRow,
iCol] ¼ 1. Same for T� and T0. We defined Fþ as the number of
(iRow, iCol) such as MatrCc[iRow, iCol] ¼ 1 and Solution[iRow,
iCol] 6¼ 1. Same for F� and F0. We then defined P as the number of
nonzero elements of Solution, N as the number of zero elements of
Solution excluding the diagonal, and Se (sensitivity) ¼ (Tþ þ T�)/P,
Sp (specificity) ¼ T0/N. These definitions naturally extend the usual
definitions of TP, TN, FP, FN, sensitivity, and specificity used by
classification methods.

2.5 Generation of synthetic networks with FRANK
FRANK (Carré et al. 2017) was used requiring one eigenvalue of the
TF matrix to reside on the unit circle to ensure reaching a steady
state, dynamic mode, minimum sparsity 15% (meaning that 85% of
the edges are null), and the other parameters were left at their de-
fault values. The output of FRANK provided us with matrices that
we used as the exact, reference matrix of connectivity coefficients re

after setting the diagonal elements at �1 to comply with MRA for-
malism. To generate the input data for the inference methods, we
had to compute the corresponding matrix R. From Equation (9), we
obtain easily that R ¼ r�1 diag r�1ð Þ

� ��1
diagðRÞ, and diagðRÞ is

known since we applied known perturbations to Xi concentrations.
For simulating full KOs we apply �100% to each Xi and after
Equation (6) all the diagonal elements of R are equal to �2. For a
KD at �50% they are all equal to �2/3. Using the matrix re from
FRANK in these equations gives the corresponding R. Additive
Nð0; rÞ noise was added to R with r ¼ kX, k a factor adjusting the
noise level (see Section 3) and X the average concentration of the
genes.

2.6 Prior knowledge integration
Let us assume that we know some null edges of node Xi, i.e. a set
Ai ¼ j 2 1; . . . ;Nf g; rij ¼ 0


 �
.

Each index j 2 Ai cancels a column of the linear system associ-
ated with solving node Xi connectivity coefficients. When the regres-
sive approach is used, Equation (8) becomes:

DXi

Xi

� �
qk

¼
XN

j ¼ 1; j 6¼ i
j 62 Ai

rij
DXj

Xj

 !
qk

: (11)

Hence, the linear system corresponding to node Xi is reduced to
N � 1� cardðAiÞ parameters to estimate. The number of degrees of
freedom of the model and its residual variance decrease accordingly.

3 Results and discussion

3.1 Impact of noise and perturbation intensities on MRA

solutions
Conceptually, the derivation of MRA equations entails infinitesimal
perturbations of the network modules (Kholodenko et al. 2002)
such that differential calculus can be applied, notably the implicit
function theorem that is a local result (Jimenez-Dominguez et al.
2021). In practice, infinitesimal perturbations are usually not feas-
ible and not advisable because experimental data tend to be noisy.
Nevertheless, Taylor’s development in Equation (4) shows a depend-
ence of the error on the perturbation intensity (error term) underly-
ing a potential loss of accuracy of MRA depending on the strengths
of the variable nonlinear dependencies. Accordingly, we decided to
study the relationship between accuracy, noise, and perturbation
strengths on a small but representative system.

We used the synthetic kinases network (MAP, MKK, and
MKKK) introduced by Kholodenko et al. (2002) in MRA original
paper. This system is comprised of six molecules (counting the phos-
phorylation states) and, unlike Kholodenko’s analysis that was lim-
ited to three modules, we considered the whole system with six
modules, one per molecule (Fig. 1A). The dynamical equations are
given in Supplementary Information. We solved them numerically
using the R package ode and determined the time t0 after which a

MRA regression 3
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steady state was reached (details in Supplementary Information).
The exact connectivity coefficients re

ij (Fig. 1B) were computed
numerically.

We started with data devoid of noise and perturbations qk were
applied to the six-speed constants of the system vmax

i , i 2
f3;4; 7; 8;11;12g (see Supplementary Information) with DPk equals
to 650%. Such perturbations could be induced by kinase inhibitors
for instance. For each perturbation, a new steady state X P0 þ DPkð Þ
was computed: the perturbation was applied to each node successive-
ly. For aþ50% perturbation level, every vmax

i is successively multi-
plied by 1.5, while the others remain unchanged. Multiplication by
0.5 for a �50% perturbation. A first observation was that due to
nonlinearity, symmetrical perturbations did not result in symmetrical
differences compared to the basal state (Fig. 1C and D). In particular,
the squared error was greater with �50% perturbations than with
þ50% perturbations. Moreover, we observed that connectivity coef-
ficients that were zero in the basal state, were no more zero when
estimated with standard MRA (Fig. 1B–D). Departure from zero was
indeed substantial in such a small network, which is a limitation for
identifying the topology of biological sparse networks (Fig. 1E).

Since the exact solution is available for the 6-node example, we
can compute, for a given perturbation level, the exact squared errorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðre
ij � rijÞ2

q
. In Fig. 2A, we see that it is nonsymmetric as

expected from the results above. To limit errors in rij estimates, one
could try using smaller perturbations, but as already mentioned, in
the presence of noise, this approach might be inapplicable. To illus-
trate this phenomenon, three levels of Gaussian additive noise

Nð0; rÞ were hence added to the Xi with r ¼ kX, where X was the

average of all the theoretical concentrations at steady state (X ¼ 84
for the example 6-node network), and k was set at 0.1%, 0.5%, or
1%. Note that with k ¼ 1%, a substantial noise is added to low sig-
nals (k ¼ 1% implies r ¼ 0. 84). The error in the presence of noise
(Fig. 2B) behaved in a reverse fashion compared to what we
observed without noise. This is because the noise error was larger
than the nonlinearity error. With more noise, it is indeed necessary
to increase perturbation intensities to obtain a sufficient signal-to-
noise ratio, but this also drives us away from the exact solution in
case the system is substantially nonlinear with respect to P
(Equation (4)). In what follows, we used þ50% perturbations as a
reasonable compromise.

3.2 First comparison of methods
MRA assesses network edges quantitatively, but measurement noise
usually generates nonzero values for all the connectivity coefficients.
Figure 3A and B illustrate this phenomenon for 6-node kinase net-
work introduced above. For standard MRA, we estimated 95% CIs
applying a bootstrap with 100 repetitions. A connectivity matrix r
was obtained for each repetition of the bootstrap and CI boundaries
were simply obtained as the 2.5th and 97.5th percentiles. We
observed an already known relationship (Thomaseth et al. 2018): CI
sizes increase with higher noise in the data, independent of the num-
ber of replicates. It is important to note that such CIs represent the
consequence of the total variance (noise þ nonlinearity), and by
applying the standard MRA approach we are limited to such vari-
ance estimations a posteriori, e.g. via simulations such as the boot-
strap. The independence on the number of replicates is an obvious
limitation.

On the contrary, solving MRA with multilinear regression meth-
ods enables estimating the residual variance, i.e. the variance caused
by the nonlinear contributions. Residual variance-based CIs is com-
mon practice when applying linear models to data. In Fig. 3A and B,
we show such CIs for 3 and 5 replicates and noise levels at 0.1%
and 0.5% of the average concentrations X for LSE regression.
Residual variance-based CIs were indeed strongly reduced compared
to standard MRA total variance-based CIs, and more replicates
yielded smaller CIs. In a previous study limited to 3-module net-
works (Thomaseth et al. 2018), the idea of applying LSE has been
already envisioned. Nonetheless, LSE was applied to each replicate
separately thus leading to poor performance. In one case, the
authors linked dual perturbations and reported encouraging per-
formance, but they did not follow-up on this observation.

3.3 Determining edges existence in the 6-node network
In some applications, it is only necessary to infer the existence of
node interactions and the sign of the interaction (induction or inhib-
ition). To consider such applications, we reduced the exact connect-
ivity coefficient re

ij to �1, 0, or 1 by simply taking signðre
ijÞ. The

output of MRA and MRA-regression methods were then also discre-
tized to obtain values in f�1; 0; 1g (Section 2). Results are reported
in Fig. 3C and Supplementary Table S1 (details of sensitivity and
specificity computations are in Section 2 as well).

Figure 1 A six-node MAP kinase network. (A) Exact network topology with connectivity coefficients re
ij. Node names correspond to the different forms of kinases, and the

numbers in brackets are their identifiers in further figures. A solid arrow means a direct activation, while a dashed arrow means an inhibition. (B) The matrix of exact re
ij. (C)

Estimated rij under �50% perturbation. (D) Estimated rij under þ50% perturbation. (E) Illustration of the impact of nonlinearity on the null edge problem. The exact connect-

ivity coefficient re ¼ 0 (slope of the implicit function u on XðP0)) is approximated by the slope r > 0 of the segment [X P0ð Þ;X P0 þ DPð Þ� in MRA (linear approximation)
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Already on this modest 6-node network, we see that MRA and
MRA-regression performances depend on the noise level. Overall,
the best sensitivity was achieved by STEP-Fo, LSE_CI, and LASSO
(in this order), which outperformed MRA. TLR remained stable, re-
gardless of the noise. Concerning specificity, the best results were
obtained by MRA, STEP-Fo, and STEP-Bo. Upon noise increase,
specificity was improved for MRA and LSE_CI because an increased
noise inflated the CIs thus leading to the correct detection of every
null edge (Supplementary Table S1).

3.4 Medium-size networks from DREAM 4 Challenge
The DREAM 4 Challenge released five 10-gene and five 100-gene
networks of Escherichia coli meant to compare inference algorithm
performance. Each gene was subjected to two independent perturba-
tions series, knockdowns (KDs) and knockouts (KOs). All the gene
expression levels Xi were normalized and an unknown noise was
added. The exact solutions were provided as binary edges, i.e.
re
ij 2 0;1f g. The networks were sparse with 80% of null edges on

average. DREAM 4 data regarding the network dynamics before
reaching a steady state were ignored. We evaluated the performance
of our MRA-regression methods on the existence or nonexistence of
the inferred edges, thus requiring discretization of the output real-
valued ri;j. In the case of MRA, it was not possible to combine KO
and KD data in one analysis. We hence treated the two sets of per-
turbations separately. Regarding MRA output selection and discret-
ization, we used x ¼ 20% for 10-gene, and x ¼ 25% for 100-gene
networks (see Section 2). Figure 4A features the first 10-gene net-
work compared with the result found by TLR, detailed results for
each network are featured in Supplementary Table S2. Figure 4B
reports the average performance over the five networks of each size
in terms of sensitivity and specificity. To eliminate potential biases
due to specific thresholds in the discretization, we also computed
areas under the ROC curve (AUROC) featured in Fig. 4C.

On these larger networks, regressive approaches showed strong
superiority over standard MRA (Fig. 4B and C). MRA-KD was close
to random selection for 10- and 100-gene networks, whereas
MRA-KO performed reasonably with 10-gene networks, but was
also close to random with 100 genes (Supplementary Figs S1–S3).
The simple regression method TLR delivered better performance,

but was nonetheless sensitive to the network size. Regression meth-
ods adapted to sparse solutions (STEP-xx and LASSO) performed
robustly and STEP-xx provided the best compromise overall.
Comparing these methods with DREAM 4 Challenge ranking estab-
lished in 2014, based on P-values concerning areas under the ROC
curve (official criterion), we found that STEP-xx and TLR methods
ranked 3rd for 10-gene networks. They respectively ranked 1st and
8th for 100-gene networks (STEP-Fo being the best of STEP-xx). See
Supplementary Table S3 for detailed results and the exact score
computation.

Naturally, these rankings do not take into account methods
developed since DREAM 4. In particular, a variation of MRA called
MLMSMRA (Klinger and Blüthgen 2018), using a likelihood esti-
mation combined with a greedy hill-climbing model selection ap-
proach, ranked 3rd with 10-networks and KO perturbations, but
25th with KD. The authors did not report performance for 100-
node networks. A Bayesian-modified version of MRA was proposed
to better model sparse networks according to another ranking sys-
tem defined by the authors themselves (Santra et al. 2013; Halasz
et al. 2016; Klinger and Blüthgen 2018), i.e. achieving a perform-
ance comparable to MRA combined with STEP-xx.

3.5 Synthetic networks of sizes up to 1,000 nodes
We applied a realistic random biological network generator FRANK
(Carré et al. 2017) to systematically explore performance on net-
work sizes from 30 to 1,000 at two noise levels. We applied �50%
(KD) and full KOs perturbations. We generated eight sets of net-
works with TF in (30, 60, 100, 200, 300, 500, 800, and 1000) and
TA¼0. In FRANK terminology, TFs are genes regulating at least
another gene (out-degree > 0), whereas TAs harbor out-degrees¼0.
We also generated seven sets of networks, with TF ¼ TA in (30, 50,
100, 150, 250, 400, and 500). The number of nodes (TFþTA) var-
ied from 30 to 1000. For each set, we generated five independent
networks with two different perturbations (KO and KD) and two
noise levels. This resulted in 5� 8þ 7ð Þ � 2 ¼ 150 synthetic net-
works. FRANK sparsity parameter was set to have 85% of null
edges.

For each network and noise level, we computed the exact

squared error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ðre

ij � rijÞ2
q

for standard MRA and two

Figure 2 Impacts of perturbation and noise level for the six MAP kinase network. (A) The exact squared error
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;j re
ij � rij

� �2
q

as a function of the perturbation intensity in

the absence of noise. We note that points A and C are not symmetrical with respect to B although symmetrical perturbations were applied. (B) The impact of perturbations at

different intensities in the presence of Gaussian noise Nð0; rÞ with r set at 0.1%, 0.5%, and 1% of the mean X of the molecule concentrations (r ¼ kX). Black vertical lines in-

dicate the error standard deviation. We note that the error is huge with small perturbations (�1% and þ1%) when applied to noisier data. Stronger perturbations yield smaller

errors provided the noise remains reasonable. Otherwise, errors grow rapidly as well (vertical axis in log)
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regression-based methods that stood out in the DREAM 4 data, i.e.
TLR and STEP-Fo. See Fig. 5 and Supplementary Table S4 for the
results, which confirmed on this large collection of networks the sig-
nificant improvement brought by the regression approach.

To enable comparison with the network inference algorithms
ARACNE, CLR, and MRNET, we next asked about the perform-
ance just detecting the existence of edges, i.e. both the reference con-
nectivity coefficient re

ij and their estimates rij were discretized to
f0; 1g (Section 2). Since AUROC computation is very time consum-
ing, we limited performance assessment with AUROC to MRA and
TLR (Fig. 6), which again showed the advantage of the regressive
approach.

In Fig. 7, we report the performance of all the methods by simply
computing the distance of a single (sensitivity, 1 � specificity) point,

obtained with default parameters, to the diagonal representing ran-
dom selection. We clearly see that network inference methods do not
perform well in comparison to MRA-based methods on perturbation
data. We also see that standard MRA performs well with small noise
but its performance drops dramatically as noise increases in line with
previous results. The most robust methods are the simple TLR and
STEP-Fo, but TLR outperforms STEP-Fo on this dataset, and it is
much faster. LASSO performance is robust although seldom the best.

3.6 The use of a priori knowledge of the network

topology
In practice, it is common to know about some interactions in a
studied network. Regarding known edges, there is nothing particular

Figure 3 Inference performance for the six MAP kinase network. (A) Estimated connectivity coefficient rij 95% CI for MRA standard resolution followed by a bootstrap, LSE

with three or five replicates and Gaussian additive noise Nð0; rÞ with r ¼ kX, X the average concentration, and k ¼ 0.1%. Green dots represent the exact values. (B) Same as

(A) but with k ¼ 0.5%. The x-axes in (A) and (B) indicate the edge origins, e.g. MKKK, and the numbers the edge targets. (C) Performance estimations based on edge direction-

ality and existence or absence at three noise levels. Se, sensitivity; Sp, specificity
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Figure 4 Dream 4 Challenge networks. (A) A 10-gene network topology (left) compared to TLR inference (right). (B) Average performance of the methods over the five 10-

and five 100-gene networks. Se, sensitivity; Sp, specificity. (C) Average performance reported as area under the ROC curve (AUROC) and corresponding P-values over the five

10- and five 100-gene networks. *AUROC and P-values were computed using the library verification (function roc.area). For LSE_CI, it failed, and we estimated the AUROC

by ourselves without P-value

Figure 5 FRANK synthetic networks. (A) Squared error (SE) for MRA, TLR and STEP-Fo methods as a function of the number of nodes with additive Gaussian noise Nð0; rÞ
and r ¼ kX, X the average concentration, and k ¼ 10%, number of nodes ¼ TF, TA¼ 0. (B) Same with TA ¼ TF, number of nodes ¼ TA þ TF. (C) Log (1þ SE) as a function

of the number of nodes, k ¼ 50%, number of nodes ¼ TF, TA¼0. (D) Same with TA ¼ TF, number of nodes ¼ TA þ TF. The ribbon around TLR and STEP-Fo curves fea-

tures 6 standard deviation of the error. For MRA, the error standard deviation was so large that it would encompass the whole plot. It was hence not represented. Since STEP-

Fo was very compute-intensive, we limited its application to networks with TF � 300 and TA¼ 0, or TF � 100 and TA ¼ TF
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to do since MRA formalism considers all the interactions as pos-
sible. On the other hand, by knowing impossible interactions, we
can eliminate equations (see Section 2). This increases over deter-
mination of the linear system of the regression approach, which is
expected to increase the accuracy of the estimates. For methods such
as LASSO that require hyper-parameter adjustment through CV,
this has the potential to improve the optimality of those hyper-
parameters in addition.

In the 10- and 100-gene networks of the DREAM 4 Challenge,
we assumed different percentages of known null edges. The impact
of this knowledge on sensibility and specificity for three of the
studied regression methods (LASSO, STEP-Fo, and TLR) is featured
in Fig. 8. Indeed, performance improved as a function of the per-
centage of known null edges. This improvement was stronger for
specificity. We observed high variability of the impact on sensibility

for 10-gene networks, results were more stable for the larger 100-
gene networks.

In comparison with the binary approach proposed here, a
Bayesian implementation of MRA has been proposed (Santra et al.
2013) that took a known pathway topology as a prior and showed
improved accuracy over pure MRA. This Bayesian formulation
was less radical than imposing null edges since an absent edge of
the pathway could be eventually inferred a posteriori, provided
that sufficient data evidence existed. On the other hand, our
regression-based solution provides accurate CI estimates that
hence enable pruning network edges based on model accuracy.
One can imagine following with a reduced model, where pruned
edges would be removed as above, to obtain better estimates on
the other edges. This would be different from a Bayesian formula-
tion obviously, though it would provide comparable practical
value.

In the case of multilinear regression, the integration of the know-
ledge of null edges is done naturally (overfitting the system by delet-
ing columns). In the Bayesian approach (Santra et al. 2013), the
integration of this knowledge is also very natural (defining the prior
probability of the Boolean variables associated with the existence of
edges). In MLMSMRA (Klinger and Blüthgen 2018), the integration
of prior knowledge was not explicitly discussed. Nonetheless, be-
cause their algorithm fills the connectivity matrix iteratively, it
should be easy to force certain coefficients to remain at zero.

4 Conclusion

We have introduced a new method to solve MRA equations through
multilinear regression. This formulation brings a number of advan-
tages over the classical approach by providing a natural way to
model data variability across experimental replicates, or even mul-
tiple perturbations at certain or all the modules. Better estimates of
MRA connectivity coefficient variability can also be exploited to
identify absent edges in a biological network more accurately.
Moreover, these advantages were obtained by remaining within the
MRA formalism that provides an elegant, physical interpretation of
connectivity coefficients compared to purely regressive approaches.

Figure 6 FRANK synthetic networks. (A) AUROC as a function of the number of

nodes. Additive Gaussian noise Nð0; rÞ with r ¼ kX, X the average concentration,

and k ¼ 50%. Number of nodes ¼ TF, TA¼0. (B) Same with TA ¼ TF, number of

nodes ¼ TA þ TF. See Supplementary Table S5 for detailed results

Figure 7 FRANK synthetic networks. (A) Distance to the diagonal as a function of the number of nodes with additive Gaussian noise Nð0; rÞ with r ¼ kX, X the average con-

centration, and k ¼ 10%, number of nodes ¼ TF, TA¼0. (B) Same with TA ¼ TF, number of nodes ¼ TA þ TF. (C) Distance to the diagonal as a function of the number of

nodes, k ¼ 50%, number of nodes ¼ TF, TA¼ 0. (D) Same with TA ¼ TF, number of nodes ¼ TA þ TF. (E) Distance of a point on a ROC curve to the diagonal. See

Supplementary Table S6 for detailed results
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While motivating the use of regression for MRA, we conducted
an analysis of the relationship between data noise, perturbation in-
tensity, and MRA result accuracy that has interest per se. In agree-

ment with the local development in the Taylor series, MRA
accuracy decreases with stronger perturbations as soon as the system
is nonlinear. On the other hand, the presence of noise requires per-

turbations with a minimal intensity to obtain exploitable differences
in the variables. Altogether, this means that a compromise must be
found between noise levels and perturbation strengths. Depending

on the biological system at hand, i.e. on the nonlinearities, this may
lead to perturbations intensity no longer compatible with MRA lin-
ear approximation. In such a case, another modeling paradigm must

be chosen. In the absence of strong nonlinearities, our work dramat-
ically extended the domain of the application of MRA to much
larger networks of sizes up to 1000. This is a 100-fold increase

compared to MRA with standard linear algebra, which had difficul-
ties going beyond 10-node networks in our experiments.

Finally, the proposed approach actually defines a family of
MRA-derived methods with the multilinear regression algorithm as
a free parameter. While LSE_CI for instance selects edges based on a
direct exploitation of residual variance CIs, other algorithms per-
form model selection such as the simple although very efficient TLR,
LASSO, or STEP-xx. Other regression methods that we have not
tested might provide specific advantages depending on the dataset,
or the specific interest or requirements of the researchers.
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