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Abstract. Topologically protected states can be found in physical systems, that show

singularities in some energy contour diagram. These singularities can be characterized

by winding numbers, defined on a classification surface, which maps physical state

parameters. We have found a classification surface, which applies for three-band

hamiltonian systems in the same way than standard Bloch surface does for two-band

ones. This generalized Bloch surface is universal in the sense that it classifies a very

large class of three-band systems, which we have exhaustively studied, finding specific

classification surfaces, applying for each one.

1. Introduction

In recent years, physicists have investigated new quantum states, such as zero-energy

states like Majorana fermions[1, 2, 3], zero-mass particles associated to Dirac contact

points[4, 5, 6] or anyons[7]. These quantum states are remarkable because they are

protected by topological singularities.

Initiated by theoretical predictions[8, 9, 10, 11, 12, 1, 13, 14, 15], the quest of such

topological states has spread into a larger and larger community of experimentalists and

has provided more and more valid candidates[16, 17, 18, 19, 20, 21].

In most cases, these states are characterized by a quantum integer associated to

some physical flux in real or reciprocal space. Following Gauss-Bonnet theorem[22, 23,

24], this quantum integer is also related to a path integral around a singularity. The

choice of the integrand depends on which symmetry is relevant in each specific situation.

This approach proves to be very general: the classification of many topological

states can be performed through that of closed paths, using the fundamental (also called

first homotopy) group π1(E), which addresses winding numbers associated to specific

symmetries of the system. Other topological systems need the second homotopy group

π2(E), for which our results are not relevant. For the classification through π1(E) to be

valid, it must be determined in an abstract space E , where all states are represented

faithfully.

In primitive theories[9, 15, 25], topological states are protected by energy gaps.

However, more sophisticated cases may happen[14, 26] in three-band systems, where
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one gap closes. In such situations, using π1(E) to determinate winding numbers proves

very efficient, while other means can fail.

E can be arbitrarily constructed by a bijective mapping of the states; however, for

two-band systems, one can always choose Bloch surface, which is the standard S2 sphere:

it is universal in the sense that it can represent all two-band systems.

In three-band systems, one finds a very short list of surfaces, which can represent

them. In particular, we have proved the existence of a generic surface s6, which applies

for almost all of them and can therefore be considered as the generalized Bloch

surface of three-band systems. Its universality makes it a very powerful device, which

can be used to study any 3 × 3 matrix representation of a hamiltonian.

As we will explain, Bloch surface does not suffice to classify singular mappings:

actually, one must not determinate π1(E) but π1(E ′) instead, where E ′ is a specific

subspace of E , called effective surface, E ′ ⊂ E . Set E ′ is associated to the specific

symmetries, i.e. to the specific band structure of the system. In other words, the

universality of classification surface E does not imply that of classification groups

π1(E ′). Conversely, π1(E ′) is not a subgroup of π1(E) and must be calculated

separately. Nevertheless, the universality of E is a very powerful feature since it exactly

circumscribes the possible spaces E ′, the first homotopy group of which are relevant.

This is true for both two and three-band systems, however, in the three-band case,

the generalized Bloch surface has a very complicated structure with holes, for which a

partial classification of paths can be immediately established without the determination

of a specific effective surface E ′, contrary to the two-band case.

In this article, we deal with two and three-band systems. We first detail the

determination of Bloch sphere S2, in a synthetic and pedagogical way. We then present

a complete classification of all three-band cases, revealing essential differences with that

of two-band ones, and give several examples of application.

2. Two-band systems

a. Matrix representation of physical states

Two-band systems can be represented by 2×2 hamiltonian matrices H . Physical states

are related to eigenvectors |e,m〉 of H associated to each energy e, where all other

degrees of freedom are encoded by symbol m. In order to get rid of free phase, we

will use the representation of physical states by projectors Πe,m, which are related to

eigenvectors through Πe,m = |e,m〉〈e,m|
〈e,m|e,m〉 . Πe,m are 2 × 2 matrices, so one can introduce

α ∈ C and ~Ue,m =

(
xe,m
ye,m
ze,m

)
∈ C3 and write Πe,m = σ.~Um,e + α I where I is identity,

σ = (σx, σy, σz) and σi are Pauli matrices.
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b. Matrix component equations

In order to get a basis of eigenvectors, which can represent all physical states, matrices

Πe,m fulfill two kinds of conditions: inner relations, that insure each Πm,e to be a

projector; mutual relations that insure they represent orthogonal states. Inner relations

are written

Π†
e,m = Πe,m, Πe,mΠe,m = Πe,m, Tr(Πe,m) = 1, (1)

while mutual ones

Πe1,m1
Πe2,m2

= 0 ∀e1 6= e2. (2)

(1) gives 2α σ.~Ue,m + (α2 + ‖~Ue,m‖2)I = σ.~Ue,m + α I and ~U∗
e,m = ~Ue,m, thus one

gets ~Ue,m ∈ R and

α =
1

2
& α2 + ‖~Ue,m‖2 = α ⇐⇒ α =

1

2
& ‖~Ue,m‖ =

1

2
. (3)

Note that Tr(Πe,m) = 1 implies α = 1
2

and is thus redundant.

(2) gives σ.(1
2
(~Ue1,m1

+ ~Ue2,m2
) + i

~Ue1,m1
× ~Ue2,m2

) + (~Ue1,m1
.~Ue2,m2

+ 1
4
)I = 0, thus

one gets

~Ue1,m1
.~Ue2,m2

= −1

4
& ~Ue1,m1

+ ~Ue2,m2
= −2i~Ue1,m1

× ~Ue2,m2
. (4)

(3) and (4) together give finally

~Ue1,m1
= −~Ue2,m2

.

Therefore, all physical state degrees of freedom are encoded by a single vector 2~Ue,m,

which belongs to real sphere S2. We have proved that the universal classification surface

for two-band systems is Bloch sphere.

However, as explained before, a specific model can be embedded in a subset of S2.

For instance, for Weyl-Wallace model[27], which describes non-magnetic graphene, all

physical state degrees of freedom are encoded in equatorial circle S1 included in S2. S1

is the effective classification surface of this model.

This example gives π(S2) = 0, while π(S1) = Z. There is indeed a topological

singularity in Weyl-Wallace model, which lies at each contact point Pi between energy

bands and is characterized by a winding number ωi ∈ Z. Indeed, we have written this

pedagogical review of two-band systems in order to emphasise the difference between

E and E ′. Nevertheless, the existence of a universal classification surface is of major

importance, as we will show now for three-band systems.

3. Three-band systems

Three-band systems can be represented by 3 × 3 hamiltonian matrices. One needs to

find a basis of eigenvectors and we will again represent physical states by projectors

Πa (where a = (ai)i=1..8 is a real vectors in eight dimensions and plays the same role
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as (e,m) in the two-band case) which can be decomposed[28, 26] into eight Gell-Mann

matrices λi and identity I,

Πa =
1

3
I +

1√
3

8∑

i=1

aiλi

and still satisfy (1) and (2). (1) now reads

a.a = 1 and a ⋆ a = a , (5)

where the definition of ⋆ product is recalled in appendix, while (2) becomes

a.b = −1

2
and a ⋆ b = −a− b ∀a 6= b ∈ R

8 . (6)

There is no need to introduce Πc, representing a third independent eigenvector,

since one would get Πa + Πb + Πc = I.

This system has been solved[26] in the real case defined by

α2 = α5 = α7 = 0 ∀α = a, b. (R)

In the following, we will write êq the nonzero side of any real algebraic equation

(eq), such that it writes êq = 0, where êq factorizes in real prime algebraic factors[29].

In addition, writing a variable with index a, like va, means that va can be expressed

with a1, ..., a8 components, va = v(a1, .., a8). If a variable must be expressed with both

a and b components, we still write va, thus, vb = va⌋
a↔b

. Be aware that all equations

in the article are valid when one applies a ↔ b, except the parametrization ones, so we

will omit such exchanged configurations. For symmetrical expression, we skip index a

which becomes useless since one would get va = vb. Eventually, the domain of variables

αi, with α = a, b, is exactly −
√

3
2

≤ αi ≤
√

3
2

∀i = 1..7 while −1 ≤ α8 ≤ 1
2
.

Here we present the complete general solution, which parts into six different cases.

a. First S2 case

When a8 = b8 = 1
2
, one finds ai = bi = 0 ∀i = 4..7 and ai = −bi ∀i = 1..3. Equations

(5) and (6) reduce to sphere s2 of equation

a1
2 + a2

2 + a3
2 = 3

4
, (S2)

with 3 degrees of freedom (ai)i=1..3.

b. Second S2 case

When a8 = 1
2

and b8 = −1, one finds ai = bi = 0 ∀i = 4..7 and bi = 0 ∀i = 1..3.

Equations (5) and (6) reduce to sphere s2.
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c. First S4 case

When b8 = 1
2

and −1<a8<
1
2
, one finds bi = 0 ∀i = 4..7. (5) and (6) reduce to ellipsoid

s4 of equation

4
3
(a8 + 1

4
)2 +

∑7
i=4 ai

2 = 3
4
, (S4)

with 5 degrees of freedom (ai)i=4..8. The parametrization of other variables becomes

ai = (−1)i
√

3 ηia
1−2a8

∀i = 1, 2, a3 =
√

3Ãa

2(1−2a8)
and bi = − 3ai

2(1+a8)
∀i = 1..3, with A1a = a4

2+a5
2,

A2a = a6
2 + a7

2, Ãa = A1a − A2a, η1a = a4a6 + a5a7 and η2a = a4a7 − a5a6.

d. Second S4 case

When ai = −bi ∀i = 4..7, one finds bi = 1−2a8

2(1+a8)
ai ∀i = 1..3 and b8 = −1

2
− a8. The

parametrization of ai, i = 1..3, is unchanged from the previous case contrary to that of

bi. Equations (5) and (6) reduce to ellipsoid s4.

From now on, these four cases will be called atypical. Additional conditions, for

instance a7 = 0 in the first S4 case, give subcases, which will not be distinguished here,

although their equations differ (for instance S3 6= S4), and are also atypical.

e. General case

All other solutions can be expressed as the intersection of paraboloid of equation

γ1a = γ2b (γ)

and the 10th degree algebraic curve of equation:

(H̃−2h)((3+υ)(H+2h)−(Aa−3)υ Ab) = 3Aa(H+2h+υAb)(Ab+υ) (7p)

where Aa = A1a + A2a, H = A1aA1b + A2aA2b, H̃ = A1aA2b + A1bA2a, υ = υ1 + υ2,

γ1a = a5b4 − a4b5, γ2a = a7b6 − a6b7, υ1 = a4b4 + a5b5, υ2 = a6b6 + a7b7 and

h = υ1υ2 + γ1aγ2a. The explicit expression of (7p) is given in appendix.

I call (7p) the parent equation of forthcoming (7a). Although (7p) is not

symmetrical, we have skipped index a because (7p) proves to be both the parent of

(7a) and (7b), where (7b) = (7a)⌋
a↔b

; therefore, one does not need to use another parent

equation.

The number of parameters in (7p) is 8, but one parameter must be discarded in

order to take (γ) into account. Reducing the number of parameters of (7p) is done in

the following generic case by discarding b7 thanks to (γ).

f. Generic case

In most cases, (5) and (6) reduce to

(t2a + 3taa6 − sa(Aa − 3))(saAa − 2a6taυ1 + uaa6
2) = 3Aa(sa + a6ta)

2 (7a)
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with sa = γ1a
2 + 2γ1aa7b6 + A2ab6

2 + A1ba6
2, ua = 2(υ1

2 + γ1a
2) − A1bÃa and

ta = a6υ1 + a7γ1a + b6A2a, since a6υ1+a7γ1a+b6A2a

a6
5 7̂a = 7̂p⌋b7→ γ1a+a7b6

a6

. The explicit

expression of (7a) is given in appendix.

I call (7a) a basic equation; it is universal, meaning that any non-specific case

follows it. Index a in its numbering is similar to that introduced for variables.

There are exactly 7 parameters (ai)i=4..7 and (bi)i=4..6 in (7a). The parametrization

of other variables reads a1 =
√

3 η1aqa
wa

, a2 = −
√

3 η2aqa
wa

, a3 =
√

3Ãaqa
2wa

, b1 = v1bwa
√

3 taqa
, b2 = v2bwa

√
3 taqa

,

b3 = zbwa

2
√

3 a6taqa
, b7 = γ1a+a7b6

a6
, a8 = 1

2
− wa

2qa
and b8 = 1

2
+ 3taqa

2a6wa
, where v1a = a5γ1a−a6χ1a,

v2a = a6χ2a − a4γ1a, qa = γ1a
2 + a6

2(A1b + υ1) + b6A2a(a6 + b6) + a7γ1a(a6 + 2b6),

za = γ1a
2 − b6

2A1a − 2a6b7γ1a + a6
2A2b, χ1a = a4b6 + a5b7, χ2a = a4b7 − a5b6 and

wa = γ1a
2(A1a + 2a6

2) − 2a7γ1a(a6υ1 − b6A1a) + A2a(b6
2A1a + a6

2A1b − 2a6b6υ1).

Instead of b7, one could discard any variable (αi), with i = 4..7 and α = a, b, still

using (γ) in (7p). Altogether, on can get, through this process, eight different basic

equations, which we write (eiα). For example, (e7a) = (7a). For instance, replacing b7

by a7 gives basic equation (e7b) = (7b) but other changes are more involved.

4. Discussion

(7a) is a universal equation that describes a universal classification surface, written

s6, spanned in the 7-dimension space of parameters {a4, a5, a6, a7, b4, b5, b6}. Almost

any three-band hamiltonian system can be mapped into s6[30]. A complete study of its

fundamental group would be an extremely powerful device[31]; however, for each specific

hamiltonian, it will be much easier to map a path turning around a suspected singularity

into s6 and to reveal indeed a cylindrical hole of the universal classification surface.

When this occurs, it proves the topological nature of the singularity and provides the

corresponding winding number.

(7p) is the parent equation of (7a), it is universal in the same sense, although it may

not be unique. It is also parent of (7b). The main interest of this parent equation is that

it holds in all cases, but atypical ones, whereas some specific cases are not atypical but

do not follow (7a).

As for the two-band hamiltonian systems, where Bloch sphere is trivial, one must

sometimes investigate the fundamental group π1(x) of a classification surface x, where

x is related to the specific basic equation (x) of a case. In general, x ⊂ s6 and (x) is

deduced from universal (7a); in particular cases, (x) is deduced from (7p); in atypical

ones, from (S2) or (S4) equations.

5. Applications

a. Lieb-kagome model

Lieb-kagome hamiltonian[32, 33, 26] follows condition (R) and its universal surface is

S (sketched in Fig. 1), the equation of which can be directly deduced from (7a). Every
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singularity of this system is mapped into holes of S. However, some other holes in S
are irrelevant for this model because the mapping is only injective and not surjective: it

does not cover the whole surface S but a part of it, which is the effective classification

surface.

Figure 1. Representation of S, as explained in Ref. [26].

This situation is very general and occurs in many cases. It applies mutas mutandis

when the basic equation can only be deduced from (7p).

b. Real case

More generally, S is the universal classification surface of all systems, for which (R) is

fulfilled. However, this does not imply that, in such systems, the singularities can be

directly classified by π1(S), as it is in the very fortunate case of Lieb-kagome model.

c. Generalized Haldane model on Lieb lattice

We introduce[34] the Bloch Hamiltonian

HgH = ~




0 Ω1 cos kx
2

−iΩ3 cos kx−ky
2

Ω1 cos kx
2

δ1 Ω2 cos ky
2

iΩ3 cos kx−ky
2

Ω2 cos ky
2

δ3




and will consider the case with Ω1 = Ω2 = Ω3 = 1.
The study of eigenvectors of HgH reveals four singularities in the reciprocal space,

K0 corresponding to (kx, ky) = (0, 0), K1 to (0, π), K2 to (π, 0) and K3 to (π, π), see
Fig. 2. Contrary to Liev-kagome system, this one is not pathological and energy bands
do not collapse. The four singularities are found from symmetry considerations[34] and
their positions are confirmed independently by the hereby calculations. Hamiltonian
HgH does not respect symmetry (R), all components of eigenvectors are non-zero.
They respect (7a), so one can analyse its singularities in s6; in this classification
space, the system is faithfully represented by (a4, a5, a6, a7, b4, b5, b6) and we write
X(kx, ky) = (a4(kx,ky), a5(kx,ky), a6(kx,ky), a7(kx,ky), b4(kx,ky), b5(kx,ky), b6(kx,ky)).
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K1

K2

-6 -4 -2 0 2 4 6

-6

-4

-2

0

2

4

6

kx

k
y

Figure 2. Contours of the highest eigenenergy of HgH with kx and ky varying in

[−2π, 2π]. Discontinuities K0, K1, K2 and K3 are indicated. Both axis are necessarily

2π-periodic but, according to the values of (δ1, δ3), the diagram can be π-periodic in

kx-direction or in ky-direction or both or none. Here, (δ1, δ3) = (− 1
2 ,

1
2 ).

The exploration of singularity K0 proves easy: let C0 be the circle described by
(kx, ky) = (cos t, sin t) and turning around K0, one observes that the trajectory of
Pt = X(cos t, sin t) in s6 is a loop with period π, as shown in Fig. 3; this means that C0

maps into a double loop, so K0 corresponds to winding numbers ω0 = ±2.

1 2 3 4 5 6

-0.4

-0.2

0.2

a4

a5

a6

a7

b4

b5

b6

Figure 3. Plots of αi(cos t, sin t) for α = a, b and i = 4..7 (withdrawing b7) for

arbitrary values of (δ1, δ3), here (δ1, δ3) = (−0.5, 1.2).

Thus Pt+π = Pt ∀t, which allows us to plot in Fig. 4 the distance[35] from
Qt ≡ (Pt + Pt+π

2
)/2 to s6 versus t. It is always strictly positive, which proves that

Qt, which describes a continuous loop while t varies from 0 to π, lies strictly outside of
s6. Since Qt is the isobarycentre of points Pt and its half-period translate Pt+π

2
, Pt turns,

while moving with the same parameter t, around Qt, therefore the mapping Pt turns
around a hole in s6. This hole cannot be closed, so this mapping is not contractible[36].
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1 2 3 4 5 6

0.000015

0.000020

0.000025

Figure 4. Plot of |7̂a(Qt)|, the distance from Qt to s6 for t ∈ [0, 2π] and arbitrary

values of (δ1, δ3), here (δ1, δ3) = (0.5, 0.3).

The hole defined above allows the determination of ω0. It is not only cylindrical:

decreasing the radius of C0 down to zero, one finds that its shape is a six-dimensional

multiple cone, which is pinched into a point D0 at its centre, D0 is the image of K0.

More generally, ∀i = 0, .., 3, one finds that all singularities Ki can be classified by a

multiple cone in s6, pinched into a point Di, which is the image of Ki.
For (δ1, δ3) = (1

2
, 1

2
), Pt turns around (0.292,−0.52,−0.4, 0.27,−0.58, 0.1,−0.2).

This determination depends on (δ1, δ3) and on the singularity Ki, with i = 0..3. The
situation is very intricate for cases i 6= 0, so we will only study the hole corresponding
to singularity K0. Also, the directions of the hole should be studied separately. One can
map Pt in τ1(s6), the projection of s6 in (a4, a5, a6) coordinates: τ1(Pt) makes a double
loop around a singularity of τ1(s6), as shown in Fig. 5. In order to see the mapping of
C0 more clearly, we have made a zoom in Fig 6.

Figure 5. Representation of the mapping by τ1 of several circles of (kx, ky)-plane.

τ1(s6) is pinched along a line L, which is indicated in the middle of the figure. Large

cyan points represent τ1(Di) for i = 1..4, mappings are in red when the circle is around

a singularity, in blue when it avoids it. Red, yellow, green and purple points follow this

order in non-trivial paths but may overlap. Plain lines correspond to singularity K0

(τ1(D0) is a singularity of the surface, as shown in Fig. 6). Dotted lines correspond to

singularity K1; τ1(D1) is at the middle of L and the non-trivial path crosses L twice.

Dashed lines correspond to singularity K2 (the 8-shape is artificially created by the

two-dimensional projection of the drawing). Dot-dashed lines correspond to singularity

K3, one observes that the non-trivial one makes a loop with 8-shape, which collapses

at one extremity of L.
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Figure 6. Mapping of two circles in (kx, ky)-plane, the first one turns around K0 and

maps into a loop turning twice around the singularity figured by a black point. Colored

points follow the same order as in the previous figure. The second circle avoids K0

and maps into a single loop, turning once and avoiding the black point, it is therefore

trivial.

Let us move to the analysis of singularity K1, which analysis proves much more
involved than that of K0. Let C1 be the circle described by (kx, ky) = (cos t, π + sin t)
and turning around K1, one observes in Fig. 5 the projection of Rt = X(cos t, π + sin t)
in τ1(s6). Loop Rt is simple, this is confirmed in Fig. 7.

1 2 3 4 5 6

-0.6

-0.4

-0.2

0.2

0.4

0.6

a4

a5

a6

a7

b4

b5

b6

Figure 7. Plots of αi(cos t, π + sin t) for α = a, b and i = 4..7 (withdrawing b7) for

arbitrary values of (δ1, δ3), here (δ1, δ3) = (−0.5, 0.9).

Taking advantage of this, we plot the distance from Sθ
t ≡ cos(θ)2Rt + sin(θ)2Rt+π

to s6 versus t in Fig. 8. Almost all values of θ can be chosen, giving a non-zero distance.

1 2 3 4 5 6

2.0×10
-9

4.0×10
-9

6.0×10
-9

8.0×10
-9

1.0×10
-8

1.2×10
-8

1.4 ×10
-8

Figure 8. Plot of |7̂a(S1
t )|, the distance from S1

t to s6 for t ∈ [0, 2π], with θ = 1 and

arbitrary values of (δ1, δ3), here (δ1, δ3) = (0.5, 0.3).
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However, this distance is zero for t = 0 and t = π. Moreover, this plot gives a
constant zero distance when θ = π

4
. This can be correlated to the crossing of line L

observed in Fig. 5 and interpreted as a more complicated hole structure in s6, which
can be schematized by its orthogonal section in Fig. 9. This sketch provides indeed the
configuration, for which the barycentre Sθ

t (constructed the same way than Qt, taking
into account the doubling of period and choosing weights cos(θ)2 and sin(θ)2 instead of

uniform weights 1
2
) joins surface s6 twice, while S

π/4
t always lies in s6.

Figure 9. Sketch of the orthogonal section of the hole structure, corresponding to

singularity K2. The dashed line stands for Rt, one observes that the hole divides into

two separate holes, which frontier is flat (at least in some dimensions). The dotted line

stands for S1
t .

The non triviality of Rt is established by the two holes, with the same confidence

than that of Pt. Altogether, we have established that K1 corresponds to winding

numbers ω1 = ±1.
Let us move to the analysis of singularity K2. Let C2 be the circle described by

(kx, ky) = (π + cos t, sin t) and turning around K2, one observes in Fig. 5 the projection
of Tt = X(π + cos t, sin t) in τ1(s6). Loop Tt is simple, this is confirmed in Fig. 10.
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b6

Figure 10. Plots of αi(π + cos t, sin t) for α = a, b and i = 4..7 (withdrawing b7) for

arbitrary values of (δ1, δ3), here (δ1, δ3) = (0.5, 0.9).

Taking advantage of this, we plot the distance from Ut ≡ (Tt+Tt+π)/2 to s6 versus t
in Fig. 11. It is always strictly positive and indicates that the mapping Tt turns around a
hole in s6 (using the same argument used for Pt, while taking into account the doubling
of period). The non triviality of Tt is established with the same confidence than that of
Pt. Altogether, we have established that K2 corresponds to winding numbers ω2 = ±1.
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0.0020

0.0025

0.0030

Figure 11. Plot of |7̂a(Ut)|, the distance from Ut to s6 for t ∈ [0, 2π] and arbitrary

values of (δ1, δ3), here (δ1, δ3) = (0.5, 0.3).

Let us move to the analysis of singularity K3. Let C3 be the circle described by
(kx, ky) = (π+cos t, π+sin t) and turning around K2, one observes in Fig. 5 the projection
of Vt = X(π + cos t, π + sin t) in τ1(s6). Loop Vt is simple, this is confirmed in Fig. 12.
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Figure 12. Plots of αi(π + cos t, π + sin t) for α = a, b and i = 4..7 (withdrawing b7)

for arbitrary values of (δ1, δ3), here (δ1, δ3) = (−0.5, 0.9).

Taking advantage of this, we plot the distance from Wt ≡ (Vt +Vt+π)/2 to s6 versus
t in Fig. 13.
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0.00005

0.00010

0.00015
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0.00025

0.00030

0.00035

Figure 13. Plot of |7̂a(Wt)|, the distance from Wt to s6 for t ∈ [0, 2π], and arbitrary

values of (δ1, δ3), here (δ1, δ3) = (0.5, 0.3).

This distance is always strictly positive, except for t = nπ
2
∀n ∈ Z at which points

it is zero. In order to interpret the structure, we have also checked that W θ
t is distant

of s6 ∀θ ∈ [0, 2π[ and ∀t 6= nπ
2

with n ∈ Z (W θ
t is defined exactly as Sθ

t ). This can
be correlated to the 8-shaped observed in Fig. 5 and interpreted as a more complicated
hole structure in s6, which can be schematized by its orthogonal section in Fig. 14. This
sketch provides indeed the configuration, for which the isobarycentre Wt (constructed
the same way than Qt, taking into account the doubling of period) joins surface s6 four
times.
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Figure 14. Sketch of the orthogonal section of the hole structure, represented by a

circle with radius r, corresponding to singularity K3. The blue dashed line (outside

of the plain circle) stands for Vt, the dashed line between points (0, r) and (0,−r)

represents an attachment, these points are merged into a unique one, and so are points

(r, 0) and (−r, 0).

The non triviality of Vt is established by the hole sketched in Fig. 14, with the

same confidence than that of Pt. Altogether, we have established that K3 corresponds

to winding numbers ω3 = ±1.

We would like to address now the question of the sign si(δ1, δ3) of ωi. Its

determination sir(δ1, δ3) through a classification surface like s6 is only relative and a

global sign ε must be defined elsewhere, such that si(δ1, δ3) = εsir(δ1, δ3). For singularity

K0, s0
r (δ1, δ3) = 1 is trivial, as seen by comparing the turning directions of all path

τ1(Pt) when (δ1, δ3) varies. This is confirmed by analysing in detail all copies of Fig. 3

for various values of (δ1, δ3).

For singularity K1, a change of sign is manifest at the bottom frontier drawn

in Fig.19 but we could not get to a definitive proof. A huge inconvenient of the

representation chosen in Fig. 5 is that the surface on which all circles are mapped is

(δ1, δ3) dependant. There exist universal representations onto which one could map

all projections but we could not achieve their determination yet[37]. Instead, we

have found that both projections Πodd and Πeven, defined by putting, respectively,

(a4, a6, b4, b6) → (0, 0, 0, 0) and (a5, a7, b5, b7) → (0, 0, 0, 0) in (7p), gives the same

universal equation

3x z(y + z)2 = z w(y(3 − x) + z(3 + z)) . (8)

More precisely, Πodd(7̂p) = 0 gives (8) with x = a5
2 + a7

2, y = b5
2 + b7

2, z = a5b5 + a7b7

and w = (a7b5 − a5b7)2, while Πeven(7̂p) = 0 gives (8) with x = a4
2 + a6

2, y = b4
2 + b6

2,
z = a4b4 + a6b6 and w = (a6b4 − a4b6)2. We write s3 the surface corresponding to (8)
and show a 3-dimensional representation of s3 in Fig. 15.
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Figure 15. Representation of s3, putting w = 9
16 , its maximal value. From the

definitions of αi components, with α = a, b and i = 4..7, x and y range in [0, 3
2 ]

while z ranges in [− 3
4 ,

3
4 ]. We represent two paths obtained by the Πodd projection,

the dashed line with (δ1, δ3) = (1
2 ,− 1

2 ), the plain one with (δ1, δ3) = (− 1
2 ,

1
2 ), the

mappings follow the order • • •. They are close to different folds, with the same

apparent orientation, although, moving one path continuously to the orther would

give the opposite orientation.

Πodd(Rt) and Πeven(Rt) are found π-periodic, as shown in Fig. 16.
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Even projection

x

y

z

w

Figure 16. Plot of Πodd(Rt) versus t (left) and Πeven(Rt) versus t (right) for t ∈ [0, 2π]

and arbitrary values of (δ1, δ3), here (δ1, δ3) = (0.5, 0.3). Be careful that definitions of

(x, y, z, w) are different for Πodd and Πeven.

This projections are not canonical, indeed neither Πodd(Rt) nor Πeven(Rt) do
map exactly on (8). However, by chance, they are close to it. Actually
{Πodd(R0),Πeven(R0),Πodd(Rπ

2
),Πeven(Rπ

2
)} ⊂ s3, which one shows by plotting

Πodd(8̂(Rt)) and Πeven(8̂(Rt)), in Fig. 17. One finds two close leaves in Fig. 15, which
are inversely orientated, from a topological point of view. Each path moves from one
leaf to the other, keeping the same apparent orientation, when (δ1, δ3) approaches the
bottom frontier line of Fig. 19. So, their effective orientation must be reversed when
crossing this line.
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0.00015

0.00020

0.00025

Figure 17. Plot of Πodd(8̂(Rt)) versus t (left) and Πeven(8̂(Rt)) versus t (right) for

t ∈ [0, 2π] and arbitrary values of (δ1, δ3), here (δ1, δ3) = (0.5,−0.9). Be careful that

definitions of (x, y, z, w) are different for Πodd and Πeven.

It seems that z drives the change of sign of the orientation. This is confirmed by
the contours of z = a5b5 + a7b7 which fits one of the frontiers shown in Fig. 18.

-1.5 1.5
δ1

1.5

1.5

δ3

Figure 18. Contours of a5(kx,ky)b5(kx,ky) + a7(kx,ky)b7(kx,ky), with t = 0.2 and

(kx, ky) = (cos t, π + sin t). δ1 and δ3 vary in [− 3
2 ,

3
2 ] and the frontiers of Fig. 19

are indicated.

We must now compare our results to those in [34]. In Fig. 19, we show the frontiers

that have been found. We added the contours of cot(θ) =
√

4p(δ1, δ3)3/q(δ1, δ3)2 − 1,
with p(x, y) = 9+x2−xy+y2 and q(x, y) = 2x3−3x2y−3x y2 +2y3, which is related to
an angle θ, the cotangent of which fits exactly these frontiers. θ is directly related to the
eigenenergies of this model, which are δ1+δ3

2
+ 2

3

√
p(δ1, δ3) cos( θ+επ

3
) with ε = −1, 0, 1.

δ 1
=δ

3δ
1 =-δ

3

δ 1
=δ

3δ
1 =-δ

3

-1.5 -1.0 -0.5 0.5 1.0 1.5
δ

1

-2

-1

1

2

δ
3

Figure 19. Frontiers in the map of winding parameters versus (δ1, δ3). The first and

second bisectors are also indicated.
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In [34], the authors find a winding number ω = ±4, which sign changes in the

different areas designed by the frontiers of Fig. .19. The combination of two windings

±1 can give an effective winding of ±2 and, similarly, the combination of two windings

±2 can give an effective winding of ±4; therefore, some combinations of ω0, ω1, ω2

or ω3 give indeed an effective winding number of ±4. On the other hand, classifying

singularities through surface s6 gives exhaustively all primary winding numbers, so ω

must be some of these combinations. Moreover, since ω has different signs in the

different areas, described in Fig. 19, the related changes of sign must inherit from that

of some ωi, i = 0..3; in particular, this reinforces our interpretation of a sign change for

ω1. But this determination remains currently questionable and we have renounced to

study the signs of ω2 and ω3. Eventually, one must find a more robust method to solve

this very interesting question, from which it will be possible to deduce the relations

between ω and the other ωi, i = 0..3.

Eventually, we deal with an atypical case in the following.

d. Lieb model

This model[38, 39, 40] is extraordinary for several reasons. Its classification surface

is circle S1 and the corresponding basic equation is thus atypical. It corresponds to

Lieb-kagome parameter t′ = 0 and separates from the general Lieb-kagome surface S,

which holds when 0 < t′ ≤ 1; fortunately, we could find surface S̃1, which is valid

both in Lieb and Lieb-kagome cases[26, 41], i.e. ∀t′ ∈ [0, 1]. Investigating loops while

varying continuously t′ allows one to understand why winding numbers tend to ±2 when

t′ → 0, though the exact t′ = 0 limit, calculated in S1, is ±1: S̃1 consists essentially

in two planes, into which each path around a singularity makes a single loop (which

by definition corresponds to winding number 1). When the limit t′ = 0 is reached,

these planes merge, so that winding numbers fuse and do not add; thus, this apparent

anomaly is explained.

This example seems to indicate that atypical cases arise when the system follows

additional symmetries. In the Lieb case, there is indeed a three-fold degeneracy of

eigenvalues, which is very exceptional.

6. Conclusion

It is wonderful that the topological singularities of almost any three-band hamiltonian

can be mapped onto the same universal surface s6. Although one is not assured to

characterize winding numbers in this surface, it contains all subsurfaces in which they

can be defined. Some cases, not following (7a), do follow another (eiα) but, as we believe,

it is more efficient to establish a unique couple of (basic,parent) equations: eventually,

one gets only four different equations (7a), (7p), (S2) and (S4) which cover all cases[42].

This extends a similar result in real case: S is universal for almost all three-band

hamiltonian respecting (R), but its structure is much easier to investigate from Fig. 1.
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It is not known yet, whether atypical cases have physical applications, but one

can observe that the fourth one (for which general parametrization rules R, defined in

appendix, hold) exactly generalizes the two-band unique solution.

The way universal classification surfaces are constructed seems to exclude the

influence of each hamiltonian properties in the determination of singularities but this

is a wrong interpretation. Hamiltonians directly govern the way paths are constructed

in s6. Also, their symmetries are responsible for the reduction from s6 to their effective

classification surface. However, in the Lieb-kagome example, it is true that winding

numbers can be immediately determined in S and probably in s6 too.

A further simple investigation shall be to study the mapping of paths, defined in

reciprocal space for Lieb-kagome model, into s6, with the hope to determine a part of

its fundamental group.

Eventually, one observes that (γ) is true in any case. For systems following (R)

condition, (γ) becomes trivial. We have no physical interpretation of this condition yet

and it will be very interesting to study it for specific hamiltonians not following (R) as

HgH.

Appendix

a. Definition of the ⋆ product

Let a = (ai)i=1..8 and b = (bi)i=1..8, two vectors of the R
8 space, the star product a ⋆ b is

defined[28, 26] by a ⋆ b =
∑8

i=1 a
jbkdijk with

dii8 = di8i = d8ii =
1√
3

∀i = 1, 2, 3 ;

dii8 = di8i = d8ii = − 1

2
√

3
∀i = 4, .., 7 ;

d888 = − 1√
3

;

d146 = d461 = d614 = d164 = d641 = d416 =
1

2
;

d157 = d571 = d715 = d175 = d751 = d517 =
1

2
;

d256 = d562 = d625 = d265 = d652 = d526 =
1

2
;

d344 = d434 = d443 = d355 = d535 = d553 =
1

2
;

d247 = d472 = d724 = d274 = d742 = d427 = −1

2
;

d366 = d636 = d663 = d377 = d737 = d773 = −1

2
.
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b. Explicit expressions of universal surface s6

The explicit expression of (7p) is

(a4
2 + a5

2 + a6
2 + a7

2)(a4b4 + b4
2 + a5b5 + b5

2 + a6b6 + b6
2 + a7b7 + b7

2) ×(
(a4

2 + a5
2)(b4

2 + b5
2) + (a6

2 + a7
2)(b6

2 + b7
2) + (a4b4 + a5b5 + a6b6 + a7b7) ×

(b4
2 + b5

2 + b6
2 + b7

2) + 2
(

(a5b4 − a4b5)(a7b6 − a6b7) + (a4b4 + a5b5)(a6b6 + a7b7)
))

=

(
(a6

2 + a7
2)(b4

2 + b5
2) + (a4

2 + a5
2)(b6

2 + b7
2)

−2
(

(a5b4 − a4b5)(a7b6 − a6b7) + (a4b4 + a5b5)(a6b6 + a7b7)
))

×
[
(3 + a4b4 + a5b5 + a6b6 + a7b7) ×

(
(a4

2 + a5
2)(b4

2 + b5
2) + (a6

2 + a7
2)(b6

2 + b7
2)

+2
(

(a5b4 − a4b5)(a7b6 − a6b7) + (a4b4 + a5b5)(a6b6 + a7b7)
))

−
(

(−3 + a4
2 + a5

2 + a6
2 + a7

2)(a4b4 + a5b5 + a6b6 + a7b7)(b4
2 + b5

2 + b6
2 + b7

2)
)]

.

The explicit expression of (7a) and thus the equation of s6 is

3(a4
2 + a5

2 + a6
2 + a7

2)

(
a6

2
(
b4(a4 + b4) + b5(a5 + b5)

)
+ (a6

2 + a7
2)b6(a6 + b6)

+(a5b4 − a4b5)(a6a7 + a5b4 − a4b5 + 2a7b6)

)2

=

(
(a4

2 + a5
2 + 2a6

2)(a5b4 − a4b5)2 − 2a7(−a5b4 + a4b5)
(

(a4
2 + a5

2)b6 − a6(a4b4 + a5b5)
)

+(a6
2 + a7

2)
(
a6

2(b4
2 + b5

2) − 2a6(a4b4 + a5b5)b6 + (a4
2 + a5

2)b6
2
))

×
((

a4a6b4 + a5a7b4 + a5a6b5 − a4a7b5 + (a6
2 + a7

2)b6

)
×

(
a6(3 + a4b4 + a5b5) + a6

2b6 + a7(a5b4 − a4b5 + a7b6)
)

−(−3 + a4
2 + a5

2 + a6
2 + a7

2)
(

(a5b4 − a4b5 + a7b6)2 + a6
2(b4

2 + b5
2 + b6

2)
))

.

c. Subcases

We study what happens when ai follow additional conditions in more details, through

some examples, but we exclude atypical cases.

Let’s consider a system obeying additional conditions χ1a = 0 = a4bi+aib4, i = 6, 7.

Its basic equation becomes (x1) 3Ãa(A2a
2(a4 − b4)2 − A1a

2(a4 + b4)2) = 16b4
2A1a

2A2a
2

and follows basic equation (7a) since x̂1 = a4
4

a6
4b4

2 7̂a⌋b5→ b4a5
a4

,b6→− b4a6
a4

,b7→− b4a7
a4

. There

are 5 degrees of freedom (ai)i=4..7 and b4 and the parametrization of other ones reads
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a1 = −4b4A1aA2aη1a
√

3Ãaxa
, a2 = −η2a

η1a
a1, a3 = −2b4A1aA2a

√
3xa

, bi = − b4
2

a4
2ai ∀i = 1..3, bi = − b4

a4
ai

∀i = 6, 7, b5 = b4a5

a4
, a8 = −1

2
+ 3((a4+b4)A1a

2−(a4−b4)A2a
2)

8b4A1aA2a
and b8 = 1

2
− 2b4

2A1aA2a

a4xa
.

If condition a6 = b6 = 0 is added to the previous condition, the basic equation

of the system becomes (x2) 3A3a(a7
2(a4 − b4)2 − A1a

2(a4 + b4)2) = 16a7
4b4

2A1a
2 with

x̂2 = a4
5

b4
3A3a

7̂p⌋b5→ b4a5
a4

,a6→0,b6→0,b7→− b4a7
a4

, where A3a = A1a − a7
2, and does not follow

basic equation (7a) but its parent equation (7p). There are 4 degrees of freedom

(a4, a5, a7, b4) and the parametrization of other ones reads a1 =
√

3a5ya
4a7b4A1a

, a2 = −
√

3a4ya
4a7b4A1a

,

a3 =
√

3A3aya
8a7

2b4A1a
, b1 = 4a5a7

3b4
2A1a√

3 a4A3aya
, b2 = −4a7

3b4
2A1a√

3A3aya
, b3 = −2a7

2ba
2A1a√

3 a4ya
, b5 = b4a5

a4
, b7 = − b4a7

a4
,

a8 = 1
2
− 2a7

2b4A1a

ya
and b8 = 1

2
+ 3A3aya

8a4a7
2A1a

.

If a third condition a7 = b7 is added, the system follows bi = −ai ∀i = 4, 5

and bi = ai ∀i = 6, 7. Its basic equation reads (x3) A1a(3 − A1a) = 3a7
2 with

x̂3 = 1
4a4

2a7
4 x̂2⌋b4→a4

= 1
4a7

4A3a
7̂p⌋a6→0,b6→0,b7→a7

b4→−a4,b5→−a5
. There are 3 degrees of freedom

(a4, a5, a7) and the parametrization of other ones reads a1 = 2a5a7A1a√
3A3a

, a2 = −a4

a5
a1,

a3 = A1a√
3
, bi = ai ∀i = 1..3, a8 = −1

4
+ 3a7

2

4A1a
and b8 = a8.

These examples demonstrate the sophistication of algebraic manipulations.

Associativity of the composition of conditions is valid to deduce basic equations

(although a surprising additional factor a4
3

b4
3 emerges depending on the way the last

equation is constructed). But the parametrization is completely different for each case

and associativity cannot be used to deduce it, because the parametrization of the reduced

systems differs from that of the complete one (when projecting this one following the

same conditions). The only way to obtain the correct parametrization is to use rules R:

∀i = 1, 2 and ∀α = a, b αi = (−1)i
√

3 ηiα
2α8 − 1

and α3 =

√
3Ãα

2(1 − 2α8)
, (R)

which are always valid, except for the two first atypical cases giving s2; they are also only

partially valid for the third atypical case. In addition to R rules, one must substitute

a8 and b8, using specific rules according to each case.

Eventually, one must be aware that a basic equation can be obtained with two

different parametrizations, defining two separate cases. This occurs for atypical cases

but also in general.
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