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A B S T R A C T

In this paper, we address the refinement of solar energy forecasting within a 2-day window by integrating
weather forecast data and strategically employing entity embedding, with a specific focus on the Multilayer
Perceptron (MLP) algorithm. Through the analysis of two years of hourly solar energy production data
from 16 power plants in Northern Italy (2020–2021), our research underscores the substantial impact of
weather variables on solar energy production. Notably, we explore the augmentation of forecasting models
by incorporating entity embedding, with a particular emphasis on embedding techniques for both general
weather descriptors and individual power plants. By highlighting the nuanced integration of entity embedding
within the MLP algorithm, our study reveals a significant enhancement in forecasting accuracy compared to
popular machine learning algorithms like XGBoost and LGBM, showcasing the potential of this approach for
more precise solar energy forecasts.
1. Introduction

The transformative impact of machine learning on data analysis and
prediction has been pivotal across industries, especially in the domain
of energy production. As technological advancements unfold, solar
energy has emerged as a significant player in the global photovoltaic
market, experiencing impressive growth over the past decade. Italy,
ranked sixth in the world for installed photovoltaic capacity in 2020
according to Eni’s World Energy Review 2021, has solidified its position
as a key player in the solar energy landscape. Solar energy is notably
the most widely used renewable source in Italy after hydroelectricity,
underscoring its pivotal role in the national energy portfolio.

However, the growth of large-scale photovoltaic (PV) systems in
Italy has introduced challenges related to intermittent power produc-
tion, as highlighted by Fonseca et al. (2012). The fluctuating power pro-
duction poses operational challenges for grid users and administrators,
necessitating frequent adjustments to contend with sudden surpluses
or drops in power production. Forecasting the power produced by PV
plants becomes crucial for various reasons, including plant performance
monitoring, anomaly detection, fault diagnosis, dispatching plans for
grid operators, and optimizing operation and maintenance schedules.

∗ Corresponding author at: Université Paris Saclay, UMI SOURCE, IRD, UVSQ, France.
E-mail address: viet.le@keynum.fr (H.-V. Le).

The inherent influence of weather conditions, particularly solar irradi-
ance and air temperature, on PV systems necessitates accurate models
for reliably predicting their performance.

The recent spikes in energy prices and the role of green investment,
as discussed in Belaïd et al. (2023), further underline the importance of
accurate energy forecasting for enhancing energy security and acceler-
ating the transition towards a sustainable energy future. Moreover, the
challenges posed by energy price booms on energy poverty in Europe,
as highlighted in Belaïd (2022), emphasize the critical need for effective
energy forecasting models to mitigate such impacts.

Despite significant advancements in machine learning techniques,
there remains a considerable gap in the application of these models
to solar energy forecasting. Specifically, current models often fail to
fully integrate weather forecast data and exploit the potential of entity
embedding techniques. Our study aims to fill this gap by leveraging
entity embedding within the Multilayer Perceptron (MLP) algorithm to
enhance the accuracy of solar energy forecasting up to 2 days ahead.
By addressing the limitations of existing models and focusing on the
specific needs of solar energy forecasting, our research provides a novel
contribution to the field.
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Moreover, solar energy forecasting plays a critical role in the
broader context of climate change mitigation and renewable energy
integration. Accurate forecasts are essential not only for operational
efficiency but also for strategic planning and policy development. As
renewable energy sources like solar power become more prominent,
reliable forecasting models are necessary to ensure grid stability and
optimize energy resource management. The following sections will
delve deeper into the literature on machine learning applications in
energy forecasting, highlighting the unique contributions of our study
and situating it within the existing body of research.

Furthermore, accurate and timely prediction of solar energy gen-
eration is essential for mitigating the effects of climate change and
promoting the integration of renewable energy sources into the power
grid. Solar energy forecasting not only supports grid stability and
efficiency but also plays a critical role in guiding policy development
and strategic planning for renewable energy adoption. This study,
therefore, contributes to both the academic understanding and practical
application of machine learning in renewable energy forecasting, with
significant implications for future research and policy-making.

2. Literature review

The landscape of machine learning applications in solar energy fore-
casting has undergone significant transformations, addressing the chal-
lenges posed by the intermittent nature of renewable energy sources.
Early research predominantly relied on traditional machine learning
methods, including support vector machines (SVMs) and artificial neu-
ral networks (ANNs) (Fonseca et al., 2012; İzgi et al., 2012; Dumitru
et al., 2016; Son et al., 2018). However, advancements in the field have
led to the adoption of more sophisticated techniques, such as hybrid
machine learning, ensemble learning, and deep learning methods (Dou
et al., 2023).

Hybrid machine learning methods, integrating various approaches,
have shown promise in improving prediction results. Intelligent op-
timization algorithms have been incorporated into traditional ma-
chine learning, with hybrid methods based on support vector ma-
chines (SVMs) and extreme learning machines (ELMs) gaining promi-
nence (Olatomiwa et al., 2015; VanDeventer et al., 2019). Genetic
algorithms (GA) introduced into SVM by VanDeventer et al. (2019)
significantly reduced the root mean square error (RMSE) in short-
term PV power prediction compared to conventional SVM models.
Similarly, Xiao et al. (2022) proposed an SVM model based on gray wolf
optimization (GWO-SVM), leading to a substantial decrease in RMSE in
PV power prediction.

Ensemble learning models, such as Random Forest and XGBoost,
have also gained prominence by combining multiple machine learning
models to enhance accuracy and generalization. The bagging strategy,
represented by Random Forest, focuses on reducing variance, while the
boosting strategy, exemplified by XGBoost, aims to reduce bias through
continuous training of new learners. Additionally, the stacking strat-
egy, leveraging heterogeneous base learners, employs meta-learning
to effectively combine them for predictions. These ensemble learning
strategies have demonstrated significant improvements in the accuracy
of short-term PV power predictions (Mahmud et al., 2021; Ziane et al.,
2021; Fan et al., 2022).

The realm of deep learning, a burgeoning avenue in machine learn-
ing research, has ushered in novel methodologies for predicting power
generation. Past investigations predominantly employed models based
on artificial neural networks (ANNs) (İzgi et al., 2012; Dumitru et al.,
2016; Son et al., 2018). In contrast to ANNs with independent inputs,
recurrent neural networks (RNNs) have demonstrated a superior ability
to exploit dependencies within time series data. Pang et al. (2020)
showcased that the RNN method significantly enhances the normalized
mean bias error (NMBE) and reduces the root mean square error
(RMSE) compared to the ANN method for short-term solar radiation
prediction. Despite the traditional RNN’s effectiveness in leveraging
2 
data information, it grapples with issues such as short-term memory
limitations and gradient instability.

The effectiveness of LSTM-RNN for long-term prediction was
demonstrated by Jung et al. (2019), who employed an RNN model con-
taining LSTM units and analyzed data spanning over 63 months from
multiple PV plants. Park and Ahn (2019) introduced LSTM units into
a deep RNN for ultrashort-term and short-term prediction, achieving
prediction accuracies surpassing 92% in all cases. Mellit et al. (2020)
conducted experiments over four distinct short-term time horizons, re-
vealing that LSTM outperformed other models in PV power prediction.
Additionally, Carrera et al. (2020) applied deep feedforward networks
(DFN) and RNN trained on historical weather forecast data, noting
improvements in predicting PV generation 1 day ahead compared to a
single machine learning method. Finally, the work of Luo et al. (2021)
found a way to enhance the reliability of predictions by imposing
constraints on LSTM.

Despite these advancements, there remains a significant gap in the
literature regarding the application of entity embedding in energy pro-
duction forecasting. Entity embedding, popularized in natural language
processing (NLP) as word embedding, represents categorical variables
in lower-dimensional spaces. Techniques like Word2vec, GloVe, and
fastText have successfully applied entity embedding in various fields,
including NLP and large language models (LLMs) like BERT, RoBERTa,
ChatGPT, and GPT-4 (OpenAI, 2023). However, there is a noticeable
absence of literature on the utilization of entity embedding in en-
ergy production forecasting. Entity embedding, as a technique adept
at handling categorical variables, plays a crucial role in capturing
meaningful features of discrete data. Originally employed in natural
language processing (NLP) under the term ‘‘word embedding’’, entity
embedding represents categorical variables in high-dimensional spaces
as continuous vectors in lower-dimensional spaces, aligning each di-
mension with a meaningful feature of the variable (Guo and Berkhahn,
2016).

In the realm of NLP, this technique has found widespread ap-
plication, as seen in the success of Word2vec, GloVe, and fastText.
Moreover, it constitutes a foundational element in transformer ar-
chitectures such as BERT, RoBERTa, ChatGPT, and GPT-4 (OpenAI,
2023). Despite its extensive use in various domains, including traffic
prediction (Wang et al., 2021) and health machine indicators predic-
tion (HealthMachine), the application of entity embedding in energy
production forecasting remains relatively unexplored.

To date, the existing literature lacks comprehensive studies on
incorporating entity embedding into the context of renewable energy
forecasting. Notable works, such as that of Wagner et al. (2022), have
touched upon the usage of embedding for electricity price prediction
but did not delve into the realm of energy production. Similarly,
the work by Rosato et al. (2016) applied embedding solely to time
series features, overlooking the potential of utilizing entity embed-
ding for weather forecast categorical features in the context of energy
production forecasting.

This gap in the literature underscores the need for investigations
into the potential of entity embedding in the domain of solar energy
forecasting. By applying entity embedding to handle categorical vari-
ables related to weather forecasts, it may be possible to unlock new
avenues for enhancing the accuracy of machine learning models in
predicting solar energy production. Our study seeks to fill this void
by exploring the impact of entity embedding on solar energy forecast-
ing, leveraging weather forecast data, and drawing insights from its
successful applications in diverse domains.

This exploration aims to contribute valuable insights to the broader
research on renewable energy integration into the power grid, shedding
light on the untapped potential of entity embedding in improving the
accuracy of solar energy forecasts. The incorporation of this technique
may pave the way for more sophisticated machine learning models
capable of handling intricate data structures, particularly categorical
variables, and ultimately advancing the field of renewable energy

forecasting.
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Table 1
Merged weather and energy production data.

Field name Type Description

1 timestamp datetime The hour that energy production was
recorded.

2 PlantID integer The integer that represents each energy
plant.

3 Day–Night string The daylight status
4 Sky

descriptor
integer The integer that represents each type of

sky condition
5 Precipitation

descriptor
integer The integer that represents each type of

precipitation
6 Temperature float The forecasted temperature in Celsius
7 Wind speed float The speed of wind in km/h
8 Wind

direction
integer The direction of the wind by compass

degrees (0–359, with 0 equals to North)
9 Humidity integer The forecasted humidity level in

percentage
10 Energy

Production
float The amount of energy generated by

each energy plant during that specific
hour in megawatts (MW).

3. Methodology

3.1. Data source

3.1.1. Solar energy production data
The solar energy production data used in this study consists of

hourly production measurements from 16 photovoltaic plants located
in different regions of Northern Italy. The data span a period of two
years from 2020 to 2021 and is provided directly by a solar production
company from Italy.

3.1.2. Weather forecast data
The weather forecast data used in this study corresponds to the

same regions as the 16 photovoltaic plants. The weather forecast data is
obtained from publicly available sources and includes hourly forecasts
of temperature, humidity, wind speed, and cloud cover. The weather
forecast data is provided in a separate set of files and is also organized
by month and region.

Given the geographical proximity of the 16 photovoltaic plants,
we consider the possibility of using all the available solar energy
production data together as inputs to machine learning models. The
inclusion of weather forecast data in the models is expected to improve
the accuracy of solar energy forecasting.

3.2. Data preprocessing

3.2.1. Data construction
Data preprocessing is a crucial step in the process of data analysis,

which involves cleaning and organizing data in a way that makes it
usable for analysis. In this study, the first step of data preprocessing
was to gather all the necessary data values from different data sources
into a single collection of databases. As there were two different sources
of data — one reflecting the data production of each specific plant
and the other containing weather forecasts, mapping between the two
datasets based on the time stamps was required. Since each day’s
forecasting needed to be made by 11 am of the previous day, the
weather forecasting information nearest before the forecasting took
place was used. After the mapping, our unified dataset will be in the
form described by Table 1.

3.2.2. Data imputation
The next step is to find and process possible missing values. Some-

times, there can be missing values for some features in the dataset.
Some specific machine learning models can ignore or even learn from
missing data. However, several of our models such as the neural net-

works cannot handle missing data. As a result, it is essential to be able
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to detect and fill these values so that there will not be any errors during
the training as well as not losing some information. Several approaches
can be used in this step. The two approaches that are more commonly
used are to fill the missing values with average, median, zero, or the
value of the previous observation or to use an interpolation technique,
such as linear, time, quadratic, or cubic interpolation. In this case,
the energy production dataset that we received contains three months
from May 2021 to August 2021 where there were problems with the
production recording procedure of the energy company. Therefore,
the production data we received during this period was daily average
instead of hourly, which is not suitable for our hourly forecasting model
(see Fig. 1).

To deal with this problem, we decided to remove this period from
our study and the dataset that followed the incident are used as the
test dataset for our study. The period before the incident is used as the
training dataset. In short, after data cleaning, we have 178,056 samples
for the training set which ranges from January 2020 to April 2021, and
59,376 samples for the test set from August 2021 to January 2022. To
ensure that our models are well-tuned and not overfitting the training
data, we further divided the training set into a validation set, which
contains data from January 2021 to April 2021. This way, the training
set can span a full year from January 2020 to December 2020. The
validation set will be used during the training phase to evaluate the
performance of the models and adjust the hyperparameters accordingly.
The final models will be evaluated using the test set, which contains
data from August 2021 to January 2022.

3.3. Feature engineering

3.3.1. Cyclical data
As our study focuses on time series analysis, it is crucial to in-

corporate the time aspect of the data into our features. However,
time-related data is often represented in the ‘‘datetime’’ format (YYYY-
MM-DD HH:MM:SS), which makes it difficult to extract information
beyond the ascending order of data points. This format does not reveal
cyclical patterns such as hours of the day, days of the week, months,
seasons, etc., which are important for our analysis.

Several approaches have been proposed to address this issue. The
simplest approach is to use the number of minutes, hours, months, or
weekdays as features. However, this method fails to account for the
cyclical nature of the data, such as the difference between 24:00 and
01:00 h. Another approach is to use dummy variables for each hour,
but this increases the number of variables and neglects the aspect of
consecutive hours.

To address both of these problems, a popular method is to apply sine
and cosine transformations to the cyclical data. This method preserves
the cyclical nature of the data and accounts for the difference between
hours. In our study, we will apply this transformation to the month and
hour features as follows:

𝑚𝑜𝑛𝑡ℎ_𝑐𝑜𝑠 = cos(2𝜋 𝑚𝑜𝑛𝑡ℎ
12

)

𝑚𝑜𝑛𝑡ℎ_𝑠𝑖𝑛 = sin(2𝜋 𝑚𝑜𝑛𝑡ℎ
12

)
(1)

ℎ𝑜𝑢𝑟_𝑐𝑜𝑠 = cos(2𝜋 ℎ𝑜𝑢𝑟
24

)

ℎ𝑜𝑢𝑟_𝑠𝑖𝑛 = sin(2𝜋 ℎ𝑜𝑢𝑟
24

)
(2)

Here, Eq. (1) was used to add information regarding the months of a
year, while Eq. (2) provided knowledge regarding the hours of a day.

Finally, the method of entity embedding which has been mentioned
previously is also fully capable of dealing with these problems by
representing the relationships among different categorical variables in
the latent space.

3.3.2. Categorical data
Categorical data is a common type of data that can be found in
many datasets, including the one used in our study. It is a type of
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Fig. 1. Example of energy production data from a specific plant.
data that includes variables with discrete values that represent different
categories or groups. This type of data can be further categorized into
ordinal and nominal data. Ordinal data is data that has an inherent
order, while nominal data does not. In our study, all of our categori-
cal data (the plant id, sky descriptors, precipitation descriptors, wind
direction, or event hours and months) are nominal and their labels do
not imply any order. Machine learning models cannot directly work
with categorical data, as they require numerical inputs. Therefore, it is
crucial to transform the categorical data into a numerical format that
can be used as input for the models.

One of the most common ways to transform categorical data is to
use dummy variables (or one hot encoding), where each category is
represented by a binary variable indicating whether the observation
falls into that category or not. However, this approach has several
drawbacks. It leads to a high number of input features, especially
when the number of categories is large, which can cause overfitting
and slow down the training process. Furthermore, dummy variables
do not capture any meaningful relationship or similarity between the
categories.

An alternative approach to the conventional use of dummy vari-
ables in handling categorical data is to employ entity embedding,
an advanced technique widely applied in machine learning. Entity
embedding transcends traditional one-hot encoding by mapping each
categorical variable to a low-dimensional vector space, introducing a
level of semantic richness that is particularly beneficial for capturing
nuanced relationships within the data. Mathematically expressed as
𝑓 ∶ Category → R𝑛, where 𝑛 signifies the embedding dimension, entity
embedding involves learning embeddings during the training process.

Consider a practical example with weather types where ‘‘Sunny’’,
‘‘Cloudy’’, and ‘‘Rainy’’ are represented as entity embeddings denoted
as 𝐯Sunny, 𝐯Cloudy, and 𝐯Rainy, respectively. These embeddings could be
represented as vectors in R2, where the values indicate the position of
each weather type in the embedding space. For example:

𝐯Sunny → [0.9, 0.1]

𝐯Cloudy → [0.3, 0.7]

𝐯Rainy → [0.2, 0.8]

In this scenario, similar weather types have similar vector represen-
tations, enabling the model to recognize and leverage relationships be-
tween different weather categories. Beyond language processing, entity
embedding finds utility in various domains, including computer vision.
The ability of entity embedding to handle both nominal and ordinal
data, coupled with its capacity to capture nonlinear relationships be-
tween categories, provides distinct advantages over the use of dummy
variables. Moreover, it contributes to dimensionality reduction, making
4 
Table 2
Conversion of degrees to 8 cardinal directions.

Degree range Cardinal direction

337–360, 0–22 North
23–67 North East
68–112 East
113–157 South East
158–202 South
203–247 South West
248–292 West
293–336 North West

it a valuable tool for enhancing the efficiency of machine learning mod-
els in tasks ranging from sentiment analysis to language translation.
The versatility and effectiveness of entity embedding underscore its
significance as a powerful technique for representing categorical data
in a more nuanced and informative manner.

In our study, we will use both dummy variables and entity em-
bedding to transform the categorical data. We will compare the per-
formance of these two methods to see which one performs better for
our specific dataset and model architecture. By using both methods,
we can explore the trade-offs between simplicity and expressiveness,
and determine the best approach for our particular problem.

Another variable that needs special treatment is the wind direction
as it is represented by a compass degree from 0–359. In order to make it
interpretable, a conversion from degrees to 8 cardinal directions (north,
northeast, east, southeast, south, southwest, west, and northwest) is
commonly used. This conversion process involves mapping specific
degree ranges to their corresponding cardinal directions. By employing
this approach, directional data can be transformed into a categorical
format that is suitable for feeding into machine learning algorithms.
This conversion enables the model to comprehend and utilize the
directional information in a meaningful way, contributing to improved
accuracy and interpretability of the predictions generated by the model.
Consequently, this degree-to-direction conversion enhances the utility
of directional data in machine learning tasks, enabling applications
such as weather forecasting, object tracking, and navigation systems to
benefit from a more intuitive representation of directional information
(see Table 2).

3.4. Model specifications

In this paper, five popular machine learning algorithms were used
which is simple Linear regression, two decision tree-based gradient
boosting models (XGBoost and LightGBM), and two feed-forward neu-
ral network models with one using the entity embedding for both
categorical features and the other using dummy variables.
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Table 3
MLP no embedding architecture.

# Layer Units Activation function Dropout

0 Input – – –
1 Dense 70 LeakyReLU 0.4
2 Dense 70 LeakyReLU 0.4
3 Dense 1 Linear –

Table 4
MLP embedding architecture.

# Layer Units Activation
function

Dropout Connected from

0 Input(float) – – – –
1 Input(plantID) – – – –
2 Input(sky desc) – – – –
3 Input(pre desc) – – – –
4 Input(direction) – – – –
5 Embedding(plantID) 2 – – Input(plantID)
6 Embedding(sky desc) 2 – – Input(sky desc)
7 Embedding(pre desc) 2 – – Input(pre desc)
8 Embedding(direction) 2 – – Input(direction)
9 Flatten(plantID) – – – Embedding(plantID)
10 Flatten(sky desc) – – – Embedding(sky desc)
11 Flatten(pre desc) – – – Embedding(pre desc)
12 Flatten(direction) – – – Embedding(direction)
13 Concatenate – – – Input(float)

Flatten(plantID)
Flatten(sky desc)

14 Dense 80 LeakyReLU 0.4 Concatenate
15 Dense 80 LeakyReLU 0.4 Dense 8
16 Dense 1 Linear – Dense 9

For the Linear regression model, we choose the logistic regression
lgorithm provided by the Scikit-learn library.

For both XGBoost and LightGBM, we used their official Python
ibraries. For these two algorithms, their best hyperparameters are
uned using a randomized search on the validation dataset.

Regarding neural network models, in this study, all of our models
re built and trained using the Python library Keras running on top of
he TensorFlow framework. The architectures of our neural networks
hich only use the dummy variables are optimized using grid searches
n the number of layers, units, and dropout values as follows (see
able 3):

For the neural network models that use embedding, we used up to
our embedding layers (depending on if weather features are used or
ot). If weather features are not used, there is only one embedding layer
or plantID whereas additional layers for sky descriptor, precipitation
escriptor, and wind direction are applied otherwise. The optimal
pecification for this network is as follows (see Table 4):

All of the neural network models are trained in 750 training epochs
ith batch size equaling 1024. Early stopping and model checkpoints
ased on the validation loss are also used to prevent overfitting so that
e can get the best-performing model on the validation set.

.5. Model evaluation

.5.1. Root mean squared error
Root Mean Squared Error (RMSE) is one of the most commonly

sed metrics to evaluate forecasting models. It measures the average
eviation between the predicted and actual values, with larger errors
eing penalized more heavily than smaller ones due to the squaring.
he RMSE is calculated by taking the square root of the average of the
quared differences between the predicted and actual values. RMSE is
ensitive to outliers, which can greatly affect the overall score.

.5.2. Mean absolute error
Mean Absolute Error (MAE) is another widely used metric that
easures the average absolute difference between the predicted and

5 
actual values. Unlike RMSE, MAE does not penalize larger errors more
heavily, which can make it a better choice when outliers are present.
MAE is calculated by taking the average of the absolute differences
between the predicted and actual values.

3.5.3. R-squared
R-squared (R2) is a metric that measures the proportion of variance

in the dependent variable (i.e., the energy production) that can be
explained by the independent variables (i.e., weather and time-related
features). R2 ranges from 0 to 1, with higher values indicating that the
model is a better fit for the data. R2 is useful for comparing different
models, but it does not provide information on the absolute error of the
predictions.

3.5.4. Model Confidence Set (MCS)
The MCS, as proposed by Hansen et al. (2005), involves a series

of tests aimed at identifying a set of ‘‘superior’’ models, where the
null hypothesis of equal predictive ability (EPA) is not rejected at a
predetermined confidence level. The EPA test statistic can be computed
for any chosen loss function, such as the square (RMSE) or absolute
loss function (MAE), as utilized in this study. The MCS procedure
is a sequential testing approach that iteratively eliminates the least-
performing model at each step until the hypothesis of equal predictive
ability is accepted for all models within the superior set. The 𝑝-value
for each model is used so that models with p-values exceeding the
confidence level are included in the identified superior set.

In our study, we employed the MCS procedure on the square and
absolute loss associated with the RMSE and MAE, respectively, for each
model. This application aimed to ascertain whether the models are
superior to others with a confidence level set at 1%. Furthermore, we
sought to validate if the results align with the ranking derived from the
RMSE and MAE metrics computed in the earlier part of the study. The
implementation of the MCS procedure, along with the entire study, was
carried out in Python using the MCS module from ARCH library.

3.5.5. Benchmarks
In addition to evaluating our models using the metrics described

above, we will also use two benchmarks to assess the performance of
our models. The first benchmark is the prediction from an anonymized
forecasting company that currently provides services to the energy
company that contributed our data. This benchmark will give us an idea
of how well our models perform compared to the current forecasting
methods in practice. The second benchmark is the persistence model,
which is a simple forecasting model that assumes the future values will
be the same as the last observed value (in this case the value 24 h
ago). The persistence model is often used in energy forecasting because
it provides a baseline performance that can be used to evaluate the
effectiveness of more complex models.

While all three evaluation metrics (RMSE, MAE, and R-squared) are
important in assessing the performance of our models, we will use the
root mean squared error (RMSE) as the main metric to select the best-
performing model. This is because RMSE puts more weight on larger
errors, which is important in energy forecasting where large errors can
have significant economic and environmental impacts. We will also use
the other two metrics as secondary measures to gain a more complete
understanding of the performance of our models.

4. Result and discussion

4.1. General discussion

As discussed in the previous section, the goal of our study is not only
to find out the potential application of machine learning in predicting
energy production but also to find out whether or not the usage of

weather forecasts is necessary for the improvement of the models.
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Table 5
Performance of models with weather data.

Model Weather RMSE MAE R2

MLP with embedding Yes 0.00459* 0.00225* 84.06%
MLP with dummy Yes 0.00466 0.00234 83.56%
LightGBM Yes 0.00499 0.00224* 81.16%
XGBoost Yes 0.00509 0.00256 80.40%
Linear Regression Yes 0.00597 0.00326 73.09%
Benchmark – 0.00652 0.00322 55.54%
Persistence – 0.00707 0.00286 62.25%

Table 6
Performance of models without weather data.

Model Weather RMSE MAE R2

MLP with embedding No 0.00538* 0.00267* 78.14%
MLP with dummy No 0.00540 0.00270 77.98%
XGBoost No 0.00565 0.00281 75.86%
LightGBM No 0.00585 0.00270* 74.13%
Linear regression No 0.00630 0.00329 69.95%
Benchmark – 0.00652 0.00322 55.54%
Persistence – 0.00707 0.00286 62.25%

Therefore, we applied a few subsets of features compared to each other
to compare their usefulness.

The first dimension for the set of features is the usage of weather
forecasting as inputs for the models and the second dimension is about
the usage of embedding. However, as the two gradient boosting algo-
rithms are capable of dealing with categorical data on their own, the
usage of embedding only applies to the multilayer perceptron models
(MLP). For linear regression, only dummy variables are used. In the
end, we will have four different MLP models, two models for each
of the two gradient boosting models as well as linear regression. In
combination with two benchmark models, there are 12 different models
in total for comparison. Their results are shown in Table 6 (see Table 5).

Table 6 shows the list of all models with their performance metrics
calculated on the test set. The order in which they are listed is based
on their RMSE on the test set, from the lowest to the highest, which
also means the best to worst. The star next to the value of the RMSE
or the MAE indicates if the model belongs to the ‘‘superior’’ set using
the MCS procedure based on that specific type of loss function. From
just a quick view of the table, we can see that the top models in RMSE
are the MLP models. Next comes the two gradient-boosting models. The
top 8 performing ones are all combinations of those models in general.
Both two versions of the linear regression model come next. However,
we can observe that all of our models no matter what specification
surpassed the two benchmark models. The persistence model is the
worst one and then the predictions from the forecasting company are
the second worst. The pattern is quite similar regarding the R2 metrics
where the ranking order is almost the same except for the two bench-
mark predictions. Here, the persistence model has the R2 of 62.25%
whereas the benchmark prediction is only 55.54%. Regarding the MAE
metrics, the ranking order is a bit different where the performance of
linear regression seems to be the worst one and the best one is actually
from the LightGBM. However, the MAE of the Embedding MLP is quite
close to that of the LightGBM with 0.00225 compared to 0.00224.
When analyzing the models using the MCS procedure, we found that
the Embedding MLP is superior to all other models regarding RMSE
loss. When the MAE is taken into account, the Embedding MLP model
is not significantly better than the LightGBM model but both of the
models are part of the superior set and are significantly better than the
rest.

We can conclude that the best-performing model here in the test
set is the MLP model with embedding where it has the best RMSE and
R2, the second-best MAE, and is always part of the superior set. Its
performance reduces the RMSE by 35.07% compared to the persistence

model and 29.6% compared to the benchmark prediction and the MAE

6 
Table 7
Models performance with and without weather data.

Model RMSE MAE R2

With weather 0.00506* 0.00253* 80.45%
Without weather 0.00572 0.00283 75.21%

by 21.32% and 30.01% respectively. The R2 also increases from the
range of 60% or less to up to 84.06%. The performance of this strategy
is shown in Fig. 2 where it is compared with the true energy production
for the first 1000 data points of the test set.

4.2. The necessity of weather forecast data

Table 7 presents the average performance metrics of all machine
learning models using either the weather features or not. From the
table, we can see that the inclusion of the weather forecast data
increases more than 5% of R2. It also reduces the RMSE by 11.53% and
MAE by 10.6%. Furthermore, the result from the MCS procedure shows
that models created with weather data are superior with a confidence
level of 1%. We can conclude that weather forecast data is necessary to
improve the performance of energy forecasting even if they are more
than 24 h old.

This conclusion aligns with the expected notion that weather signifi-
cantly influences photovoltaic production, even when utilizing weather
forecasts from the preceding day for the entire region, as opposed to
real-time data from each plant location. To delve deeper into the impact
of weather data on each model, we present the feature importance for
both the MLP and LightGBM models in Figs. 3 and 4, respectively.

Neural network-based machine learning models are often deemed
black-box models due to their intricate internal structures, charac-
terized by numerous layers and parameters. The complexity arises
from intricate interactions between these parameters, hindering a clear
understanding of their specific contributions to the model’s output.
Additionally, the use of activation functions and non-linear transfor-
mations makes the input–output relationship highly non-linear, further
complicating interpretation. Despite these challenges, sensitivity analy-
sis serves as a valuable tool for understanding model behavior by exam-
ining how small changes in input variables affect the output. Through
the calculation of gradients, which represent the rate of change in
output concerning each input, sensitivity analysis quantifies the model’s
responsiveness to specific features. Fig. 3 showcases the top 10 features
most sensitive to the model’s output. Notably, Energy Production from
the previous day and the cosine transformation of the Hour (‘‘Hour_cos’’
feature) are significant contributors. While Humidity is not the most
critical feature, it holds greater importance compared to other features,
and temperature is also among the top 10

Although sensitivity analysis effectively highlights linear relation-
ships, it may not fully capture non-linearities or feature interactions.
Fig. 4 depicts the feature importance of the LightGBM model, the
second-best model. As a decision tree-based ensemble algorithm, Light-
GBM derives feature importance from each feature’s contribution to
reducing mean squared error during training, capturing non-linear
relationships and interactions. Interpretation of decision tree-based
algorithms like LightGBM is comparatively more straightforward than
neural networks. From the Figure, the top three contributing features
for the LightGBM model are all weather-related. Humidity is the most
crucial weather feature, followed by temperature. Energy production
from the same hour of the previous day (Production_last_day) is the
most vital non-weather feature, followed by energy production from
the nearest hour and PlantID. Despite differences in feature importance
between the two models, both highlight the significance of weather
forecasting features in their predictions, elucidating the improvement

observed when incorporating weather data.
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Fig. 2. Model performance in test set.
Fig. 3. Top 10 features for MLP model.
Table 8
Average performance of all types of models.

Model RMSE MAE R2

MLP with embedding 0.00499* 0.00246* 81.10%
MLP with dummy 0.00503 0.00252 80.77%
XGBoost 0.00537 0.00269 78.13%
LightGBM 0.00542 0.00247* 77.64%
Linear regression 0.00614 0.00328 71.52%
Benchmark 0.00652 0.00322 55.54%
Persistence model 0.00707 0.00286 62.25%

4.3. Models comparison

Finally, we would like to compare the general performance of every
machine learning model that we used. Table 8 shows the average
performance metrics of all models with or without the inclusion of the
weather forecasting data.

From the table, it is easy to observe that the neural networks (MLP)
are better in all metrics for this specific regression task. They are ranked
from the highest to the lowest in the RMSE calculated on the test
set. Among them, the MLP model with entity embedding is better in
almost every metric compared to other models. The MLP model with
dummy variables comes second with slightly worse results. Both of
7 
them, however, are a few percent better compared to the gradient
boosting algorithms (6.33% in RMSE) except for the LightGBM model
with MAE. The performance of the two gradient boosting algorithms
(XGBoost and LightGBM) are also quite close too. Still, the performance
of those algorithms is closer to the MLP than the Linear Regression and
our two benchmarks as well. The result from the MCS procedure also
confirms our conclusion from the metrics that the MLP model with
embedding is superior to all other models regarding RMSE and it is
along with the LightGBM model superior to all other models regarding
the MAE.

4.4. Entity embedding interpretation

Regarding the difference between the MLP with and without em-
bedding, we observe a larger difference with the inclusion of weather
forecasting data (1.5% reduction in RMSE compared to around 0.3%).
This is reasonable considering the inclusion of the weather forecast data
also comes with the incorporation of another embedding layer for the
sky descriptors data. One of the advantages of using entity embedding is
that we can extract the embedding vector for each categorical feature
and interpret them to see if they make sense. The embedding vector
represents a high-dimensional space where each dimension corresponds
to a feature’s weight in the embedding. By analyzing the embedding
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Fig. 4. Top 10 features for LightGBM model.
Fig. 5. Sky descriptor embedding.
vectors, we can gain insights into the categorical features and their
relationships with the target variable.

Fig. 5 visualizes the relationships between different categories of
sky conditions in two dimensions. The value of the 2-d vectors of
each sky condition is optimized for solar energy prediction. Of course,
we cannot confirm exactly the representation of the two dimensions,
however, we can interpret them based on common sense to see if they
are reasonable or not. From the figure, we can see that most of the
sunny sky conditions stay near each other and are located on the top
right of the figure. The sky conditions from the upper part are mostly
related to the sunny weather. Regarding the horizontal axis, we can see
that on the far left is the overcasting weather which is typically low-
level clouds that are thick and often appear gray or white, covering
most of the sky. Overcast clouds are often associated with rainy or
stormy weather conditions. On the far right, you have high-level clouds
which are typically thin and associated with fair weather. From this
visualization, we can see that the embedding of those sky descriptors
8 
shows rational meaning and can also help us discover new relationships
between them and the target variable.

We can also find a similar relationship regarding the embedding of
precipitation descriptors. As was shown in Fig. 6, precipitation descrip-
tors such as thunderstorms, heavy rain, and especially thundershowers
stay on the upper part whereas sprinkles, a few storms, and a few
showers are located on the lower part. We can infer that the embedding
representation is likely capturing a gradient or scale of precipitation in-
tensity in the vertical axis as the former group of precipitation involves
significant rainfall, thunder, and potentially strong winds. The words
grouped together on the upper part represent more severe or intense
forms of precipitation, while the words in the opposite direction suggest
milder or lighter forms. We can also observe that the precipitations
related to snow weather such as snow, moderate snow, and light snow
are quite near to each other and located on the right side of the figure.
On the other hand, Words like no precipitation, showery, and isolated
storms are positioned on the left side, suggesting different conditions
or the absence of precipitation. ‘‘No precipitation’’ indicates a lack of
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Fig. 6. Precipitation descriptor embedding.
Fig. 7. Wind direction embedding.
rainfall, while ‘‘showery’’ implies intermittent or scattered showers.
‘‘Isolated storms’’ suggests the occurrence of sporadic or localized storm
systems. Overall, we can see that the technique of embedding is able
to capture not only the intensity but also the type and conditions
associated with different forms of precipitation solely based on the
energy production itself.

The study of Vasel and Iakovidis (2017) has shown a relationship
between the wind direction and the production performance of pho-
tovoltaic plants. Using historical data from a solar farm in the UK,
their study has concluded that the more the southerly wind occurred,
the more power the solar farm in that specific region can produce
and that wind direction and wind speed frequencies can be important
factors for photovoltaic production forecasting. Based on their research,
we also include the wind direction as an input for our models. The
process of transforming the direction in degree into 8 main labels of
direction is explained in Section 3.3.2. Fig. 7 illustrated the embedding
of those directions in a 2-dimensional space. From the Figure, we
can observe that the visualization of the directions is quite similar to
expectation. The North and the South are in the opposite direction
9 
and are far from each other. The northwest and northeast are between
the North and the West and the North and the East respectively. Of
course, the embedding is not totally perfect as the axis created by the
North and the South and the axis created by the West and the East is
not quite perpendicular. Furthermore, the distances between the North
and the West and the East and the South are quite different. Still, we
cannot deny the interesting fact that the neural networks algorithm
can ‘‘understand’’ the differences between directions (illustrated by the
embedding visualization) solely based on the historical production data
and other weather forecasting inputs.

The other embedding about each plantID is shown in Fig. 8. What
we observed from the figure is that plants from number 8 to number 14
are quite near to each other. However, as more detail about each plant’s
characteristics is not revealed to us (their geographic locations, their
specification, etc.), the interpretation of the embedding is not obvious
in this case. We can only interpret that the vertical axis may represent
the production capacity of each plant as their vertical order is the same
as the order of the average production of each plant in the training
dataset.
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Fig. 8. PlantID embedding.
Fig. 9. Hour transformation.
In Section 3.3.1 we did mention that for cyclical data, there can
be several transformation approaches to retain their cyclical pattern.
One of the popular approaches to handle this kind of feature is the
sine and cosine transformation where the input is transformed into a 2-
dimensional vector. The illustration of this method for the hour feature
can be seen in Fig. 9(b) where the 24 h form into a circle in the 2-
dimensional plane and it totally fits with our perception of time in
general. However, regarding the topic of photovoltaic production, is
this representation of time the most optimal way? The answer lies in
Fig. 9(a) where we added the hours as an embedding feature instead of
using the sine and cosine transformation. From the Figure, we can still
see the cyclical patterns from 6 o’clock to 17 o’clock. However, the
hours from 18 o’clock to 5 o’clock of the next day are quite close to
each other and there is no specific pattern among them. This is clearly
comprehensible as we know photovoltaic plants can only work when
there is sun. As a result, the cyclical patterns only appear for the hours
that often with the most sun. The neural networks again are capable of
capturing this relationship in time features.

The embedding of the month feature, however, did not show a
cyclical pattern in a similar fashion as the hour feature as it is shown
in Fig. 10. Still, we need to understand that our training dataset only
10 
contains one year of production data among a cluster of power plants in
the same region. With only one year of data, it can be enough for the
models to learn the hourly pattern but probably not for the monthly
pattern (June of this year can be unexpectedly hotter than the other
June, for example). Nonetheless, we can see from the embedding that
the month of November, December, and January (top left) are close
to each other and are on the opposite side of the month of May, June,
July, and August (bottom right). We can assume that the top left corner
of the embedding represents the months of winter whereas the bottom
right corner represents the month of summer.

5. Conclusion and future work

5.1. Conclusion

This research sheds light on the advancements in solar energy
forecasting by integrating machine learning techniques such as neural
networks and gradient-boosting trees. Our findings underscore the
augmented accuracy achieved by these methods over conventional ap-
proaches, establishing a robust platform for decision-making in energy
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Fig. 10. Month transformation.
:

markets deeply impacted by climate variables. In particular, our study
has practical implications for enhancing solar energy production fore-
casts, crucial for policymakers grappling with the volatilities introduced
by climate change.

Neural networks with entity embedding have emerged as front-
runners, offering two-fold benefits: handling categorical weather data
with finesse and providing interpretability that aligns with our domain
knowledge. With the climate crisis imposing unpredictable alterations
in weather patterns, our model’s ability to incorporate and analyze
such categorical weather data becomes invaluable for policymakers. By
focusing on Italy, a country with substantial investment in solar energy
infrastructure and unique climatic conditions, we have shown that
the methodologies applied here can be adapted to other regions with
similar renewable energy landscapes. This enhances the generalizability
and applicability of our findings beyond the Italian context, offering
valuable insights for countries aiming to integrate more renewable
energy into their grids.

Furthermore, our study highlights the broader significance of ac-
curate solar energy forecasting in the context of global energy chal-
lenges. Reliable forecasts are essential for strategic planning and policy
development. Our research underscores the importance of advanced
forecasting techniques in enhancing energy security and stabilizing
energy prices, thereby supporting the transition to a sustainable energy
future.

Adapting our model can afford policymakers a more granular un-
derstanding of the energy potential, enabling optimized allocation of
resources and effective grid management subject to climate variability.
Accurate and timely predictions enable policymakers to make informed
decisions about energy resource management, infrastructure invest-
ments, and the integration of renewable energy sources. By providing
detailed insights into the performance of solar PV systems under vary-
ing weather conditions, our findings support the development of more
resilient and efficient energy systems.

These insights are particularly relevant for regions like Italy, where
solar energy is a growing facet of the energy mix. As policies evolve
to support sustainable energy, the precision of forecasts as facilitated
by our model could influence a range of policy decisions—from en-
ergy trading strategies to the adaptation of energy infrastructures for
resilience against climate-induced disruptions. This study contributes
to the limited literature on the application of machine learning in solar
energy forecasting, providing a nuanced understanding of the trade-offs
involved in energy choices and the optimization of renewable energy
resources.

In conclusion, this study offers a novel approach to solar energy
forecasting using advanced machine learning techniques. The insights
11 
gained from our research are not only applicable to Italy but also
provide a framework for other regions facing similar energy chal-
lenges. By bridging the gap between theoretical research and practical
application, our work contributes to the ongoing efforts to integrate
renewable energy sources into the power grid, enhance energy security,
and develop effective climate policies. Future research should continue
to explore the potential of advanced machine learning models and
expand the scope of data integration to further improve the accuracy
and reliability of renewable energy forecasts.

5.2. Future work

Despite the contributions of our model, the study acknowledges its
limitations regarding data granularity. Presently, the weather forecast
data reflects regional trends without addressing the micro-climatic
conditions encountered by each solar power plant. This discrepancy
suggests that policy directives drawn from our findings should be
considered with caution, particularly when geographically targeted
forecasts are essential for decision-making.

Looking ahead, there is the ground for refinement. Our future
research could pivot towards integrating more precise weather forecast
data, tailored to the specific locations of power plants. This would
undoubtedly bolster the applicability of our model for policymakers
and industry stakeholders.

Additionally, the integration of more sophisticated models offers
promising avenues for enhancing forecast accuracy. Recent literature
has highlighted the potential of improved Recurrent Neural Network
(RNN) architectures in energy forecasting. The exploration of model
ensembles, combining different machine-learning approaches, may also
yield significant improvements. Such methodological enhancements
have the potential not only to refine the predictive accuracy of solar
energy forecasts but also to broaden the scope for real-time data
assimilation and adaptive policymaking in the face of climate change.
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