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Abstract:  

We report design and synthesis of novel picket fence phthalocyanines to access the ru-

thenium(II) complexes carrying di-(1R,2S,5R)-menthoxy -substituted aryloxy-groups. Owing to 

bulkiness of such groups located either at peripheral () or non-peripheral () positions, they are 

nearly orthogonal to the plane of the phthalocyanine thus creating a chiral environment around 

the metal center. This orthogonality was supported by X-ray analysis of corresponding 

phthalonitrile precursors (86.0° and 81.4° angles between the planes of aromatic moieties for - 

and -substituted phthalonitriles, respectively). As a proof of concept, the synthesized complex-

es were investigated as catalysts in a benchmark reaction of the cyclopropanation of styrene by 

ethyl diazoacetate. While the -substituted complex showed very low enantioselectivity, the -

substituted analogue afforded a moderate asymmetric induction towards ethyl (1S,2R)-2-

phenylcyclopropane-1-carboxylate. This result emphasizes the importance of appropriate ar-

rangement of the chiral groups relative to the phthalocyanine catalytic center and provides 

guidelines for further elaboration of phthalocyanine catalysts for asymmetric transfer of 

carbenes. 

Keywords: phthalocyanine, ruthenium, menthol, carbene transfer, cyclopropanation, 

enantioselectivity. 

 

1. Introduction 

Enantioselective functionalization of organic compounds typically requires chiral catalysts 

[1,2]. Chiral metal complexes occupy a place of choice for many asymmetric reactions such as 
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epoxidation [3–5], oxidation of C-H bonds [6,7], nitrene [8] and carbene [9–11] transfers, etc. In 

particular, a large variety of chiral porphyrin complexes have been prepared and successfully 

used as catalysts for enantioselective reactions [12–19]. Among them, metal-mediated asymmet-

ric carbene transfer reactions is a powerful tool in organic synthesis, notably, for the production 

of chiral cyclopropane fragments that are encountered in a vast number of biologically active 

compounds [20]. According to detailed mechanistic studies, the carbene transfer reactivity is 

associated with the involvement of metal carbene species which can be typically generated from 

diazo compounds used as carbene precursors [7-9]. Among a large number of catalysts for such 

reactions, tetrapyrrolic molecules, mainly porphyrins, attract particular interest due to the struc-

tural versatility, robustness, high turnover numbers and low catalyst loadings in comparison 

with other coordination compounds.  

To achieve an asymmetric induction for cyclopropanation of olefins catalyzed by 

porphyrins and their derivatives, three general strategies can be employed. One of them implies 

the application of engineered cytochrome P-450, which has been developed by a direct evolu-

tion of several hemoproteins containing iron in a catalytic site [21–26]. Another method in-

volves the artificial enzymes, contains unnatural co-factors [27–30]. In that case, other metals 

and ligands apart from heme can be used, but toolbox of possible macrocycles still has signifi-

cant restrictions. It should be emphasized that in both cases the enantioselective outcome of re-

actions is provided by the apoenzyme structure and the preparation of such catalysts relies main-

ly on biotechnological approaches.  

Otherwise, a chemical strategy implies the synthesis of catalysts bearing chiral groups at-

tached directly to the tetrapyrrolic core providing therefore asymmetric induction. This method 

makes it possible to expand the set of catalysts by moving from the heme archetype to a wide 

range of abiogenic ligands and metals. For instance, porphyrinoids bearing chiral groups, in 

which iron [19,31–39], ruthenium [32,37,40–55], rhodium [56–60], iridium [61] or cobalt 

[18,62–69] are embedded, demonstrate high catalytic activity in stereoselective carbene transfer 

to C=C bonds [8]. In particular, Che et al. reported cyclopropanation of styrene (5 equiv) by 

EDA (1 equiv) mediated by the chiral Ru Halterman porphyrin complex (0.05 mol%) with 83 % 

yield, trans/cis ratio of 18:1 and 87% e.e [52]. Zhang and coworkers developed a series of chiral 

Co porphyrins which cyclopropanate styrene (1 equiv) by EDA (1.2 equiv) with 2 mol% cata-

lyst loading with 57-95 % yield, with trans/cis ratio ranging from 32:68 to 96:4 and 31-89% e.e 
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[66]. Simonneaux and coworkers obtained a 52% product yield with 96:4 diastereoselective ra-

tio and 83% e.e. in the reaction of styrene (5 equiv) with EDA (1 equiv) in the presence of 0.5 

mol% of Ru sulfonated Halterman porphyrin [38].  

Various concepts are used in the literature to describe the architecture of chiral 

porphyrinoid catalysts, including the frequently used picket-fence, and sporadic examples of the 

concepts chiral wall [57] or chiral fortress [59]. Notably, the first concept was used by Collman 

et al. for complexes containing bulky substituents on only one side relative to the plane of the 

macrocyclic backbone [70,71]. However, the application of picket-fence term was further ex-

tended to complexes containing chiral substituents on both sides relative to the plane of the 

macrocycle [72–74].  

The porphyrin counterparts – phthalocyanines (Pc) exhibit high catalytic activity in a 

wide range of reactions [75], however they are virtually unexplored in enantioselective catalysis 

despite a number of complexes containing chiral substituents [76], including aliphatic [77,78], 

binaphthyl [79,80], carbohydrate [81] or aminoacid groups [82]. Only three papers have report-

ed chiral reactions in the presence of phthalocyanine complexes. The Zn(II) and Co(II) com-

plexes bearing four chiral hydrobenzoin groups (2.5-5 mol% catalyst loading) mediated interac-

tion of diethylzinc and aldehydes with low yields of secondary alcohols (5-38 %) and 7-33 % ee 

[83,84]. High enantioselectivity induced by protein was achieved for non-covalent conjugate of 

bovine serum albumin and sulfonated Cu(II) phthalocyanine catalyzing Diels-Alder reaction 

with 85-98 % ee [85]. However, to the best of our knowledge phthalocyanine complexes have 

never been used in asymmetric carbene transfer including cyclopropanation. 

A literary survey shows that in all reported chiral phthalocyanine complexes chiral sub-

stituents are coplanar with the macrocycle plane. For example, this structural feature was ob-

served in several (1R,2S,5R)-menthoxy-substituted phthalocyanines (Fig. 1a) [86–93]. Conse-

quently, it is doubtful that catalytically active phthalocyanines with such geometry will provide 

enantioselective induction since the chiral groups are remote from the catalytic metal center. To 

overcome this obstacle, in the present work we took advantage of “picket fence” architecture for 

chiral phthalocyanine catalysts as it can bring sterically hindered chiral groups above and below 

macrocycle plane in proximity to the metal center (Fig. 1b). Ruthenium(II) phthalocyaninate 

was selected as a catalytically active core since achiral RuPc have already demonstrated high 

catalytic activity in carbene transfer [94–97].  
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Fig. 1. (a) Reported (1R,2S,5R)-menthoxy-substituted phthalocyanines[86–93] whose chiral 

groups are positioned in a plane of macrocycle core; (b) our proposed design for the new 

aryloxy-substituted phthalocyanine complex with picket-fence architecture where chiral (1R, 

2S,5R)-menthoxy-fragments are placed orthogonally with respect to the macrocyclic backbone. 

 

2. Results and discussion 

To leverage the picket-fence architecture, we designed the bis-ortho-aryloxy-substituted 

phthalocyanines where the chiral groups will be placed above and below the macrocycle plane. 

The readily available 2,6-bis-(hydroxymethyl)-p-cresol has been used as a precursor of such 

phthalocyanines since its aliphatic hydroxyl groups can be easily functionalized via reactions 

with nucleophiles [98–100]. In the present work we first used naturally occurring (1R,2S,5R)-

menthol as such a nucleophile, thus obtaining the first examples of chiral picket fence 

phthalocyanines, whose catalytic activity was tested using cyclopropanation reactions as an ex-

ample (Fig. 1b). Henseforward we will use the term “menthol” without indication of configura-

tions of each stereocenter for simplicity, as these configurations will not change upon further 

chemical reactions. 

Thus the reaction of 2,6-bis-(hydroxymethyl)-p-cresol with 15-fold excess of menthol in 

melt was performed at 150°C (Fig. 2). It was shown that substitution of labile hydroxy groups at 

benzylic positions with menthyl residues proceeds without any catalyst. The excess of unreacted 

menthol was recovered by vacuum distillation and the target phenol bearing two 

menthoxymethyl groups Ar*OH was isolated in a 45% yield after chromatographic purification 

(Fig. S1-S8).  

The 1H NMR spectrum of Ar*OH exhibits two doublet signals of diastereotopic protons 

of benzylic methylene groups CHaHb at ca. 4.8 and 4.5 ppm with a geminal constant J = 11.9 Hz 

(Fig. 2a). This coupling was revealed by the presence of cross peaks in the 
1
H-

1
H COSY NMR 
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spectrum (Fig. S4). The 
1
H-

13
C HSQC spectroscopy demonstrated that both protons are coupled 

with the same carbon atom (Fig. S5).  

Next, the phenol Ar*OH was treated with 3- or 4-nitrophthalonitriles in the presence of 

K2CO3 in DMF which resulted in smooth substitution of NO2 groups by aryloxy moieties. These 

reactions provided the corresponding - and -Ar*O-substituted nitriles in high yields of ~60% 

(Fig. 2). The structure of isolated compounds was confirmed by NMR, HR-ESI and FT-IR (Fig. 

S9-S24).  

The interesting feature of the synthesized phthalonitriles was noted in their NMR spectra. 

The resonance signals of benzylic protons in (-Ar*O)Pn appeared as a couple of doublets sim-

ilarly to the spectrum of Ar*OH (Fig. 2c). In the contrast, in the case of -substituted counter-

part four benzylic doublets were observed and they nearly coalesced upon heating of the sample 

above 80 °C in toluene-d8 (Fig. 2b) This observation can evidence a hindered rotation of chiral 

aryloxy-group when it is located in the -position of the phthalonitrile moiety. In the case of (-

Ar*O)Pn this rotation is fast on NMR timescale and cooling to -80 °C was required to observe 

the splitting of benzylic resonance signals (Fig. 2c). 

 

Fig. 2. Synthesis of menthoxymethyl-subtituted phenol and phthalonitriles. Abbreviation 

"Ment" stands for (1R,2S,5R)-menthyl group. Inset (a) shows the resonance signals of benzylic 

protons in 
1
H-NMR spectrum of phenol Ar*OH in CDCl3. Insets (b) and (c) show resonance 
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signals of benzylic protons in variable temperature 
1
H-NMR spectra of phthalonitriles (-

Ar*O)Pn and (-Ar*O)Pn in toluene-d8 respectively. 

 

The synthesized phthalonitriles were characterized by the single-crystal XRD (Fig. 3, 

Tables S1-S7). In crystalline phase the phthalonitrile groups are almost orthogonal to the 

aryloxy-fragments with chiral substituents with torsional angles of 86º and 81º for - and β-

substituted phthalonitriles respectively.  

 

Fig. 3. Single crystal XRD structures of phthalonitriles (-Ar*O)Pn (left) and (β-

Ar*O)Pn (right). The torsional angles between the phthalonitrile fragment and the aryloxy 

group are indicated. Hydrogen atoms are omitted for clarity. 

Assuming the results of VT-NMR for these nitriles, we can anticipate that such 

orthogonality is likely to be presumed in solution for (-Ar*O)Pn and phthalocyanine derived 

from it, while β-substituted compounds might exist in solution as a set of conformers. 

Template condensation of phthalonitriles in the presence of magnesium turnings in re-

fluxing pentanol afforded corresponding Mg(II) phthalocyaninates as inseparable mixtures of 

positional isomers which bear four chiral aryloxy groups in non-peripheral () and peripheral 

(β) positions Mg[(-Ar*O)4Pc] and Mg[(β-Ar*O)4Pc]. The formation of complexes was evi-

denced by MALDI TOF MS and UV-Vis techniques (Fig. 4a, Fig. S25-28). Further treatment of 

Mg(II) complexes with an aqueous solution of trifluoroacetic acid resulted in the formation of 

metal free ligands H2[(-Ar*O)4Pc] and H2[(β-Ar*O)4Pc] obtained in good yields based on 

corresponding phthalonitriles (59% and 43%, respectively) (Scheme 1). The formation of the 

phthalocyanine ligands was confirmed by UV-Vis, FT-IR and 
1
H NMR spectroscopies (Fig. 

S30-S32, S33-S35). The Q-bands of -substituted phthalocyanine and its magnesium complex 

in the UV-Vis spectra are bathochromically shifted by ~20 nm in comparison with -substituted 

compounds (Fig. 4). Such a bathochromic shift was previously observed in the case of peripher-

al and non-peripheral ruthenium octa-n-butoxyphthalocyanines [97].  
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Scheme 1. Synthesis of phthalocyanines H2[(-Ar*O)4Pc] and H2[(β-Ar*O)4Pc]. 
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Scheme 2. Synthesis of ruthenium(II) phthalocyaninates [(-Ar*O)4PcRu](CO) and [(β-

Ar*O)4PcRu](CO). 

 

Next, the insertion of ruthenium into phthalocyanines was performed using Ru3(CO)12 in 

refluxing o-dichlorobenzene similar to the previously described protocol [95,97,101]. The sepa-

ration of the reaction products by size-exclusion chromatography revealed the formation of 

monomeric complexes [(-Ar*O)4PcRu](CO) and [(β-Ar*O)4PcRu](CO). Owing to the diffi-

culties in the separation of ruthenium phthalocyanines from unreacted starting ligands, the col-

umn purification had to be carried out several times, resulting in moderate preparative yields of 

the target products (32% and 26%, respectively) (  
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, Fig. S36-S43). The HR ESI mass spectra of complexes [(-Ar*O)4PcRu](CO) and [(β-

Ar*O)4PcRu](CO) showed the intense signals of protonated molecular ions with isotopic dis-

tribution pattern of molecular peaks identical to that of calculated one (Fig. S37 and S41). The 

UV-Vis spectra of ruthenium phthalocyanines shows the intense narrow Q-bands which is shift-

ed from 659 nm for macrocycle bearing substituents at peripheral positions to 673 nm for the 

non-peripherally substituted compound (Fig. 4). The presence of axial CO ligand was confirmed 

by FT-IR spectroscopy due to the presence of 
CO 

bands at 1967 and 1962 cm
-1

 for - and -

substituted complexes (Fig. S39 and S43). 

The inherent problem in the synthesis of tetrasubstituted phthalocyanines is the formation 

of the positional isomers C4h, Cs, C2v and D2h in a 1:4:2:1 statistical ratio in the case of non-

bulky substituents. Their separation is tedious and cannot be often realized on a practical scale. 

The isolation of one or more regioisomers was published in rare cases [102–105]. In principle, 

we could expect the preferable formation of the less-sterically hindered C4h α-substituted isomer 

in template condensation of (-Ar*O)Pn, however the complicated group of overlapping sig-

nals in NMR spectra of α-substituted macrocycles (Fig. S31 and S38) suggests that the mixture 

of isomers was obtained. Unfortunately, all our attempts to separate this mixture or isolate at 

least one isomer by column chromatography using different solvents and sorbents (SiO2, 

Brockmann I and IV neutral Al2O3, Bio-Beads S-X1) have failed, neither separation of products 

on TLC was observed. 

It should be noted that ruthenium phthalocyanines containing aryloxy groups are still ra-

re. Yanagisawa et al. reported the preparation of A3B-type complexes bearing the residue of 4-

hydroxybenzoic acid at peripheral positions [106]. We have recently published the preparation 

of [(β-MesO)8PcRu](CO) [101] and its application in a carbene transfer reactions [96]. To the 

best of our knowledge, complexes [(-Ar*O)4PcRu](CO) and [(β-Ar*O)4PcRu](CO) are the 

first example of ruthenium phthalocyanines containing four aryloxy-groups. 
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Fig. 4. UV-Vis spectra of metal-free phthalocyanines H2[(- or -Ar*O)4Pc] and ruthenium(II) 

complexes [(- or -Ar*O)4PcRu](CO). 

 

Both chiral ruthenium phthalocyanine complexes were initially evaluated in catalytic 

cyclopropanation of styrene with ethyl diazoacetate (EDA) using 0.1 mol% catalyst loading in 

dichloromethane. To limit the formation of the EDA dimerization products (diethyl maleate and 

diethyl fumarate), the EDA solution was slowly added to the reaction mixture by syringe pump. 

It should be noted that the non-peripheral [(-Ar*O)4PcRu](CO) complexes showed a higher 

diastereoselectivity with a trans/cis ratio of 5.6:1 in comparison with a 4.7:1 ratio for the pe-

ripheral [(β-Ar*O)4PcRu](CO) complex. The cyclopropanation mediated by the peripherally 

substituted [(β-Ar*O)4PcRu](CO) complex resulted in the negligible enantiomeric excess of 

trans-isomer whereas in the presence of the non-peripheral [(-Ar*O)4PcRu](CO) complex 

with chiral substituents closer to metal center an enantiomeric excess of 10% was obtained for 

S,R-cyclopropanation product of cis-isomer (Scheme 3). 

Thus, the complex bearing four chiral groups at non-peripheral positions showed a better 

enantioselectivity in comparison with the -substituted counterpart. To achieve a higher asym-

metric induction we tried to prepare phthalocyanine bearing eight chiral groups at non-

peripheral positions. To this aim, 3,6-difluorophthalonitrile was prepared according to the pre-

viously described protocol of selective reduction of tetrafluorophthalonitrile with NaBH4 using 

an equivalent amount of water [107]. – was replaced to Conclutuon  

The reaction of 3,6-difluorophthalonitrile with 5 eq. of phenol Ar*OH proceeded 

smoothly for 3 h at 80ºC and afforded the target bis-aryloxy-substituted phthalonitrile (-

Ar*O)2Pn in the excellent yield (93%) (Scheme 4), its structure was confirmed by NMR and 

FT-IR (Fig. S46-49). It should be noted that the excess of Ar*OH can be reduced to 2.1 eq. 
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without lowering the reaction efficiency. Unfortunately, a template condensation of this 

phthalonitrile in the presence of magnesium or lithium turnings or Mg(OAc)2 with DBU in re-

fluxing dry pentanol did not result in even traces of phthalocyanine. Similarly, previous studies 

showed that the presence of two bulky substituents in non-peripheral positions prevents the 

formation of octa-substituted phthalocyanines and their synthesis still a formidable challenge 

[108]. To be replaced to SI  

Thus, the cyclopropanation reaction was further optimized using [(-Ar*O)4PcRu](CO) 

as the catalyst. First of all, we found that the enantioselectivity of cyclopropanation reaction 

strongly depends on the solvent nature (Table 1). 

 

Scheme 3. Cyclopropanation of styrene with EDA catalyzed by chiral ruthenium 

phthalocyanines [(-Ar*O)4PcRu](CO) and [(β-Ar*O)4PcRu](CO). 
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Scheme 4. Synthesis of 3,6-bis-aryloxy-substituted phthalonitrile (-Ar*O)2Pn. To be replaced 

to SI 

 

Table 1. Cyclopropanation of styrene by EDA catalyzed by chiral ruthenium phthalocyanine 

[(-Ar*O)4PcRu](CO) in different solvents. 
а
 

Solvent Cyclopropanation yield, % 
b
 Enantiomeric excess, % 

c
 

trans cis trans/cis TON trans (S, S) cis (S, R) 

СH2Cl2 50 9 5.6:1 590 4 10 

Toluene 67 14 4.9:1 670 4 14 

СH3CN 0 0 0 0 0 0 

Ethyl acetate (EtOAc) 80 12 6.7:1 800 8 16 

Propylene carbonate 86 14 6.1:1 860 6 12 

DMF 27 3 9:1 270 8 11 

Dimethyl acetamide 

(DMA) 

62 7 8.9:1 620 9 16 

2-pyrrolidinone 75 10 7.5:1 750 8 16 

iso-amyl acetate 25 3 8:1 250 6 16 

tert-butyl acetate 

(tBuOAc) 

58 8 7.3:1 580 8 18 

tert-butyl acetoacetate 79 14 5.6:1 790 8 8 

tBuOAc/DMA = 1/1 (vol. 

%) 

80 13 6.2:1 800 8 15 

tBuOAc 
d
 18 3 6:1 180 12 16 

а
 Conditions: 0.25 mmol styrene, 0.3 mmol EDA (addition time: 2.5 h), 0.25 mL solvent, Ar, 

25°C, reaction time: 3.5 h. 
b
 Yields were determined by 

1
Н NMR and based on styrene amount. 

c
 Enantiomeric excesses were determined by GC-MS using the chiral column CycloSil-B. 

d
 Re-

action was performed at 0°С. 
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In particular, diastereomeric ratios range from 4.9:1 in toluene to 9:1 in 

dimethylformamide. No reaction was observed in acetonitrile. The replacement of CH2Cl2 with 

toluene increased ee for cis-isomer to 14%. Using of propylene carbonate solvent provided the 

high product yield (86 %), trans/cis ratio of 6:1:1 and ee of 12 %. Interestingly, ethyl acetate 

provided the best results for asymmetric induction: ee(trans) = 8% and ee(cis) = 16% while 

keeping good product yield and diastereoselectivity. Further screening of alkyl acetates showed 

that in tert-butyl acetate the enantiomeric excess of (S,R)-isomer reached 18%. Decrease of the 

reaction temperature to 0°C resulted in lower conversion without increase of the ee for cis-

isomer though ee of trans-isomer was slightly increased to 12 %. When the 1:1 mixture of 

tBuOAc/DMAA was used no increase of diastereomeric or enantiomeric ratio was observed. 

Thus, the substrate scope of [(-Ar*O)4PcRu](CO) was further evaluated in tBuOAc showing 

the better combination of product yield, dia- and enatioselectivity ratios at 25ºC (Table 2). 

The increase of catalyst loading from 0.10 to 0.15 mol% resulted in the complete conver-

sion of olefins. Styrene derivatives containing electron-donating substituents (p-Me, m-Me, p-

MeO, p-OAc) were converted in the reactions with EDA to the corresponding substituted 

cyclopropanes with the similar enantiomeric excesses showing no apparent dependence on the 

olefin structure. The substrates bearing electron-withdrawing group (p-Cl, p-F, p-CN) did not 

show improving of the enantiomeric excesses and the reaction with p-vinylbenzonitrile resulted 

in the sharp drop of conversion. Other diazo compounds bearing electron-deficient (N2CHR, R 

= CF3, CN) and/or bulkier substituents (CO2tBu, CO2Bn) were also amenable to react with sty-

rene but expected increase of enantiomeric excesses was not observed. Interestingly,  
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Table 2. Cyclopropanation of styrene derivatives by EDA and other diazo compounds catalyzed 

by chiral ruthenium phthalocyanine [(-Ar*O)4PcRu](CO) in tert-butylacetate. 
a
 

Substrate Diazo compound 
Cat., 

mol.% 

Cyclopropanation yields, % 
b
 ee 

(trans), 

% 
c
 

ee 

(cis), 

% 
c
 

tran

s  
cis  trans/cis TON 

Styrene EDA 0.10 58 8 7.25:1 660 8 18 

p-acetoxystyrene EDA 0.10 55 15 3.67:1 700 n.d. 18 

p-methylstyrene EDA 0.15 88 12 7.3:1 750 n.d. 16 

p-metoxystyrene EDA 0.15 88 12 7.3:1 750 n.d. 15 

p-fluorostyrene EDA 0.15 58 7 8.3:1 488 n.d. 16 

p-chlorostyrene EDA 0.15 88 12 7.1:1 750 12
d
 13

d 

p-cyanostyrene EDA 0.15 13 0 - 98 n.d. - 

m-methylstyrene EDA 0.15 90 10 9:1 750 6 17 

-methylstyrene EDA 0.15 20 79 4:1 743 15 8 

styrene tBuDA
 e
 

0.20 

0.10 

83 

9 

0 

0 

- 

- 

623 

90 

18 

n.d. 

n.d. 

n.d. 

styrene BnDA
 f
 0.20 43 9 4.7:1 390 n.d. n.d. 

styrene diazoacetonitrile
 g
 0.15 78

 g
 22

 g
 3.54:1 750 n.d. 8 

styrene F3C-diazomethane
 h
 0.15 34

 h
 0 - 255 4 n.d. 

styrene Me3Si-diazomethane
 i
 0.15 8

 i
 0 - 60 0 0 

a
 Conditions: 0.25 mmol styrene, 0.3 mmol diazo compound (addition time: 2.5 h), 0.25 mL solvent, Ar, 

25°C, reaction time: 3.5 h. 
b
 Yields based on olefin were determined by 

1
Н NMR. 

c
 Enantiomeric excesses 

were determined by GC-MS using a chiral column CycloSil-B. 
d 

Experimental error in the determination of 

enantiomeric excesses was bigger because of incomplete separation of the enantiomer peaks. 
e 

15 % solu-

tion of N2CHCO2tBu in toluene was used. 
f 
10 % solution of N2CHCO2Bn in toluene was used. 

g 
0.56 M 

solution of N2CHCN in 1,2-dichloroethane was used. Reaction time: 21 h. After 3.5 h: yieldtrans = 31%, 

yieldcis = 7%, after 7 h: yieldtrans = 38%, yieldcis = 17%. 
h 

0.96 M solution of N2CHCF3 in 1,2-

dichloroethane was used. Reaction time: 6h. After 3.5 h: yieldtrans = 22%. 
i 
Reaction temperature: 60°С, 2 

M solution of TMSCHN2 in hexane was used. Styrene conversion was 55%, GC-MS analysis showed the 

formation of several non-identified products.  

 

3. Conclusion 

In summary, two novel tetra-aryloxy-substituted ruthenium(II) phthalocyaninates with 

non-peripheral () and peripheral () chiral substituents based on natural (–)-menthol have been 

designed, synthesized and characterized. Both complexes were shown to be active in a bench-

mark reaction of styrene derivatives with ethyl diazoacetate in dichloromethane. Using low 

catalyst loading (0.1-0.15 mol%) and close to equimolecular reagent ratio at 25ºC, high yields of 
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cyclopropanation products with trans/cis ratios from 4.7:1 up to 5.6:1 have been obtained. The 

evaluation of different reaction conditions indicated a strong solvent dependence of the reaction 

outcome. Hence, the application of tert-butyl acetate significantly improved both diastereo- and 

enantioselectivity for the reactions catalyzed by [(-Ar*O)4PcRu](CO). In contrast, these pa-

rameters were only weakly dependent on the nature of the substituents in the olefin and diazo 

compound.  

To the best of our knowledge, we reported the first application of phthalocyanine com-

plexes bearing chiral groups as catalysts in asymmetric carbene transfer reaction. Although the 

enantiomeric excesses of cyclopropyl derivatives are still modest compared with the data re-

ported in literature for porphyrin complexes [38,52,61], this result reveals the proof of concept 

which can give guidelines for further optimization of the chiral phthalocyanine structure to im-

prove the reaction diastereo- and enantioselectivity. The complex bearing four chiral groups at 

non-peripheral positions showed a better enantioselectivity in comparison with the -substituted 

counterpart. To achieve a higher asymmetric induction it would be of much interest to prepare 

phthalocyanine bearing eight chiral groups at non-peripheral positions. In our initial effort, 3,6-

difluorophthalonitrile was prepared according to the previously described protocol of selective 

reduction of tetrafluorophthalonitrile with NaBH4 using an equivalent amount of water (see SI) 

[107]. However, our initial attempts to tetramerize this bulky phthalonitrile were unsuccessful 

(SI). Presumably, our modest result in catalysis is caused by flexibility of chiral groups and lack 

of strong intermolecular interactions between reagents and chiral inductor. Thus, to ensure high-

er enantioselectivity we envisage further preparation of phthalocyanines with either 

conformationally rigid chiral substituents or chiral groups capable of non-covalent interaction 

with substrate and reagent molecules through hydrogen bonding or π-stacking.  

 

4. Experimental part 

4.1. Materials 

Unless otherwise noted, commercially available compounds including ruthenium carbon-

yl (Aldrich, 99%), 2,6-bis-(hydroxymethyl)-p-cresol (Aldrich, 99%), 3-nitrophthalonitrile (TCI, 

>98%), 4-nitrophthalonitrile (TCI, >98%), DMF (Aldrich, >99%), tetrafluorophthalonitrile 

(ABCR, 97%), NaBH4 (Scharlau, 98%), trifluoroacetic acid (Carlo Erba and Aldrich), o-

dichlorobenzene (99%, Sigma-Aldrich), (1R,2S,5R)-menthol, K2CO3, magnesium, hexane, ethyl 
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acetate, methanol were used without further purification. Pentanol (Acros Organics, 99%) was 

distilled and kept over Mg to remove traces of water. Chloroform was distilled and kept over 

NaHCO3 to remove acidic impurities. 

Olefins were obtained from Alfa Aesar or Sigma-Aldrich, were stored in the dark in the 

freezer and were used without further purification. Ethyl diazoacetatate (EDA) containing ~ 13 

wt % of dichloromethane, solutions of tert-butyl diazoacetate (tBuDA, 15 wt %) and benzyl 

diazoacetate (BnDA, 10 wt %), in hexane, 2 M trimethylsilyldiazomethane solution in hexane 

were purchased from Sigma-Aldrich and stored in the dark in the freezer. The solutions of 

diazoacetonitrile [109] and 2,2,2-trifluorodiazoethane [110] in dichloroethane were prepared 

according to published protocols. The concentrations of diazo compounds were determined by 

1
H NMR using 0.5 M DMSO solution in CDCl3 as standard and solutions were stored in the 

dark in the freezer. 

 

4.2. Methods 

HRMS data were recorded on a Bruker QTOF Impact II mass spectrometer. MALDI 

TOF mass spectra were measured on a Bruker Daltonics Ultraflex mass spectrometer in positive 

ion mode using 2,5-dihydroxybenzoic acid (DHB) as a matrix. UV-visible absorption spectra 

(UV-Vis) were recorded on Thermo Evolution 210 or Agilent 8453 diade-array spectrophotom-

eters in the 250−900 nm range in rectangular quartz with optical pathways of 10 mm. An FTIR 

Nexus (Nicolet) spectrophotometer with a micro-ATR accessory (Pike) was used to record IR 

spectra. The 
1
H NMR spectra were acquired on a Bruker Avance HD (400 MHz) or AM 250 

Bruker spectrometers at ambient temperature. The 
1
H NMR samples were prepared in CDCl3 

(Cambridge Isotope Laboratories, Inc.), which was filtered through a layer of alumina prior to 

use. The NMR spectra were referenced to the solvent signals [111]. The reaction products were 

identified using the GC-MS technique (Hewlett Packard 5977B/7820A system; electron impact 

at 70 eV, He carrier gas, 30 m x 0.25 mm x 0.25 μm Agilent J&W CycloSil-B column). 

 

4.3. Single-Crystal X-ray Analysis 

Single crystals of phthalonitriles were obtained by slow evaporation of the corre-

sponding solutions in mixtures of dichloromethane and heptane. The X-ray diffraction 

study for single crystals of (-Ar*O)Pn was performed on a Bruker D8 Venture 
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diffractometer equipped with an area detector at 150 K using CuKα (λ = 1.54178) radia-

tion. Absolute configuration of (-Ar*O)Pn established by anomalous-dispersion effects 

in diffraction measurements on the crystal. XRD study for single crystals of (-Ar*O)Pn 

was performed on a Bruker Kappa Apex II automatic four-circle diffractometer equipped with 

an area detector at room temperature using MoKα (λ = 0.71073) radiation. The unit cell pa-

rameters were refined over the whole dataset [112]. The experimental reflection intensi-

ties were corrected for absorption using SADABS program [113]. Using Olex2 [114], 

the structures were solved with the ShelXT [115] structure solution program using In-

trinsic Phasing and refined by the full-matrix least-squares method (SHELXL-2014 

[116]) on F
2
 over the whole dataset in the anisotropic approximation for all nonhydrogen 

atoms. The H atoms were placed in the geometrically calculated positions with the iso-

tropic temperature factors set at 1.2 times (CH and CH2 groups) or 1.5 times (CH3 group) 

the equivalent isotropic temperature factor of their bonded C atoms. Table S1 lists the 

crystallographic characteristics and details of the diffraction experiment, Tables S2-S7 

list the bond lengths, angles and torsion angles. Atomic coordinates have been deposited 

in the Cambridge Crystallographic Data Centre (CCDC deposition codes are 2225987 for 

(-Ar*O)Pn, 2225988 for (-Ar*O)Pn) and can be obtained on request at 

www.ccdc.cam.ac.uk/data_request/cif 

 

4.4. Safety note 

Handling of diazo compounds should be performed in a protected well-ventilated fume 

cupboard. General safety precautions when using solutions of diazo compounds should be fol-

lowed. It should be pointed out that neat diazo acetonitrile was reported to be explosive.[117] 

Consequently, these compounds should be used either in diluted solution or be generated in situ 

according to the published safe protocols [117]. No accidents occurred handling of diazo com-

pounds during this study. However, the reader should be aware of the potential explosiveness 

and carcinogenicity of these diazo compounds. The reactions reported in the present manuscript 

should be not carried out without proper safety precautions and risk assessment. 

4.5. Synthesis of tetra-aryloxy-substituted ruthenium phthalocyaninates 

containing (1R,2S,5R)-menthoxy groups 

http://www.ccdc.cam.ac.uk/data_request/cif
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Preparation of 2,6-bis((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)methyl)-4-

methylphenol, Ar*OH.  

A 100 ml single-neck flask, equipped with a magnetic stirring bar and a reflux condenser, 

was charged with 2,6-bis-(hydroxymethyl)-p-cresol (2.73 g, 16.3 mmol) and 15-fold excess of 

(–)-menthol (25.40 g, 162.8 mmol). The mixture was degassed by three-times pumping and 

flushing with argon on the Schlenk line and then immersed in the bath and heated at 150°C for 

24 h. Unreacted menthol was removed by distillation under vacuum at 145°С. The residue was 

transferred onto chromatographic column packed with SiO2 and gradient elution with a mixture 

of hexane/EtOAc (0  10 vol.%) with a control of fractions by TLC (hexane/EtOAc = 1:9, Rf = 

0.68) afforded to the target product Ar*OH as a yellow viscous oil (3.29 g, 45%). Note 1: The 

distilled menthol can be involved in the same reaction repeatedly. Note 2: Since the melting 

point of menthol is 42.5ºC, the reaction mixture is liquid at 150ºC. Note 3: The additional chro-

matographic purification with SiO2 enables to remove impurities and isolate the target phenol as 

a white solid. 
1
H NMR (600 MHz, CDCl3): δ 7.77 (s, 1H), 6.92 (s, 2H), 4.76 (d, 2H, J = 11.9 

Hz), 4.50 (d, 2H, J = 11.9 Hz), 3.22 (td, 2H, J = 10.6, 4.2 Hz), 2.24 (m, 7H), 1.65 (m, 4H), 1.41 

– 1.34 (m, 2H), 1.34 – 1.25 (m, 2H), 1.03 – 0.84 (m, 18H), 0.75 (d, 6H, J = 6.9 Hz). 
13

C{
1
H} 

NMR (151 MHz, CDCl3): δ 151.75, 128.56, 128.31, 124.42, 79.53, 67.70, 48.45, 40.38, 34.70, 

31.76, 25.75, 23.41, 22.46, 21.20, 20.66, 16.19. HR MS (ESI, m/z): calcd for C29H48O3
+
 

[M+H]
+
, 445.3676; found, 445.3679. IR, cm

-1
: 264, 302, 344, 406, 448, 466, 510, 548, 559, 594, 

619, 639, 711, 742, 783, 847, 863, 910, 920, 942, 973, 1010, 1055, 1083, 1102, 1152, 1180, 

1226, 1262, 1342, 1367, 1386, 1450, 1482, 2844, 2869, 2914, 2950, 3309 (ν
OH

). M.p. = 67-

69ºC. 

Preparation of 3-(2,6-bis((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)methyl)-4-

methylphenoxy)phthalonitrile, (-Ar*O)Pn.  

A 100 ml single-neck flask, equipped with a magnetic stirring bar and a reflux condenser, 

was charged with phenol Ar*OH (1.66 g, 3.74 mmol), 3-nitrophthalonitrile (0.54 g, 3.12 mmol) 

and potassium carbonate (2.58 g, 18.7 mmol). DMF (12 mL) was added under vacuum and the 

suspension was degassed by three-times pumping and flushing with argon on the Schlenk line, 

immersed in the bath and heated at 80°C for 24 h. Then, the reaction mixture was extracted with 

a mixture of saturated NaCl aqueous solution (50 ml) and ethylacetate (4 x 15 ml). Organic 

phases were combined and evaporated. The residue was transferred onto chromatographic col-
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umn packed with SiO2 and gradient elution with a mixture of hexane/EtOAc (0  10 vol.%) 

with a control of fractions by TLC (hexane/EtOAc = 2:8, Rf = 0.68) afforded to the target 

phthalonitrile (-Ar*O)Pn as a beige crystals (1.10 g, 60%). 
1
H NMR (600 MHz, CDCl3): δ 

7.43 (m, 1H), 7.39 (m, 1H), 7.29 (m, 2H), 6.84 (m, 1H), 4.47 (m, 2H), 4.27 – 4.15 (m, 2H), 3.02 

(m, 2H), 2.39 (s, 3H), 2.12 – 2.01 (m, 2H), 1.89 – 1.74 (m, 2H), 1.61 (m, 2H), 1.55 (m, 2H), 1.35 

– 1.21 (m, 2H), 1.15 – 0.30 (m, 26H). 
13

C{
1
H} NMR (151 MHz, CDCl3): δ 161.88, 146.27, 

137.20, 134.10, 131.65, 131.14, 126.24, 119.72, 116.85, 115.36, 112.79, 104.30, 79.40, 79.09, 

64.86, 48.41, 48.30, 34.59, 31.69, 31.46, 25.75, 25.49, 23.38, 23.25, 22.42, 21.18, 21.11, 16.34, 

16.07. HR MS (ESI, m/z): calcd for C37H50N2O3
+
 [M+H]

+
, 571.3894; found, 571.3891. IR, cm

-1
: 

454, 533, 551, 572, 606, 728, 796, 846, 862, 918, 983, 1024, 1042, 1086, 1113, 1138, 1189, 

1262, 1310, 1341, 1367, 1384, 1456, 1577, 2332 (ν
CN

), 2864, 2919, 2952. M.p. = 123-125ºC. 

Preparation of 4-(2,6-bis((((1R,2S,5R)-2-isopropyl-5-methylcyclohexyl)oxy)methyl)-4-

methylphenoxy)phthalonitrile, (β-Ar*O)Pn.  

A 100 ml single-neck flask, equipped with a magnetic stirring bar and a reflux condenser, 

was charged with phenol Ar*OH (0.567 g, 1.27 mmol), 4-nitrophthalonitrile (0.147 g, 0.85 

mmol), potassium carbonate (0.703 g, 5.1 mmol) and DMF (10 mL). The suspension was de-

gassed by three-times pumping and flushing with argon on the Schlenk line, immersed in the 

bath and heated at 80°C for 24 h. The reaction mixture was extracted with a mixture of saturated 

NaCl aqueous solution (50 mL) and ethylacetate (5 x 10 mL). Organic phases were combined 

and evaporated. The residue was transferred onto chromatographic column packed with SiO2 

and gradient elution with a mixture of hexane/EtOAc (0  10 vol.%) with a control of fractions 

by TLC (hexane/EtOAc = 1:9, Rf = 0.42) afforded the oil which was dissolved in hexane at 

60°C, cooled in a freezer and precipitate was separated by filtration. The mother liquid was 

evaporated with a formation of target phthalonitrile (β-Ar*O)Pn as a beige crystals (282 mg, 

59%). 
1
H NMR (600 MHz, CDCl3): δ 7.66 (d, 1H, J = 8.7 Hz), 7.29 (s, 2H), 7.17 (d, 1H, J = 2.5 

Hz), 7.11 (dd, 1H, J = 8.7, 2.5 Hz), 4.44 – 4.38 (d, 2H, J = 11.2 Hz), 4.17 – 4.11 (d, 2H, J = 11.1 

Hz), 3.04 – 2.96 (td, 2H, J = 10.6, 4.1 Hz), 2.40 (s, 3H), 2.02 – 1.94 (m, 2H), 1.91 (m, 2H), 1.62 

(m, 2H), 1.57 (m, 2H), 1.32 – 1.21 (m, 2H), 1.15 – 1.05 (m, 2H), 0.94 – 0.73 (m, 16H), 0.69 – 

0.62 (m, 8H). 
13

C{
1
H} NMR (151 MHz, CDCl3): δ 162.46, 146.28, 137.16, 135.23, 131.53, 

131.32, 120.64, 120.26, 117.58, 115.57, 115.07, 108.38, 79.30, 64.93, 48.34, 40.20, 34.56, 

31.62, 25.65, 23.34, 22.45, 21.18, 21.10, 16.25. HR MS (ESI, m/z): calcd for C37H50N2O3
+
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[M+H]
+
, 571.3894; found, 571.3890. IR, cm

-1
: 340, 523, 593, 632, 729, 775, 820, 843, 869, 919, 

950, 992, 1008, 1055, 1066, 1085, 1110, 1136, 1160, 1194, 1242, 1277, 1315, 1366, 1384, 

1471, 1592, 2230 (ν
CN

), 2864, 2920, 2947. M.p. = 119-121ºC. 

Preparation of 3,6-difluorophthalonitrile.  

A 100 ml double-neck flask, equipped with a magnetic stirring bar and a reflux conden-

ser, was charged with NaBH4 (451 mg, 11.87 mmol) and immersed in an ice-cold bath at 6-7°C. 

Then, under argon sodium borohydride was dissolved in 10 ml of dry THF and 214 l (11.87 

mmol) of water was poured. Next, 20 ml of solution tetrafluoronitrile (1.08 g, 5.40 mmol) in 

THF was added. Within 30 min, reaction mass changed color to dark-purple. After 3 h, stirring 

was stopped and solvent was evaporated under reduced pressure. The residue was transferred 

onto chromatographic column packed with SiO2 and gradient elution with a mixture of CHCl3 + 

0 → 4 vol.% methanol with a control of fractions by TLC (hexane/acetone = 1:1, Rf = 0.87) af-

forded the target 3,6-difluorophthalonitrile as a beige powder (312 mg, 35%). 
1
H and 

19
F NMR 

spectrum coincided with those previously described [107].
 1

H NMR (300 MHz, acetone-d6): δ 

7.99 – 7.94 (m, 2H). 
19

F NMR (282 MHz, acetone-d6) δ -110.26 (s, 2F). IR, cm
-1

: 369, 437, 452, 

504, 621, 626, 734, 808, 846, 924, 1096, 1152, 1231, 1258, 1362, 1477, 1608, 2243 (ν
CN

), 2867, 

2922, 2954, 3076. 

 Note: in the previously published results 3,6-difluoronitrile described as «poorly 

stored»[107]. Nevertheless, according to 
1
H and 

19
F NMR spectra, no evidence of degradation 

was detected after one month of storage at room temperature. 

Preparation of 3,6-bis(2,6-bis((((1R,2S,5R)-2-isopropyl-5-

methylcyclohexyl)oxy)methyl)-4-methylphenoxy)phthalonitrile, (-Ar*O)2Pn.  

A 100 ml double-neck flask, equipped with a round magnetic stirring bar and a reflux 

condenser, was charged with 3,6-difluorophthalonitrile (87 mg, 0.53 mmol), the phenol Ar*OH 

(1.180 g, 2.65 mmol) and K2CO3 (734 mg, 5.31 mmol). 10 ml of dry DMSO was poured under 

vacuo and the suspension was degassed by three-times pumping and flushing with argon on the 

Schlenk line, immersed in the bath and heated at 80°C. After 3 h 10 min, according to TLC, full 

conversion of 3,6-difluorophthalonitrile was accomplished and reaction was stopped. After 

cooling to ambient temperature, reaction mass was poured in 100 ml of water and extracted with 

EtOAc (3 x 100 ml) with aim to remove DMSO. Combined organic phase was evaporated and 

the residue was transferred onto chromatographic column packed with SiO2. Gradient elution 
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with a mixture of hexane/EtOAc (0  10 vol.%) with a control of fractions by TLC (hex-

ane/acetone = 8:2, Rf = 0.65) afforded to the target phthalonitrile (-Ar*O)2Pn as beige crystals 

(500 mg, 93%). 
1
H NMR (600 MHz, Acetone) δ 7.34 (s, 2H), 6.74 (s, 1H), 4.55 (d, J = 11.5 Hz, 

2H), 4.28 (d, J = 11.5 Hz, 2H), 3.12 (td, J = 10.4, 4.1 Hz, 2H), 2.36 (s, 3H), 2.18 – 2.08 (m, 5H), 

1.67 – 1.58 (m, 4H), 1.35 (s, 2H), 1.03 – 0.70 (m, 22H), 0.69 (d, J = 7.0 Hz, 6H).
 13

C{
1
H} NMR 

(151 MHz, CDCl3): δ 155.67, 145.94, 136.78, 131.65, 130.17, 119.96, 112.48, 104.19, 79.25, 

64.43, 48.31, 40.17, 34.55, 31.47, 25.59, 23.28, 22.33, 21.07, 21.02, 16.18. IR, cm
-1

: 456,507, 

569, 818, 846, 865, 919, 947, 1012, 1083, 1109, 1138, 1190, 1256, 1342, 1367, 1459, 1703, 

2232 (ν
CN

), 2866, 2918, 2952. 

Preparation of 1(4),8(11),15(18),22(25)-tetrakis(2,6-bis((((1R,2S,5R)-2-isopropyl-5-

methylcyclohexyl)oxy)methyl)-4-methylphenoxy)-phthalocyanine, H2[(-Ar*O)4Pc].  

A 25 ml double-neck flask, equipped with a magnetic stirring bar and a reflux condenser, 

was charged with phthalonitrile (-Ar*O)Pn (234 mg, 0.42 mmol) and metallic magnesium (47 

mg, 2.10 mmol). Under vacuum, 3 mL of dry pentanol was added, the suspension degassed by 

three-times pumping and flushing with argon on the Schlenk line, immersed in the bath and 

heated at 155°C for 17 h. The formation of Mg(II) complex was confirmed by UV-Vis and 

MALDI-TOF mass-spectra of reaction mixture samples (UV-Vis in CHCl3, λmax/nm (Anorm.): 

704 (1.00), 635 (0.18), 371 (0.25), 324 (0.23). MALDI TOF MS, m/z: found 2306.6 for [M]
+
, 

calculated for [C148H200MgN8O12]
+
 – 2306.5). Then the solvent was removed under reduced 

pressure; the residue was dissolved in 10 mL of chloroform. Under reflux conditions, 1 mL of 

aqueous solution of trifluoroacetic acid (50 vol. %) was added. The UV/Vis spectra showed dis-

appearance of Q-band of magnesium complex at 704 nm within 5 min and appearance of Q-

bands of the metal-free phthalocyanine at 727 and 694 nm. The reaction mixture was cooled to 

ambient temperature, diluted with water, neutralized with NaHCO3, extracted with chloroform 

and then solvents were evaporated. The green residue was purified by column chromatography 

on Al2O3 with gradient elution with CHCl3 + 50 → 0 vol. % hexane and with CHCl3 + 0 → 10 

vol.% methanol. Further purification by size-exclusion chromatography on Bio-Beads SX-1 gel 

in CHCl3 + 2.5 vol.% MeOH, afforded the pure phthalocyanine H2[(-Ar*O)4Pc] as a dark-

green solid (142 mg, 59%). UV-Vis in CH2Cl2, λmax/nm (lgε): 725 (5.16), 693 (5.10), 661 

(4.57), 627 (4.45), 317 (4.69). 
1
H NMR (600 MHz, CDCl3): δ 9.27 – 9.01 (m, 4H), 8.09 – 7.81 

(m, 4H), 7.63 – 7.27 (m, 8Н), 7.24 – 7.12 (m, 4H), 5.14 – 4.10 (m, 16H). 3.07 – 2.72 (m, 8H), 
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2.47 – 0.02 (m, 158Н). MS (MALDI TOF, m/z): calcd for C148H202N8O12
+ 

[M]
+
, 2284.5; found, 

2284.0. IR, cm
-1

: 667, 754, 803, 848, 866, 920, 940, 1020, 1053, 1069, 1106, 1134, 1195, 1224, 

1247, 1312, 1334, 1367, 1467, 1593, 2866, 2918, 2952, 3297 (ν
NH

). 

Preparation of 2(3),9(10),16(17),23(24)-tetrakis(2,6-bis((((1R,2S,5R)-2-isopropyl-5-

methylcyclohexyl)oxy)methyl)-4-methylphenoxy)-phthalocyanine, H2[(β-Ar*O)4Pc].  

A 25 ml double-neck flask, equipped with a magnetic stirring bar and a reflux condenser, 

was charged with phthalonitrile (β-Ar*O)Pn (200 mg, 0.35 mmol) and metallic magnesium (17 

mg, 0.70 mmol). After addition of 5 mL of dry pentanol, the suspension was degassed by three-

times pumping and flushing with argon on the Schlenk line and was heated at 155°C for 17 h. 

The formation of Mg(II) complex was confirmed by UV-Vis and MALDI-TOF mass-spectra of 

reaction mixture samples (UV-Vis in CHCl3, λmax/nm (Anorm.): 681 (1.00), 619 (0.19), 353 

(0.51), 280 (0.26). MS (MALDI TOF, m/z): calcd for C148H200MgN8O12
+ 

[M]
+
, 2306.5; found, 

2306.8). The reaction mixture was dried by evaporation of solvent and crude residue was trans-

ferred onto column, packed with Al2O3. Gradient elution with CHCl3 + 80 → 0 vol. % hexane 

and with CHCl3 + 0 → 5 vol.% methanol gave the magnesium complex which was purified by 

size-exclusion chromatography on Bio-Beads SX-1 gel in CHCl3 + 2.5 vol.% MeOH, affording 

pure compound Mg[(-Ar*O)4Pc] as a dark-green solid (123 mg, 61%). Then, magnesium 

phthalocyaninate was dissolved in 15 mL CHCl3 and 1 mL aqueous solution of trifluoroacetic 

acid (50 vol. %) was added. UV/Vis spectra showed disappearance of the Q-band of the magne-

sium complex at 681 nm within 1 min and appearance of Q-bands of the metal free 

phthalocyanine at 707 and 671 nm. The reaction mixture was neutralized with NaHCO3, ex-

tracted with chloroform and then solvents were evaporated. The target metal free 

phthalocyanine H2[(β-Ar*O)4Pc] was isolated quantitatively after evaporation of solvents. UV-

Vis in CH2Cl2, λmax/nm (lgε): 705 (5.16), 670 (5.08), 641 (4.63), 608 (4.44), 343 (4.83), 289 

(4.60).
 1

H NMR (600 MHz, CDCl3): δ 9.40 – 9.25 (m, 4H), 8.84 – 8.76 (m, 4H), 7.73 – 7.58 (m, 

4H), 7.51 – 7.50 (m, 8H), 4.75 – 4.71 (d, 8H, J = 12.2 Hz), 4.57 – 4.54 (d, 8H, J = 12.3 Hz), 

3.14 – 3.10 (td, 8H, J = 10.6, 3.5 Hz), 2.57 – 2.55 (s, 12H), 2.31 – 2.25 (m, 8H), 2.06 – 2.01 (m, 

8H), 1.52 – 1.40 (m, 20H), 1.26 – 1.13 (m, 20H), 0.80 – 0.61 (m, 88H), -0.16 – -0.28 (m, 2H). 

IR, cm
-1

: 703, 753, 822, 847, 867, 922, 1007, 1066, 1092, 1111, 1221, 1252, 1321, 1340, 1369, 

1394, 1425, 1459, 1499, 1615, 2867, 2918, 2952, 3295 (
NH

).  
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Preparation of 1(4),8(11),15(18),22(25)-tetrakis(2,6-bis((((1R,2S,5R)-2-isopropyl-5-

methylcyclohexyl)oxy)methyl)-4-methylphenoxy)-phthalocyaninatoruthenium(II) carbonyl, 

[(-Ar*O)4PcRu](CO).  

A 25 ml double-neck flask, equipped with a magnetic stirring bar and a reflux condenser, 

was charged with phthalocyanine H2[(-Ar*O)4Pc] (31.0 mg, 13.9 µmol), Ru3(CO)12 (13.3 mg, 

20.9 µmol) and 3 mL of о-DCB. The suspension was degassed by three-times pumping and 

flushing with argon on the Schlenk line and was heated to 190°C. Under argon stream, another 

portion of Ru3(CO)12 (11 mg,17.2 µmol) was added after 30 min. Reaction mixture was refluxed 

for 1h until Q-bands of the starting ligand at 727 and 694 nm disappeared and Q-band of the 

metal complex at 673 nm appeared. The reaction mixture was transferred onto column packed 

with SiO2. Gradient elution with CHCl3 + 50 → 0 vol. % hexane and with CHCl3 + 0 → 10 

vol.% methanol afforded the blue fractions containing the target complex as a major product. 

Subsequent purification by size-exclusion chromatography on Bio-Beads SX-1 gel in CHCl3 + 

2.5 vol.% MeOH gave the pure ruthenium complex [(-Ar*O)4PcRu](CO) as a dark-blue solid 

(12 mg, 37%). UV-Vis in CH2Cl2, λmax/nm (lgε): 675 (5.32), 607 (4.67), 349 (4.51), 295 (4.96).
 
 

1
H NMR (600 MHz, CDCl3): δ 9.08 – 8.85 (m, 4H), 7.82 – 7.66 (m, 4H), 7.58 – 7.49 (m, 4H), 

7.21 – 7.04 (m, 8H), 5.46 – 3.66 (m, 16Н), 3.21 – -0.13 (m, 164H). HR MS (ESI, m/z): calcd for 

C148H201N8O13Ru
+
 [M+H]

+
, 2412.4393;found, 2412.4324. 

Preparation of 2(3),9(10),16(17),23(24)-tetrakis(2,6-bis((((1R,2S,5R)-2-isopropyl-5-

methylcyclohexyl)oxy)methyl)-4-methylphenoxy)- phthalocyaninatoruthenium(II) carbonyl, 

[(β-Ar*O)4PcRu](CO).  

A 25 mL double-neck flask, equipped with a magnetic stirring bar and a reflux conden-

ser, was charged with phthalocyanine H2[(β-Ar*O)4Pc] (81.2 mg, 36.1 µmol), Ru3(CO)12 (34.6 

mg, 54.1 µmol) and 5 mL of о-DCB. The suspension was degassed by three-times pumping and 

flushing with argon on the Schlenk line and heated to 190°C. Under argon stream another por-

tion of Ru3(CO)12 (17 mg, 26.6 µmol) was added after 15 min. The reaction mixture was re-

fluxed for 1h until disappearance of the Q-bands of the starting ligand at 701 and 671 nm and 

appearance of the Q-band of the metal complex at 659 nm. The reaction mixture was transferred 

onto column packed with SiO2. Gradient elution with CHCl3 + 50 → 0 vol. % hexane and with 

CHCl3 + 0 → 10 vol.% methanol afforded the blue fractions containing target complex as a ma-

jor product. Subsequent purification by column chromatography on Al2O3 with gradient elution 
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with CHCl3 + 20 → 0 vol. % hexane and with CHCl3 + 0 → 8 vol.% methanol gave the pure 

ruthenium complex [(β-Ar*O)4PcRu](CO) as a dark-blue solid (23 mg, 26%). UV-Vis in 

CHCl3, λmax, nm (Anorm.): 659 (1.00), 595 (0.22), 305 (0.61).
 1

H NMR (300 MHz, CDCl3): δ 9.21 

– 9.04 (m, 4H), 8.76 – 8.60 (m, 4H), 7.52 – 7.41 (m, 8H), 7.20 – 7.06 (m, 4H), 4.77 – 4.34 (m, 

16H), 3.23 – 0.88 (m, 164H). HR MS (ESI, m/z): calcd for C148H201N8O13Ru
+
 [M+H]

+
, 

2412.4393; found, 2412.4370. IR, cm
-1

: 383, 440, 526, 593, 666, 749, 823, 846, 868, 920, 955, 

1009, 1049, 1083, 1101, 1215, 1328, 1367, 1396, 1455, 1611, 1651, 1962 (ν
CO

), 2866, 2919, 

2952. 

4.6. Catalysis 

Cyclopropanation of alkenes catalyzed by ruthenium phthalocyanines bearing chiral 

substituents [(- or β-Ar*O)4PcRu](СO).  

Typical procedure: A 2mM solution of ruthenium complex (125-250 μL for 2.5-5⸱10
-4 

mmol, 0.10-0.20 mol.%) in dichloromethane (purified by filtration through alumina prior to use) 

was placed in a 1 mL vial and was dried under stream of Ar. Then, 0.25 mL of tert-butyl acetate 

solvent was added followed by addition of alkene (0.25 mmol, 1M, 1 eq.). The solution was 

bubbled with a stream of argon for 1-2 min and 1.1 eq. of diazo compound was slowly added 

during 2.5 h by a syringe pump (EDA – 2 M in tert-butyl acetate; N2CHCN – 0.56 М in 

C2H4Cl2; CF3CHN2 – 0.94 M in С2H4Cl2; N2CHTMS – 2 M in hexane; N2CHCO2tBu – 15 % 

solution in toluene; N2CHCO2Bn – 10 % solution in toluene). The reaction mixtures were 

analyzed by GC-MS after 3 h and by 
1
H NMR after 3.5 h. Substrate conversion and a trans/cis 

ratio of the obtained cyclopropanes were determined from 
1
H NMR data and enantimeric 

excesses (ee) were calculated from GC-MS data. The spectral characteristics for the reaction 

products were identical to those previously reported.  
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