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 Abstract 

 Large  scale  genomic  resources  can  place  genetic  variation  into  an  ecologically  informed 

 context.  To  advance  our  understanding  of  the  population  genetics  of  the  fruit  fly  Drosophila 

 melanogaster  ,  we  present  an  expanded  release  of  the  community-generated  population 

 genomics  resource  Drosophila  Evolution  over  Space  and  Time  (DEST  2.0;  https://dest.bio/  ). 

 This  release  includes  530  high-quality  pooled  libraries  from  flies  collected  across  six  continents 

 over  more  than  a  decade  (2009-2021),  most  at  multiple  time  points  per  year;  211  of  these 

 libraries  are  sequenced  and  shared  here  for  the  first  time.  We  used  this  enhanced  resource  to 

 elucidate  several  aspects  of  the  species’  demographic  history  and  identify  novel  signs  of 

 adaptation  across  spatial  and  temporal  dimensions.  We  showed  that  patterns  of  secondary 

 contact,  originally  characterized  in  North  America,  are  replicated  in  South  America  and 

 Australia.  We  also  found  that  the  spatial  genetic  structure  of  populations  is  stable  over  time,  but 

 that  drift  due  to  seasonal  contractions  of  population  size  causes  populations  to  diverge  over 

 time.  We  identified  signals  of  adaptation  that  vary  between  continents  in  genomic  regions 

 associated  with  xenobiotic  resistance,  consistent  with  independent  adaptation  to  common 

 pesticides.  Moreover,  by  analyzing  samples  collected  during  spring  and  fall  across  Europe,  we 

 provide  new  evidence  for  seasonal  adaptation  related  to  loci  associated  with  pathogen 

 response.  Furthermore,  we  have  also  released  an  updated  version  of  the  DEST  genome 

 browser.  This  is  a  useful  tool  for  studying  spatio-temporal  patterns  of  genetic  variation  in  this 

 classic model system. 
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 Introduction 

 Drosophila  melanogaster  is  a  foundational  model  system  in  biology.  Seminal  studies  in  this 

 species  have  played  important  roles  in  the  development  of  modern  population  genetics,  from 

 empirical  tests  of  genetic  drift  to  classic  examples  of  adaptation  (e.g.,  Buri  1956;  Lewontin  1974; 

 Parsons  1975;  McDonald  and  Kreitman  1991;  Powell  1997;  Casillas  and  Barbadilla  2017;  Flatt 

 2020)  .  Beyond  its  role  as  a  model  genetic  system  (Hales  et  al.  2015)  ,  D.  melanogaster  has  a 

 fascinating  natural  history  in  its  own  right.  The  species  originated  in  southern-central  Africa 

 (Lachaise  et  al.  1988;  Lachaise  and  Silvain  2004;  Sprengelmeyer  et  al.  2020)  ,  splitting  from  its 

 sister  taxon,  D.  simulans,  between  1.4  and  3.6  million  years  ago  (Obbard  et  al.  2009;  Obbard  et 

 al.  2012;  Suvorov  et  al.  2022)  .  While  the  species  may  have  originally  been  a  marula  fruit 

 specialist  in  the  seasonal  woodlands  of  southern-central  Africa  (Mansourian  et  al.  2018; 

 Sprengelmeyer  et  al.  2020)  ,  it  later  adapted  as  a  human  commensal,  ultimately  developing  a 

 cosmopolitan  distribution  across  all  human-inhabited  continents  (  Kapun  et  al.  2021;  Chen  et  al. 

 2024)  . 

 The  recent  development  of  genomic  resources  for  D.  melanogaster  has  led  to  key 

 discoveries  about  its  phylogeography.  For  example,  demographic  inference  has  revealed  that 

 modern  fruit  fly  populations  expanded  out  of  Africa  after  the  last  glacial  maximum  ~10,000  ya 

 (Kapopoulou  et  al.  2020)  ,  entering  Asia  around  3-4  kya  (Chen  et  al.  2024),  and  Europe  around 

 ~1,800  ya  (Sprengelmeyer  et  al.  2020)  .  European  populations  split  into  spatially  defined  clusters 

 across  Europe  ~1,000  ya  (Kapun  et  al.  2020;  Kapun  et  al.  2021)  .  In  the  past  two  centuries, 

 African  and  European  populations  experienced  a  secondary  contact  event  in  North  America  and 

 Australia,  likely  due  to  mercantile  activities  and  immigration  (Capy  et  al.  1986;  David  and  Capy 

 1988;  Caracristi  2003;  Kao  et  al.  2015;  Bergland  et  al.  2016)  .  Unlike  its  sister  species  D. 

 simulans,  D.  melanogaster  is  capable  of  overwintering  across  a  broad  swath  of  temperate 

 habitats  (Izquierdo  1991;  Machado  et  al.  2016  ;  but  see  Serga  et  al.  2015)  and  can  establish 

 resident  populations  across  its  range  (e.g.,  Ives  1945;  Ives  1970;  Machado  et  al.  2016;  Kapun  et 

 al.  2021;  Nunez  et  al.  2024)  .  In  temperate  regions,  D.  melanogaster  reaches  its  largest  local 

 population  size  during  the  peak  of  the  growing  season  (e.g.,  late  summer  and  early  fall)  and 

 drastically  decreases  upon  the  onset  of  winter.  These  yearly  boom-and-bust  cycles  are 

 responsible  for  estimates  of  “local”  population  size  that  are  orders  of  magnitude  smaller  than  the 

 “global” population size  (Duchen et al. 2013; Sprengelmeyer  et al. 2020; Nunez et al. 2024)  . 

 Over  the  past  two  decades,  D.  melanogaster  has  been  the  subject  of  numerous 

 population  genomics  studies,  which  have  collectively  illuminated  our  general  understanding  of 
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 the  evolution,  the  demography  and  the  genetic  basis  of  adaptation  (e.g.,  reviewed  in  Casillas 

 and  Barbadilla  2017;  Haudry  et  al.  2020;  Guirao-Rico  and  González  2021)  .  Like  many  other 

 cosmopolitan  drosophilids,  D.  melanogaster  populations  commonly  occur  along  spatially 

 distributed  environmental  gradients  (e.g.,  latitudinal  and  altitudinal)  leading  to  the  formation  of 

 clines,  with  a  large  body  of  work  providing  evidence  for  spatially  varying  (clinal)  selection  (De 

 Jong  and  Bochdanovits  2003;  Hoffmann  and  Weeks  2007;  Fabian  et  al.  2012;  Adrion  et  al. 

 2015;  Mateo  et  al.  2018;  Flatt  2020)  .  Moreover,  populations  of  D.  melanogaster  are  known  to 

 experience  strong  fluctuating  selection  regimes  across  the  changing  seasons  (e.g.,  Schmidt  and 

 Conde  2006;  Bergland  et  al.  2014;  Behrman  et  al.  2015;  Rajpurohit  et  al.  2018;  Erickson  et  al. 

 2020;  Machado  et  al.  2021;  Rudman  et  al.  2022;  Nunez  et  al.  2024;  reviewed  in  Johnson  et  al. 

 2023)  .  For  example,  worldwide  analyses  of  genetic  variation  have  found  that  chromosomal 

 inversion  polymorphisms  are  often  involved  in  clinal  and/or  seasonal  adaptation  (Lemeunier  and 

 Aulard  1992;  Kapun  et  al.  2016;  Kapun  and  Flatt  2019;  Kapun  et  al.  2023;  Nunez  et  al.  2024)  . 

 Likewise,  several  studies  have  successfully  linked  clinally  and/or  seasonally  varying 

 polymorphisms  in  D.  melanogaster  to  fitness-relevant  phenotypes  (Lemeunier  and  Aulard  1992; 

 Schmidt  et  al.  2008;  Cogni  et  al.  2014;  Paaby  et  al.  2014;  Kapun  et  al.  2016;  Kapun  et  al.  2016; 

 Durmaz  et  al.  2019;  Kapun  and  Flatt  2019;  Betancourt  et  al.  2021;  Yu  and  Bergland  2022; 

 Glaser-Schmitt  et  al.  2023;  Kapun  et  al.  2023;  Nunez  et  al.  2024)  .  Populations  of  D. 

 melanogaster  can  thus  be  thought  of  as  powerful  “natural  laboratories”  to  study  adaptation 

 across  spatial  and  temporal  scales,  and  to  disentangle  the  contributions  of  selection  and 

 demography  (Jensen  et  al.  2005;  Ometto  et  al.  2005;  Teshima  et  al.  2006;  Thornton  and  Jensen 

 2007; Pavlidis et al. 2010)  . 

 Despite  the  status  of  D.  melanogaster  as  a  model  organism,  generating  genomic 

 datasets  that  capture  the  breadth  and  depth  of  genetic  and  phenotypic  variation  across  the 

 cosmopolitan  range  of  the  species  is  a  complex  task  for  single  research  groups.  Furthermore, 

 existing  data  for  this  species  are  heterogeneous  across  studies:  several  studies  use 

 resequenced  inbred  lines  (Langley  et  al.  2012;  Mackay  et  al.  2012;  Lack  et  al.  2015;  Lack  et  al. 

 2016)  ,  while  others  use  sequencing  of  outbred  individuals  sequenced  as  a  pool  (i.e.,  Pool-Seq; 

 Schlötterer  et  al.  2014)  ,  and  the  two  data  types  can  be  difficult  to  reconcile.  For  these  reasons, 

 we  have  previously  developed  the  Drosophila  Evolution  over  Space  and  Time  (  DEST  ; 
 https://dest.bio/)  resource,  with  the  aim  of  facilitating  collaborative  population  genomic  studies  in 

 D.  melanogaster  (Kapun  et  al.  2021)  .  The  DEST  resource  is  the  result  of  the  collaborative 

 efforts  of  the  European  Drosophila  Population  Genomics  Consortium  (  DrosEU  , 
 https://droseu.net/  ;  Kapun  et  al.  2020)  and  the  Drosophila  Real-Time  Evolution  Consortium, 
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 DrosRTEC  (Machado  et  al.  2021)  .  DEST  represents  both  a  tool  for  mapping  genomic  data,  as 

 well  as  an  open-access  data  repository  of  worldwide  genetic  variation  in  the  fruit  fly.  As  a 

 bioinformatics  tool,  DEST  is  a  pipeline  for  mapping  Pool-Seq  reads  to  a  hologenome  reference 

 of  fly  (i.e.,  D.  simulans  and  D.  melanogaster  )  and  microbial  genomes,  as  well  as  for  removing 

 contamination  from  other  species,  such  as  D.  simulans.  The  tool  is  a  highly  modular  mapping 

 pipeline  that  uses  a  Docker  image  (Boettiger  2015)  and  Snakemake  (Köster  and  Rahmann 

 2012)  to  ensure  independence  of  operating  systems.  As  a  genomic  panel,  the  original  release  of 

 the  dataset  (DEST  1.0)  consisted  of  271  Pool-Seq  D.  melanogaster  samples  (>  13,000  flies) 

 collected  in  more  than  20  countries  on  four  continents  at  different  seasons  and  across  multiple 

 years.  Using  these  data,  we  had  previously  described  general  patterns  of  phylogeographic 

 structure  across  four  continents,  developed  a  panel  of  geographically  informative  markers 

 (  GIMs  )  to  assess  the  provenance  of  fly  samples  with  90%  accuracy,  and  we  applied 

 demographic  inference  tools  (Jouganous  et  al.  2017)  to  infer  the  history  of  population 

 subdivision in Europe  (Kapun et al. 2020)  . 

 Here,  we  introduce  the  second  release  of  the  DEST  resource  (DEST  2.0),  with 

 substantial  expansions  in  several  methodological  and  biological  aspects.  From  a  methodological 

 perspective,  we  have  broadened  the  utility  of  our  Docker  application  to  allow  for  single 

 end-reads  to  be  mapped,  a  change  that  allows  for  older  datasets  to  be  integrated  into  DEST.  We 

 have  explored  levels  of  contamination  by  other  species  in  DEST  pools  using  a  new  highly 

 efficient  k  -mer  based  approach  (Gautier  2023)  .  We  have  also  estimated  genome-wide  rates  of 

 recombination  using  our  Pool-Seq  data  by  applying  a  deep  learning  approach  (  ReLERNN  ; 

 Adrion  et  al.  2020).  All  data  on  genetic  variation  and  population  genetic  summary  statistics  can 

 be  visualized  and  retrieved  using  our  new  and  improved  genome  browser,  which  has  been  built 

 with the latest JBrowse version 2  (Diesh et al. 2023)  . 

 From  a  biological  standpoint,  DEST  2.0  includes  a  substantial  expansion  of  the  size  and 

 scope  of  the  initial  dataset.  The  current  release  includes  530  high  quality  Pool-Seq  samples 

 (>32,000  flies),  comprising  a  combination  of  the  previous  DEST  release  with  newly  sequenced 

 pools,  collected  between  2016  and  2021  by  DrosEU,  as  well  as  publicly  available  Pool-Seq 

 samples  from  published  studies  of  wild-derived  D.  melanogaster  (Reinhardt  et  al.  2014;  Svetec 

 et  al.  2016;  Fournier-Level  et  al.  2019;  Lange  et  al.  2022;  Nunez  et  al.  2024)  .  To  showcase  the 

 utility  of  DEST  2.0,  we  performed  several  analyses  to  infer  demography  and  selection,  powered 

 by  the  rich  spatial  and  temporal  density  of  our  dataset.  Below,  we  divide  these  analyses  into  two 

 general  categories:  “  spatial  insights  ”  and  “  temporal  insights  ”.  For  each  category,  we  highlight 

 case  studies  of  demographic  inference  and  genome-wide  scans  for  adaptive  differentiation.  Our 
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 analyses  provide  novel  insights  into  patterns  of  demography  and  selection  of  natural  D. 

 melanogaster  populations  and  generate  hypotheses  that  can  be  tested  with  the  power  of  the 

 Drosophila  genetics  toolbox  in  future  work.  In  general,  our  work  illustrates  the  value  of  DEST  2.0 

 as an open resource for the  Drosophila  evolutionary  genetics and genomics community. 

 Results 

 DEST 2.0, an expanded  Drosophila  population genomics resource 
 The  current  DEST  release  (v2.0)  includes  530  high-quality  samples  as  well  as  an  additional 

 207  pools  of  varying  quality  (excluded  from  the  analysis;  see  Table  S1  ).  In  its  totality,  the  737 

 pooled  libraries  originated  from  multiple  sources  including  both  releases  of  the  DEST  dataset 

 (i.e.,  v1.0  and  v2.0),  the  Drosophila  Genome  Nexus  (  DGN  ;  Lack  et  al.  2016;  including  one 

 sample  from  D.  simulans  )  ,  as  well  as  from  previous  publications  (i.e.,  Reinhardt  et  al.  2014; 

 Svetec  et  al.  2016;  Fournier-Level  et  al.  2019;  Lange  et  al.  2022;  Nunez  et  al.  2024)  .  The  737 

 samples  within  DEST  2.0  vary  in  sequencing  characteristics,  ranging  from  a  read  depth 

 (abbreviated  as  “  RD  ”)  of  4X  to  300X  and  from  an  effective  haploid  sample  size  (  n  e  ;  the  sample 

 size  accounting  for  pool  size  and  pool-seq  sampling  effects)  of  3.7  to  77.2  (  Fig.  S1  ;  see  Text 
 S1  ;  Kolaczkowski  et  al.  2011;  Feder  et  al.  2012;  Gautier  et  al.  2013)  .  To  ensure  the  highest 

 possible  quality  of  each  sample,  we  calculated  a  battery  of  sequencing  statistics  including  rate 

 of  PCR  duplication,  fraction  of  missing  data,  coverage,  and  number  of  private  single  nucleotide 

 polymorphisms  (SNPs)  across  the  totality  of  the  dataset  (all  737  pools).  In  addition,  we  also 

 estimated  the  pN/pS  statistic  (i.e.,  the  ratio  of  the  number  of  genome-wide  non-synonymous 

 polymorphisms  to  the  number  of  genome-wide  synonymous  polymorphisms,  as  in  Kapun  et  al. 

 2021;  Fig.  S2  ),  and  assessed  non-  D.  melanogaster  contamination  through  competitive  mapping 

 and  k-mer  approaches  (Kapun  et  al.  2021,  Gautier  2023;  Fig.  S3  ).  Next,  we  used  a  principal 

 component  analysis  (PCA)  on  all  quality  control  metrics  to  assess  whether  samples  should  be 

 included  or  excluded  from  downstream  analyses  (see  Fig.  2A  and  Fig.  S4  ;  see  Materials  and 

 Methods:  Estimation  of  nucleotide  diversity  ).  Finally,  136  samples  that  consisted  of  multiple 

 replicates  from  the  same  locality  each  with  low  coverage  were  collapsed  into  a  single  sample. 

 For  a  more  detailed  description  on  Data  filtering  procedures  and  recommendations  for  users 

 see  Text  S2  .  Based  on  the  results  of  these  analyses,  we  obtained  a  final  high-quality  dataset  of 

 530  samples  and  4,789,696  SNPs,  across  autosomes  and  the  X  chromosome  for  downstream 

 analyses.  The  high  quality  dataset  contains  representative  samples  from  45  countries  across  all 

 continents  (22  from  Africa,  40  from  Asia,  302  from  Europe,  141  from  North  America,  17  from 
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 Australia,  and  seven  from  South  America;  Fig.  1A  )  and  across  a  time  span  of  12  years 

 (2009-2021).  In  total,  our  530  high-quality  samples  represent  164  localities,  of  these,  112  were 

 sampled  only  in  one  year  (68%),  18  were  sampled  across  two  years  (11%),  and  the  rest  (34; 

 21%)  were  sampled  multiple  times  across  several  years  (  Fig.  1B  ).  Overall,  descriptions  and 

 basic  subsetting  of  SNP  statistics  for  DEST  2.0  are  shown  in  Table  1.  Unless  stated  otherwise, 

 all of the following analyses are based on the 530 high-quality samples. 

 Figure  1.  Spatial  and  temporal  scales  of  DEST.  (A)  World  map  showing  samples  part  of  DEST  1.0  (Kapun  et  al.  2020),  DEST  2.0 

 (this  study),  and  the  DGN  (Lack  et  al.  2016).  (B)  Sampling  density  across  a  decade  of  sampling  contained  in  the  DEST  dataset.  The 

 colors are consistent with panel A. 
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 Table  1:  SNP  calling  information  for  DEST  2.0  across  major  autosomes  and  chromosome  X.  SNPs  inside  the  inversion  are 

 estimated  of  In(2L)t  for  2L  ,  In(2R)NS  for  2R  ,  In(3L)P  for  3L  ,  and  the  joint  region  among  In(3R)K,  In(3R)P,  and  In(3R)Mo  . 

 Estimated recombination rates (i.e., rate of cross-over; “  c  ”). Functional annotations are only reported for  biallelic sites. 

 SNP type  2L  2R  3L  3R  X 

 Total (All)  1,080,586  901,878  1,069,441  1,212,752  525,039 

 Bi-allelic  1,048,510  877,852  1,039,460  1,182,310  516,077 

 Inside inversions  569,713  228,826  631,556  159,598  NA 

 In recombining regions (  c  > 0)  997,162  836,457  976,915  1,074,768  482,162 

 Protein-coding  796,420  731,794  793,866  944,372  40,4881 

 Intergenic  828,039  659,966  824,903  929,539  401,586 

 Synonymous  95,275  91,052  90,635  101,504  49,055 

 Non-synonymous  71,534  75,921  72,843  90,905  25,072 

 Proportion of missing data  0.0511  0.0507  0.0508  0.0493  0.0533 
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 Figure  2.  Patterns  of  filtering,  genetic  variation,  and  recombination  in  DEST  2.0.  (A)  Visualization  of  filtering  information  of 

 samples  using  PCA.  Each  dot  is  a  sample’s  QC  metric  and  the  color  indicates  the  filtering  decision  (legend:  Pass:  samples  that  pass 

 filter  and  are  used  in  downstream  analyses;  Collapse:  biological  and/or  technical  replicates  collapsed  into  a  single  representative 

 sample;  otherwise  samples  were  excluded  due  to  abnormal  pN/pS  levels  of  high  levels  of  missing  data  or  contamination).  (B) 
 Nucleotide  diversity  (  π  )  calculated  across  continents  (see  Estimation  of  nucleotide  diversity  for  details).  (C)  Recombination 

 landscape  of  chromosome  2L  in  samples  representative  of  the  75  D.  melanogaster  populations  analyzed  (one  gray  line  per  sample). 

 Light  blue  area  highlights  the  region  spanning  the  ln(2L)t  inversion.  Average  (black  line)  and  overall  distribution  envelope  (orange 

 shaded ribbon; delineated by the average values +/- 1.96 s.d.) are shown. 
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 Estimates of nucleotide diversity and recombination rates 
 To  describe  patterns  of  genetic  variation  in  the  DEST  2.0  data,  we  analyzed  nucleotide  diversity 

 π  (Tajima  1983;  Tajima  1989)  estimated  with  npStat  (Ferretti  et  al.  2013)  .  As  previously 

 observed  (e.g.,  Begun  and  Aquadro  1993;  Andolfatto  2001;  Mackay  et  al.  2012;  Kapun  et  al. 

 2021)  ,  we  found  that  sub-Saharan  African  populations  had  higher  levels  of  genetic  variation 

 than  other  populations  (  Fig.  2B  ),  consistent  with  out-of-Africa  demography  (Li  and  Stephan 

 2006; Lack et al. 2016; Arguello et al. 2019; Kapopoulou et al. 2020; Kapun et al. 2021)  . 

 We  inferred  levels  of  genome-wide  recombination  across  75  samples  representative  of 

 the  populations  analyzed  (see  Materials  and  Methods:  Recombination  landscape  )  using  the 

 deep  learning  method  ReLERNN  (Adrion  et  al.  2020  ;  see  Fig.  2C;  Fig.  S5  ).  Overall, 

 recombination  rate  is  highly  heterogeneous  among  samples  and  ,  among  chromosomes 

 (two-way  ANOVA,  F  74,296  =  20.0,  P  <  1.0x10  -25  ,  and  F  4,296  =  1605.1,  P  <  1.0x10  -25  ,  respectively; 

 Tukey’s  HSD  tests,  all  pairwise  comparisons  between  chromosomes  P  <  1.0x10  -7  ,  except  for  3R 

 vs  .  2R,  where  P  =  0.073).  In  most  populations  there  is  a  statistically  significant  positive 

 correlation  between  recombination  rate  and  genetic  diversity,  consistent  with  recurrent  genetic 

 hitchhiking and background selection  (Begun and Aquadro  1993  ;  Table S2  ). 
 The  presence  of  common  cosmopolitan  inversions  had  a  noticeable  impact  on  the 

 recombination  landscape.  Average  recombination  rates  were  significantly  lower  around  the 

 inversion  breakpoints  for  five  out  of  the  seven  inversions  analyzed  (Wilcoxon  test,  P  <  0.01;  for 

 inversions  In(2L)t  ,  In(3L)P  ,  In(3R)Payne  ,  In(3R)C  and  In(3R)K  ;  Table  S3  ).  Recombination  was 

 also  lower  for  those  regions  spanning  the  three  inversions  than  for  the  rest  of  the  chromosome 

 (Wilcoxon test,  P  < 0.01; for inversions  In(2R)NS  ,  In(3R)Payne  and  In(3R)K  ;  Table S3  ). 
 PCA  analyses  showed  that  populations  belonging  to  the  same  geographic  cluster  share 

 similar  recombination  landscapes  (  Fig.  S6  ;  see  Table  S1  for  metadata).  The  geographic 

 clustering  is  more  evident  when  considering  relative  values  of  recombination,  i.e.,  the  ratio  of 

 the  average  recombination  rate  of  each  window  to  the  average  recombination  across  the 

 respective  chromosome,  and  is  therefore  informative  on  the  recombination  landscape  rather 

 than the absolute recombination rate (compare panels A and B with panels C and D in  Fig. S6  ). 

 Spatial population structure is defined by latitudinal and longitudinal clines 
 To  investigate  patterns  of  population  structure  in  the  DEST  2.0  dataset,  we  performed  PCA  on 

 all  530  samples  that  passed  quality  filters.  We  used  biallelic  SNPs  from  the  euchromatic  regions 

 of  the  four  major  autosome  arms  (  Figs.  3A-B;  also  see  Fig.  S7  ).  When  all  autosomes  are 

 considered,  PC1  divides  samples  from  sub-Saharan  Africa  from  all  other  continents.  At  the  level 
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 of  individual  regions,  PC1  is  correlated  with  both  latitude  and  longitude  in  North  America  (  r  = 

 -0.7;  P  =  2x10  -16  and  r  =  -0.59;  P  =  2.2x10  -16  ,  respectively)  and  longitude  in  Europe  (  r  =  -0.46;  P 

 =  2.2x10  -16  ;  Fig.  3C-D  ).  These  patterns  of  population  structure  were  consistent  with  previously 

 published  studies  (Kapun  et  al.  2020;  Kapun  et  al.  2021;  Machado  et  al.  2021)  .  Both  PC1  and 

 PC2  primarily  divided  African  samples  from  all  other  clusters,  and  PC2  also  separated  samples 

 in  Europe  from  samples  in  North  America,  South  America,  and  Australia.  PC3  primarily  resolved 

 discrete  European  clusters  and  also  suggests  that  North  American,  South  American  and 

 Australian samples behave like admixed samples  (Ma  and Amos 2012)  . 

 Figure  3.  Principal  component  analysis  and  projections.  (A)  PCA  projections  showing  PCs  1  and  2.  Analyses  were  done  for 

 each  chromosome  arm  and  all  arms  combined.  The  proportion  of  variance  explained  (VE)  is  shown  at  the  corners  of  each  axis.  (  B) 
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 PCA  projections  showing  PCs  1  and  3.  (  C)  Projections  of  PCs  1,  2,  and  3  relative  to  latitude  for  Europe  and  North  American  pools. 

 (  D)  Same  as  C  but  for  longitude.  Notice  that,  in  this  analysis,  Asia  refers  primarily  to  samples  from  Turkey  (which  is  located  in 

 Western Asia). 

 The  patterns  seen  across  chromosome-specific  PCA  were  strongly  correlated  to  that  of 

 the  whole  genome  for  both  PCs  1  and  2  (  r  2L-All  =  ~0.97,  r  2R-All  =  ~0.98,  r  3L-All  =  ~0.97,  r  3L-All  =  ~0.96; 

 note  that  all  P  are  <  1.0x10  -15  ).  PC3  is  peculiar  in  that  the  whole-genome  results  were  similar 

 only  to  those  for  chromosomes  2R  (  r  2R-All  =  0.95;  P  =  2.2x10  -16  )  and  3L  (  r  3L-All  =  -0.95;  P  -value  = 

 2.2x10  -16  ),  but  not  for  2L  (  r  2L-All  =  0.18;  P  =  1.4x10  -5  )  or  3R  (  r  3R-All  =  0.05;  P  =  0.17).  This 

 observation  suggests  that  the  signal  captured  by  PC3  at  2L  and  3R  were  strongly  influenced  by 

 the  frequencies  of  In(2L)t  and  In(3R)Payne  ,  two  large  adaptive  cosmopolitan  inversion 

 polymorphisms  (e.g., Kapun et al. 2023; Nunez et al.  2024  ). 

 We  investigated  clines  in  the  frequencies  of  cosmopolitan  inversion  polymorphisms  in 

 DEST  2.0  using  inversion-specific  SNPs  that  are  in  strong  linkage  disequilibrium  with  the 

 inversion  breakpoints  (Kapun  et  al.  2014;  Fig.  S8  ).  Many  inversions  showed  significant  clinal 

 patterns  along  latitude  or  longitude  that  were  consistent  across  different  continents  (see  Table 
 S4  for  statistical  details).  Our  results  are  in  line  with  previous  observations,  in  particular  for 

 In(3R)Payne  (Lemeunier  and  Aulard  1992;  Kapun  et  al.  2016;  Kapun  and  Flatt  2019;  Kapun  et 

 al.  2020;  Kapun  et  al.  2023)  ,  which  showed  significant  latitudinal  clines  in  North  America, 

 Europe  and  along  the  Australian  east  coast.  Notably,  these  patterns  did  not  differ  across 

 sampling  years  in  Europe  and  Australia,  indicating  temporal  stability  of  the  clines  on  these 

 continents.  Latitudinal  clines  were  also  significant  for  In(2L)t  and  In(3R)Mo  in  North  America  and 

 Australia,  and  for  In(2R)NS  and  In(3L)P  in  North  America,  Australia  and  Europe.  Additionally, 

 while  overall  not  being  very  frequent,  In(2R)NS  exhibited  a  highly  significant  longitudinal  cline 

 across European populations. 

 Characterizing latent population structure in European and North American populations 
 We  applied  k  -means  clustering  analysis  on  the  first  three  autosomal  PCs  to  identify  spatially 

 defined  clusters.  First,  with  k  =  4  clusters  we  fully  recapitulated  the  results  of  DEST  1.0  (  Fig. 
 4A  ),  with  clusters  composed  of  sub-Saharan  African  samples,  the  Americas,  and  two  clusters  in 

 Europe  (as  in  Kapun  et  al.  2021;  Europe  West  [  EU-W  ]  and  Europe  East  [  EU-E  ]).  North  African 

 and  West  Asian  samples  clustered  with  EU-W.  Australian  samples  were  split  between  the 

 clusters  dominated  by  Western  Europe  and  the  Americas.  We  also  estimated  population 

 clusters  using  k  =  8,  which  was  estimated  to  be  the  optimal  value  based  on  the  gap  statistic 

 (Tibshirani  et  al.  2001  ;  Fig.  4B-inset  ).  For  k  =  8,  new  hypotheses  of  latent  structure  emerged 
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 (  Fig.  4B  ).  In  Europe,  the  previously  known  EU-W  and  EU-E  clusters  appeared,  separated  by  a 

 putative  third  cluster  at  the  boundary  between  EU-E  and  EU-W  (i.e.,  an  “overlapping  zone”;  Fig. 
 4C  ).  Newer  populations  (namely  the  Americas  and  Australia),  previously  dominated  by  a  single 

 cluster,  were  divided  into  three  clusters:  the  Caribbean  and  most  of  South  America  (henceforth 

 “Latin  America”),  a  southeast  U.S.  coastal  group  (henceforth  “Southeast”),  and  all  other  samples 

 from  the  Americas  (henceforth  “mainland”;  see  green,  yellow,  and  pink  points,  respectively,  in 

 Fig.  4B  ).  Notably,  samples  from  Australia  do  not  show  any  new  levels  of  clustering  when  k  =  8, 

 relative  to  k  =  4.  Instead,  they  retain  their  original  cluster  association,  whereby  samples  from  the 

 south  of  the  continent  cluster  with  samples  from  EU-W,  and  those  from  the  north  cluster  with 

 North  American  populations  (  Fig.  4A  and  4B  ).  We  used  model-based  demographic  inference 

 with  moments  (Jouganous  et  al.  2017)  to  test  the  statistical  support  of  these  additional 

 populations  suggested  by  the  k  =  8  analysis  while  simultaneously  estimating  demographic 

 parameters.  Specifically,  we  fit  simple,  neutral  population  history  models  that  we  call 

 “one-population,”  “split,”  “admixture,”  and  “two-splits”  (see  Fig.  S9  ;  see  description  in  the 

 Materials  and  Methods:  Demographic  inference  with  moments  )  to  subsets  of  the  DEST  2.0 

 variant  data  consisting  of  the  Southeast  and  mainland  clusters,  all  samples  from  the  Americas, 

 and European samples (  Table S5  ). 
 First,  we  fit  the  “one-population”  and  two-population  “split”  models  to  the  Southeast  and 

 mainland  clusters  in  North  America  to  conclude  that  “one-population”  better  describes  the  region 

 (Wilcoxon  signed-rank  test  on  model  likelihoods,  P  =  7.02  x  10  -7  ;  Fig.  S10A  ).  This  result,  in 

 which  there  is  no  strong  evidence  of  historic  divergence  between  the  two  clusters,  along  with 

 low  F  ST  (0.034),  supports  the  parsimony  of  clustering  at  k  =  4.  Thus,  it  is  likely  that  the  primary 

 cause  of  the  Southeast  cluster  in  k  =  8  analysis  is  the  disproportionately  dense  sampling  around 

 Charlottesville, VA. 

 We  then  fit  the  “one-population”  and  “split”  models  to  a  population  consisting  of  the 

 Southeast  and  mainland  clusters  and  the  Latin  America  cluster,  concluding  again  that 

 “one-population”  outperforms  “split”  (Wilcoxon  signed-rank  test  on  model  likelihoods,  P  =  6.90  x 

 10  -9  ;  Fig.  S10B  ).  This  result  is  complemented  by  the  low  F  ST  =  0.062.  This  secondary  result 

 supports  prior  treatment  of  all  flies  of  the  Americas  as  a  single  cluster.  This  result  does  not 

 contradict  our  findings  of  clines  within  the  Americas,  because  the  demes  -type  models  employed 

 rely on discretizing geography, and are thus largely blind to gradual changes with location. 

 In  Europe,  we  conducted  model  comparisons  among  a  two-population  “split”  model, 

 three  variants  of  the  three-population  “admixture”  model  (in  which  EU-W,  the  overlap  region, 

 and  EU-E  are  respectively  treated  as  the  admixed  population),  and  three  variants  of  the 
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 three-population  “two-splits”  model  (in  which  EU-W,  the  overlap  region,  and  EU-E  are 

 respectively  treated  as  a  sister  group  to  the  other  two  populations).  As  in  the  Americas,  we 

 found  support  for  the  parsimonious  two-population  models  that  does  not  include  the  overlap 

 zone  as  a  discrete  population  (corrected  Dunn's  tests  on  model  likelihoods,  P  =  3.3  x  10  -7  ;  Fig. 
 S10C  ).  This  result  and  the  low  three-way  F  ST  (0.036),  indicate  that  only  the  EU-E  and  EU-W 

 clusters  are  distinguished  as  discrete  populations,  and  that  the  overlap  zone  may  simply  be  an 

 active  area  of  gene  flow  between  EU-W  and  EU-E.  Overall,  these  findings  suggest  that  the 

 optimal  demographic  partitioning  of  the  data  coincides  with  clustering  at  k  =  4,  as  reported  in  the 

 original DEST release. 

 Figure  4:  Spatial  population  structure  and  admixture  in  worldwide  Drosophila  .  (A)  Clustering  map,  based  on  PCA  projections 

 1-3  built  using  k  =  4  (as  reported  in  DEST  1.0).  (B)  Same  as  A  but  with  k  =8  (the  optimal  number  of  clusters  as  defined  by  a  heuristic 

 Gap  statistic  search).  (C)  Zoom  view  of  k  =  8  into  Europe  to  show  the  hypothetical  overlap  zone.  (D)  Zoom  view  of  k  =  8  into  North 

 America showing the hypothetical “Latin America” cluster (green) and Southeast cluster (yellow). 

 Next,  we  investigated  the  signals  in  the  data  that  may  have  given  rise  to  the  clusters 

 proposed  by  k  =  8.  We  focused  our  analyses  on  the  role  of  African–European  admixture  in  the 

 samples,  as  this  is  a  primary  driver  of  standing  genetic  variation  in  recently  expanded 
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 populations  (Bergland  et  al.  2016)  .  To  accomplish  this,  we  first  modeled  the  proportion  of  African 

 and  European  admixture  in  the  Americas  and  Australian  pools  as  a  linear  combination  of  two 

 “ancestral  populations”  from  Europe  and  Africa  (see  Dataset  S1  ).  Our  estimates  of  African 

 admixture  were  consistent  with  previously  published  results  (i.e.,  a  positive,  albeit 

 non-significant,  correlation  between  African  admixture  and  latitude  in  Australia,  β  African  anc.  = 

 0.003,  P  =  0.162,  see  Fig.  5A;  and  a  significant  negative  pattern  in  North  America,  β  African  anc.  = 

 -0.005,  P  =  2.5x10  -22  ,  see  Fig.  5B  ;  Bergland  et  al.  2016  ).  We  calculated  these  estimates  in  the 

 newly  collected  samples  from  South  America  and  observed  a  trend  of  increasing  African 

 ancestry  near  the  equator  (β  African  anc.  is  0.002,  P  =  0.139,  Fig.  5C  ).  We  also  estimated  the 

 relationship  between  levels  of  admixture  and  longitude  in  North  America.  Here,  we  identified  a 

 significant  association  between  longitude  and  ancestry  (LM;  β  African  anc.  =  0.0014,  P  =  6.76x10  -16  ). 

 This  was  evidenced  when  levels  of  African  ancestry  were  projected  onto  a  map  of  North 

 America  (see  Fig.  5D  )  revealing  that  westward  samples  (i.e.,  from  the  American  midwest  or 

 California)  have  lower  levels  of  African  ancestry  when  compared  to  samples  in  the  eastern 

 seaboard  at  comparable  latitudes.  These  results  suggest  that,  in  North  America,  the  patterns 

 seen  under  k  =  8  emerge  due  to  the  different  levels  of  African  admixture  (  Fig.  4D,  also  Fig. 
 S11  ). 

 We  further  explored  patterns  of  admixture  using  a  two-pronged  approach.  First,  we 

 calculated  the  f  3  statistic  (Patterson  et  al.  2012;  Gautier  et  al.  2022)  using  samples  from  North 

 and  South  America  as  the  targets  of  admixture  and  Europe  and  Africa  as  the  “ancestral” 

 populations.  For  African  populations,  we  included  samples  from  Cameroon,  Egypt,  Ethiopia, 

 Morocco,  Rwanda,  South  Africa,  and  Zambia.  In  total,  we  conducted  1,478,000  three-population 

 comparisons  (  Dataset  S2  ).  Overall,  all  American  populations  displayed  significant  f  3  tests  (i.e., 

 had  a  Z  -score  <  -1.65),  which  confirms  pervasive  admixture  (  Table  S6;  also  Fig.  S11  );  these 

 results  do  not  appear  to  be  driven  by  differences  in  read  depth  (  r  signif  f  3-RD  =  -0.6,  P  =  0.10)  or  by 

 the number of flies included in the pool or synthetic pool (  r  signif  f  3-Nflies  = 0.2,  P  = 0.40). 
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 Figure  5:  Patterns  of  admixture  across  the  Americas  and  Australia.  (A)  Coefficients  of  linear  admixture  for  Australia  (excluding 

 SNPs  in  inversions).  (B)  Same  as  A  but  for  North  America.  (C)  Same  as  A  but  for  South  America.  (D)  Map  projection  of  levels  of 

 African ancestry in North American samples (note that the collapsed samples of Fournier-Level et al  .  2019  were removed). 

 Lastly,  we  conducted  a  survey  of  genetic  differentiation  across  the  demographic  clusters 

 (see  Materials  and  Methods:  Estimation  of  nucleotide  diversity  ).  The  overall  differentiation  was 

 F  ST  =  0.050  ±  0.001  for  autosomes  and  nearly  twice  as  high  for  the  X  chromosome  (0.091  ± 

 0.004;  Fig.  6A,  orange  ).  These  results  were  robust  to  the  removal  of  heterochromatin  regions 

 and  low  frequency  alleles  (MAF  <  0.05;  Fig.  S12  ).  To  quantify  the  level  of  differentiation 

 between  population  groups  defined  by  their  continental  cluster  (  Fig.  4A  ),  we  further  relied  on  a 

 hierarchical  F  ST  model  (Nei  1973)  ,  which  consists  of  decomposing  the  total  differentiation  into  an 

 across-group  (  F  GT  )  and  a  within-group  (i.e.,  a  composite  label  of  continent  and  cluster;  F  SG  ) 

 contributions,  using  unbiased  estimators  developed  for  Pool-Seq  data  (Gautier  et  al.,  in  prep.  ). 

 Note  that  here  we  refer  to  the  overall  differentiation  under  the  hierarchical  model  as  hF  ST  (with  (1 

 -  hF  ST  )  =  (1  -  F  SG  )(1  -  F  GT  ))  to  distinguish  it  from  the  standard  F  ST  defined  under  a  model  without 

 population  groups  (see  above).  As  shown  in  Fig.  6A  ,  F  SG  was  always  lower  than  F  GT  , 
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 demonstrating  that  there  is  less  differentiation  within  than  between  most  clusters.  We  evaluated 

 the  level  of  differentiation  across  all  cluster-continent  pairs  by  computing  pairwise  F  GT  (i.e.,  for 

 each  pair  of  regions  the  underlying  populations  were  analyzed  under  a  hierarchical  F  ST  model 

 with  two  groups),  as  shown  on  Fig.  6B  (see  results  for  k  =  8  in  Fig.  S13  ).  In  general,  all  clusters 

 involving  Africa  were  consistently  more  differentiated  than  non-African  groups.  The  highest  level 

 of  differentiation  was  observed  between  Africa  and  EU-E  (  F  GT  =  0.22;  Fig.  6B  ).  Despite  being 

 located  geographically  between  EU-W  and  EU-E,  samples  from  the  overlapping  zone  in  Europe 

 and  Asia  were  more  similar  to  EU-W  than  to  EU-E  (  Fig.  6B  ).  All  populations  in  the  Americas 

 and  Australia  (i.e.,  “recent-expansion”  populations)  were  more  similar  to  each  other  than  to 

 Africa  or  Europe,  reflecting  a  history  of  recent  expansion  and  admixture  between  these  two 

 demes.  Finally,  we  estimated  the  differentiation  (i.e.,  standard  F  ST  )  within  each  cluster-continent 

 level  (  Fig.  6C  ).  Europe  (cluster  2  k  =  4  )  exhibited  the  lowest  levels  of  differentiation,  and  South 

 America  (cluster  4  k  =  4  )  the  highest,  which  was  essentially  driven  by  a  Brazilian  and  an 

 Ecuadorian sample, the latter being separated in clustering at  k  = 8 (  Figs. 4B-D  ). 

 Figure  6:  Genetic  differentiation.  (A)  Values  of  the  F  ST  estimates  over  all  DEST  samples  and  their  95%  CI  (corresponding  to  ±1.96 

 s.e.  estimated  using  block−jackknife  with  blocks  of  50,000  consecutive  SNPs).  Note  that  the  h  F  ST  ,  F  GT  and  F  SG  statistics  were 

 estimated  using  the  hierarchical  F  ST  model,  over  all  DEST  samples  grouped  according  to  the  k  =  4  clustering  analysis  and  their  95% 

 CI.  Colors  indicate  autosomes  (blue)  and  X  chromosomes  (orange).  (B)  Pairwise  comparisons  between  cluster-continents  (under  k 
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 =  4)  results  in  a  heatmap.  In  this  plot,  “1-Africa”  refers  to  Sub-Saharan  African  populations,  “3-Africa”  refers  to  North  Africa.  The 

 clusters  “Australia-3”  and  “Australia-4”  represent  samples  with  low  and  high  levels  of  African  admixture,  respectively.  (C)  F  ST 

 estimates within clusters from the  k  = 4 analysis. 

 Updated geographically informative markers improve predictive resolution of samples 
 Our  previous  release  of  DEST  generated  a  panel  of  geographically  informative  markers  (GIMs). 

 The  second  release  of  our  data  gives  us  the  unique  opportunity  to  test  the  accuracy  of  our 

 previously  published  markers.  To  this  end,  we  applied  our  previously  DEST  1.0  GIMs  to  our  new 

 data  and  we  assessed  the  distance  (  d  hav  ;  as  great  circle  distance,  see  Materials  and  Methods  ) 

 between  the  predicted  locality  and  the  “real”  locality  as  recorded  in  the  metadata.  Overall,  both 

 DEST  1.0  models  trained  at  the  level  of  “city”  and  “region”  (i.e.,  resolution  at  the  level  of  state  or 

 province),  perform  similarly  well  on  the  new  data  (  r  =  0.995,  P  =  2.2x10  -16  ;  Fig.  7A  ).  Next,  we 

 aggregated  the  d  hav  estimates  at  the  level  of  continents  (here  we  report  only  the  results  of  the 

 region  model).  We  did  this  to  assess  whether  the  quality  of  our  predictions  vary  as  a  function  of 

 continent.  Overall,  the  best  performance  was  observed  in  European  samples  (median  resolution 

 of  ~409  km  to  real  location;  Fig.  7B  ),  followed  by  the  North  American  samples,  with  a  resolution 

 of  794  km.  Unsurprisingly,  the  worst  predictions  from  the  DEST  1.0  markers  occurred  when 

 deployed  on  samples  from  South  America  and  Australia,  two  locations  that  were  not  included  in 

 the first release (  Fig. 7B  ). 
 While  our  published  markers  performed  well  on  samples  from  regions  present  in  DEST 

 1.0,  the  addition  of  new  regions  to  DEST  required  the  generation  of  new  GIMs.  As  such,  we 

 trained  a  new  demographic  model  (DEST-GIM  2.0)  including  the  new  samples  reported  in  this 

 paper.  Our  new  model  was  trained  using  the  same  workflow  as  DEST-GIM  1.0  (i.e.,  by  retaining 

 40  PCs).  Yet,  the  models  differ  in  that  DEST-GIM  2.0  was  created  by  exclusively  using 

 non-coding  SNPs  as  well  as  loci  outside  genomic  regions  spanning  major  cosmopolitan 

 inversions.  This  new  panel  of  GIMs  is  composed  of  29,952  SNPs  across  all  autosomes. 

 Performance  assessment  of  the  new  model  by  the  d  hav  analysis  shows  that  DEST-GIM  2.0 

 performs  similarly  to  the  1.0  version  for  existing  locales  (e.g.,  Europe  or  North  America;  Fig. 
 7B  ), yet they provide improved prediction accuracy  for new regions (  Fig. 7B  and  7C  ). 
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 Figure  7:  Geographically  informative  markers.  (A)  Bi-plot  of  d  hav  from  the  1.0  GIMs.  City  model  (y-axis)  and  Region  model 

 (x-axis).  (  B)  Mean  and  95%  confidence  intervals  (CIs)  of  d  hav  for  the  1.0  GIM  and  2.0  GIM  model  (to  improve  readability  the  x-axis 

 has  been  log  10  transformed  and  CIs  <  0  were  set  to  1;  as  0  is  logarithmically  undefined).  The  mean  distance  to  the  true  value  is 

 shown  by  dashed  vertical  lines  (red  for  DEST  1.0,  blue  for  DEST  2.0,  models).  (  C)  Quality  of  predictions  for  the  GIM  DEST  2.0 

 model.  The  color  indicates  the  average  distance  between  the  real  d  hav  of  a  sample  and  its  predicted  d  hav  .  Yellow  are  good  predictions 

 (accuracy = 0-10 m), white are “adequate” predictions (10-100 m), and red are poor predictions (1000-10000 m). 

 Winter  severity  drives  year-to-year  levels  of  genetic  variation  in  overwintering 
 populations 
 While  much  of  demographic  research  in  D.  melanogaster  has  focused  on  spatial  patterns  of 

 genetic  variation,  there  is  strong  evidence  that  temporal  demography,  driven  by  yearly  cycles  of 

 summer  “booms”  and  winter  “busts”,  can  have  strong  and  quantifiable  effects  on  the  frequency 

 and  levels  of  standing  genetic  variation  in  wild  populations  (Bergland  et  al.  2014;  Nunez  et  al. 

 2024)  .  For  example,  levels  of  post-overwintering  (i.e.,  year-to-year)  F  ST  are  generally  higher  than 
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 F  ST  between  samples  collected  within  a  growing  season  even  though  overwintering  F  ST  captures 

 a  smaller  number  of  generations  (1-2  generations)  than  comparisons  within  a  growing  season 

 (ca.  10  generations).  This  observation  has  led  to  the  hypothesis  that  strong  bottlenecks  due  to 

 overwintering  alter  the  genetic  composition  of  fly  populations,  both  due  to  changes  in  the 

 amount  of  genetic  drift  (Nunez  et  al.  2024)  and  due  to  seasonally  varying  selection  (Bergland  et 

 al.  2014;  Machado  et  al.  2021;  Behrman  and  Schmidt  2022;  Johnson  et  al.  2023)  .  A  prediction 

 of  this  hypothesis  is  that  the  strength  and  intensity  of  winter,  an  ecological  driver  of  yearly 

 population  busts,  should  be  correlated  with  the  levels  of  overwintering  F  ST  from  one  year  to  the 

 next.  To  test  this  prediction,  we  investigated  patterns  of  temporal  structure  in  worldwide  DEST 

 samples  and  asked  whether  latitude  (a  proxy  for  winter  severity)  is  correlated  with  the  levels  of 

 year-to-year  F  ST  . 

 For  a  given  site,  we  assessed  levels  of  F  ST  between  samples  collected  in  two 

 consecutive  years  (i.e.,  growing  seasons)  from  the  same  locality.  We  implemented  this  analysis 

 across  43  localities  and  estimated  the  relationship  between  mean  year-to-year  F  ST  and  latitude. 

 We  tested  the  hypothesis  that  higher-latitude  populations  with  stronger  winter  conditions  exhibit 

 higher  levels  of  year-to-year  F  ST  .  Indeed,  we  found  a  significant  positive  correlation  between 

 overwintering  F  ST  and  latitude,  yet  the  correlation  is  not  monotonic.  Using  “broken-stick” 

 regression  (Muggeo  2003)  ,  we  identified  a  change  in  the  latitude-  F  ST  relationship  at  50.3°N  (  Fig. 
 8A  and  8E  ).  Samples  below  50.3°N  tend  to  have  lower  values  of  year-to-year  F  ST  as  compared 

 to  those  above  50.3°N  (  Fig.  8B  )  and  the  magnitude  of  correlation  between  latitude  and  F  ST 

 varies  before  and  after  this  latitude  mark  (  Fig.  8B;  r  all  =  0.182  ,  r  >50  lat  =  0.333,  r  <50  lat  =  0.117;  all  P 

 =  2.2x10  -16  ).  These  correlations  are  statistically  significant  and  outperform  500  random 

 permutations where latitude is shuffled. 

 A  second  finding  of  our  year-to-year  F  ST  analysis  was  the  discovery  that  several  samples 

 collected  from  Yesiloz,  Turkey  are  outliers  (red  dots  in  Fig.  8B  )  among  samples  below  the  50.3 

 latitude  mark  (see  Fig.  8A-B  ).  This  pattern  was  most  apparent  when  considering  samples 

 between  2020  and  2021  (  Fig.  8D  )  relative  to  comparisons  at  other  years  (  Fig.  8C  )  This  signal 

 in  Turkey  appears  to  be  associated  with  a  historical  heatwave  and  unusually  warm  winters  in 

 2021 (see discussion;  Fig. 8D  ). 
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 Figure  8:  Temporal  genetic  differentiation  due  to  overwintering.  (A)  F  ST  values  across  DEST  2.0  samples  as  a  function  of 

 latitude.  Broken-stick  regression  and  breakpoint  is  shown,  for  samples  below  latitude  50.3  the  regression  is  shown  with  and  without 

 Turkey.  The  color  indicates  the  mean  temperature  in  Celsius  between  the  samples  for  which  the  F  ST  was  calculated.  (B)  Distribution 

 of  year-to-year  F  ST  values  across  DEST  2.0  samples  as  a  function  of  latitude,  for  comparisons  spanning  one  winter  only.  Outliers 

 (i.e.,  data  above  the  75th  percentile)  are  shown  in  red.  (C)  Distribution  of  temporal  F  ST  values  as  a  function  of  the  mean  temperature 

 in  Turkey  (Yesiloz)  samples  for  samples  between  2015  and  2020  (logit  transformed;  correlation  between  F  ST  and  mean  temperature; 

 r  =0.135;  P  =  4.60x10  -7  ).  (D)  Same  as  B  but  for  comparisons  of  2020  and  2021,  a  historical  heatwave  year  in  Turkey  and  in  southern 

 Europe  (correlation  between  F  ST  and  mean  temperature;  r  =  -0.100;  P  =  7.74x10  -13  ).  (E)  Mean  year-to-year  F  ST  overlaid  over  a  world 

 map of northern seasonal habitats. 

 Footprints of spatial adaptation to insecticides in Europe 
 The  broad  sampling  inherent  to  DEST  allows  us  to  test  hypotheses  about  spatial  adaptation  in 

 wild  flies.  We  first  took  a  heuristic  approach  where  we  extracted  all  regions  of  the  genome  with 

 high  across-cluster  differentiation  (i.e.,  F  GT  >  0.2;  see  Results:  Population  admixture  and…  )  and 

 performed  a  gene  ontology  enrichment  analysis  of  genes  located  in  these  regions  of  high 

 differentiation  (Kofler  and  Schlötterer  2012).  Overall,  we  found  an  enrichment  of  genes 

 associated  with  environmental  adaptation  such  as  responses  to  oxidative  stress,  metal  ion  and 

 pesticides  (  Table  S7  ).  One  of  the  strongest  signals  of  population  differentiation  was  observed 

 for  the  region  surrounding  the  gene  Cyp6g1,  a  cytochrome  P450  (Cyp)  gene  (  Fig.  S14  ;  a  result 

 also  observed  in  DEST  1.0),  a  well-known  gene  involved  in  resistance  to  DDT  and  neonicotinoid 
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 insecticides  (Le  Goff  and  Hilliou  2017)  .  This  signal  was  particularly  high  when  comparing  North 

 America  and  European  samples.  Elevated  F  GT  was  also  observed  when  comparing  South 

 American  and  North  American  samples,  but  not  when  comparing  South  American  and 

 European  samples  (  Fig.  S14  ).  These  signatures  of  differentiation  suggest  different  adaptations 

 likely  driven  by  distinct  environmental  pressures  and  insecticide  exposure  levels  in  each 

 continent.  To  formally  detect  footprints  of  adaptive  differentiation  in  our  dataset  we  applied  the 

 “  Bayesian  Population  Association  Analysis  ”  framework,  BayPass  (Gautier  2015;  Olazcuaga  et 

 al.  2022)  to  DEST  samples  from  European  localities  (irrespective  of  sampling  year  or  season; 

 138  samples  in  total;  Fig.  9A  )  and  relied  on  the  estimated  XtX  *  statistic  to  identify  overly 

 differentiated  SNPs.  The  analysis  identified  two  regions  in  chromosome  2R  as  candidates  of 

 local  adaptation  (12,188,558-12,126,181  and  14,826,182-14,976,108;  Fig.  9D  ).  Both  these 

 regions  harbor  several  Cyp  genes.  For  example,  the  window  at  ~12  Mb  contains  Cyp6g2  ,  and 

 Cyp6t3  ,  whereas  the  window  at  ~14  Mb  contains  Cyp6a22,  Cyp6a19,  Cyp6a9,  Cyp6a20, 

 Cyp6a21,  Cyp6a8,  and  Cyp317a1  .  These  genes  are  associated  with  hormonal  metabolism  as 

 well  as  responses  to  insecticides  (Danielson  et  al.  1995  ;  Le  Goff  and  Hilliou  2017)  .  We 

 performed  gene  ontology  enrichment  analysis  of  genes  within  all  XtX  *  outlier  regions  and  found 

 an  enrichment  of  terms  such  as  “oxidation-reduction  process”,  “cellular  response  to  radiation”, 

 and “amide biosynthetic process”, reflecting results from  F  GT  outlier regions above (  Table S8  ). 
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 Figure  9:  Local  and  seasonal  adaptation  in  Drosophila  .  (A)  Schematic  of  sampling  for  the  seasonal  analysis.  In  total,  we  used 

 138  samples  collected  in  26  European  localities  across  an  8  year  period.  We  selected  localities  where  there  were  more  than  one 

 sample  per  year  and  designated  the  first  sample  as  “spring”  and  last  sample  as  “fall”.  There  is  no  overlap  between  the  samples  used 

 here  and  the  samples  used  in  seasonal  analysis  in  Machado  et  al.  (2020),  Bergland  et  al.  (2014),  and  Nunez  et  al.  (2023).  (B) 
 GLMM  seasonal  adaptation  scan.  The  plot  shows  the  log  10  transformed  wZa  P  -value  of  the  LRT  of  base  and  seasonal  models.  For 

 A,  B,  and  C,  regions  of  interest  are  highlighted  in  yellow.  Inversions  are  demarcated  along  the  top  of  the  figure.  (C)  We  performed 

 the  contrast  analysis  using  BayPass  2.4.  The  contrast  score  (  C  2  statistic)  is  the  test  statistic  for  the  seasonal  term,  and  follows  a  χ  2 

 distribution  with  1  degree  of  freedom.  The  x-axis  is  the  -log  10  (  P  -value)  from  the  GLMM.  The  red  horizontal  line  represents  the  99.9% 

 significance  threshold  from  the  pseudo-observed  data  (POD)  for  ~10M  simulated  sites.  The  red  vertical  line  represents  the  99.9% 

 significance  threshold  from  the  permutations  of  the  GLM  analysis.  (D)  Bayesian  local  adaptation  scan.  The  plot  shows  the  log  10 

 transformed  wZa  P  -value  of  the  local  adaptation  (  XtX  *)  BayPass  analysis.  (E)  Bayesian  seasonal  adaptation  scan.  The  plot  shows 

 the  log  10  transformed  wZa  P  -value  of  the  contrast  (  C  2  )  adaptation  BayPass  analysis.  (F)  Results  of  the  GLMM  analysis.  The 

 permutations  are  shown  in  gray  (95%  confidence  intervals)  and  the  real  data  in  red.  There  are  more  SNPs  with  low  seasonal 

 p-values than expected by permutations. 

 Antimicrobial  peptides  are  enriched  among  continent-wide  targets  of  seasonal 
 adaptation 
 We  explored  signals  of  seasonal  evolution  in  DEST  using  paired  spring-fall  collections  from 

 Europe.  In  order  to  ensure  that  this  test  was  not  influenced  by  signals  from  previously  analyzed 

 data,  we  only  used  samples  that  were  not  included  in  previously  published  analyses  (i.e., 

 Bergland  et  al.  2014;  Machado  et  al.  2021;  Nunez  et  al.  2024  ;  Fig.  9A  )  .  First,  we  ran  the 

 BayPass  model  including  both  the  Ω  matrix  as  a  demographic  prior  as  well  as  categorical 

 “spring”  or  “fall”  labels  (defined  by  the  first  and  last  sample  collected  in  a  locality  within  a  year)  in 

 a  contrast  analysis.  Under  these  conditions,  BayPass  outputs  the  C  2  statistic  that  quantifies  the 

 degree  of  association  of  allele  frequency  with  season.  We  identified  significant  C  2  values  using  a 

 simulation  approach  that  is  part  of  the  BayPass  workflow  (see  Materials  and  Methods:  S  cans  for 

 adaptive  differentiation  ;  Dataset  S3  ).  We  observe  that  several  regions  across  the  Drosophila 

 genome  are  enriched  for  signals  of  parallel  seasonal  evolution  (  Figs.  9D  E,  F  ).  A  notable 

 example  appears  in  chromosome  3L  (3,222,669-3,422,464),  inside  the  region  spanned  by  the 

 inversion  In(3L)P  ,  where  we  observe  the  antimicrobial  peptide  Drosomycin  (  Drs  )  as  well  as 

 several  Drs  -associated  genes  (i.e.,  Drsl2  ,  Drsl3  ,  Drsl4  ,  Drsl5,  Drsl6  ).  In  view  of  previous 

 observations  of  seasonal  allele  frequency  oscillations  in  several  immune  genes,  this  result 

 suggests  functional  shifts  in  immune  tolerance  and  resistance  across  seasons  in  natural 

 populations  (Behrman  et  al.  2018)  .  We  performed  gene-ontology  enrichment  analysis  of  all 

 genes  within  C  2  outlier  regions  (  Table  S9  ).  We  found  an  enrichment  of,  among  other  terms, 

 genes  associated  with  “alcohol  dehydrogenase  (NAD)  activity”,  including  the  gene  Adh  itself 

 (  Table S10  ). 
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 We  conducted  an  enrichment  analysis  comparing  our  C  2  SNPs  (in  the  top  0.0001  %)  with 

 loci  reported  in  previous  seasonal  studies,  done  mostly  in  North  American  populations  (i.e.,  FDR 

 <  0.3  in  Bergland  et  al.  2014;  Top  1%  SNPs  in  Machado  et  al.  2021)  ,  to  assess  whether 

 seasonal  SNPs  in  Europe  are  also  likely  to  be  seasonal  in  North  America.  Our  results  indicate 

 no  significant  enrichment  of  North  American  seasonal  SNPs  among  our  European  C  2  SNPs 

 (  Fig.  S15  ).  Indeed,  when  compared  to  Pennsylvania  data  from  Bergland  et  al.  (2014)  ,  we 

 observed  a  significant  deficiency  of  these  targets  at  both  a  global  level  (  P  =  0.024;  Fig.  S15A  ) 
 and specifically on chromosome 3L (  P  = 0.0055). 

 Beyond  the  C  2  analysis,  we  implemented  a  generalized  linear  mixed  model  (GLMM) 

 using  the  spring/fall  seasonal  labels,  showing  a  global  enrichment  of  seasonal  SNPs  relative  to 

 permutations  (  Fig.  9B  ).  Comparing  GLMM  and  BayPass  results,  we  found  a  large  number  of 

 SNPs  exceeding  the  simulated  99.9%  significance  threshold  for  the  C  2  statistic  (  Fig.  9C  ,  red 

 vertical  line),  with  the  C  2  and  GLMM  models  producing  a  similar  set  of  candidate  SNPs  (  Fig.  9C, 
 red  horizontal  line).  Likewise,  a  sliding  window  wZa  analysis  (Booker  et  al.  2024)  of  the  GLMM 

 results  (window  size  of  100  kb,  step  size  of  50  kb)  identified  the  Drs  region  as  a  hotspot  of 

 seasonal  adaptation  (as  in  the  C  2  analysis),  and  also  revealed  a  second  region  of  interest  on 

 chromosome  2R  (18,376,129-18,475,992).  This  region  contains  several  Bomanin  genes  (abbr. 

 Bom  ;  e.g.,  BomBc1,  BomT1,  BomS1,  BomBc2,  BomS6  )  known  to  play  key  roles  in  Drosophila 

 antifungal  responses  (Xu  et  al.  2023)  .  A  region  on  3L,  near  20,172,964-20,271,926  bp,  notable 

 for  harboring  adjacent  signal  peaks  across  analyses  of  seasonal  and  local  adaptation  (see  Figs. 
 9D,  9E,  9F  ;  yellow  band),  contains  obstructor-F  (  obst-F  ),  a  gene  previously  reported  as  a 

 candidate of insecticide adaptation  (Campo et al.  2013; Bogaerts-Márquez et al. 2020)  . 

 Discussion 

 A unified resource for wild  Drosophila  genomics 
 D.  melanogaster  is  a  cosmopolitan  species  with  resident  populations  across  all  human-inhabited 

 continents  that  evolves  adaptively  in  response  to  spatially-varying  and  temporally-fluctuating 

 selection  in  semi-natural  settings  and  the  wild  (clinal  patterns  reviewed  in  Adrion  et  al.  2015; 

 seasonal  patterns  reviewed  in  Johnson  et  al.  2023)  .  To  achieve  a  comprehensive  understanding 

 of  the  evolutionary  patterns  within  this  species,  we  need  to  create  panels  of  variation  sampled 

 across  wide  geographical  scales  and  densely  across  time.  This  is  not  a  trivial  undertaking  for 

 any  single  lab  to  achieve.  The  original  impetus  behind  DEST  was  to  generate  a  unified  dataset 

 and  workflow  that  would  capitalize  on  the  collaborative  efforts  of  labs  and  consortia  around  the 
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 world  (Kapun  et  al.  2021)  .  DEST  2.0  expands  data  on  the  original  release  by  adding  twice  as 

 many new samples as the original release. 

 Overall,  the  incorporation  of  the  aforementioned  data  into  the  dataset  showcases  the 

 flexibility  and  capacity  for  growth  of  DEST,  as  a  centralized  and  well  annotated  repository  of 

 Drosophila  genomics.  Furthermore,  the  DEST  2.0  Dockerized  pipeline  now  allows  for  pools 

 generated  using  single-end  sequencing  approaches  to  be  incorporated  into  its  workflow,  hence 

 allowing  for  older  pooled  data  sets  to  be  included  in  DEST  analyses.  We  plan  to  continue 

 maintaining  and  updating  the  DEST  workflow,  with  potential  future  expansions  to  explore  other 

 Drosophila  species  and  additional  data  types.  To  keep  pace  with  the  influx  of  new  genomic  data, 

 we  have  upgraded  the  DEST  genome  browser  to  the  latest  version  of  JBrowse,  which  has 

 better scalability and performance when displaying large datasets  (Diesh et al. 2023)  . 

 Heterogeneous patterns of recombination in DEST samples 
 This  release  also  includes  genome-wide  recombination  rate  estimations  for  75  representative 

 populations.  In  comparison  to  the  findings  of  previous  studies  (Comeron  et  al.  2012;  Adrion  et 

 al.  2020)  our  own  estimates  show  a  reduction  of  approximately  threefold.  This  discrepancy  may 

 be  attributed  to  the  combination  of  our  methodological  approach  and  the  nature  of  our  data.  The 

 deep  learning  approach  of  ReLERNN  (Adrion  et  al.  2020)  is  dependent  on  allele  frequencies, 

 and  it  is  thus  possible  that  levels  of  genetic  polymorphism  may  affect  the  estimation  of  levels  of 

 recombination  rate.  In  our  analyses,  we  estimated  allele  frequencies  on  SNPs  that  were  called 

 with  very  conservative  and  stringent  filtering  methods.  Furthermore,  the  polymorphism  data 

 were  obtained  from  Pool-seq  data  from  derived  European  and  North  American  populations, 

 which  exhibit  lower  levels  of  genetic  polymorphism  (approximately  two-  to  three-fold;  e.g., 

 Ometto  et  al.  2005)  than  the  ancestral  African  populations  used  in  Adrion  et  al.  (2020). 

 Accordingly,  there  is  a  strong,  and  significant,  correlation  between  the  number  of  SNPs  and  the 

 average  recombination  across  the  75  populations  (Spearman's  rho  =  0.835,  S  =  11624,  P  < 

 1.0x10  -25  ;  R  2  =  0.672).  It  is  thus  possible  that  our  estimations  can  be  approximated  as  a 

 population-scaled  effective  recombination  rate  (  ρ  )  rather  than  the  actual  crossing-over  rate  (  r  ; 

 where  ρ  =  4  N  e  r  ).  A  comparable  finding  was  observed  in  the  case  of  wild  barley  (Dreissig  et  al. 

 2019)  .  It  seems  also  probable,  however,  that  our  populations  can  indeed  be  characterized  by 

 heterogeneous  levels  of  recombination,  as  has  been  reported  by  numerous  studies  in 

 Drosophila  (e.g., Hunter et al. 2016; Samuk et al.  2020; Wang et al. 2023)  . 
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 New insights into ancestral and recent fly phylogeography 
 The  prior  releases  of  DEST  and  similar  datasets  (Kapun  et  al.  2020;  Kapun  et  al.  2021; 

 Machado  et  al.  2021)  characterized  fine-grained  levels  of  population  structure  within  Europe, 

 and  dated  their  divergence  at  around  ~1,000  ya.  In  this  paper,  we  expanded  the  repertoire  of 

 samples available for demographic inference and phylogeographic analysis. 

 In  the  Americas  and  Australia,  our  data  recapitulate  published  patterns  of  African 

 admixture  in  North  American  fly  populations  (Kao  et  al.  2015;  Bergland  et  al.  2016; 

 Corbett-Detig  and  Nielsen  2017)  .  Notably,  in  South  America  and  Australia,  while  not  significant, 

 our  results  show  a  reversed  trend  with  latitude,  relative  to  North  America  (  Fig.  5A-C  ).  These 

 support  the  general  hypothesis  of  higher  African  admixture  in  equatorial  populations  relative  to 

 poleward  ones,  consistent  with  two  separate  introductions  of  D.  melanogaster  to  the  Americas. 

 It  is  likely  that  the  African  ancestors  entered  the  Americas  through  the  Caribbean.  In  this  region, 

 the  earliest  record  of  D.  melanogaster  occurred  in  Cuba  in  1862  (Sturtevant  1921)  ,  and  it  was 

 first  documented  in  Florida  in  1894  (Keller  2007)  .  While  it  is  always  important  to  consider  that 

 species  distributions  data  may  be  incomplete,  the  entomological  surveys  conducted  in  the  USA 

 during  the  1880s  are  extensive  and  they  do  not  mention  earlier  records  of  the  species  under  any 

 of  its  old  taxonomic  names  (i.e.,  D.  ampelophila  or  D.  uvarum  ;  see  Keller  2007)  .  The  origin  and 

 timing  of  European  immigration  is  more  complex.  Notably,  European  entomological  surveys  only 

 describe  the  presence  of  D.  melanogaster  as  a  “common”  species  in  Central  Europe  (Sturtevant 

 1921)  ,  with  reported  sightings  in  German  cities  like  Kiel  or  in  Austrian  towns  in  the  1830s  (Keller 

 2007)  .  Consistent  with  this  chronology,  the  first  recorded  samples  in  North  America  come  from 

 New  York  in  1875  (Lintner  1882;  Keller  2007)  .  Thus,  while  African  flies  may  have  been  in  the 

 Americas  since  the  1860s,  it  is  possible  that  the  African-European  admixture  cline  in  USA’s 

 eastern seaboard originated later, during the late 1880s. 

 In  Europe,  the  overlap  zone  we  observed  inside  the  continent  (in  the  k  =  8  analysis)  is 

 notable  since  its  placement  closely  mirrors  the  “suture  zones”  (Remington  1968)  of  other 

 species  such  as  Bombina  toads  (Hofman  et  al.  2007)  ,  Leuciscus  cephalus  (Hewitt  2011)  ,  and 

 Mus  musculus  (Ďureje  et  al.  2012)  .  In  our  analyses,  we  tested  whether  this  overlap  zone  is  a 

 zone  of  admixture  between  EU-E  and  EU-W.  We  reject  this  model  and  suggest  that  the  overlap 

 zone  is  a  subpopulation  of  EU-W.  These  results  are  puzzling,  and  echo  findings  from  our 

 previous  release  (Kapun  et  al.  2021)  ,  whereby  the  levels  of  gene  flow  in  this  area  appear  to  be 

 asymmetric  in  favor  of  EU-W  (e.g.,  as  reported  by  Kapun  et  al.  2021,  EU-W→EU-E  as  0.209 

 flies/gen  vs.  EU-E→EU-W  as  0.178  flies/gen).  These  findings  are  supported  by  our 

 supplementary  F  ST  analyses  that  include  the  overlap  zone  (e.g.;  F  ST  [EU-W  vs.  Overlap]  =  0.00; 
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 F  ST  [EU-E  vs.  Overlap]  =  0.01).  As  it  stands,  these  patterns  may  indicate  the  action  of  a 

 non-neutral  force  confounded  with  the  complex  demographic  history  of  D.  melanogaster  in 

 Europe, to be explored in future work. 

 Inferring targets of adaptation across time and space 
 The  complex  patterns  of  spatial  population  structure  that  we  have  described  above  are  likely  to 

 alter  the  adaptive  capacity  of  fly  populations.  Indeed,  a  recent  genomic  analysis  of  the  sibling 

 species  D.  simulans  across  continents  revealed  that  demographic  ancestry,  and  not  shared 

 selection  regime,  is  a  better  predictor  for  the  genetic  basis  of  local  adaptation  to  thermal 

 stressors  (Otte  et  al.  2021)  .  These  results  highlight  that  assessing  footprints  of  adaptation 

 requires  robust  controls  for  the  complex  demographic  structure  of  species.  We  implemented  the 

 BayPass  framework  (Gautier  2015;  Olazcuaga  et  al.  2022)  to  discover  targets  of  spatially  and 

 temporally  fluctuating  selection  across  Europe.  This  framework  is  flexible,  as  it  incorporates 

 priors  from  population  structure  (via  the  Ω  matrix)  and,  optionally,  environmental  variables 

 (either as factors or covariates). 

 Our  analyses  of  spatial  adaptation  reveal  signatures  of  continent-wide  differentiation 

 around  cytochrome  P450  genes  (e.g.,  Cyp  genes)  in  2R  (  Fig.  9  ).  Follow-up  analyses  using 

 estimates  of  across-group  differentiation  (  F  GT  )  revealed  that  these  genes  are  highly 

 differentiated  in  comparisons  between  North  American  populations  vs.  both  European  and 

 South  American  populations  (  Fig.  S14  ).  Given  that  Cyp  genes  are  important  players  in  insect 

 detoxification  pathways  and  have  been  implicated  in  the  evolution  of  insecticide  resistance  (Le 

 Goff  and  Hilliou  2017)  ,  these  findings  suggest  that  flies  have  experienced  continent-wide 

 adaptation  to  different  histories  of  land  and  pesticide  use.  While  further  experimental  validation 

 is  needed  to  disentangle  the  particular  gene  targets  and  drivers  of  selection,  these  data  highlight 

 the power of DEST to reveal the genetic bases of local adaptation to paralleled stressors. 

 We  also  explored  patterns  of  temporal  divergence  in  response  to  seasonality.  Previous 

 work  has  shown  that  seasonal  adaptation,  via  adaptive  tracking  (Botero  et  al.  2015)  ,  is  a 

 ubiquitous,  and  important,  evolutionary  force  affecting  patterns  of  genetic  variation  across  the 

 genome  of  Drosophila  (Bergland  et  al.  2014;  Kapun  et  al.  2016;  Machado  et  al.  2021;  Rudman 

 et  al.  2022;  Bitter  et  al.  2024;  Nunez  et  al.  2024)  .  Here,  we  used  the  DEST  2.0  data  to  revisit 

 footprints  of  seasonal  adaptation  across  samples  not  used  in  previous  analyses.  Using  this 

 dataset,  we  tested  the  hypothesis  that  seasonal  adaptive  tracking  is  a  general  phenomenon  of 

 worldwide  temperate  Drosophila  .  One  challenge  associated  with  testing  this  hypothesis  is 

 determining  the  appropriate  covariate  (e.g.,  temperature,  humidity,  rainfall)  and  the  timeframe  of 
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 selection  (e.g.,  0-15,  0-30  days  prior  to  collection)  to  use  in  the  model.  For  example,  Nunez  et 

 al.  (2024)  showed  that,  in  Virginia,  the  best  seasonal  model  used  the  temperature  0-15  days 

 prior  to  collection  as  a  covariate.  Yet,  in  Europe,  Humidity  0-30  and  0-60  prior  to  collection  days 

 were  the  best  models  for  EU-E  and  EU-W  respectively.  Therefore,  we  used  a  contrast 

 framework  using  the  seasonal  labels  (i.e.,  “spring”  and  “fall”)  as  comparison  factors.  This 

 approach  had  been  successfully  used  in  the  past  by  Bergland  et  al.  (2014)  and  Machado  et  al. 

 (2021)  and allowed us to surmount the challenge of  covariate selection. 

 We  implemented  a  test  of  seasonality  in  a  two-pronged  approach  using  both  the 

 BayPass  and  the  GLMM  framework.  Our  results  show  multiple  regions  of  interest  across  the 

 genome  that  are  concordant  across  both  BayPass  and  GLMM.  For  example,  it  highlights  a 

 region  on  3L  that  encodes  for  Drosomycin  and  Drosomycin-like  genes  (  Fig.  9D  ),  canonical 

 antifungal  defense  loci  (Zhang  and  Zhu  2009)  ,  as  a  continent-wide  hotspot  of  seasonal 

 adaptation  (  Figs.  9C,  9F  ).  These  findings  are  noteworthy,  as  fungal  communities  are  known  to 

 vary  drastically  across  seasons  driven  by  changes  in  soil  moisture,  temperature,  and  carbon 

 availability  (Schadt  et  al.  2003)  .  Furthermore,  the  analysis  also  reveals  a  region  of  interest  on 

 chromosome  2R  containing  Bomanin  genes  that  are  also  associated  with  antifungal  defense 

 (Xu  et  al.  2023)  .  Another  gene  of  interest  is  Obstructor-F,  a  gene  that  has  several  functions  and 

 that has been associated with pesticide response  (Campo  et al. 2013)  . 

 Our  gene-ontology  enrichment  analysis  for  targets  of  seasonality  highlighted  “alcohol 

 dehydrogenase  activity”  —including  the  gene  Adh  itself—  as  being  enriched  among  outlier 

 regions.  This  is  significant  because  patterns  of  genetic  variation  in  Adh  have  long  been 

 recognized  as  classical  examples  of  ecological  adaptation  (Kreitman  1983;  Berry  and  Kreitman 

 1993)  .  However,  recent  discussions  have  emphasized  that  the  specific  agents  of  selection 

 acting  on  this  gene  remain  unclear,  with  some  suggesting  temperature-driven  balancing 

 selection  (  Siddiq  and  Thornton  2019)  .  We  also  assessed  whether  the  seasonal  SNPs  observed 

 in  our  C  2  analysis  from  Europe  are  enriched  in  seasonal  datasets  generated  mostly  from  North 

 American  populations  (Bergland  et  al.  2014;  Machado  et  al.  2021)  .  Our  results  showed  no 

 enrichment  (or  under-enrichment;  see  Fig.  S22  )  between  the  datasets  compared.  In  other 

 words,  these  results  suggest  that  the  genetic  basis  of  seasonality  is  different  between 

 continents.  This  finding  is  consistent  with  previous  studies  positing  that  population  ancestry  is  a 

 more  important  predictor  of  adaptive  genetic  architecture  than  the  existence  of  paralleled 

 selection regimes  (Otte et al. 2021)  . 

 Overall,  our  seasonal  analyses  reveal  three  major  takeaways.  First,  they  reveal  that 

 seasonal  adaptive  tracking  is  a  detectable  phenomenon  across  the  temperate  range  of  D. 
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 melanogaster  .  Yet,  they  also  suggest  that  adaptive  tracking  may  be  driven  by  both  natural  and 

 anthropogenic  stressors,  and  that  the  specific  loci  that  drive  adaptation  may  be  strongly  shaped 

 by  genetic  ancestry.  Second,  the  data  highlight  a  large  role  of  pathogen  response  genes  as 

 major  players  in  worldwide  seasonality  (Behrman  et  al.  2018)  .  These  findings  suggest  that 

 follow-up  studies  of  seasonality  should  take  a  more  comprehensive  approach  to  incorporate 

 both  abiotic  (e.g.,  temperature)  and  biotic  (e.g.,  pathogen)  views  of  “seasonality.”  And  third,  our 

 findings  showcase  an  inherent  strength  of  the  BayPass  model  to  successfully  disentangle  the 

 dynamics  of  spatial  and  temporal  adaptation  in  wild  populations.  Further  expansions  of  the 

 DEST  dataset  will  facilitate  more  granular  exploration  of  adaptive  tracking  driven  by  spatially 

 and temporally fluctuating selection. 

 The impacts of overwintering demography on genetic variation 
 The  results  highlighted  above  showcase  the  power  of  DEST  to  examine  fine-grained  patterns  of 

 evolutionary  change  occurring  within  each  population.  Yet,  seasonal  adaptive  tracking  is  not  the 

 only  process  at  play  in  temperate  habitats.  As  the  seasons  change,  Drosophila  populations 

 expand  and  contract  depending  on  resource  availability  (Atkinson  and  Shorrocks  1977)  .  Indeed, 

 the  establishment  and  range  limits  of  many  insect  species  are  tied  to  their  ability  to  survive 

 winter  (Lawton  et  al.  2022)  .  Previous  work  has  suggested  that  local  fly  populations  grow  to  their 

 largest  possible  size  during  the  summer  months  (Atkinson  and  Shorrocks  1977; 

 Sanchez-Refusta  et  al.  1990;  Gleason  et  al.  2019;  Bangerter  2021)  and  drastically  decrease  in 

 size  following  the  onset  of  winter,  when  resources  are  scarce  and  reproduction  is  suppressed, 

 leading  flies  to  diapause  and  overwinter  until  the  next  growing  season.  These  seasonal 

 demographic  cycles,  called  “boom-and-bust”  demography,  can  result  in  yearly  bottlenecks  of  up 

 to  ~97%  in  the  “local”  population  (Nunez  et  al.  2024)  ,  and  thus  are  likely  to  have  fundamental 

 consequences for standing genetic variation. 

 One  important  question  related  to  these  boom-and-bust  dynamics  is  whether 

 populations  that  experience  different  severities  of  winter  (harsher  vs.  milder)  show  elevated 

 levels  of  year-to-year  differentiation.  We  explored  this  question  using  year-to-year  F  ST  and 

 tested  the  hypothesis  that  populations  with  harsher  winters  have,  on  average,  larger  levels  of 

 year-to-year  F  ST  .  Our  results  support  this  hypothesis,  revealing  positive  correlations  between  F  ST 

 and  latitude,  particularly  for  samples  collected  at  latitudes  higher  than  50.3°N  (  Fig.  8A  and  8E  ). 
 These  patterns  suggest  that  habitats  with  colder,  harsher  winters  typical  of  higher  latitude 

 habitats  impose  stronger  bottlenecks  on  overwintering  flies  relative  to  lower  latitude  habitats. 

 One  notable  exception  to  the  pattern  of  year-to-year  F  ST  was  found  in  the  Turkish  samples. 
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 There,  populations  in  2021  showed  an  unexpected  positive  correlation  between  F  ST  and 

 temperature  (  Fig.  8D  ;  relative  to  patterns  at  previous  years  at  the  same  site,  Fig.  8C  ).  These 

 patterns  may  have  arisen  as  a  result  of  the  harsh  weather  conditions  of  southern  Europe  in 

 2021.  During  that  period,  weather  anomalies  created  unusually  warm  winters  as  well  as  the 

 hottest  and  longest  summer  heat  waves  in  the  region’s  recent  history  (Lhotka  and  Kyselý  2022)  . 

 These  extreme  heat  waves  may  have  affected  flies  both  directly,  through  physiological  thermal 

 challenges, and also indirectly by affecting their food sources. 

 Overall,  our  findings  provide  two  major  insights  into  the  temporal  structure  of  D. 

 melanogaster  populations.  First,  we  showed  that  overwintering  bottlenecks  are  associated  with 

 the  severity  of  winter  across  habitats.  Second,  that  there  is  a  predictable  relationship  between 

 the strength of winter and the genomic consequences of overwintering in fruit flies. 

 Future directions 
 In  conclusion,  our  findings  not  only  highlight  the  power  of  DEST  as  a  resource  for  fly  biologists 

 but  also  its  promise  and  potential  for  growth.  Indeed,  as  more  temporal  samples  continue  to  be 

 added,  more  detailed    gene-environment  association  studies  will  undoubtedly  shine  a  light  on  the 

 drivers  of  selection  across  worldwide  habitats.  Our  data  may  also  be  used  in  order  to 

 parameterize  temporally  and  spatially  explicit  population  genetic  simulations  which,  combined 

 with  climate  change  forecasting  datasets,  will  help  to  model  rapid  evolutionary  responses  under 

 various  climate  scenarios.  Lastly,  as  our  consortium  continues  to  grow,  we  are  working  to 

 include  a  variety  of  other  Drosophila  species  into  DEST.  Such  multi-species  data  will  be  pivotal 

 to assess the evolutionary dynamics of adaptive tracking across the phylogeny. 

 Materials and Methods 

 Sample mapping and SNP discovery using the DEST mapping pipeline 
 Samples  were  mapped  to  the  D.  melanogaster  hologenome  using  the  pipeline  described  in  our 

 first  release  (Kapun  et  al.  2021)  .  This  pipeline  consists  of  a  combination  of  genomic  tools 

 (fast-qc  [v0.12.1],  Cutadapt  [v2.3]  (Martin  2011)  ,  BBMap  [v38.80]  (Bushnell  et  al.  2017)  , 

 BWA-mem  [v0.7.15]  (Li  2013)  ,  Picard  [v3.1.1],  SAMtools  [v1.9]  (Li  et  al.  2009)  )  in  a  Docker 

 container.  For  our  current  release  of  DEST  (2.0),  we  have  updated  the  Docker  container  to 

 enable  mapping  of  reads  sequenced  in  both  paired-end  (PE)  and  single-end  (SE)  configuration. 

 This  new  version  of  the  pipeline  can  be  found  in  Dockerhub  (  https://hub.docker.com/  )  as 

 destbio/dest_freeze2:latest.  SNP  calling  was  performed  using  the  PoolSNP  algorithm  (Kapun  et 
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 al.  2020)  .  For  SNP  calling,  we  used  the  default  parameters  optimized  in  the  first  release  of 

 DEST  (Kapun  et  al.  2021)  .  The  SNP  calling  step  as  well  as  genome  annotation  with  SNPEff 

 (v5.2;  Cingolani  et  al.  2012)  were  automated  using  SnakeMake  (Mölder  et  al.  2021)  .  We  provide 

 ready  to  use  outputs  of  the  DEST  pipeline  both  in  variant  call  format  (VCF)  format  as  well  as  in 

 genomic  data  structure  (GDS)  format  (Zheng  et  al.  2012)  .  The  entire  DEST  pipeline  can  be 

 found on GitHub at:  https://github.com/DEST-bio/DESTv2  . 

 Previously published datasets added to DEST 2.0 
 We  incorporated  data  from  previously  published  studies  (Reinhardt  et  al.  2014;  Svetec  et  al. 

 2016;  Fournier-Level  et  al.  2019;  Lange  et  al.  2022;  Nunez  et  al.  2024)  .  These  data  were  added 

 to  DEST  by  processing  the  raw  sequences  using  the  Docker  pipeline.  These  new  samples 

 include:  37  samples  from  Nunez  et  al.  (2024)  ,  16  samples  from  Fournier-Level  et  al.  (2019)  ,  two 

 samples  from  Hoffmann  et  al.  (2002)  ,  17  samples  from  Lange  et  al.  (2022)  ,  eight  samples  from 

 Reinhardt  et  al.  (2014)  ,  and  one  sample  from  Svetec  et  al.  (2016)  .  Comprehensive  metadata  for 

 these  samples  is  included  in  Table  S1.  Samples  from  Fournier-Level  et  al.  (2019)  consist  of 

 multiple  replicates  from  the  same  locality  each  with  low  coverage.  Accordingly,  we  collapsed  all 

 replicates  from  each  site  into  a  single  “consolidated”  library  (see  “Collapse”  category;  orange 

 squares in  Fig. 1C  ), each with read depths of ~60X. 

 Filtering parameters 
 We  filtered  SNPs  and  samples  using  metrics  and  tools  described  in  our  first  release  (Kapun  et 

 al.  2021)  .  In  brief,  we  1)  calculated  the  levels  of  contamination  by  congenerics,  2)  levels  of  read 

 duplication  in  the  sequencing  run,  3)  proportion  of  SNPs  with  missing  allele  frequency  data,  4) 

 ratio  of  synonymous  to  non-synonymous  polymorphism  (  p  N  /  p  S  ),  5)  nominal  coverage,  and  6)  the 

 effective  coverage.  Levels  of  contamination  by  congenerics  refers  to  the  amount  of  non-  D. 

 melanogaster  flies accidentally sequenced in pools. 

 We  assessed  contamination  using  a  two-pronged  approach.  First,  we  assessed  levels  of 

 competitive  mapping  of  reads  to  the  genomes  of  D.  melanogaster  (RefSeq:  GCF_000001215.4) 

 and  D.  simulans  (RefSeq:  GCF_016746395.2).  D.  simulans  and  D.  melanogaster  can  be  difficult 

 to  differentiate  in  the  wild  and  the  wrong  species  may  be  sequenced  by  accident.  The  specifics 

 of  competitive  mapping  are  discussed  in  the  methods  of  the  first  release  (Kapun  et  al.  2021)  . 

 Our  second  approach  uses  a  k  -mer  counting  method  that  can  be  directly  applied  to  raw  read 

 files  and  is  flexible  for  multiple  species  that  are  represented  or  closely  related  to  those 

 represented  in  the  target  k  -mer  dictionary.  This  approach  is  described  in  (Gautier  2023)  .  Next, 
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 we  generated  in-silico  pools  consisting  of  mixtures  of  panels  of  inbred  D.  melanogaster  (Mackay 

 et  al.  2012)  and  D.  simulans  (Signor  et  al.  2018)  .  We  generated  these  in-silico  pools  by  varying 

 the  mixture  levels  of  the  two  species.  By  analyzing  these  pools,  we  show  that  both  the 

 competitive  mapping  and  the  k-mer  approach  are  accurate  (  Fig.  S3A  ),  with  the  competitive 

 mapping  approach  slightly  over-estimating  contamination  (by  2.3%  max)  and  the  k  -mer 

 approach slightly under-estimating contamination (by 6% max). 

 The  levels  of  read  duplication  were  extracted  directly  from  the  BAM  files  by  mining  the 

 “mark_duplicates_report”  output  using  a  custom  R  script.  Missing  data  was  assessed  by 

 counting  the  number  of  sites  reported  as  “NA”  in  a  particular  pool.  The  p  N  /  p  S  statistic  was 

 calculated  using  the  SNP  annotations  derived  from  SNPEff  using  custom  script  (see  GitHub). 

 The  nominal,  genome  wide,  read  depth  (RD)  is  extracted  directly  from  the  BAM  file  using  a 

 custom script (see GitHub). Note that the per-site RD is a standard output of PoolSNP. 

 Masked gSYNC files 
 Prior  to  SNP  calling,  we  masked  positions  in  each  gSYNC  file,  which  is  a  genome-wide 

 extension  of  the  SYNC  file  format  (Kapun  et  al.  2021)  for  each  sample  based  on  minimum  and 

 maximum  read  depth  thresholds,  as  well  as  on  proximity  to  putative  indel  polymorphisms  as 

 identified  by  GATK  IndelRealigner  v3.8.1  (DePristo  et  al.  2011)  .  In  addition,  we  masked  regions 

 associated  with  repetitive  elements  identified  as  fragments  of  interrupted  repeats  by  Repeat 

 Masker  (Smit  et  al.  1996;  Jurka  2000)  ,  microsatellites  and  simple  repeats  identified  by  Tandem 

 Repeat  Finder  (Benson  1999)  ,  repetitive  windows  identified  by  Window  Masker  and  SDust 

 (Morgulis  et  al.  2006)  ,  and  transposable  elements  and  other  repetitive  elements  identified  by 

 Repeat  Masker  (all  obtained  from  the  UCSC  Genome  Browser),  using  the  custom  python  script 

 MaskSYNC_snape_complete.py  as  previously  described  in  Kapun  et  al.  (2021).  Importantly,  the 

 position  of  these  masked  sites  are  stored  in  BED  file  format,  which  allows  accounting  for 

 masked  sites  both  in  mono-  and  polymorphic  positions  when  calculating  unbiased  site-specific 

 averages  for  population  genetic  statistics  as  described  below  in  the  section  “Estimation  of 

 nucleotide diversity” (see also Kapun et al. 2020). 

 Effective read depth 
 In  addition  to  the  nominal  RD,  multiple  downstream  analyses  in  this  paper  use  the  “effective  RD” 

 metric  (n  e  ).  This  is  a  Pool-Seq  specific  metric  that  corresponds  to  the  number  of  individually 

 genotyped  chromosomes,  after  accounting  for  the  double  binomial  sampling  that  occurs  in 
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 Pool-Seq  (Kolaczkowski  et  al.  2011;  Feder  et  al.  2012;  Gautier  et  al.,  2013)  .  An  estimate  of  n  e  for 

 a Pool-Seq sample can be defined as 

 (eq. 1)  𝑛 
 𝑒    

=    
 𝑁 

   
 𝐶    

 𝑁 + 𝐶 − 1       

 where  N  is  the  haploid  sample  size  of  the  pool  (i.e.,  number  of  pooled  chromosomes)  and  c  is 

 the  nominal  RD  at  a  given  position  or  average  across  the  genome  (see  Text  S1  for  further 

 details  on  the  derivation  of  eq.  1  and  for  a  more  general  formula  applicable  to  collapsed 

 Pool-Seq sample). 

 Recombination landscape 
 We  inferred  the  genome-wide  recombination  landscape  for  75  of  our  samples  using  ReLERNN 

 v1.0.0  (Adrion  et  al.  2020)  .  The  samples  were  selected  to  cover  the  entire  spatial  distribution  of 

 the  DEST  2.0.  sampling  and  based  on  the  coverage  sequencing  depth  (mean  =  68.3,  SD  = 

 35.8,  min.  =  32,  max.  =  234),  which  was  chosen  to  be  as  high  as  possible  to  maximize  the 

 reliability  of  the  allele  frequency  used  by  ReLERNN  to  estimate  recombination  (  Table  S1  ).  We 

 used  BCFtools  (Danecek  et  al.  2021)  to  extract  allele  frequency  of  all  biallelic  SNPs  with  a 

 frequency  >  0.01  and  read  depth  >  10.  The  resulting  data  was  used  to  run  ReLERNN.  The 

 parameters  used  in  ReLERNN  simulate  module  were  as  follow:  assumed  per-base  mutation 

 rate:  --assumedMu  3.27x10  -9  ;  assumed  generation  time  (in  years):  --gentime  0.08;  and  upper 

 rho/theta  ratio  --upperRhoThetaRatio  10.  For  the  train  module,  we  applied  a  MAF  of  0.01 

 (--maf).  For  the  prediction  module,  we  considered  windows  with  a  minimum  number  of  50  sites 

 (--minsites).  Following  the  developers’  recommendation,  we  let  the  program  select  the  optimal 

 size  of  the  non-overlapping  windows  on  which  per-base  recombination  rates  were  predicted.  To 

 allow  comparisons  between  samples,  we  estimated  the  average  per-base  recombination  rates 

 in  larger  200  kb  non-overlapping  sliding  windows  by  combining  the  raw  rates  estimated  in  each 

 ReLERNN-selected  window  weighted  by  the  fraction  of  the  overlap  with  the  corresponding  200 

 kb  sliding  window.  Using  the  same  approach,  we  also  calculated  the  recombination  landscape 

 using  the  raw  data  of  (Comeron  et  al.  2012)  ,  which  are  significantly  correlated  with  our 

 estimates  for  most  of  the  populations  (  Table  S11  ).  Recombination  rates  are  available  in  the 

 genome browser. 

 36 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.11.10.622744doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.10.622744
http://creativecommons.org/licenses/by-nc/4.0/


 Nunez, Coronado-Zamora,  et al. 

 Estimation of nucleotide diversity 
 We  conducted  population  genetic  analyses  using  npStat  (Ferretti  et  al.  2013)  .  Out  of  the  530 

 high-quality  samples,  we  used  a  subset  of  504  samples  for  which  we  also  had  the  masked  bam 

 files,  which  were  necessary  to  compute  the  statistics.  The  remaining  26  samples  do  not  have  a 

 masked  bam  file  as  they  were  incorporated  from  the  DGN  data.  For  those  samples,  diversity 

 statistics  come  from  DEST  1.0  data  (Kapun  et  al.  2021)  .  Standard  nucleotide  diversity  statistics 

 were  first  directly  estimated  from  each  bam  file,  for  non-overlapping  windows  (10  kb,  50  kb  or 

 100  kb)  over  the  whole  genome,  using  the  estimators  for  Pool-Seq  data  developed  by  Ferretti  et 

 al.  (2013).  Only  positions  covered  by  at  least  two  reads  and  less  than  250  reads  with  a  min 

 quality  >  20  were  considered  in  the  computations  (  -mincov  2  -maxcov  250  -minqual  20  options) 

 and  windows  with  less  than  9,000  remaining  positions  were  discarded.  We  further  calculated 

 window-specific  average  estimates  for  each  sample,  using  window  sizes  of  10k,  50k  and  100k 

 (i.e.,  window  size  that  are  displayed  in  the  genome  browser)  using  a  custom  Python  script 

 (BED2Window.py). 

 Analyses of chromosomal inversions 
 Based  on  previously  identified  inversion-specific  marker  SNPs  (Kapun  et  al.  2014),  which  are  in 

 tight  linkage  with  the  breakpoints  of  the  common  cosmopolitan  inversions  In(2L)t  ,  In(2R)NS  , 

 In(3L)P,  and  In(3R)Payne  and  of  the  rare  cosmopolitan  inversions  In(3R)C,  In(3R)K  and 

 In(3R)Mo  ,  we  estimated  sample-specific  inversion  frequencies  based  on  the  median  of  the 

 frequencies  of  inversion-specific  alleles  across  SNP  markers  for  a  given  inversion  following  the 

 approach  in  Kapun  et  al.  (2014)  .  To  test  for  associations  between  inversion  frequencies  and 

 geographic  variables,  we  partitioned  the  data  by  continent  and  analyzed  each  inversion 

 separately.  We  fit  general  linear  models  including  arcsine  square-root  transformed  inversion 

 frequencies  as  dependent  variables,  which  accounts  for  the  skewed  variance  distribution  in 

 binomial  data  when  normality  is  assumed.  We  included  latitude,  longitude  and  sampling  year  as 

 independent  variables  and  tested  for  the  effect  of  the  independent  variables  and  all  possible 

 interactions  with  a  likelihood  ratio  test.  While  we  considered  latitude  and  longitude  as 

 continuous  numerical  variables,  we  treated  year  as  a  categorical  factor  to  account  for  the  sparse 

 sampling across years at most locations. 

 Principal Component Analysis (PCA) 
 Global  population  structure  analyses  were  done  using  the  PCA  algorithm  implemented  in  the 

 FactoMineR  v2.4  package  (Lê  et  al.  2008)  .  For  these  analyses,  we  included  all  available 
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 samples  that  passed  the  filter  in  DEST  2.0.  We  include  all  biallelic  SNPs  in  autosomes  provided 

 they  had  less  than  1%  missing  data  and  a  mean  allele  frequency  greater  than  1%  (across  all 

 samples).  We  thinned  the  dataset  by  only  selecting  SNPs  that  were  500  bp  apart  from  each 

 other,  reducing  the  dataset  to  168,408  SNPs.  Note  that  we  ensured  that  this  PCA  was  robust  to 

 variations  in  read  coverage  and  haploid  pool  size  by  comparing  the  estimated  PCs  with  those 

 obtained  with  a  random  allele  PCA,  as  implemented  in  randomallele.pca  ()  from  the  R  package 

 poolfstat  (v 2.3.0, Gautier et al.,  in prep.  ;  Fig.  S7  ). 

 Demographic inference with  moments 

 We  fit  demographic  models  to  subsets  of  the  DEST  2.0  variant  data  with  the  Python  package 

 moments  (Jouganous  et  al.  2017)  .  We  adapted  moments  code  to  construct  site  frequency 

 spectra  (SFSs)  from  autosomal  SNPs  from  the  Pool-Seq  VCF  file,  subset  to  include  only  the 

 pool  with  greatest  effective  sample  size  (  n  e  )  from  each  locality  in  order  to  avoid  geographic 

 sampling  bias.  For  simplicity,  we  normalized  population-specific  sample  sizes  to  the  average  n  e 

 of  respective  subsets  of  pools  in  consideration.  For  different  subsets  of  the  data,  we  constructed 

 demes  -type  models  (Gower  et  al.  2022)  dubbed  “one-population,”  “split,”  “two-splits,”  and 

 “admixture”  (see  Fig.  S9  )  in  order  to  infer  demographic  parameters  of  global  Drosophila 

 populations  while  simultaneously  performing  likelihood-based  model  selection.  A  significant 

 limitation  of  SFS-based  demographic  inference  (e.g.  Gutenkunst  et  al.  2009;  Kamm  et  al.  2020) 

 is  that  model  likelihoods  are  calculated  from  element-wise  products  of  measures  of  deviations 

 between  data  and  model  SFSs,  thus  making  the  likelihoods  dependent  on  the  number  of 

 elements  of  the  SFS.  This  strategy  inhibits  comparison  of  models  with  different  numbers  of 

 contemporary  populations,  whose  corresponding  SFSs  have  different  numbers  of  dimensions 

 (i.e.,  one  dimension  per  population)  and  thus  different  numbers  of  elements.  We  overcome  this 

 limitation  by  introducing  collapsed  log-likelihood  (CLL),  in  which  direct  comparison  is  enabled  by 

 “collapsing”  the  additional  populations  of  higher-dimensional  SFSs  such  that  all  SFSs  to  be 

 compared  have  identical  minimal  shapes.  For  example,  in  order  to  compare  three-population 

 models  of  Europe  that  include  the  putative  overlap  zone  to  two-population  models  of  Europe,  we 

 independently  fit  models,  then  “collapse”  the  data  and  model  SFSs  of  the  three-population 

 models  by  summing  over  the  axis  representing  the  overlap  zone  in  order  to  yield  a  2D-SFS  with 

 the  same  shape  as  the  SFSs  in  the  two-population  models,  and  then  re-calculate  the 

 log-likelihood  of  the  collapsed  data  given  the  collapsed  model  SFS  in  order  to  achieve  the  CLL. 

 This  method  was  replicated  by  collapsing  the  “Southeast”  population  in  order  to  compare  two- 

 and  one-population  models  of  the  “mainland”  region  and  then  by  collapsing  the  “Latin  America” 
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 population  in  order  to  compare  two-  and  one-population  models  of  the  “Americas”  region. 

 Simulated  validation  of  CLL  as  a  powerful  statistic  for  selection  between  models  of  different 

 dimensions can be found at  Text S3  . 
 Replicable  fitting  of  each  model  necessitated  thousands  of  replicate  runs  of  moments 

 inference  through  several  rounds  of  manual  adjustment  of  parameter  space  boundaries, 

 optimization  algorithms,  and  other  optimization  parameters.  The  general  workflow  for  each 

 model  fit  involved  initially  searching  enormous  parameter  spaces  (i.e.,  spanning  orders  of 

 magnitude  in  each  parameter’s  dimension)  with  the  Nelder–Mead  algorithm  (Nelder  and  Mead 

 1965)  ,  then  performing  targeted  searches  with  the  BFGS  algorithm  (Fletcher  1987)  until  several 

 runs were found to have non-randomly converged to the same point in parameter space. 

 To  validate  model  likelihoods  and  parameter  estimates,  we  employed  a  jackknifing 

 strategy,  in  which,  for  40  replicates  for  each  model  fit  to  each  region,  we  randomly  removed  one 

 sample  from  each  population.  We  then  calculated  95%  confidence  intervals  as  being  between 

 the  second-least  and  second-greatest  values  for  each  estimate  among  each  set  of  40 

 replicates.  The  hypothesis  tests  that  we  reported  as  being  performed  “on  model  likelihoods”  in 

 the Results section are comparisons of sets of 40 CLLs of model fits to jackknife replicates. 

 Linear admixture modeling and  f  3  analysis 
 We  estimated  the  proportion  of  African  and  European  admixture  in  North  and  South  America,  as 

 well  as  Australian  samples  using  a  linear  regression  framework  (Alkorta-Aranburu  et  al.  2012; 

 Bergland  et  al.  2016)  .  We  modeled  allele  frequencies  in  each  “admixed  population”  (i.e.,  North 

 America,  South  America,  Australia)  as  a  linear  combination  of  the  two  “ancestral  populations” 

 (i.e., Europe and Africa) using an intercept-free linear model: 

 (eq. 2)  𝑝    
 𝑖 − 𝑎𝑑𝑚𝑖𝑥    

=    β
 1    

( 𝐴𝑓𝑟𝑖𝑐𝑎𝑛     𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 ) + β
 2    

( 𝐸𝑢𝑟𝑜𝑝𝑒𝑎𝑛     𝐴𝑛𝑐𝑒𝑠𝑡𝑜  𝑟 
 𝑘 
) + ε   

 where  p  i-admix  is  a  vector  of  allele  frequencies  composed  of  5,000  randomly  sampled  SNPs 

 across  autosomes  in  the  i  th  admixed  sample,  β  1  represents  the  proportion  of  African  ancestry 

 and  β  2  represents  the  proportion  of  European  ancestry.  The  model  is  iterated  over  every  k  th 

 sample  from  Europe  and  we  used  a  sample  from  Zambia  (sample  Id  = 

 ZM_Sou_Sia_1_2010-07-16)  to  represent  the  African  ancestor.  We  report  the  mean  ancestry 

 coefficients  for  each  admix  sample  as  the  mean  of  β  1  for  all  iterations  of  European  ancestors. 

 For  these  admixture  analyses  we  omitted  the  “collapsed  samples”  from  the  (Fournier-Level  et  al. 

 2019)  dataset.  We  performed  this  analysis  on  the  entire  genome,  as  well  as  inside  chromosomal 

 39 

.CC-BY-NC 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 11, 2024. ; https://doi.org/10.1101/2024.11.10.622744doi: bioRxiv preprint 

https://doi.org/10.1101/2024.11.10.622744
http://creativecommons.org/licenses/by-nc/4.0/


 DEST 2.0 

 inversions,  outside  of  inversions,  and  on  non-coding  mutations.  In  total  we  ran  1,313,070 

 comparisons (all available in  Dataset S2  ). 
 We  also  assessed  evidence  of  admixture  using  the  f  3  statistic  in  the  R  package  poolfstat 

 (v2.3.0,  Gautier  et  al.,  2022).  A  significantly  negative  f  3  for  a  triplet  configuration  of  the  form  f  3 

 (A;B,C)  provides  evidence  for  the  target  population  A  to  originate  from  an  admixture  event 

 between  two  source  populations  related  to  sampled  populations  B  and  C.  We  tested  samples  in 

 the  Americas  and  Australia  to  identify  the  most  likely  ancestral  populations  from  Africa  and 

 Europe.  For  this  analysis,  we  included  15  African  populations  (derived  from  seven  countries: 

 Cameroon,  Egypt,  Ethiopia,  Morocco,  Rwanda,  South  Africa,  and  Zambia)  and  all  European 

 samples  as  source  population  proxies.  We  used  all  populations  in  Australia  and  the  Americas  as 

 targets of admixture. 

 Population differentiation 
 We  analyzed  patterns  of  population  differentiation  across  samples  and  clusters  using  the  R 

 package  poolfstat  (v2.3.0,  Gautier  et  al.,  in  prep.  ).  This  analysis  was  performed  for  528  samples 

 that  passed  quality  filtering  and  for  9  clusters  (clusters  defined  based  on  the  spatial  clustering 

 using  k  =  4  and  continent),  thus  excluding  the  D.  simulans  sample  and 

 “CN_Bei_Bei_1_1992-09-16”,  on  three  set  of  polymorphisms:  i)  all  chromosomes  including 

 heterochromatin;  ii)  autosomes,  excluding  heterochromatin;  and  iii)  excluding  heterochromatin 

 and  SNPs  with  MAF  <  0.05.  To  examine  pairwise  population  differentiation,  the  samples  were 

 grouped  based  on  their  spatial  clusterings  at  k  =  4  and  k  =  8  (  k  =  8  clustering  results  shown  in 

 the  supplement,  Fig.  S13  ).  The  computeFST()  function  was  first  used  to  estimate  the  global  F  ST 

 across  all  worldwide  samples  and  also  within  each  geographical  cluster  using  the  ANOVA 

 method  (Hivert et al. 2018)  . 

 To  further  quantify  the  impact  of  the  structuring  of  the  genetic  diversity  across  continents, 

 we  used  a  hierarchical  modeling  of  differentiation  consisting  of  decomposing  overall  F  ST  (here 

 denoted  as  hF  ST  )  into  an  across-group  (  F  GT  )  and  within  group  (  F  SG  )  contribution  (Nei  1973)  ,  as 

 follows: 

 (eq. 3)  1 −  ℎ  𝐹 
 𝑆𝑇 

= ( 1 −  𝐹 
 𝑆𝐺 

)( 1 −  𝐹 
 𝐺𝑇 

)

 with  groups  of  population  being  defined  a  priori  (e.g.,  according  to  their  continent  of  origin  and 

 the  clustering  results  as  we  did  in  the  present  study).  We  estimated  these  statistics  using  the 

 unbiased  estimator  developed  for  Pool-Seq  data  implemented  in  the  computeFST  ()  function  of 
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 poolfstat  (v2.3.0,  Gautier  et  al.,  in  prep).  In  addition  to  whole  genome-estimates,  window-wise 

 hierarchical  F  ST  parameters  were  estimated  across  windows  of  10  kb,  50  kb  and  100  kb  and  are 

 available in the DEST 2.0 browser. 

 GIM predictive models 
 GIMs  analyses  were  conducted  in  the  R  package  adegenet  v2.1.5  using  discriminant  analysis  of 

 the  principal  component  (DAPC)  framework  (Jombart  et  al.  2010)  .  While  the  original  GIM  set 

 from  DEST  1.0  consisted  of  30,000  loci,  here  we  use  only  28,253  loci.  This  was  done  because 

 some  of  the  original  markers  were  filtered  out  in  the  current  DEST  2.0  panel.  We  used  these 

 markers  to  train  the  DAPC  model  using  the  sample’s  state/province  as  the  grouping  prior.  We 

 retained  30  PCs  from  the  DEST  1.0  model  for  the  state/province  model.  We  retained  PCs  based 

 on  a  leave-one-out  analysis  that  minimized  the  sum  of  squared  errors  (SSE)  of  the  model.  In 

 addition,  we  also  trained  a  second  DEST-GIM  1.0  model  using  city  labels  (20  PCs  were  retained 

 for  this  model;  based  on  minimum  SSE).  We  used  232  samples  from  DEST  1.0  to  train  the 

 model and then predicted the provenance of all 455 new samples from DEST 2.0. 

 DAPC  models  were  trained  using  a  cross-validation  routine  where  the  data  is  subdivided 

 into  a  training  (90%)  and  a  testing  set  (10%)  across  30  replicates.  For  simplicity,  we  only 

 explored  the  first  300  PCs  across  iterations.  Parameters  were  optimized  using  the  lowest  mean 

 square  error  (MSE)  statistic  using  the  xvalDapc  function  in  adegenet  .  Predictive  GIM  models 

 were  assessed  by  estimating  the  haversine  distance  (  d  hav  )  between  the  predicted  and  expected 

 latitude  and  longitude  points.  Haversine  distances  represent  the  lowest  distance  between  two 

 points  across  a  spherical  earth  with  radius  of  6378.137  Km  using  the  R  package  geosphere 

 (  v.1.5-14;  Hijmans et al. 2022)  . 

 Temporal genetic structure and latitudinal analysis 
 We  assessed  levels  of  temporal  structure  across  DEST  by  estimating  F  ST  between  samples  at 

 the  same  locality  collected  a  year  apart  from  each  other.  These  estimates  of  F  ST  reflect 

 differentiation  resulting  from  the  overwintering  population  “bust”  across  one  winter.  We  call  this 

 summary  statistic  “year-to-year  F  ST  ”  as  it  captures  levels  of  genetic  variation  for  the  population 

 before  and  after  a  winter  season.  We  correlated  this  data  to  latitude  and  performed  a 

 broken-stick regression analysis using the  segmented  (v.2.0-4) R package  (Muggeo 2003)  . 
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 Scans for adaptive differentiation 
 We  tested  for  adaptive  differentiation  at  ~908,543  SNPs  that  were  polymorphic  in  a  set  of 

 seasonally  collected  samples  from  across  Europe  (  Table  S12  ).  First,  we  implemented  the 

 BayPass  2.4  model  for  adaptive  differentiation  using  the  XtX  *  test  statistic  (Olazcuaga  et  al., 

 2020)  while  controlling  for  population  structure  using  a  matrix  of  genetic  relatedness  (i.e.,  Ω 

 matrix).  We  estimated  the  XtX  *  for  every  autosomal  SNP  in  the  genome  using  five  independent 

 runs  of  BayPass  2.4,  and  took  the  median  value  per  SNP.  We  also  generated  a  null  distribution 

 of  XtX  *  using  the  POD  method  outlined  in  Gautier  (2015)  and  Olazcuaga  et  al.  (2022)  .  We 

 generated  a  null  distribution  of  XtX  *  statistics  by  simulating  allele  frequencies  for  ~9M  SNPs,  ten 

 times  the  number  of  observed  SNPs  used  in  this  analysis.  We  then  generated  empirical 

 P  -values  for  the  observed  XtX  *  statistics  by  calculating  the  upper-tail  probability  of  the  observed 

 data  relative  to  the  simulated  POD  data.  We  used  the  weighted  Z  analysis  (wZa;  Booker  et  al. 

 2024)  to  identify  windows  of  signal  enrichment  across  the  genome.  The  wZa  statistic  combines 

 the  empirical  P  -values  within  a  window  for  each  test  using  Stouffer's  method  (Stouffer  et  al. 

 1949)  weighted  by  average  heterozygosity.  We  applied  this  approach  in  a  sliding  window 

 approach with a window size of 100 kb and a step size of 50 kb. 

 Second,  we  ran  the  BayPass  model  including  both  the  Ω  matrix  as  a  demographic  prior 

 as  well  as  “spring”  and  “fall”  labels  as  a  proxy  for  seasonal  selection  pressures.  We  designated 

 the  “spring”  sample  as  the  first  sample  within  a  year,  and  the  “fall”  sample  as  the  last  sample 

 within  the  year.  Several  samples  from  DEST  1.0  were  characterized  by  the  collectors  as  “spring” 

 or  “fall”.  For  those  samples,  this  label  was  used  in  the  analysis.  For  more  recent  samples, 

 including  most  sampled  in  DEST  2.0,  samples  are  labeled  as  a  function  of  date  of  collection.  For 

 such  samples,  we  assigned  seasonal  labels  by  selecting  the  first  and  last  sample  collected  in  a 

 locality  within  a  year.  For  each  SNP,  we  estimated  the  contrast  statistics  (  C  2  )  with  five 

 independent  runs  of  BayPass  and  took  the  median  value.  To  generate  a  null  distribution  of  C  2 

 statistics,  we  used  the  simulated  SNP  data  described  above,  and  ran  BayPass  five  times.  We 

 took  the  median  C  2  of  the  simulated  data  as  our  null  distribution,  and  calculated  empirical 

 P  -values  as  described  above.  We  performed  a  sliding  window  analysis  of  these  empirical 

 P  -values using the wZa method. 

 Third,  we  implemented  a  generalized  linear  mixed  model  (GLMM)  approach  that  is 

 similar  to  that  applied  previously  by  Machado  et  al.  (2021)  .  We  modeled  allele  frequency  at  each 

 SNP  i  using two models : 

 (eq. 4)  𝑝 
 𝑖    

=  α +        𝑋 ( 𝑦𝑒𝑎  𝑟 
 𝑓𝑎𝑐𝑡𝑜𝑟    

:     𝑙𝑜𝑐𝑎𝑙𝑖𝑡  𝑦 
 𝑓𝑎𝑐𝑡𝑜𝑟    

) + ε   
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 (eq. 5)  𝑝 
 𝑖    

=  α    +    β
 1    

( 𝑠𝑒𝑎𝑠𝑜𝑛 )   +     𝑋 ( 𝑦𝑒𝑎  𝑟 
 𝑓𝑎𝑐𝑡𝑜𝑟    

:     𝑙𝑜𝑐𝑎𝑙𝑖𝑡  𝑦 
 𝑓𝑎𝑐𝑡𝑜𝑟    

) + ε   

 Where  p  i  is the allele frequency at the  i  th  locus,  α  is the intercept term and β  1  is the term 

 associated with season, and  X  is the random effect  term coded as an interaction term between 

 the year of collection and the locality where flies were collected, ε is the binomially distributed 

 error. We assessed the statistical significance of the seasonal β  1  term using a likelihood ratio 

 test between equations 4 and 5. We performed a permutation analysis following the methods 

 outlined in  (Machado et al. 2021)  by shuffling the  seasonal labels 100 times and rerunning the 

 GLMM analysis for each permutation. We conducted a sliding window analysis of the GLMM. 

 GO term enrichment analysis 
 We  performed  gene  ontology  enrichment  analysis  using  GOWINDA  v.1.12  (Kofler  and 

 Schlötterer  2012)  in  gene  mode  (with  parameters:  --min-genes  5  --min-significance  1 

 --simulations  100000)  on  genes  located  in  10  kb  windows  of  high  differentiation  (  F  GT  >  0.2; 

 Table  S7  ),  -log  10  (wZa  p  -values)  >  188.96  for  the  XtX  *  statistic  (  Table  S8)  ,  and  -log  10  (wZa 

 p  -values)  >  3.65  for  the  C  2  statistic  (  Table  S9  ),  representing  the  99.9th  percentile  from  the 

 simulated POD data (see above). 
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 Data availability and the new DEST 2.0 web browser 
 The  DEST  2.0  browser  is  built  on  the  latest  version  of  JBrowse  2  (Diesh  et  al.  2023)  ,  an 

 enhanced  successor  to  JBrowse  1,  which  powered  the  original  DEST  1.0  browser  (Kapun  et  al. 

 2021).  JBrowse  2.0  offers  improved  performance  through  a  modern  software  architecture  that 

 supports  parallel  rendering  of  tracks  and  allows  for  the  visualization  of  new  data  types,  such  as 

 VCF  files.  Similar  to  the  first  DEST  browser,  it  features  a  user-friendly  data  selector  that 

 facilitates  the  selection  of  the  multiple  population  genetic  metrics  and  statistics  compiled  for  the 

 DEST  2.0  release  (  Fig.  S16  ).  Additionally,  the  browser  provides  a  portal  for  downloading  allelic 

 information  and  precomputed  population  genetics  statistics  in  multiple  formats,  along  with  a 

 usage  tutorial  featuring  worked  examples.  Bulk  downloads  of  all  compiled  tracks  are  available  in 

 BigWig  format  (Kent  et  al.  2010)  ,  and  Pool-Seq  files  (in  VCF  format)  can  be  accessed  through  a 

 dedicated  data  directory.  All  data,  tools,  and  supporting  resources  for  the  DEST  2.0  release, 

 including  reference  tracks  from  FlyBase  (  v.6.12;  Dos  Santos  et  al.  2015)  ,  are  freely  available  at 

 our  website  (https://dest.bio).  The  browser  operates  on  an  Apache  server  running  CentOS  7.2 

 Linux  x64,  powered  by  16  Intel  Xeon  2.4  GHz  processors  and  32  GB  of  RAM.  All  sequences  are 

 available  on  the  SRA  (  https://www.ncbi.nlm.nih.gov/sra  )  at  PRJNA993612.  Code  is  available  in 

 GitHub  at:  https://github.com/DEST-bio/DESTv2_data_paper  .  All  outputs  from  the  DEST  2.0 

 pipeline  can  be  found  at  https://dest.bio  .  Supplementary  datasets  can  be  found  in  Zenodo  at 

 https://doi.org/10.5281/zenodo.13731977  . 
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