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Abstract 

In nanoscience, techniques based on Atomic Force 
Microscope (AFM) stand as a cornerstone for exploring local 
electrical, electrochemical and magnetic properties of 
microelectronic devices at the nanoscale. As AFM's capabilities 
evolve, so do the challenges of data analysis. With the aim of 
developing a prediction model for AFM mappings, based on 
Machine Learning, this work presents a step towards the 
analysis and benefit of Big Data recorded in the hyperspectral 
modes: AFM DataCube. The MultiDAT-AFM solution is an 
advanced 2000-line Python-based tool designed to tackle the 
complexities of multi-dimensional measurements and analysis. 
MultiDAT-AFM offers visualization options, from acquired 
curves to scanned mappings, animated mappings as movies, 
and a real 3D-cube representation for the hyperspectral 
DataCube modes. In addition, MultiDAT-AFM incorporates a 
Machine Learning algorithm to predict mappings of local 
properties. After evaluating two supervised Machine Learning 
algorithms (out of the eight tested) for regression, the Random 
Forest Regressor model emerged as the best performer. With 
the refinement step, a root mean square error (RMSE) of 0.18, 
an R2 value of 0.90 and an execution time of a few minutes were 
determined. Developed for all AFM DataCube modes, the 
strategy and demonstration of MultiDAT-AFM are outlined in 
this article for a silicon integrated microelectronic device 
dedicated to RF applications and analyzed by DataCube 
Scanning Spreading Resistance (DCUBE-SSRM). 

Introduction  

Today, the Atomic Force Microscope (AFM) offers 
the possibility of multidimensional measurements in several 
modes: electrical [1], [2], [3], infrared [4] and electrochemical 
[5]. In addition to the imaging part of the AFM at each pixel, 
spectral data set can be recorded as function of a variable. The 
local measurements are subjected to the impact of parameter 
variable on the active tip-sample nano-system, and generate a 
hyperspectral dataset. These techniques provide fully 
characterization of materials and devices, at the nanoscale. 
Traditional analysis tools are limited in their ability to fully 
process and analyze the resulting relatively large files, up to 

several Giga Bits with large datasets. Thus arose the need for a 
graphical interface capable of comprehensively analyzing, 
processing, visualizing and predicting these complex data sets. 

With the aim of developing an AFM mappings 
prediction model, this work presents a step towards on the 
analysis and use of the Big Data recorded during AFM 
DataCube. To determine the best model, two Machine Learning 
(ML) algorithms are selected, trained and evaluated. In a
microelectronic failure analysis scope, the predictive solution is
proposed to help users get a better understanding of the local
properties of the materials. Presented as an interface, the
MultiDAT-AFM integrates many useful analysis tools and the
golden ML solution with refinement, for the DataCube modes,
complementary to the software supplied with AFM machines.
It will empower researchers to delve deep into their data,
uncovering insights previously obscured by limitations in
visualization tools. As a click and show interface, Big Data
analysis and predictive Machine Leaning algorithm are
integrated in the MultiDAT-AFM solution. Then, the need
arose for a GUI capable of reading, treating, visualizing and
predicting these intricate datasets comprehensively.

Developed for all AFM electrical modes, to present the 
MultiDAT-AFM capabilities, this paper focus on the Scanning 
Spreading Resistance Microscopy (SSRM) [6], [7] in DataCube 
mode. Based on a case study, in a first part, the studied silicon 
microelectronic device and the SSRM technique are presented. 
The strategy and methodology of the MultiDAT-AFM solution 
for analysis and Machine Learning prediction is detailed in the 
second part. And the evaluation of mapping generation of the 
ML is deployed for the RF Si integrated microelectronic device.  

AFM multidimensional data set: the DataCube 
approach 

In order to record full local properties, the DataCube 
approach combines topography, nanomechanical properties and 
spectral acquisition at each pixel of the scanned area. At each 
pixel of the scanned area, the force curve is recorded, providing 
local mechanical properties. During this force curve, the AFM 
tip remains in contact with the surface, and during this time, 
known as the dwell segment, a spectral measurement of the 
parameters is performed and recorded as a function of the 
measurement variable (Figure 1).  
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Figure 1: a) Force curve during the DataCube mode, 
1: approach, 2: dwell segment and 3: tip retract, and b) 
schematic of the 3D DataCube hyperspectral mode with 2D 
topography and spectral acquisition. 

TABLE I 
LIST OF AFM HYPERSPECTRAL DATACUBE MODES 

Name AFM-MODE 
PROBED  

PROPERTIES 
REF for 
the mode 

DCUBE-EFM Electric Force 
Microscopy 

Electric field 
gradient distribution 

[8] 

DCUBE-
TUNA 

Tunneling AFM Ultra-low currents 
(<1pA) with high 
current sensitivity 

[1] 

DCUBE-
CAFM 

Conductive AFM   Currents in the 2pA 
to 1µA range 

[9] 

DCUBE-SSRM Scanning Spreading 
Resistance 
Microscopy 

Local resistance 
from 103 to 1012  

[6] 

DCUBE-SCM Scanning Capacitance 
Microscopy

C/V signal in 
phase and amplitude 
(type and doping 
level) 

[6] 

DCUBE-sMIM Scanning Microwave 
Impedance 
Microscopy 

RF electrodynamic: 
permittivity and 
conductivity 
variations  

[10] 

DCUBE-PFM 
Or 
SSPFM 

Piezoresponse Force 
Microscopy  
Switching 
Spectroscopy 
Piezoresponse Force 
Microscopy 

electromechanical 
of piezoresponse 

[11] [12] 

DCUBE-CR Contact Resonance Mechanical elastic 
and viscoelastic 

DCUBE-
SECM 

Scanning 
electrochemical 
microscopy 

Electrochemical [5] 

This Big Data hyperspectral modes, called DataCube 
or Switching Spectroscopy Mode, are used to probe 
mechanical, electrical, electromechanical and electrochemical 
properties. Table 1 lists the different DataCube modes based on 
AFM. For each mode, corresponding probed properties are 
reported and available references to illustrate the AFM mode.   

For these hyperspectral modes, the sweep parameter 
can be a DC voltage or a frequency of the AC stimulation 
voltage. These modes can be very useful for failure analysis 
applications, when comparing a failed sample with a sample in 
good condition [13]. But analyzing the acquired data sets can 
be tedious and time-consuming for researchers and engineers.  

SSRM mode and the microelectronic sample  

AFM SSRM mode is a local conductive method. In 
this mode, the AFM conductive tip is in contact with the 
analyzed materials and forms a local nano-contact with the 
surface. As a function of the nature of the material, the electrical 
behavior of the nano-contact is ohmic, semi-ohmic, insulating 
or nano- Schottky (in the case of a semiconductor under the 
apex tip). At each pixel, SSRM acquires measurements of the 
local resistance R by a log-amplifier, with a large broad 
resistance range (Figure 2). The measured local resistance 
consists of the contribution of the probe resistance (Rprobe) in 
series with sample resistance (Rsample) and back contact 
resistance with the AFM Chuck (Rback) [14]. For the same tip 
and sample, Rprobe and Rback are constants.  In hyperspectral 
DCUBE-SSRM, during the hold-segment, an DC voltage 
between the AFM tip and sample is applied and varied. As the 
DC bias is swept, the voltage dependent properties are 
collected.  

Figure 2: Schema of the SSRM mode, the local measured 
resistance consists of the probe resistance in series with sample 
resistance and back contact resistance with the AFM Chuck.  

To demonstrate the capabilities of MultiDAT-AFM, 
an integrated silicon microelectronic device dedicated for RF 
applications is selected. The device consists of a highly resistive 
Si substrate with Deep Trench Isolation (DTI) structure. Highly 
resistive substrate and DTIs are used to isolate devices on the 
same chip and ensure good isolation for RF co-design. DTI are 
holes in the third direction of the silicon substrate filled with 
polysilicon. The device also has two level metal layers on the 
top of the silicon active area for electrical contact.   

Figure 3: Topography of the studied device (cross-sectional 
preparation) a) 2D and b)3D view.  
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Sample is prepared by cross-sectional method. On the cross-
section, the scanned size area is 15 µm ×15 µm with a 
resolution of 256 ×256 pixels. The topography is represented in 
Figure 3. Measurements are performed at ambient air. A high 
force around 10 µN was necessary on the cantilever to obtain 
the electrical contact with the occurrence of the tin zone 
when the tip scans silicon semiconductor [14]. Surface scratch 
lines can be seen on the topography measurement. Note that this 
property can also be used for SSRM tomography [15], [16].  

Analysis tools of MultiDAT-AFM 

A solution in Python is developed to treat and process 
the acquired data: MultiDAT-AFM, incorporating advanced 
visualization aspects as well as an evaluated and tested Machine 
Learning solution. 

The solution is presented as an interface “click and 
show”. MultiDAT-AFM offers visualization options, from 
acquired curves to scanned mappings, animated mappings as 
movies, and a real 3D-cube representation. MultiDAT-AFM 
doesn’t require a computer with high-end specifications, and 
even when processing large amounts of data, it has fast 
execution times. 

 As presented, in DataCube modes, at each pixel, the 
approach-retract curve is recorded. The Figure 4a represents 
2000 curves from the 65536 recorded (the 2000 positions are 
distributed over the surface) for the Si device. A zoom of the 
adhesion signal during the retracted step is shown. The 
difference of adhesions attests to the measurements of different 
materials with several mechanical properties. During the dwell 
segment (0.4 s), when the tip stays in contact, a sweep of VDC 
from -4 V to 4 V is applied. 2000 extracted curves of log(R) as 
a function of the time (i.e VDC) are reported on Figure 4b.  

Figure 4: a) Approach-retract curves during the DCUBE-
SSRM, zoom on the adhesion signal and b) raw data of log(R) 
recorded in SSRM as a function of the time, when a sweep is 
applied VDC curves (from -4 V to 4 V at 0.5 Hz). 

The MultiDAT-AFM solution integrates 
visualizations tools for the 3D-view generation as a cube 
(Figure 5), and ability to create animated mapping as movie 
from the measurement. These two tools have a very fast 
execution time (<1 min) and enable a clear visualization and 
understanding of property transitions when the measurement 
parameter, here   VDC varies. 

Figure 5: 3D visualization from MultiDAT-AFM of the SSRM 
slices at different VDC   

From the hyperspectral DCUBE-SSRM for each pixel 
local spectral Log (R) = f(VDC) is recorded. Post-processing of 
the raw data is performed to remove outliers of the 
measurement technique. Secondly, the measured data are 
analyzed to distinguish several groups of local electrical 
responses related to the material properties.  

In our case, to highlight the different electrical 
behaviors observed during SSRM measurement, Figure 6 
represents the DCUBE-SSRM post-analysis. Figure 6a shows 
the SSRM map, slice generated for VDC = 3.8 V; this value is 
chosen because, in this case it allows all the materials used to 
manufacture the component to be clearly identified. In Figure 
6b two profiles along the X axis are plotted, and indicate the 
response levels of contact in the oxide area (top trace) and in 
the silicon substrate area (bottom trace). From the SSRM 
spectrums, I-V curves are generated. Moreover, five 
representative individual I-V spectral data are drawn in Figure 
6c, 6d, 6e and 6f. Figure 6c, 6d, 6e for three contacts indicated 
by ■▲, respectively. And responses of the highly resistive 
substrate and DTI are reported in Figure 6f * and▲. This 
analysis shows the strength of the DataCube by highlighting the 
different electrical behavior. This result demonstrates the power 
of investigating broadband voltages compared to the typical 
single electrical map recorded at a single applied VDC.  
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Figure 6: a) SSRM Map at VDC = 3.8 V, b) resistance profiles 
along X axis for 2 areas, from c) to f) I-V curves generated from 
the SSRM measurements at 5 locations reported on the map.   

Supervised Machine Learning predictive 
solution 

From this Big Data hyperspectral result an artificial 
intelligence method has been investigated to take the analysis a 
step further. Nowadays, in AFM, Machine Learning (ML) 
solutions have been studied for tip evaluation, imaging 
classification and artifact detection, mainly from the 
topography and mechanical scans (in classical mode) [17]. 
Some publications demonstrating Machine Learning have been 
published for polymer blends [18] and biological cells [19], 
[20]. In the special case of PFM, in [12] a method is presented 
for analysis and data processing with Machine Learning. A 
Machine Learning model for the calibration of the SSRM mode 
is also proposed in [21].  To go further, in this paper, strategy 
supervised Machine Learning is employed to generate 
properties mappings from the database acquired during 
DataCube measurements. The goal is to predict the AFM value 
of a dependent variable based on the input. In our case, the local 
resistance as a function of the applied DC voltage. For the 
evaluation and determination of the golden model, two 
supervised regression models were selected on height 
algorithms tested. The procedure is a classical ML one, it starts 
with data preparation, model training and culminating in the 
assessment of the model's performance. The two models are 
applied to a calibration sample. This sample, called staircase 
silicon sample, consists on several P and N silicon doping area.  

To evaluate the model performances two factors were 
mainly considered, Mean Squared Error (MSE) and Root mean 
squared error R2 (RMSE) score metrics. The factors were 
evaluated based on: 80% training dataset and the remaining 
20% for testing. Subsequently, the model is trained using 80% 
of the data, and it then proceeds to predict the remaining 20%. 
Its self-evaluation involves quantifying the degree to which its 
predictions deviate from the actual values, effectively gauging 
the accuracy of its predictive capabilities. The two models are: 
Gradient Boosting Regressor (GBR) and Random Forest 
Regressor (RFR). 

Gradient Boosting Regressor (GBR) model is a 
popular Machine Learning algorithm used for regression issues. 
This solution combines multiple weak models to create a strong 
predictive model. The model iteratively trains decision trees to 
correct the errors made by the previous tree, resulting in 
improved accuracy. GBR is known for its speed, flexibility, and 
ability to handle complex data sets. The algorithm contains 3 
parameters: 
* n_estimators: number of decision trees, higher number of
trees means higher cost of calculation
* learning_rate: the step-size or shrinkage rate used in each
iteration of gradient descent. A higher learning rate can lead to
faster convergence but may also cause overshooting, in this
case learning_rate: = 0.1
* max_depth: the maximum depth of each decision tree.
Increasing the maximum depth can improve the model's 
performance but may also increase the risk of overfitting. 
Two n_estimators were evaluated, 10 and 100. 

Random Forest Regressor (RFR) model was first 
proposed as a non-parametric machine-learning algorithm by 
Leo Breiman (Breiman 2001) [22]. Nowadays, widely used, 
RFR uses decision trees and ensemble learning to predict 
continuous outcomes. In a Random Forest Regressor, multiple 
decision trees are trained on random subsets of the training data. 
Each decision tree is built by recursively splitting the data into 
smaller subsets based on the best split at each node. The final 
prediction is made by aggregating the predictions of all the 
decision trees.  

To evaluate the predictive performance of the models, 
ML predicted values versus measured (actual) DCUBE-SSRM 
values are compared. Results, as scatter plots, are reported in 
Figure 7, for the two models. The ML predicted log (R) values 
are plotted as a function of the measured (actual) values. From 
these curves Mean Squared Errors (MSE) (the average squared 
difference between the estimated values and the actual value) 
are estimated. Results with GBR with 10 trees indicates that the 
model is not adapted to the prediction.  With 100 trees, GBR 
has an R-squared value of 0.8151. The Random Forest has an 
MSE of 0.2334, which is slightly higher than the GBR with 100 
trees. The Random Forest has an R-squared value of 0.8756. 
This is quite high and suggests that the model is adapted to the 
prediction. This model serves as our "Golden Model". To 
improve the fitting power, the RFR is refined [23] for training 
and prediction purposes. For this, number of trees and nodes are 
optimized for the best performances and minimizing execution 
time. The Random Forest Regressor with refinement model 
emerged as the top performer among the models tested, with a 
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Mean Squared Error (MSE) of 0.18, R-squared value of 0.90, 
and an execution time of 1.26 minutes, indicating it explains 
about 90.06% of the variance in the data. This ML RFR refined 
(RFR-R) solution is then embedded to the software MultiDAT-
AFM. The prediction function is divided into 3 parts: (1) Train 
Model, (2) Load Model and (3) Predict Maps. 

Figure 7: Scatter plots ML predicted values versus measured 
(actual) values of log (R) for Gradient Boosting Regressor 
(GBR) and Random Forest Regressor (RFR) strategies before 
and after Refinement (RFR-R). A linear regression line shows 
the trend line of the 4 scatter plot result sets. 

Performances, in terms of MSE, R2 (value near 1 is better) and 
execution time, on the two models with refinement are done in 
Table 2. 

TABLE 2 
EVALUATION OF THE ML MODEL 

MODEL 
MEAN SQUARED  
ERROR (MSE) 

ROOT MEAN 

SQUARED ERROR R2 

(RMSE) 
Min (s) 

GBR-10 0.2303 Not a Number 181 

GBR-100 0.66 0.66 16 

RFR 0.2334 0.8756 2.31 

RFR-R 0.18  0.90 1.26 

The mapping of the errors between the measured 
values and predicted ones are compared before and after 
refinement of the RFR model on Figure 8. This evaluation step 
validates the RFR-R model for MultiDAT-AFM. It’s important 
to note that at this step the ML solution is impossible to describe 
good and wrong measurements, as prediction is based on 
learning, at the bottom of the acquisition, a noisy response can 
also be predicted.  

Figure 8: Predictive model by Random Forest Regressor model 
integrated in MultiDAT-AFM, a) before and b) after 
refinement. The sample is a staircase one, a calibration sample 
with several silicon doped layers: measured, predictive and 
error mappings of log (R).  

For the studied integrated RF microelectronic 
device using a highly resistive silicon substrate, four mappings 
predicted are drawn in Figure 9, at four VDC (related at time in 
the tool). Comparison of actual and predicting mappings 
demonstrate the capabilities of MultiDAT-AFM solution on 
known good samples. These results open new opportunities. In 
fact, the generation of predicted maps, inside the VDC range 
measurements, can reduce the relative long DataCube's 
acquisition time, by reducing the number of measurements on 
the desired VDC range and supplementing it with maps predicted 
by MultiDAT-AFM. This would also counteract any change in 
surface during measurement. 
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Figure 9: MultiDAT-AFM prediction of mappings, compared 
with measured mappings for different applied VDC (related to 
the time). 

Conclusions 

MultiDAT-AFM is a tool for analyzing and predicting 
matches from DataCube. With this solution, visualizations tools 
are embedded in order to examine with the utmost precision 
datasets from the AFM DataCube modes. Post-measurement 
analysis is possible to highlight complete differences in the 
AFM probed electrical behavior. The Random Forest Regressor 
model with refinement (RFR-R) provides successful results for 
the DCUBE-SSRM. Tests are also performed for DC-SCM 
with the same performances. For the further, the medium-term 
goal is to cover multiple samples and including different 

DataCube modes. MultiDAT-AFM can help experts in 
microelectronic failure analysis to better elucidate degradation 
mechanisms at the microelectronic chip level. The question of 
predicting maps beyond the measurement range is also raised 
and need testing and validation investigations. To move 
towards clustering and classification can be after used for 
material recognition from the experimental DataCube datasets. 
This applying step must be adapted to each type of component 
studied, since it is closely linked to the nature of the materials 
used.  
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