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Abstract—Federated Learning (FL) has been proposed as a
privacy-preserving approach for distributed learning over decen-
tralized resources. While it can be a highly efficient tool for large-
scale collaborative training of Machine Learning (ML) models,
its efficiency may be strongly impacted by a high variability
in data distributions among clients. Clustered FL tackles this
problem by grouping clients with similar data distributions and
training personalized models. Despite increasing model accuracy
for federated peers, existing clustering approaches overlook
system and infrastructure constraints leading to sustainability
problems for resource-constrained devices.

This paper introduces a new method for resource-constrained
FL clustering. We leverage pre-trained autoencoders to compress
client data into low dimensional space and build lightweight em-
bedding vectors used to cluster federated clients. A randomized
quantization approach specifically secures the client embedding
vectors against data reconstruction. Extensive experiments using
a multi-GPU testbed with multiple scenarios introducing concept
drift between clients demonstrate the generalitity of our approach
to personalized FL. By minimizing the overall system overhead
and improving the model convergence, our approach reduces
model training cost by up to 1.44× - 4.32× communication,
1.03× - 2.40× training time compared to IFCA and 1.0× - 8.60×
communication, 0.87× - 8.40× training time compared to LADD
to achieve similar accuracy in the different evaluation scenarios.
While each of the baselines encounters performance degradation
in at least one of the scenarios, our strategy demonstrates top
efficiency in all of them.

Index Terms—Federated learning, Clustering, Personalization,
Autoencoders

I. INTRODUCTION

Federated Learning [1] (FL) is a decentralized paradigm
that enables training of Machine Learning (ML) models in a
collaborative fashion across several clients or devices. It trains
models locally on individual clients, rather than consolidating
large amounts of sensitive data on a single server. This
approach addresses concerns about data privacy and security
by only sharing model updates instead of raw data, unlike
traditional centralized machine learning models. While this
strategy proves effective in preserving data privacy, it also
faces significant challenges in terms of practicality when
deploying such FL systems at large scale, due to the inherent

statistical heterogeneity of data among individual clients (i.e.,
client drift). Specifically, when the data across clients are
diverse, non-independent and non-identically distributed (non-
IID), training a global model that performs well on the data
of all clients is a challenging task.

Personalized FL (PFL) aims to address these issues by
fine-tuning the global model to fit local data distributions
of federated clients. To this purpose, previous works have
explored the use of meta-learning [2], global and personalized
layers [3] and a mixture of local and global models [4]. A
particularly relevant approach to enable PFL in distributed
environments is to build clusters of clients which have similar
data distributions: clients belonging to the same cluster share
the same personalized model, adapted from the global one [5].
With this approach, each client benefits from the insights of
other clients within the same cluster, by applying collaborative
training to a more specialized task. The comparison between
standard and clustered FL is illustrated in Figure 1.

FL and PFL systems are typically deployed on large,
distributed infrastructures, where the training of the global
model takes place on some powerful facility (Cloud or HPC
system), while the local, personalized training is typically done
at the Edge, i.e., on less powerful computational resources
close to the data production sites. This seamless combination
of resources from the center to the edge, also referred to
as the Computing Continuum, or the Edge-to-Cloud Con-
tinuum [6], adds a new challenge to FL through network
and device heterogeneity (i.e., differences in computation
capacity, network latency, node volatility etc.). Thus, we are
faced with the challenge of efficiently dealing with a large
number of heterogeneous, potentially malicious and highly
resource-constrained devices joining the FL process. On the
one hand, we aim to achieve an accuracy close to the one
achieved by centralized models; on the other hand, we aim
to achieve high performance, scalability, security and low
resource utilization when deploying such FL models on the
Computing Continuum.

Addressing this trade-off is challenging for several reasons:
(1) traditional centralized clustering approaches may not be



Fig. 1: FL and clustered FL: while standard FL makes no distinction between clients and trains a single model, clustered
FL aims to intelligently group clients to improve the training phase and provide clients with personalized models better suited
to their local data distributions.

applicable in decentralized environments [7], [8]; (2) the dis-
tributed clustering techniques typically require a large number
of communication rounds to learn the distribution similarities
and to form clusters; (3) the protocols need to be robust
against intruder or server-side data reconstruction attacks.
Previous PFL strategies have mainly focused on enhancing
the ML process (by improving the training and the clus-
tering accuracy [5], [9]), while overlooking their computing
and communication overheads. Moreover, a growing body of
existing approaches require all devices in the federation to take
part in the training rounds, further exacerbating the overheads
in large-scale settings. We focus here precisely on reducing
these overheads when deploying PFL models across the
Computing Continuum.

Despite increasing convergence between AI and High-
Performance Computing [10], which has led to the adoption
of various parallelization techniques [11] and hierarchical
FL [12], the training of FL models remains a time-consuming
and resource-intensive task. Indeed, the amount of computa-
tion used in the largest AI training runs on the Edge-to-Cloud
Continuum has doubled every 3.4 months since 2012 [13].
Under such circumstances, it becomes important to enable
scalable, secure and resource-efficient PFL considering both
the device heterogeneity and the training accuracy.

To mitigate the above challenges, we propose a novel,
resource-constrained clustering approach for PFL. We lever-
age pre-trained autoencoders (AEs) [14] to project client
data in a low dimensional latent space. While providing
compressed representations of client data, AEs also preserve
their meaningful characteristics, which is essential to detect
similarities between different data points. Before sending these
compressed representations (i.e., embedding vectors) to the
server, federated clients perform randomized quantization to

prevent data reconstruction risks, thereby preserving privacy.
Embedding vectors are finally aggregated by the server in
order to perform agglomerative clustering of the federated
clients. As client embedding vectors are compressed represen-
tations of clients data, their transfer to the server induces a very
light communication overhead. In addition, data compression
through AEs incurs light computational overhead compared
to the actual FL training. This enables our system to cluster
federated clients in an efficient manner.

Our key contributions are summarized as follows:

• a set of design principles to address system constraints
in clustered FL and a resource-constrained clustering
algorithm; they leverage AEs to project client data in
low dimensional space to enable efficient clustering;

• an approach to automatically set the number of clusters
in FL based on bayesian optimization and agglomerative
clustering;

• a randomized quantization approach to mitigate re-
construction and inference attacks and an experimental
study to demonstrate its robustness in these situations;

• an extensive experimental evaluation on a real dis-
tributed testbed (Grid’5000 [15]) using 8 GPUs show-
ing the ability of the proposed algorithm to adapt in
diverse scenarios introducing client heterogeneity through
label shifts and concept drifts. Our proposal enables ac-
curate clustering, improving model convergence with
minimal overhead, resulting in top efficiency compared
to state-of-the-art clustering approaches.

The remainder of this paper is organized as follows. Sec-
tion II introduces relevant background and discusses the lim-
itations of existing work that have motivated our research.
Section III introduces the design principles guiding our pro-
posal. Our clustering approach is presented in Section IV and



its implementation is detailed in Section V. Results from the
experimental evaluation are reported in Section VI. Section VII
discusses the impact of our proposal and Section VIII con-
cludes this paper.

II. BACKGROUND AND RELATED WORK

In this section, we revisit several key FL concepts to set
the context of our work. We explain why clustering clients
based on their data similarity helps tackle data distribution
heterogeneity, and recall dimensionality reduction as a means
for efficient, lightweight FL clustering. We explore the corpus
of literature that has laid the groundwork for these concepts
and discuss their limitations in the context of the Edge-to-
Cloud Continuum.

A. Clustered Federated Learning

Clustering approaches for FL group clients into multiple
clusters based on their data distributions similarity and train a
separate model for each cluster to mitigate the adverse effect of
non-IID data. Most of the existing strategies indirectly measure
the data distribution similarity among clients by using model
weights, gradient updates, or local loss.

Gradient similarity has been used to form clusters through
recursive bipartitioning [5] as well as greedy agglomerative
processes [16]. IFCA [9] (used as an evaluation baseline)
leverages Empirical Risk Minimization to iteratively assign
clients to dynamic clusters. Authors of [17] consider that client
data may follow a mixture of data distributions. They propose
FedSoft that follows a similar approach to IFCA for cluster
assignment, but rather than assigning a single cluster per
client, they let clients join several soft clusters with different
importance weights. In [18], hierarchical clusters are built by
iteratively merging clusters based on gradient similarity.

A different approach rely on integrating generative ad-
versarial networks (GANs) and clustering methods. Cluster-
GAN [19] addresses the challenges of maintaining cluster
structure in the latent spaces of GANs. Building on this, the
authors of [20] use GANs for dynamic client clustering in FL,
extending ClusterGAN with cluster calibration mechanisms.

Feature extraction was used in [21]. Authors introduce
LADD (used as an evaluation baseline) for FL in semantic
segmentation, which forms clusters based on image styles.
In [22], a drift detection algorithm forms new clusters for
drifted clients based on model performance degradation. They
use hierarchical clustering to determine the number of models
needed to address the drift issue.

B. Dimensionality Reduction

A prominent pre-processing approach used in the past for
reducing the overhead of clustering has been dimensionality
reduction. Essentially, these methods reduce the complexity of
high-dimensional data while retaining their essential charac-
teristics. Various strategies have been explored in this context.
Principal Component Analysis (PCA) [7] reduces dimensions
by identifying principal components along which data variance

is maximized, thereby preserving variability. Similarly, t-
SNE [8] is a non-linear technique reducing high dimensional
data to lower dimensions mainly to help visualisation of high-
dimensional data and cluster analysis. Histogram of oriented
Gradients (HOG) and Uniform Manifold Approximation Pro-
jection, (UMAP) are other popular feature extraction tools
which maintain local and global data structures when reducing
dimensions, unlike t-SNE and PCA.

C. Shortcomings

Despite these promising results for both clustering and
dimensionality reduction, it remains an open challenge to
combine these techniques in order to cluster clients optimally
in the FL context.

Popular dimensionality reduction techniques (such as
PCA and t-SNE) are not suited for federated analytics:
PCA, which is very sensitive to inputs, might lead to very
different compressions for clients with slightly diverging data
distributions; t-SNE cannot run over decentralized data. ML-
driven approaches could bring a suitable solution to this prob-
lem. Autoencoders (AEs) are neural networks that learn how
to project data in low dimensional latent space (encoding) and
how to reconstruct them from their compressed representation
(decoding). AEs can be used for dimensionality reduction [23]
by extracting meaningful features for clustering [24], [25].

Clustering approaches like CFL [5], ClusterGAN [19] and
FLACC [16] rely on iterative methods whose success requires
the participation of many (i.e., most of the) clients in the
FL process, demanding a significant amount of time for con-
vergence, which becomes a problem in resource constrained
environments. Adding clients dynamically could potentially
worsen this behaviour. Additionally, some approaches like
LADD [21] (which uses image style to perform clustering)
lack generality, as the nature of the client drift might nega-
tively impact the accuracy of the clustering.

Compared to these works, we bring a new contribution in
the clustering domain for FL through the use of Autoencoders
(AEs) to generate lightweight embedding vectors that capture
important characteristics of FL clients. Our approach enables
clustering before the training phase (i.e., avoiding iterative
and expansive processes for federated clients) in an efficient
manner through the use of lightweight AEs.

D. Problem Statement

Let us recall that straightforward deployment of existing FL
clustering approaches on real-life, large-scale infrastructures
across the Edge-to-Cloud continuum is not feasible. Prior
works have mainly focused on improving the model accuracy,
overlooking the impact on performance [26]. Typically, clus-
tering approaches rely on iterative processes that either require
the clients to download available models of all clusters at each
round and select one that provides the highest test accuracy,
or require the entire federation to perform local training steps
harvesting gradient information. Such approaches incur large
communication costs for two reasons: (1) the continuous
communication between the server and every client to form



clusters, and (2) the large numbers of communication rounds
needed to form stable clusters.

Our goal is to devise scalable, lightweight FL clustering
techniques with practicality as a core focus, making them
applicable to real-world scenarios on the Edge-to-Cloud con-
tinuum. The main research question we aim to answer is how
to cluster clients efficiently (i.e., with minimum computation
and communication overhead) and accurately (i.e., the ob-
tained clusters maximize the overall model accuracy). To the
best of our knowledge we are the first to address these issues
simultaneously.

III. DESIGN PRINCIPLES

To mitigate the limitations identified in Section II-C, we
define a set of design principles for our clustering strategy.

One-shot clustering. A major limitation of iterative clus-
tering approaches is that they may require many rounds
to converge, resulting in inefficient training and waste of
resources. In contrast, one-shot clustering brings the advantage
of not adding any system overhead after the initial clustering
phase. Thus, we leverage a single clustering phase in which
we assign all participating clients to a cluster before starting
the actual training.

Leverage feature extraction for clustering. Some clus-
tering approaches rely on gradient similarity between clients
which requires each client to perform a training round before
the clustering phase. This raises a performance problem with
massive crowds of constrained devices, all performing local
updates of the ML model. Instead, we leverage privacy-
preserving feature extraction from the local client datasets.

Lightweight communication and computation. Devices
encountered at the Edge typically have constrained computing
resources and limited network access. For some of them,
handling the FL training may already lead to a substantial
overhead. Our clustering strategy should minimize the com-
munication and computation overheads for federated clients.

Provide adequate support for new clients dynamically
joining the FL training. FL is typically subject to high
volatility, as a massive number of devices may join or leave
the federation at any time during training. This phenomenon
is further exacerbated at the Edge of the continuum. Although
the training strategies may yield effective models for clients
actively participating in the training process, they cannot
ensure comparable performance for new clients who have
just joined the federation. Current solutions primarily focus
on creating accurate personalized models for existing clients,
often neglecting the challenges related to new clients [26].
Therefore, it is important to provide a mechanism for new
clients to easily identify the most suitable cluster with respect
to their local data distributions.

IV. CONTRIBUTION: RESOURCE-CONSTRAINED
CLUSTERING FOR FEDERATED LEARNING

The purpose of clustering in FL is to group clients with
similar data distributions together in order to provide a better

training of ML models. One problem arising from the decen-
tralized nature of FL is that the data distributions of individual
clients are not known by the central server. This limitation
hinders the ability to achieve optimal clustering.

To bridge this gap, we propose to leverage feature extraction
techniques to retrieve important properties of client local
datasets. We propose a new FL clustering method using
autoencoders (AEs) to generate embedding vectors of client
local data. First, we describe our feature extraction strategy to
build client embedding vectors in a privacy-preserving manner,
next, we present our FL clustering strategy which groups
clients based on their embedding vectors and automatically
sets the number of clusters to form.

A. Embedding Vectors with Local Feature Extraction

We describe our feature extraction approach in Algorithm 1.
1 Client embedding vector generation. The first step for

the federated clients is to compress their local data by using a
pre-trained encoder network to build embedding vectors. Em-
bedding vectors retain essential characteristics of local client
data in a restricted space. To build their embedding vectors,
clients generate an encoded representation for each of their
data samples using the embedding model (i.e., AE encoder)
and compute the average representation for each class (Alg 1,
line 5). We make a distinction between classes to efficiently
detect possible conceptual drift and label shifts between data
distributions (Alg 1, line 4). The client embedding vectors are
finally built by concatenating the representation of each class
(Alg 1, line 6).

Algorithm 1: Client embedding vector generation
1 Input: N is the total number of classes.
2 Q is the randomized quantization probability.
3 Function LocalCompression(Pk):
4 B1≤i≤N ← (split local dataset Pk by class)
5 V1≤i≤N ← avg(encode(B1≤i≤N )
6 Z ← concat(V1≤i≤N )
7 Zq ← randomizedQuantization(Z, Q) (Eq. (1))
8 return Zq

2 Mitigating reconstruction risks with randomized
quantization. Sharing low dimensional embeddings with a
central server could lead to privacy breaches. In particular,
client embedding vectors could be used to reconstruct or
infer properties of the original data. To avoid such privacy
problems, one solution is to reduce the sensitivity of the
query that generates the embedding vector. Previous works
have been exploring the use of additive noise [27] as well
as randomized quantization [28], [29] techniques to achieve
local differential privacy guarantees and improve privacy in
distributed networks.

We decide to use randomized quantization with a strong
quantization (i.e., binary quantization) on the client embedding
vectors for two reasons: (1) it strongly reduces the sensitivity
of the client embedding vector, thus improving privacy; (2) it
also reduces the communication overhead by discretizing the



Fig. 2: FL clustering using client embedding vectors: (i) each client generates a low dimensional embedding vector retaining
essential characteristics of its local data. (ii) Client embedding vectors are aggregated at the server to perform clustering of
federated clients, and (iii) enable separate training of personalized models.

embedding vectors before sending them to the server. To apply
our binary randomized quantization scheme, we normalize
the values of the embedding vectors between 0 and 1 and
discretize values of the embedding vectors in binary space
using randomized rounding as proposed in [28]:

z =

{
round(z) with probability 1− P
flip(round(z)) otherwise (1)

where P is the probability of randomly flipping bits of the
embedding vector. This process is applied by the clients before
communicating their embedding vectors to the server (Alg 1,
line 7).

B. Lightweight Clustering with Dimensionality Reduction

We build upon an agglomerative clustering approach to
automatically find the number of clusters to form. Agglom-
erative clustering starts by assigning each client to a singleton
cluster and iteratively merges pairs of clusters until a minimum
distance threshold separates each cluster.

3 Distance threshold optimization. The distance thresh-
old impacts the final number of clusters that will be formed by
the algorithm and therefore have an impact on clustering qual-
ity. Algorithm 2 describes our distance threshold optimization
approach using Bayesian optimization. Line 3, a gaussian pro-
cess regressor model is initialized to predict the performance
of the agglomerative clustering based on distance threshold
values. A Bayesian optimization process runs for K iterations
using UpperConfidenceBound to explore different distance
threshold values using the Calinski-Harabasz index [30] (i.e.,
the ratio of between-cluster separation to the within-cluster
dispersion) as the clustering quality metric. The surrogate
model is updated in each step based on the clustering score
(line 9). Finally, the algorithm returns the optimized distance.

4 Clustered FL training. Algorithm 3 summarizes the
entire FL clustering procedure. Lines 4-7, clients compress
their local data and send their embedding vectors V1≤i≤N to

Algorithm 2: Distance threshold optimization
1 Input: K is the number of iterations to run BayesOpt.
2 Function DistanceOpt(X):
3 f ← GaussianProcessRegressor()
4 # Optimize f with Bayesian Optimization to find d⋆

5 foreach iteration k ∈ range (1, K) do
6 d← argmax(UpperConfidenceBound(f))
7 L ← AgglomerativeClustering(X , d)
8 score← −CalinskiHarabaszIndex(X ,L)
9 f ← UpdateSurrogateModel(d, score)

10 end foreach
11 d⋆ ← argmax(UpperConfidenceBound(f))
12 return d⋆

Algorithm 3: FL clustering from client embeddings
1 Input: R is the total number of rounds to run FL, N is the

total number of clients, m is the number of clients to
sample per round. Pi represents the partition of client i.

2 Function Server():
3 # Request embedding vectors from all clients
4 S ← sample(N)
5 foreach client i ∈ S do
6 Vi ← LocalCompression(Pi) (Alg 1)
7 end foreach
8 # Run clustering algorithm
9 d⋆ ← DistanceOpt(V1≤i≤N) (Alg 2)

10 L1≤i≤N ← AgglomerativeClustering(X , d⋆)
11 K ← len(distinct(L1≤i≤N ))
12 # Run FL per cluster
13 w⋆

1≤i≤K ← init()
14 foreach round r ∈ range (1, R) do
15 foreach cluster k ∈ range (1, K) do
16 Sk ← sample(m)
17 w1≤i≤|Sk| ← ClientUpdate(Pi∈Sk , w

∗
k)

18 w∗
k ← FedAvg(w1≤i≤|Sk|)

19 end foreach
20 end foreach
21 return w⋆

1≤i≤K



the server. Line 9-10, the server runs the distance threshold
optimization process and runs agglomerative clustering which
automatically finds the number of clusters to form. A model
for each cluster is initialized (line 13) and a FL process runs
for each cluster. In each round and for each cluster, the server
samples a subset of clients (line 16), sends them the model
for local training (line 17) and aggregates the model using
FedAvg (line 18). Figure 2 illustrates the entire process.

V. IMPLEMENTATION DETAILS

In this section we discuss some of the choices made
to implement our approach. The code is open-source and
available online1.

Autoencoder pre-training. The AE used to generate client
embedding vectors requires training before the actual cluster-
ing phase. The AE could either be pre-trained on a publicly
available dataset or pre-trained in a federated manner. Pre-
training with a publicly available dataset brings several ben-
efits: it does not add overhead to the FL training (it can be
done using a centralized server) and it does not require extra
configuration specific to FL. On the other hand, pre-training in
a federated manner might lead to more accurate encoding and
clustering, as the AE is directly trained on the actual client
data. In this paper, we will consider both cases.

Compensating for missing classes. Missing classes among
local client datasets is common in FL. Consequently, the
resulting embedding vectors of different clients could have dif-
ferent lengths. This could be a problem with regard to privacy,
as the central aggregator would gain knowledge of existing
and missing classes among federated clients. To address this
problem, for each missing class among client local datasets,
a random representation drawn from a uniform distribution is
generated instead. This ensures that each client shares the same
amount of data. Let us illustrate this process for a use-case
with 28x28 input images and an AE with latent space of size
10. To compute the embedding vector, a federated client would
generate an embedded representation of size 10 for each of its
samples and then compute the average representation for each
class. Assuming 10 data classes exist and one is absent from
the client local dataset, a random representation is generated
for the missing class. The client embedding vector is then
constructed by concatenating representations of all classes,
resulting in an embedding vector of size 100.

New clients joining during training. Any client joining
the FL process should be able to easily identify the most
appropriate cluster. With our approach, any client may join
the FL process by asynchronously computing its embedding
vector and sending it to the server. The server can easily assign
the new client to a cluster by computing the distance between
its embedding vector and each cluster centroid.

VI. EXPERIMENTAL EVALUATION

We evaluate the clustering and system performance of our
approach in multiple scenarios introducing concept drift and
label shift. Thus, we aim to answer the following questions:

1https://github.com/cedricprigent/efficient-fl-clustering

• How robust is our clustering approach based on client
embedding vectors against data reconstruction attacks?

• How efficient are the embedding vectors to cluster clients
accurately?

• What is the system overhead incurred by this approach?
• What is the impact of the different AE pre-training

strategies?
Note that, while the common practice in the FL domain

is evaluation through simulation, we run experiments on a 8-
GPU distributed testbed instead, in order to assess the benefits
of this proposal in real settings. All artifacts are accessible to
enable the reproducibility of our experiments

A. Methodology

Evaluation scenarios and training datasets. We consider
several scenarios introducing concept drift and label shift
between federated peers using different dataset sizes and
partition numbers:

• MNIST [31]: The dataset is partitioned in a non-IID
manner between 100 clients that are uniformly distributed
in 4 clusters by applying different rotations over their
partition data (i.e., 0, 90, 180 and 270 degrees).

• CIFAR-10 [32]: The dataset is partitioned in a non-IID
manner between 100 clients that are uniformly distributed
in 4 clusters by applying different label-flipping to their
data. Clients within the same cluster apply the same label-
flipping to their data.

• FEMNIST [33]: This dataset is a federated version of
the EMNIST dataset with handwritten characters assigned
to their corresponding authors. Overall, the dataset is
partitioned into 3550 authors (i.e., clients) with their
own writing styles. Clustering approaches can be used
to group authors with similar writing styles in order to
improve the learning phase. In this scenario, the optimal
clustering is unknown.

• PACS [34]: We investigate the clustering performance
with data coming from diverse domains. PACS is a
dataset that contains data from 4 domains: photos, arts,
cartoons, sketches. We make 10 partitions from each
domain dataset by splitting them in a non-IID manner.
Each client is assigned a single partition.

Models. We use a combination of small and larger models
in our experiments to assess the impact of model size on
different approaches. The trained models are LeNet-5 [35]
(60K parameters) in the MNIST and FEMNIST scenarios, and
ResNet-18 [36] (11M parameters) in the CIFAR-10 and PACS
scenarios.

Hyperparameter details for each scenario are provided
in Table I. For MNIST and FEMNIST scenarios, we use an
autoencoder composed of 4 fully connected layers with latent
space of size 20 (81K parameters). As for the CIFAR-10 and
PACS scenarios, we use an architecture with 6 convolutional
layers and batch normalization (47K parameters).

AE pre-training For each scenario, we evaluate two AE
pre-training strategies: centralized pre-training on a publicly

https://github.com/cedricprigent/efficient-fl-clustering


TABLE I: Evaluation scenarios hyperparameters

Dataset Total
training samples Input size Number

of clients
Client sampled

per round
Average number

of samples per client
Local

epochs Model

MNIST 60,000 1x28x28 100 50 600 5 LeNet-5
CIFAR-10 50,000 3x32x32 100 50 500 1 ResNet-18
FEMNIST 805,263 1x28x28 3550 75 226 3 LeNet-5
PACS 7,992 3x64x64 40 20 200 1 ResNet-18

Fig. 3: Data reconstruction under different perturbation levels.
Row 1 is the original input image, row 2 is the data recon-
struction without perturbation, rows 3-7 are data reconstruction
with different levels of randomized binary quantization.

available dataset and federated pre-training over clients data.
Regarding centralized pre-training, we pre-train the AE with
Fashion-MNIST for MNIST and FEMNIST scenarios, and
CIFAR-100 for CIFAR-10 and PACS scenarios.

Baselines. We compare our clustering approach with several
state-of-the-art FL solutions:

• FedAvg [1] is the standard strategy for FL with no
additional personalization mechanisms. We compare with
FedAvg to determine the accuracy improvement provided
by clustering. Regarding system performance, we assess
the FedAvg communication and computation costs.

• IFCA [9] is an iterative and dynamic clustering approach.
In each federated round, selected clients download the
model from each cluster and estimate their cluster iden-
tities based on empirical risk minimization and optimize
model parameters of the selected model. In our exper-
iments, to reduce the overhead of IFCA we limit the
empirical risk minimization to a single batch of client
datasets.

• LADD [21] is a one-shot clustering approach using Fast
Fourier Transform to compute analytics over client local
datasets before performing K-Means clustering.

Performance metrics. In terms of clustering performance,
we report the testing accuracy, defined as the accuracy
achieved by the model on the local datasets of sampled clients
at a specific round, as well as the number of rounds to achieve
a target accuracy.

To measure the overhead, we track the total system commu-
nication in GB including all communications from and to the
server, and the total time to run an experiment (i.e., to run the

(a) MNIST (b) CIFAR-10

Fig. 4: Clustering quality comparison between federated and
centralized pre-training strategies under different levels of
randomization. We also precise the number of clusters formed
by the algorithm (e.g., c=4).

TABLE II: Reconstruction loss for various perturbation levels.

No perturb Randomized Binary Quantization
0% 5% 10% 15% 20%

MSE 0.0175 0.7039 0.8040 0.9075 0.9811 1.0765

AE pre-training, the clustering phase, and the FL training).
Computing environment. We run experiments on up to

4 nodes of the chifflot cluster of the Grid’5000 [15] dis-
tributed testbed. Each node is equipped with 2xNvidia Tesla
P100 GPUs (16GB). We configure and manage the evaluation
workflow with the E2Clab [37] deployment framework for
reproducible experiments. FL adopts a star topology which
consists in routing all clients to a central node (i.e., the server).
We can capture the total communications of the system by
monitoring the network IO at the server node. Therefore, we
deploy the server on a single node and deploy all the clients
(i.e., up to 3550) on the remaining nodes.

B. Resilience against Data Reconstruction

We evaluate the robustness of our approach against data
reconstruction attacks. To measure the risk of data reconstruc-
tion from the shared client embedding vectors, we consider the
worst case scenario where a single sample is used to produce
the embedded representation of a single class from a federated
peer. We pre-train an autoencoder in a centralized manner
such that it is capable of reconstructing an input image. The
pre-trained autoencoder is then used to: (1) encode the input
image, and (2) reconstruct the input image from its encoded
representation. We evaluate the quality of the reconstruction
under different perturbation levels induced by randomized
quantization.

We report in Figure 3 the data reconstruction results under
different perturbation levels (i.e., randomized quantization) for



Fig. 5: Testing accuracy achieved by each strategy in different scenarios. Ours (Federated) stands for our approach using the
federated AE pre-training policy. Ours (Centralized) stands for our approach using the centralized AE pre-training policy.

TABLE III: Number of rounds to achieve a target accuracy [Rnd. to X%] and final testing accuracy [F. Accuracy]. To reduce
the training noise, the final accuracy is smoothed over the N last training rounds (5 rounds for MNIST, CIFAR-10 and PACS,
and 20 rounds for FEMNIST).

MNIST CIFAR-10 FEMNIST PACS
Strategy Rnd. to 95% F. Accuracy Rnd. to 50% F. Accuracy Rnd. to 80% F. Accuracy Rnd. to 80% F. Accuracy
Ours (federated) 5 98.49 17 61.06 212 82.94 31 90.65
Ours (centralized) 5 98.35 19 59.53 305 81.18 50 86.93
IFCA 11 97.50 20 61.19 212 84.16 Unreached 73.12
LADD 40 94.16 Unreached 40.83 392 79.12 31 90.94
FedAvg Unreached 93.05 Unreached 22.93 418 78.62 Unreached 65.16

CIFAR-10 samples. Table. II presents MSE reconstruction loss
for each perturbation. We notice that quantizing the embedding
vector in a discrete space (third row of Figure 3) impairs
the data reconstruction with a loss of details (e.g., colors,
shapes), however major shapes may remain present in the
image. Adding randomization (rows 4 to 7) helps hindering
the reconstruction of main shapes as seen when increasing the
randomization level. With 10% randomization and higher, ex-
tracting any meaningful knowledge from data reconstructions
becomes very difficult. Results from Table II also highlight this
trend, with a big spike in reconstruction loss when quantizing
the embedding vector (Randomized Binary Quantization 0%)
and then linearly increasing with randomization levels.

C. Impact of Randomized Quantization

We perform a hyperparameter study to understand the
impact of randomized quantization over the clustering per-
formance of our strategy. We use the Adjusted Rand Index
metric to measure the quality of the clustering. Knowing the
ground truth clustering labels, Adjusted Rand Index returns a
similarity score between -0.5 for discordant clustering and 1
for perfect clustering whereas random labeling should return
a score close to 0.0.

We compare the performance of our strategy with two AE
pre-training policies:

1) pre-training the AE using FL on the client personal data
(i.e., using the same data that is used for training the
classification model);

2) pre-training the AE in a centralized manner on a publicly
available dataset.

We report in Figure 4 the Adjusted Rand Index obtained for
MNIST and CIFAR-10 datasets under different randomization
levels. As seen in Figure 4a, both the pre-trained AE using FL

and the one pre-trained in a centralized manner on Fashion-
MNIST exhibit excellent clustering performance up to a 15%
randomization rate. However, beyond this threshold, there is
a noticeable decline in performance. In contrast, Figure 4b
shows that using FL to pre-train the AE provides better results
than the centralized approach. The centralized pre-training
achieves decent clustering up to 20% randomization, while
the federated approach achieves high Rand Index up until
35%. Note that a lower score do not necessarily mean poor
clustering. Rand Index returns a similarity score based on a
set of ground truth labels. On the other hand, a clustering
algorithm could possibly identify alternative patterns that were
not considered initially when synthetically building clusters.

Based on these findings, we set the randomization to 10%
to perform our experiments in the remainder of the evaluation.
Also, we use the Fashion-MNIST pre-trained AE for MNIST
and FEMNIST scenarios, and the CIFAR-100 pre-trained AE
for CIFAR-10 and PACS scenarios.

D. Clustering Accuracy

In the next series of experiments we examine the test-
ing accuracy of the clustering approaches over client local
datasets, compared to baselines on Grid’5000. Figure 5 reports
the accuracy achieved by each strategy over FL training in
each evaluation scenario. Table III presents further details
about the convergence rate, such as the number of rounds
to achieve a target accuracy, and the final testing accuracy
achieved by each strategy. We emphasize that regardless of
the scenario, the clustering-based approaches always improve
accuracy compared to the FedAvg baseline.

In the MNIST scenario, our strategy exhibits the best model
convergence, whether using the federated or the centralized
version of the autoencoder. It achieves 95% accuracy in 5



TABLE IV: Total system overhead. [Comm. (GB)] refers to total communication overhead of a strategy over an entire scenario.
[Time (s)] refers to total training time including clustering and (federated) pre-training phase.

MNIST (50 rounds) CIFAR-10 (50 rounds) FEMNIST (500 rounds) PACS (100 rounds)
Strategy Comm. (GB) Time (s) Comm. (GB). Time (s) Comm. (GB) Time (s) Comm. (GB) Time (s)
Ours (federated) 3.2 118 349.3 489 44.2 436 280.5 415
Ours (centralized) 2.7 109 349.0 472 42.7 438 280.1 402
IFCA 5.0 111 700.4 838 66.9 354 561.2 714
LADD 2.7 107 349.0 482 42.7 345 280.1 394
FedAvg 2.7 108 349.0 468 42.7 324 280.1 382

TABLE V: Training efficiency - Resource usage to achieve a target accuracy.

MNIST (95% accuracy) CIFAR-10 (50% accuracy) FEMNIST (80% accuracy) PACS (80% accuracy)
Strategy Comm. (GB) Time (s) Comm. (GB). Time (s) Comm. (GB) Time (s) Comm. (GB) Time (s)
Ours (federated) 0.75 19 117.5 170 19.6 146 86.6 139
Ours (centralized) 0.25 10 131.2 177 26.1 208 139.6 198
IFCA 1.08 24 278.8 335 28.4 150 Unreached Unreached
LADD 2.15 84 Unreached Unreached 33.5 254 86.3 122
FedAvg Unreached Unreached Unreached Unreached 35.7 271 Unreached Unreached

rounds and a final accuracy of 98.49%. In contrast, IFCA
reaches a slightly lower accuracy with 97.50%. LADD’s style
extraction technique is ineffective for MNIST digits (which do
not differ in styles) resulting in minor improvements compared
to FedAvg.

In the CIFAR-10 scenario, which introduces label shifts,
both our approach and IFCA provide the top results. They
exhibit similar convergence rates (17 - 20 rounds to achieve
50% accuracy) and final accuracy (approximately 61%). With
its style extraction technique, LADD partially succeeds in
detecting label shifts and achieves 40.83% accuracy, which
is halfway between FedAvg accuracy and the top accuracy.

In the FEMNIST scenario, IFCA is the best performing
approach with a 84.16% testing accuracy. Our approach with
the federated pre-training achieves the 80% target accuracy
after 212 rounds which is similar to IFCA. However, it has
a slightly lower final accuracy (82.94% for the federated
version). The centralized version achieves 81.18% which is a
little worse than the federated version. Similar to the MNIST
scenario, LADD style extraction is unable to detect drifts in
clients data and only brings a slight improvement compared
to FedAvg (+0.5% accuracy).

As for the PACS scenario, our approach and LADD exhibit
the best results with similar convergence and final accuracy
within [90.65% - 90.94%]. IFCA is unable to find satisfying
clusters and only brings limited improvement compared to
FedAvg by achieving 73.12% (+7%) accuracy. In this sce-
nario introducing domain drift, the style extraction technique
used by LADD effectively distinguishes between the various
disparities in data distribution.

Summary. Overall our approach achieves top performance
in 3 of the 4 evaluation scenarios (MNIST, CIFAR-10 and
PACS) and provides satisfying results for FEMNIST, showing
that client embedding vectors can efficiently capture important
characteristics of clients data. In contrast, IFCA struggles in
the PACS scenario (introducing domain drift between clients),
and LADD achieves limited improvements compared to Fe-
dAvg in most scenarios. Thus, we conclude that our approach

makes a first step towards the generalization of FL clustering
with potential applicability to a wide range of domains.

E. System Overhead Breakdown

Finally, we examine the communication and computation
overheads of our clustering approach. Table IV reports the total
system overhead (i.e., total communication and training time)
of each strategy. Regardless of the scenario, both our approach
with the centralized pre-trained AE and LADD entail no
additional communication overhead compared to FedAvg. Our
approach with the federated pre-trained AE requires slightly
more computing time and communication bandwidth due to
the pre-training done directly by the federated clients.

This overhead is relatively higher in the MNIST and FEM-
NIST scenarios as the trained classification model (i.e., LeNet-
5) is lighter than the one used for CIFAR-10 and PACS
scenarios (i.e., ResNet-18), resulting in less computation and
communication to run the FL training task while requiring
similar resources to run the AE pre-training task. Nevertheless,
the overhead of the federated pre-training remains moderate
in all scenarios.

We also observe a higher training time overhead (+35%)
in the FEMNIST scenario. This is due to the clustering
optimization phase (i.e., Bayesian optimization) searching for
the best number of clusters dealing with a high number of
clients (i.e., 3550). However, the clustering optimization which
is performed by the server does not increase the resource usage
at the clients.

In contrast, IFCA causes significant communication and
computational overhead in all scenarios. It doubles commu-
nication overhead for MNIST, CIFAR-10 and PACS scenarios
and doubles training time for ResNet-18 training scenarios
(i.e, CIFAR-10 and PACS). While our strategy may lead to
additional computation overhead when the number of clients
is high, it only concerns the server. In comparison, IFCA’s
overhead concerns both the clients and server, and increases
drastically with both the complexity of the trained model and
the number of clusters to form.



Fig. 6: Embedding vector generation and local training times
on a Raspberry Pi 4.

Finally, we investigate the efficiency of each strategy (i.e.,
accuracy relative to resource consumption). Table V reports
the communication and training time of the different strategies
to achieve the target accuracy in each scenario. We observe
that our strategy achieves top efficiency in all scenarios
(i.e., requiring the minimum resources to converge to the
target accuracy). Note that our strategy outperforms IFCA
in the FEMNIST scenario with respect to accuracy-resources
efficiency. Moreover, we observe that IFCA struggles in the
CIFAR-10 and PACS scenarios, and LADD only succeeds in
a single scenario (i.e., PACS).

Client embedding vector generation overhead To get a
better understanding of the client embedding vector generation
overhead on resource constrained devices, we run additional
experiments on a Raspberry Pi 4 from the Chameleon exper-
imental testbed [38]. For each scenario, we run (1) the client
embedding vector generation and (2) a local training round
for one epoch and monitor the resulting computation times.
We run our experiments using 10 client partitions for each
scenario and present the average computation time to run both
operations in Figure 6. In the MNIST and FEMNIST scenarios
which train LeNet-5, the embedding vector generation task
requires respectively 4× and 3× less computation time than
one training epoch. In the CIFAR-10 and PACS scenario which
train ResNet-18, it requires respectively 115× and 73× less
computation time than a local training epoch. In addition to
being cost-efficient, the embedding vectors are only computed
once before clustering which makes their computational over-
head negligible compared to the local training tasks that run
for several iterations during the FL training rounds.

VII. DISCUSSION

Generalizability. The experiments in section VI illustrate
the effectiveness of our clustering approach in 4 scenarios
introducing different conceptual drifts (i.e., rotation, writing
style, domain) and label shifts between clients. Each scenario
uses a different setting with different datasets, input sizes,
number of clients and number of samples per partition. We
demonstrate the effectiveness of the autoencoder to efficiently
encode clients data. Both the centralized training using public
datasets and the federated training of the autoencoder resulted
in accurate clustering, highlighting the applicability of our
approach to various use cases.

Autoencoder pre-training policy. In our experimental eval-
uation, we examined two AE pre-training policies: centralized
and federated. The centralized approach brings the benefit

of relieving the federated system from any additional system
overhead, all while delivering reliable clustering - making it a
promising solution for constrained Edge devices. Conversely,
the federated approach could be of interest for federations of
devices that can accommodate a slight additional overhead,
particularly for datasets that are very specific to the applica-
tion. In such cases, pre-training from a public dataset may
lack the specialization required to ensure accurate clustering.
Finally, a hybrid approach combining the benefits of both
worlds could be a good trade-off. The AE could be pre-
trained in a centralized fashion on a public dataset, and then
additionally fine-tuned in a federated manner, enabling better
personalization with limited overhead.

Optimal number of clusters. In this work, we proposed
a mechanism to automatically set the number of clusters
through agglomerative clustering and Bayesian optimization.
Note that a common practice in FL clustering is to pre-
define the number of clusters [9], [17], [21] which is rarely
applicable in real world scenario. Other works have been using
iterative approaches to automatically find the optimal number
of clusters (e.g., using gradient similarity), however demanding
many rounds to converge which results in waste of client
resources [5], [16]. In comparison, our approach based on
one-shot clustering enables the clusters to be formed before
the training phase and make the best use of client resources.

Drift detection and client migration. A drift detection
mechanism could further be derived from our system based
on client embedding vectors. To do so, clients could recom-
pute their embedding vector periodically (e.g., once every 50
rounds) and check their consistency with their assigned cluster
centroid. Clients could dynamically migrate from one cluster
to another if their data distribution changes over time.

Privacy vs. accuracy trade-offs. We leverage randomized
quantization on embedding vectors to preserve privacy of
individual clients. The level of randomization was fixed to
prevent risks of data reconstruction while maintaining accurate
clustering. In real-life settings, the level of randomization
could be adjusted according to the sensitivity of clients data.
If the data is not sensitive, the randomization rate could be
decreased allowing for more accurate clustering. Additionally,
an adaptive randomized quantization could be applied where
each client individually selects its personal privacy budget
based on the sensitivity of its personal data allowing for a
privacy-accuracy trade-off at each client.

VIII. CONCLUSION

Statistical heterogeneity among local data distributions (also
known as client drift) makes it difficult to optimize a single
global model for entire federations of devices. FL clustering
aims to solve this problem by grouping clients with similar
data distributions to improve training of personalized models.
Existing approaches usually focus on the training accuracy,
disregarding system constraints, which is problematic for
resource-constrained devices, frequently encountered in Edge-
to-Cloud environments. In this paper, we make a first step
towards tackling this important problem by proposing a new



algorithm for FL clustering based on local compression of
clients data using pre-trained autoencoders.

Practicality is a central focus of this work: the implemen-
tation of the clustering approach is open-source, while the
artifacts of the experimental evaluation will be made publicly
available for reproducibility purposes. Extensive experiments
on 8 GPUs of the Grid’5000 testbed have underlined the
high clustering accuracy of our approach. The evaluation
on 4 scenarios introducing conceptual drifts and label shifts
demonstrates the capacity to generalize to various problems
and the applicability to real-world scenarios. Furthermore, our
approach exhibits negligible communication and computation
overhead compared to standard FL, while remaining resilient
against data reconstruction attacks.

Encouraged by these promising results, in future work we
plan to focus on evolving data distributions, by studying
the capacity of our approach to detect drifted clients and
dynamically migrate clients from one cluster to another. We
also plan to investigate centroid update strategies with respect
to new clients joining clusters during training.
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