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Abstract: For over 35 years of research, the debate about the systematic compositionality of neural 12 

networks remains unchanged, arguing that existing artificial neural networks are inadequate 13 

cognitive models. Recent advancements in deep learning have significantly shaped the landscape 14 

of popular domains, however, the systematic combination of previously trained neural networks 15 

remains an open challenge. This study presents how to dynamically synthesize a neural network 16 

for the design of broadband electromagnetic metasurfaces. The underlying mechanism relies on an 17 

assembly network to adaptively integrate pre-trained inherited networks in a transparent manner 18 

that corresponds to the metasurface assembly in physical space. This framework is poised to curtail 19 

data requirements and augment network flexibility, promising heightened practical utility in 20 

complex composition-based tasks. Importantly, we accurately capture the intricate coupling effects 21 

between different metasurface segments. We exemplify our approach for two broadband 22 

metasurface inverse design problems, reaching accuracies of 96.7% and 95.5%. Along the way, we 23 

highlight the importance of suitably formatting the spectral data to capture sharp spectral features. 24 

This study marks a significant leap forward in inheriting pre-existing knowledge in neural-network-25 

based inverse design, improving its adaptability for applications involving dynamically evolving 26 

tasks.  27 
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Introduction 28 

The endeavor to utilize available labels or observations for formulating decisions in the face of unseen 29 

incentives represents a common goal within the realm of deep learning1. Its success, comparable to 30 

a model of the mind, has not materialized overnight. The landscape of artificial intelligence and deep 31 

learning has, until now, undergone significant evolution. Recent strides, especially in the domain of 32 

deep neural networks, have showcased remarkable progress in replicating human-like reasoning and 33 

cognition. Fueled by extensive datasets and advanced architectures, deep learning models have 34 

attained exceptional performance across natural language processing2, image recognition3, and 35 

reinforcement learning4. These contemporary models demonstrate the capacity to grasp intricate 36 

patterns, recognize hierarchies, and exhibit reasoning capabilities once considered beyond the reach 37 

of artificial systems. This transformative journey parallels the integration of machine learning into 38 

various fields, notably photonics, where metasurfaces emerge as a prominent representative5-18. 39 

Metasurfaces, imbued with the power of machine learning, have proven instrumental in optimizing 40 

device performance. This has led to the development of highly efficient metasurfaces and plasmonic 41 

structures, enabling precise control of light in ways once deemed exceptionally challenging19-28. In the 42 

realm of metasurfaces, deep learning assumes a pivotal and indispensable role, serving as the linchpin 43 

in the process of uncovering intricate patterns and recognizing hierarchies. This symbiotic relationship 44 

empowers metasurfaces with the finesse needed to intricately control the behavior of light. This not 45 

only marks a paradigm shift in photonics but also opens up diverse avenues for applications across 46 

telecommunications, imaging, sensing, and beyond29-41. 47 

However, amidst these remarkable achievements, it is crucial to acknowledge that a fundamental 48 

challenge raised by Fodor and Pylyshyn in 1988 persists – they asserted that artificial neural networks 49 

lack the systematic compositionality necessary to be viable models of the human mind42. This 50 

inherent lack of compositionality further manifests in deep learning models tailored for metasurface 51 

design, often resulting in task-specific approaches. Each unique design challenge necessitates a 52 

distinct architectural approach, leading researchers to embark on fresh journeys, developing novel 53 

networks, and adapting the learning process. This iterative process can be time-consuming and 54 

resource-intensive, impeding the swift exploration and optimization of metasurface designs for 55 

diverse applications. Furthermore, deep learning models are notorious for their "black-box" nature, 56 
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making it arduous to decipher their decision-making processes and comprehend the underlying 57 

physical mechanisms. This lack of interpretability introduces uncertainty in critical applications, 58 

restricting the capacity to derive valuable insights into the fundamental principles governing 59 

metasurface behavior. In addition, another requisite for effective deep learning is the availability of 60 

extensive datasets. Acquiring such vast, well-labeled datasets specific to metasurface behaviors can 61 

be a formidable undertaking, particularly in specialized or niche applications. Often, we must resort 62 

to generating synthetic data or resorting to limited datasets, which may not fully capture the 63 

intricacies of real-world scenarios. Given the limitations, a multi-capacity deep learning framework is 64 

highly desirable, robustly handling diverse metasurface design tasks by adapting knowledge from 65 

related examples to overcome data scarcity, efficiently exploring various functionalities, and 66 

enhancing interpretability through model visualization. 67 

To address the lack of systematic compositionality, we explore a modular approach to metasurface 68 

inverse design with neural networks that inherits knowledge from neural networks previously trained 69 

for the inverse design of different segments of which the new target metasurface is composed. The 70 

resulting synthetical neural network inherits and amalgamates valuable knowledge from prior designs, 71 

akin to passing down essential knowledge from the parent generation to the next generation. This 72 

eco-conscious method capitalizes on pre-existing knowledge to streamline the design process and 73 

significantly alleviate the cost of training the neural network. The synthetical neural network can also 74 

be termed a knowledge-inherited network43 or a genetic neural network. 75 

The difficulty of inverse-designing metasurfaces with a modular approach that inherits inverse-design 76 

networks for different segments of the metasurface lies in capturing the intricate mutual-coupling 77 

effects between different segments. Given the resonant nature of the metasurface segments, the 78 

combination of reflection spectra of individual segments into that of a composite metasurface is 79 

highly non-trivial. Especially sharp spectral features cannot be predicted intuitively. Previous 80 

preliminary work on knowledge-inherited NNs recently presented in Ref.43 was limited to the 81 

monochromatic regime and deliberately limited coupling effects as much as possible in order to then 82 

neglect them in the forward model. In contrast, here we tackle the challenging problem of capturing 83 

the broadband coupling effects between and within different metasurface segments. Moreover, 84 

Ref.43 only explored the regular tiling of metasurface segments in an array-like fashion whereas we 85 
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consider more intricate segmentations of the final metasurface in the present paper where one 86 

segment is physically surrounded by another, which can be expected to yield more complex coupling 87 

effects. 88 

To illustrate broadband inverse design with a synthetical neural network despite challenging coupling 89 

effects between different metasurface segments, we here design three "parent" components (one 90 

square and one annular) and three corresponding "parent" neural networks that achieve an 91 

impressive average accuracy of 99.6%. These "parent" components and "parent" networks are 92 

compiled into a gene library. For a new “offspring” metasurface, we nest the parent components in 93 

physical space, and then assemble the corresponding "parent" neural networks into an “offspring” 94 

network. Here, we present examples of assembling two and three components from the gene library, 95 

where the accuracy of the "offspring" neural network is recorded at 96.7% and 95.5%, respectively, 96 

forming a sharp contrast with the accuracy of the conventional network at 38.5%. We expect our work 97 

to play a significant role in photonics design by improving its adaptability as well as its frugality with 98 

respect to scarce resources (compute power, time and energy consumption). 99 

Results 100 

Notion of synthetical neural network. In the domain of metasurfaces design and intelligent 101 

application, a central focus resides in the meticulous structural design of meta-atoms, known as 102 

inverse design. This approach is dedicated to crafting structures that meet stringent requirements or 103 

predefined performance criteria in terms how they manipulate electromagnetic waves. The 104 

methodology involves the intricate adjustment of geometric shapes, material properties, or 105 

metasurface distributions to achieve targeted reflective, transmissive, or absorptive characteristics 106 

within designated frequency ranges. In recent years, deep learning has emerged as a prominent 107 

optimization method for this kind of inverse-design task. Artificial neural networks, inspired by the 108 

biological nervous system, consist of interconnected artificial neurons. Each neuron processes input 109 

through weighted mechanisms, contributing to the generated output (Fig. 1). Leveraging the robust 110 

interconnectivity between nodes, neural networks facilitate automated processing and predictions 111 

for complex tasks. However, in conventional deep learning-based metasurface inverse design, the 112 

neural network is typically structured for a specific task. When transitioning to a new task, the pre-113 

trained neural network, labeled data, and all training outcomes must be discarded. Notably, the 114 
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disposal of labeled data emphasizes the necessity to reset the learning process entirely, posing a 115 

time-consuming challenge, especially for metasurfaces relying on simulation-generated data. Here, 116 

we seek to overcome this limitation with a synthetical neural network. This method decomposes the 117 

solution space, assigning each split subproblem to its corresponding neural network. Ultimately, an 118 

overarching network assembles all sub-networks. When confronted with an entirely new task, the 119 

selection of suitable neural networks (NNs) and their assembly in a specific order enables the rapid 120 

synthesis of an entirely new synthetical neural network. This is exemplified by the free assembly of 121 

NN 1/2/4 and the addition of a new NN 5 in Fig. 1. Further, due to the drastic reduction in the solution 122 

space, the data required for sub-networks significantly decreases, and the complexity of their 123 

network architecture also decreases. This not only greatly alleviates the difficulty of exploring the 124 

original solution space, but also endows the neural network-based inverse-design process with a 125 

recycling feature, attributed to the flexible assembly characteristics among its sub-networks. 126 

Our modular approach to composing a NN for metasurface inverse design resembles the concept of 127 

transfer learning insofar as it reuses NNs previously trained for related but different tasks. Transfer 128 

learning maintains the architecture of a previously trained NN and retrains its weights for the new 129 

task. Therefore, it does not offer flexibility to combine knowledge learned by multiple NNs previously 130 

trained on related sub-tasks. In contrast, our modular approach allows our synthesized NN to inherit 131 

and combine knowledge from multiple NNs previously trained on related tasks that we consider 132 

relevant based on our understanding of the physical problem. Therefore, we keep the architecture 133 

and weights of the NNs previously trained on various related sub-tasks fixed (we refer to them as 134 

INNs). We integrated these INNs into a synthetic NN composed of an ASNN followed by the INNs. By 135 

training the ASNN we only learn how to combine the inherited knowledge from various INNs. This 136 

methodology makes the NN synthesis transparent and has a clear relation to the metasurface 137 

assembly in the physical reality. By efficiently combining inherited knowledge, our approach strongly 138 

reduces the amount of required training data as well as the computational effort required for training. 139 

Architecture of synthetical neural network. For concreteness, we consider the design of a reflective 140 

1-bit coding metasurface that consists of a metallic pattern on top of a dielectric substrate with a 141 

thickness of 2 mm and a relative permittivity of 3.5+0.00245i, backed by a metallic ground plane. The 142 

metallic pattern can be understood as a matrix of elements of size 10 × 10 mm2 that are either 143 
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metallized or not. The goal of the inverse design is to decide which elements should be metallized for 144 

a desired electromagnetic response. As metasurface inverse design is demand-driven, in traditional 145 

machine learning-based optimization, the input typically comprises the reflection spectrum (𝑆11 146 

parameter), while the output corresponds to the metallic resonant surface (Fig. 2a). When 147 

encountering a new task (Target 2), a completely new traditional neural network (TNN 2) is often 148 

required. Here, the resonant surface can be discretized into pixel blocks represented as matrix 𝑹𝑀, 149 

where 𝑀 represents the number of pixel blocks (𝑀 = 10 in our case), and each block exhibits a 150 

physical size of 𝑝/𝑀, where the blue/ yellow color indicates the absence/presence of metal in that 151 

block. 152 

Our optimization strategy takes an unconventional route. Initially, the targeted “offspring” 153 

metasurface is partitioned into two “parent” components, a square 𝑹8 and one annular ring 𝑹𝑀
𝑁  154 

with the ring width of 2 mm, where 𝑀/𝑁 denote the outer/inner contour side length, respectively. 155 

Subsequently, we construct and train inverse design networks for each "parent" component, 156 

cataloging them in a “gene” library, each of which can be referred to as an inheritance neural network 157 

(INN). The amalgamation of all INNs is then coordinated and deployed by an assembly neural network 158 

(ASNN), with the 𝑆11 parameter of "offspring"/"parent" component representing its inputs/outputs. 159 

The overall network composed of the ASNN and the INNs for a specific inverse-design task is referred 160 

to as the synthetical neural network. When confronted with a novel task, such as 𝑹10 in our case, 161 

the adaptation process involves the addition of a new INN 2 and a corresponding ASNN (Fig. 2b). This 162 

addition facilitates the assembly of two parent neural networks to effectively address the new task, 163 

obviating the need for an extensive overhaul of the entire network architecture or the collection of 164 

a large volume of 𝑹10-specific data. It is noteworthy that despite the introduction of new networks 165 

(INN 2 and ASNN), each additional INN can be judiciously repurposed, and the structural adjustments 166 

required for the ASNN are minimal. This efficiency underscores a reduced investment of time and 167 

resources in network design. Furthermore, due to the decomposition of metasurface inverse design 168 

into smaller subproblems, the data requirements are substantially diminished, simplifying the 169 

problem-solving process for the corresponding inverse-design tasks. 170 

An INN is employed to approximate the relationship between the 𝑆11  parameters of a given 171 

"parent" component and its respective metallic patterns 𝑹. The 𝑆11 parameters are significantly 172 
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influenced by the metallic structure, often leading to multiple sharp resonant features. To ensure 173 

that our INN can properly process the 𝑆11  spectra, we extract the contour profiles of the 𝑆11 174 

parameters and resize them into 100 x 100 images, as detailed in the subsequent section. In this 175 

configuration, the INN takes a 100 x 100 x 2 𝑆11 image as input, where the two channels in the third 176 

input dimension represent the real and imaginary components. The output is binarized to yield the 177 

corresponding resonant metallic surface in line with the physical 1-bit coding constraint. INN 1/2 178 

generate 𝑹8 and 𝑹10
8 , respectively. To tackle the non-uniqueness challenge of inverse-design 179 

(multiple resonant surfaces can yield nearly identical 𝑆11  parameters), the so-far described INN 180 

architecture acts as an encoder that is complemented by a decoder. The decoder is a forward design 181 

network (FDN) which maps the metasurface 𝑹  to 𝑆11  images. Both encoder and decoder are 182 

structured as convolutional neural networks (CNNs) and arrange in an encoder-decoder configuration 183 

(Fig. 2c). Overall, the encoder-decoder network seeks to approximate the identity function. The loss 184 

function quantifies the discrepancy between the input and output 𝑆11 images. We evaluate the loss 185 

function using the mean square error (MSE) metric, in line with established practices in deep learning, 186 

and we train the encoder-decoder network using a standard gradient descent algorithm44. 187 

Operating as an essential component within the structural assembly phase, the ASNN assumes a 188 

critical role in discerning the coupling laws governing interactions among structural constituents. The 189 

ASNN’s input is a 100 x 100 x 2 𝑆11 image. The ASNN’s output with dimensions of 100 x 100 x 4 190 

corresponds to two 𝑆11  images, one for each of the two "parent" components. These two 𝑆11 191 

images represent the reflection spectra that the two components of which the final metasurface will 192 

be composed should yield. Therefore, the ASNN must “understand” the intricate coupling effects 193 

between these two components. The two 𝑆11 images output by the ASNN hence serve as inputs for 194 

the INNs. Regarding the ASNN architecture, we heuristically found that it is helpful to structure the 195 

ASNN with an encoder and decoder part comprising seven convolutional layers (encoder part) and 6 196 

deconvolutional layers (decoder part). However, unlike the INNs, the ASNN does not seek to 197 

approximate an identity function. The ASNN is trained with triplet data where each example includes 198 

the reflection spectrum of a given metasurface and the reflection spectra of its two constituent 199 

components. The loss function is again defined as an MSE that quantifies the discrepancies between 200 

the ground truth and the predicted outcomes for the reflection spectra of the two metasurface 201 
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components (see Materials and Methods).  202 

Pre-processing of spectral data. Due to the inherent physical characteristics of resonant structures, 203 

rapid spectral variations typically emerge near resonances, resulting in sharp resonant features that 204 

are highly sensitive to minor structural alterations (Fig. 3a). We observed that simply discretizing the 205 

spectral data and stacking its real and imaginary components before inputting it into the ASNN is not 206 

a suitable data format because it does not yield a satisfactory ASNN performance. This observation 207 

makes sense because the ASNN is based on a CNN architecture which is specialized in processing 2D 208 

image inputs. Specifically, in Fig. 3b we illustrate the results of training the ASNN with 5,000 samples 209 

of the 𝑆11 parameter which are formatted as 2002 x 2 arrays, where the first dimensions represent 210 

frequency and the second dimension corresponds to real and imaginary parts. Examination of 211 

randomly selected test samples highlights a notable discrepancy between predicted (dotted line) and 212 

actual values (solid line), particularly near resonances. Evaluation using the Pearson correlation 213 

coefficient (PCC) for a 500-test sample dataset yields an accuracy of 55.9%, emphasizing the struggle 214 

of the ASNN to precisely predicting resonant features of the 𝑆11 parameters with this data format. 215 

To overcome this struggle, we transform the spectral data to an image-like data format that is more 216 

suitable for CNNs. Specifically, our approach involves directly extracting the contour of the reflection 217 

spectrum and resizing this information into 100 x 100 images, as depicted in Fig. 3a. Harnessing the 218 

intrinsic advantages of CNNs in the domain of image processing, we represent the 𝑆11 parameters 219 

as image inputs, allowing the CNN to efficiently process two-dimensional image data. This method 220 

yields a data format from which the CNN-based ASNN can extract more relevant abstract features (Fig. 221 

3c). Importantly, this simple data reformatting process facilitates the learning of relevant features 222 

from extensive datasets, eliminating the need for intricate and computationally intensive feature 223 

extraction procedures. 224 

Training results and comparison with conventional neural networks. We utilize a total of 5,000 225 

samples generated by CST studio suite for normally incident electromagnetic waves in order to train 226 

INN 1/2 and ASNN. The very large targeted frequency range is 6-13 GHz. The samples are randomly 227 

divided into training, validation, and testing sets at an 8:1:1 ratio. The training results for INNs and 228 

ASNN are illustrated in Figs. 4a and 4c, indicating satisfactory validation losses compared to the 229 

training losses. The predictions for three arbitrarily selected samples from the test set are depicted in 230 
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Figs. 4b and 4d, where the actual and predicted 𝑆11 images exhibit remarkable similarity, even in the 231 

vicinity of sharp spectral features. To quantify the training effectiveness, we employ the structural 232 

similarity index (SSIM) as a metric, widely recognized in image processing to assess similarity across 233 

luminance, contrast, and structure. Calculating SSIM for the entire test dataset, we obtain results of 234 

98.4% and 99.7% for INN 1/2, and 96.7% for ASNN, providing further quantitative evidence of the 235 

robust generalization capabilities of our synthetical neural network. 236 

Scalability of synthetical neural network. To further illustrate the adaptable assembly feature and 237 

recyclable nature of our network, we embedded an annular ring, 𝑹14
10, within the design of 𝑹10 (Fig. 238 

5a). For this new 𝑹14 design task, data from the previous 𝑹8 and 𝑹10
8 , along with the networks 239 

(INN1/2), could be leveraged. Rebuilding and training the 𝑹14
10

 network, akin to 𝑹10
8 , and introducing 240 

a new ASNN' were the only requirements. The training outcomes of INN3 with 5,000 examples for 241 

𝑹14
10 and the new ASNN' are depicted in Figs. 5b and 5d, achieving high SSIM values of 99.2% and 242 

95.5%, respectively. The predictions for random samples from the test set are displayed in Figs. 5c 243 

and 5e, emphasizing our network's remarkable recyclability in efficiently utilizing resources while 244 

consistently delivering high-quality results, and significant knowledge-inheritance capabilities when 245 

applied to a new task. 246 

For comparative analysis, we perform the 𝑹14 design task with the same amount of training data 247 

using a CNN, sharing a structure akin to the INN (i.e., featuring both inverse and forward modules). 248 

The training results, illustrated in Fig. 5f, reveal an inability of the CNN to converge, showcasing a 249 

pronounced underfitting condition with an accuracy of only 70.5%. This substantial underfitting 250 

becomes notably evident when examining the 𝑆11 outcomes for the three test samples in Fig. 5g. 251 

The stark inconsistency in results strongly affirms that the CNN is ineffective when exposed to the 252 

same training data. This benchmarking further underscores the superiority and efficiency of our 253 

synthetical neural network over traditional "indivisible" design methods. 254 

Discussion 255 

In conclusion, we have introduced the modular broadband synthesis of neural networks for 256 

metasurface inverse design that inherits and efficiently combines knowledge from multiple neural 257 

networks previously trained on related sub-tasks. Our approach speeds up the metasurface design 258 

process by efficiently integrating prior insights and experiences, akin to the genetic inheritance 259 
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through generations. Thereby, both the amount of required training data and the required 260 

computational resources and compute time can be significantly reduced, such that our approach 261 

economizes scarce resources in an environmentally sustainable manner. The proposed low-cost 262 

design methodology reduces redundant computations and expedites the design process. Our work 263 

demonstrates great adaptability and scalability and, importantly, manages to accurately capture 264 

sharp resonant features and intricate coupling effects between metasurface segments. Additionally, 265 

the proposed data formatting eliminates the challenges posed by spectral data for CNN-based 266 

networks. Looking forward, we anticipate the widespread integration and proliferation of our 267 

approach in the field of material science. 268 

Materials and methods 269 

Data generation and training details. The reflection spectrum data of different metasurfaces is 270 

generated through CST studio suite, with the incident wave perpendicular at a position 30mm away 271 

from the metasurface. In this way, we first generate 5,000 datasets of each “parent” component by 272 

randomly setting the metasurface distribution for INN training. Then, for an “offspring” metasurface 273 

(assembled by “parent” components), we also follow the similar procedure to generate 5,000 274 

samples for ASNN training. The Adam optimizer45 is employed to update the parameters to complete 275 

the training of the models. During training, the epochs and batch size of the INN are set to 100 and 276 

64, and those of the ASNN are set to 100 and 128, respectively. The initial learning rates of the INN 277 

and the ASNN are both 0.0001, which will continue to shrink by a ratio of 0.5 when the validation loss 278 

stops improving, and the update is terminated when the minimum learning rate of 10−5 is reached. 279 

In this way, the optimal model can be obtained quickly and accurately. For the ASNN, the loss function 280 

MSE is formally expressed as MSE =  
1

𝑃∗𝑄
∑ ∑ (𝑆𝑖𝑗 − 𝑆𝑖𝑗

′)2𝑄
𝑗=1

𝑃
𝑖=1 , where 𝑆𝑖𝑗(𝑆𝑖𝑗

′) denotes the 𝑗th 281 

sampling point of the ground-truth (predicted) 𝑆11 image pertaining to the 𝑖th reflection spectrum. 282 

Here, 𝑃  assumes a value of 4, with odd indices representing Re(𝑆11)  and even indices 283 

corresponding to Im(𝑆11). The variable 𝑄 denotes the 100 x 100 𝑆11 images. 284 

Deep learning architecture. The INN is divided into two modules, i.e., a CNN module for the inverse 285 

design and a forward module for the forward mapping. For the CNN module, there are 7 convolution 286 

layers and 3 deconvolution layers, in which the seventh layer are used for fusing the processed 287 

features and further exporting the metasurface design 𝑹  which is binarized to comply with the 288 

physical design constraint. A sigmoid function is applied to the final layer of the forward network to 289 

ensure the output falls within the [0, 1] range. The layers are followed by batch normalization and 290 

rectified linear unit (ReLU) layers. The inclusion of batch normalization and ReLU layers expedites the 291 

training process and bolsters the network's robustness, effectively mitigating challenges associated 292 

with vanishing gradients and overfitting. All models are trained on a CPU of Intel (R) Core (TM) i7-293 

8700K and a graphics processing unit (GPU) of NVIDIA GeForce RTX 2080 SUPER. 294 

  295 
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 399 

Fig. 1 | Comparison of conventional and synthetical neural network. Neural networks, emulating 400 

the biological nervous system, consist of interconnected neurons that process input through 401 

weighted mechanisms to generate the output. In conventional neural networks, the network is 402 

typically indivisible and necessitates an abundance of data for training. Our synthetical neural 403 

network shifts this paradigm by breaking down the solution space. Each subproblem is assigned to a 404 

specific neural network (e.g., NN 1~NN 4). These neural networks can be freely assembled to adapt 405 

to different tasks. When faced with a completely new task, selecting appropriate NNs and assembling 406 

them in a specific order allows for the swift synthesis of an entirely new network, as illustrated by 407 

the free assembly of NN 1/2/4 and the newly added NN 5. 408 

  409 
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 410 

Fig. 2 | Design and architecture of the synthetical neural network. a, In metasurface inverse design, 411 

the conventional methodology involves utilizing the reflection spectrum (𝑆11 parameter) as the input 412 

and obtaining the metallic resonant surface as the output through machine learning-based 413 

optimization. In the conventional method, the task-specific neural network (TNN 1) must be 414 

discarded when transitioning to a new task (Target 2) with a new required TNN 2, presenting a time-415 

consuming challenge. b, Our method treats metasurfaces as composite structures assembled from 416 

different "parent" segments. Each segment has an associated inverse design network (INN), 417 

systematically cataloged in a "gene" library. When confronted with a new task (Target 2), we 418 

assemble the pre-trained INN1 (old) and the INN2 (new) corresponding to 𝑹10
8  using the ASNN. This 419 

assembly method mitigates data requirements to a certain extent, and each newly added INN can be 420 

stored in the gene library for future reuse. c, The INN and ASNN are structured as CNNs with an 421 

encoder-decoder configuration, where the input/output consists of compressed 𝑆11  images 422 

(including real and imaginary parts) as detailed in Fig. 3. The forward design networks included in the 423 

INN addresses the non-uniqueness challenge of inverse design. 424 
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 425 

Fig. 3 | Pre-processing of spectral data. a, Two distinct processing methods for spectral data. Method 426 

1 is a simple 1D discretized representation of the continuous physical spectrum. Method 2 formats 427 

the representation from Method 1 into a 100 x 100 image. b, Results of ASNN training with Method 428 

1. The network only achieves an accuracy of 55.9%. Examining Test sample 1 to observe the training 429 

effect, the notable discrepancy between predicted (dotted line) and actual values (solid line) further 430 

illustrates the suboptimal outcome of the training. c, Illustration of the CNN-based encoder. Method 431 

2 is more suitable for CNN-based image processing. Through convolution/deconvolution operations 432 

on local pixel information, the network gradually aggregates the knowledge of sharp resonant 433 

features at higher layers. 434 
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 435 

Fig. 4 | Training results for INN/ASNN. a, Training results for INN 1 over training epochs, reaching an 436 

accuracy of 99.4%. The accuracy for INN 2 is 99.7%. b, Predicted real/imaginary 𝑆11 images of four 437 

samples by INN 1/2, with embedded insets depicting the corresponding ground-truth images. The 438 

close correspondence between the ground-truth images and the predicted images highlights the high 439 

accuracy. The corresponding 𝑹8/𝑹10
8

 patterns of the predicted metasurface are displayed below. c, 440 

Training results for the ASNN over the training epochs, reaching an accuracy of 96.7%. d, Predicted 441 

real (blue)/imaginary (yellow) 𝑆11  images of 𝑹10  by the synthetical neural network, with 442 

embedded insets depicting the ground truth image and the accuracy. The predicted 𝑹10 patterns 443 

are displayed below. The corresponding split 𝑆11 images of the two “parent” components (𝑹8/𝑹10
8 ) 444 

are connected by arrows. 445 
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 446 

Fig. 5 | Scalability of synthetical neural network. a, For the new 𝑹14 design task, there is no need 447 

to collect and train new data and networks specific to 𝑹14. The process involves reusing two existing 448 

INNs, namely INN 1 and INN 2, based on the framework depicted in Fig. 2a. However, the introduction 449 

of a new INN 3, dedicated to the 𝑹14
10  annular ring, is necessary. Subsequently, a new ASNN’ to 450 

assemble all three INNs is trained to accomplish the inverse design task for 𝑹14. b, Training results 451 

for INN 3 over the training epochs, reaching an accuracy of 99.7%. The blue and red lines represent 452 

the training and validation losses, respectively. c, Predicted real/imaginary 𝑆11  images of three 453 

samples with INN 3 for the new 𝑹14
10  “parent” component, with embedded insets depicting the 454 

ground-truth image; the achieved accuracies are stated. The predicted 𝑹14
10 “parent” components 455 

are displayed below. d, Training results for the new ASNN’ over the training epochs, reaching an 456 

accuracy of 95.5%. e, Predicted real 𝑆11 images of one sample by the new synthetical neural network, 457 

with embedded insets depicting the ground-truth image. On the right side, the corresponding 458 

predicted "parent" component, 𝑹14 , is displayed. Arrows connect the corresponding split 𝑆11 459 

images of 𝑹8/𝑹10
8  /𝑹14

10
. f, Training results for the conventional neural network over the training 460 

epochs. It is in a serious underfitting state, and its accuracy is only 70.5%. g, Predicted real/ imaginary 461 

𝑆11 images by conventional network. 462 


