
HAL Id: hal-04779695
https://hal.science/hal-04779695v2

Preprint submitted on 24 Jan 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

SNN-Based Online Learning of Concepts and Action
Laws in an Open World

Christel Grimaud, Dominique Longin, Andreas Herzig

To cite this version:
Christel Grimaud, Dominique Longin, Andreas Herzig. SNN-Based Online Learning of Concepts and
Action Laws in an Open World. 2025. �hal-04779695v2�

https://hal.science/hal-04779695v2
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

SNN-Based Online Learning of Concepts and Action Laws in an Open World

Christel Grimaud, Dominique Longin, Andreas Herzig
Université de Toulouse, CNRS, Toulouse INP, UT3, IRIT, France

Abstract

We present the architecture of a fully au-
tonomous, bio-inspired cognitive agent built
around a spiking neural network (SNN) imple-
menting the agent’s semantic memory. This agent
explores its universe and learns concepts of ob-
jects/situations and of its own actions in a one-
shot manner. While object/situation concepts are
unary, action concepts are triples made up of an
initial situation, a motor activity, and an outcome.
They embody the agent’s knowledge of its uni-
verse’s actions laws. Both kinds of concepts have
different degrees of generality. To make decisions
the agent queries its semantic memory for the ex-
pected outcomes of envisaged actions and chooses
the action to take on the basis of these predictions.
Our experiments show that the agent handles new
situations by appealing to previously learned gen-
eral concepts and rapidly modifies its concepts to
adapt to environment changes.

1. Introduction

The ability of a cognitive agent to act adequately in a given
environment depends on its ability to predict how perform-
ing a given activity might affect its current situation, that
is, it depends on its knowledge of its environment’s action
laws. How artificial agents can acquire these laws and how
these should be updated if their environment changes has
proven a difficult question. In the case where the intended
environment is open—that is, where the agent’s designer
cannot foresee all the situations the agent might encounter
in the future—, providing a suitable set of action laws to
the agent “by hand” is unfeasible. The only viable solu-
tion is that the agent continuously learns the relevant laws
from experience, just as natural agents (humans and ani-
mals) do. Crucially, this learning process should allow for
generalization over disparate experiences, so that the agent
is able to behave appropriately in new situations. It should
also accommodate environment changes.

The present paper intends to show how this could be
done. Its main thrust is that natural agents’ ability to per-
form well in our open and changing world relies on the fact
that they store their knowledge in the form of rapidly up-
datable concepts with various degrees of generality. Pre-
sumably, they first form concepts about the encountered

objects/situations, and then use these as elements for com-
posing concepts of actions supporting their knowledge of
their environment’s action laws. We suggest that artificial
agents could do just the same, relying on some artificial
neural network to learn and store concepts, and then query-
ing it to make predictions about the outcome of envisaged
actions.

To test this idea, we here build an artificial hybrid agent
with a SNN at its core. We make this agent live in a very
simple virtual world, composed of rooms which may be, or
not, accessible (hence, knowable) to it. At first, the agent
is confined to one single room and learns by itself how to
act in it. Then at some point a door opens to a new room
containing some never encountered before objects and sit-
uations. Yet, although these are new to the agent, some
general laws are preserved from one room to the other. We
show that having learned these laws in the first room allows
the agent to act by and large properly in the second one, as
soon as it enters it. We also show that relying on neurally
implemented concepts allows the agent to rapidly update
its knowledge and adapt to environment changes.

The paper is organized as follows. In Section 2 we dis-
cuss related work, and in Section 3 we present the agent
and its universe. Section 4 clarifies the notions of con-
cepts and actions laws we use, while Section 5 describes
the neural network and its functioning. Section 6 describes
the agent’s general functioning and Section 7 presents the
results. Finally, Section 8 concludes and discusses future
possible developments of the framework.

2. Related Works

Our research problem is autonomous online learning, gen-
eralization and updating of concepts and actions laws in an
open universe. The intended application is reasoning and
planning for autonomous robots. To our knowledge, no
existing approach addresses this problem in all its dimen-
sions, but these are investigated in separate research fields.

Continual Learning tackles the problem of lifelong
knowledge acquisition Wang et al. (2024); Lesort et al.
(2020). Its main challenge is to avoid catastrophic loss
of previous knowledge when acquiring new knowledge;
a secondary research axis is one-shot/few-shots learning,
i.e., the ability to learn online from one or few examples
Wang et al. (2020). However, current approaches mostly
consider the learning of tasks (mostly image classifica-

1

tion/recognition tasks, but also some more complex tasks
such as playing games Kirkpatrick et al. (2017)), not of
concepts nor action laws. Furthermore, most of them rely
on supervised learning and/or labelled training data, which
is unsuitable for open world autonomous agents.

Concept Learning has mainly been studied in view
of explainability Gupta and Narayanan (2024), mostly of
classification models (e.g., Koh et al. (2020)) but also of
decision making in the context of reinforcement learning
Das, Chernova, and Kim (2023); Zabounidis et al. (2023).
For this reason, many proposals are dedicated to learn-
ing a human-predefined set of concepts using some anno-
tated data. In the field of Image Classification some ap-
proaches deal with the extraction of concepts from data
Wang, Lee, and Qi (2022); Ghorbani et al. (2019); Hase
et al. (2019), but then these are extracted from labelled
classes of images, which is unsuitable for open world au-
tonomous agents. The vast majority of these methods also
disregard the hierarchical organization of concepts from
particular to more general, and they generally do not ad-
dress one-shot learning, online revision or updating of con-
cepts.

Action Learning has been studied from various per-
spectives. In Dynamic Epistemic Logic, Bolander and
Gierasimczuk (2018) proposed a method to learn an ac-
tion model through successive observations of transitions
between states. But this method does not achieve gener-
alization nor accommodate environment changes and only
considers the universally applicable actions (i.e., actions
that can be executed in every logically possible state), a
condition real-world actions rarely satisfy. In the field of
Planning, Bonet, Frances, and Geffner (2019) showed how
to learn abstract actions from a few carefully chosen in-
stances of some general planning problem. But said in-
stances come with their own set of ground actions which
must be known beforehand, so this approach cannot be
used in open worlds, where an agent needs to incremen-
tally learn from experience.

Our work could be related to model-based approaches
of Reinforcement Learning (RL) Moerland et al. (2023),
but it differs from them in two important aspects. First,
we are only interested in learning a model of the environ-
ment, not in learning policies. Despite their undeniable
successes, RL approaches struggle to adapt to environment
changes and to revise learned policies Kirk et al. (2023);
Farebrother, Machado, and Bowling (2018). We believe
that an agent learning and updating in real time a model of
the environment and using it to make its decisions would
be able to quickly adapt its behavior. Second, the learning
process we propose does not depend on the existence of
rewards, which makes it usable in contexts where rewards
are scarce.

3. The Agent and its Universe

The agent’s universe is built over a grid of boxes, which we
(not the agent) identify using an orthonormal coordinate
system (see Figure 1). Each box represents a particular lo-
cation in the agent’s universe and possesses a particular set
of features the agent is able to perceive, drawn from the
set LF = {OK, KO, NorthWall, EastWall, SouthWall, West-

Figure 1. The agent’s accessible world. A: in the first phase,
Room 1 only; B: after opening the door, Rooms 1 and 2.

Wall, Cold, Sound, #0, #1, ..., #24}. Although the agent’s
universe is not finite, at any time point we only consider
the boxes to which it has access, the set of which is always
finite. For example, the box with coordinates (−2,−2)
has the feature set LF (−2,−2) = {OK, SouthWall, West-
Wall, Cold, #0}, while the box with coordinates (5, 0) has
the feature set LF (5,0) = {OK} (“#n” is to be taken as
a particular name for a box hence a feature, not all boxes
need to have one). Two boxes with the same feature set are
indistinguishable for the agent. Boxes’ feature sets may
change over time, reflecting environment changes. The
rooms are made out of boxes, and delimited with impass-
able walls. Opening a door amounts to removing the wall
features from the concerned boxes’ feature sets (as in Fig-
ure 1.B). The simplicity of this environment is meant to al-
low the precise monitoring and testing of the agent’s learn-
ing and decision making abilities (section 7 below), so to
provide a proof of concept of our approach. Scalability and
considered developments of the approach are discussed in
our last section.

The agent is composed of a set of sensors, a perceptual
system, a semantic memory, a decision system, a motor
system and a set of actuators (see Figure 2). Sensors collect
data from the external world and feed it to the perceptual
system, which performs feature/object recognition. Neural
networks doing this while relying on unsupervised learn-
ing from unlabelled data already exist (e.g., Thiele, Bich-
ler, and Dupret (2018); Kheradpisheh et al. (2017)), so we
simply suppose that the agent’s perceptual system operates
as intended and provides the semantic memory with the
appropriate inputs, namely, the correct and complete set of
features of the agent’s current location. Semantic memory
forms concepts by binding together sets of features, and
stores them for further retrieval. Its modeling is the main

Figure 2. Schema of the agent

2

focus of this paper. The decision system is the other impor-
tant part: it queries the semantic memory to predict the out-
come of possible actions, and decides which one to take on
the basis of these predictions. This decision is then sent to
the motor system, which activates the actuators to perform
the corresponding motor activity. Information from the ac-
tuators is sent back to semantic memory through proprio-
ception, allowing the agent to memorize the motor-related
features of the realized actions.

The agent’s possible actions consist in steps from one
box to another adjacent box, in any of the eight directions.
Formally, an action is a triple made up of a depart loca-
tion, a motor activity, and an outcome. By “motor activity”
we mean the fact that the agent’s actuators are activated so
as to make it move to the immediate next box in the se-
lected direction. The set of motor activities features the
agent is able to perceive by proprioception is the set MF =
{N, NE, E, SE, S, SW, W, NW, Diag., Orth.}, where the first
eight are specific to each particular direction, while Diag.
and Orth. are shared by all motor activities yielding diago-
nal/orthogonal moves. In cases where there is a wall at the
edge of the depart box in the selected direction, the agent
bumps into it and remains at the same place. We then say
that the action’s outcome is a failure. Otherwise, the ac-
tion’s outcome is the agent’s new location.

As for the locations’ features, we suppose that KO cor-
responds to some unpleasant stimulus the agent sponta-
neously wants to avoid, and OK to the absence of such a
stimulus, while the others convey some indifferent infor-
mation.

4. Concepts and Action Laws

The agent can form two kinds of concepts. First, concepts
of “things”, in the broad sense. These bind together co-
occurrent features, and can be seen as some sort of con-
junction in which conjuncts have different “weights”, re-
flecting the fact that some features are more important than
others in a concept’s definition Freund (2008). They are
used to store knowledge about locations and more gener-
ally any object, so we call them object concepts. The sec-
ond kind is relational concepts. These take other concepts
as elements, and bind them together into tuples. Concepts
of actions are of this kind: they bind together the agent’s
concepts of a depart location, a performed motor activity,
and a subsequent outcome, in the order in which they were
experienced.

We say that an object concept X is general, as opposed
to particular, if there is another concept Y such that the
set of features composing X is a strict subset of the set of
features composing Y. Y is then said to be more particu-
lar than X. We say that an action concept is general if the
object concept of its initial situation is general or its mo-
tor activity component only contains Diag. or Orth.. We
understand the generality of concepts relative to the set of
concepts the agent possesses at some point, so no concept
is general or particular in itself.

For example, when visiting the box (0, 0) the agent
may form the particular object concept [OK,#12], which is
a memory of an OK place with name #12, and only applies
to this particular box in its accessible universe. If it then

moves North-East and arrives at box (1, 1), it can form the
particular object concept [OK,#18], and also the partic-
ular action concept [[OK,#12],[NE,Diag],[OK,#18]]
which corresponds to the memory of being in an OK place
with name #12 and then moving North-East to arrive at
another OK place with name #18. Yet, after visiting a
number of locations having the feature OK in common,
the agent may also form the general object concept [OK].
Furthermore, it is a general rule in its accessible universe
that moving North-East from an OK location always leads
to another OK location, except for when there is a wall
at the North or East edge of the depart box. Therefore,
after having experienced a number of North-East moves
from various OK locations, the agent may form general
action concepts such as [[OK],[NE,Diag],[OK]] and
[[OK,NorthWall][NE,Diag],[Failure]]. Such gen-
eral concepts capture the general (non-monotonic) action
laws of the agent’s universe, and are the ones it shall rely
on to behave in never encountered situations.

5. Implementing the Agent’s Semantic
Memory in the Neural Network

Spiking Neural Networks (SNNs) are well suited for au-
tonomous learning in open universes, as they allow for
Spike Time Dependent Plasticity (STDP), a family of bi-
ologically plausible learning rules which can achieve un-
supervised online learning from unlabelled data Thiele,
Bichler, and Dupret (2018). They are also known for be-
ing energy-efficient, which is interesting for autonomous
robots.

We take inspiration in the JAST learning rule Thorpe
et al. (2019); Thorpe (2023), which is a simplified version
of STDP where the sum of the afferent connections weights
on any given neuron remains constant through learning.
However, contrary to JAST we do not use binary weights
but natural numbers, and we do not freeze neurons after
learning, so as to allow updating.

The Network’s Architecture

The network is composed of an interface, which commu-
nicates with the agent’s other components, and a body of
hidden neurons which is itself divided into two layers (see
Figure 3). The first layer learns object concepts and the
second learns action concepts. For this reason we call their
neurons, respectively, object concept neurons (O-neurons
for short) and action concept neurons (A-neurons). This
architecture draws on neuroanatomical studies according
to which concepts are represented in the brain by hierar-
chically organized concept neurons, each receiving infor-
mation from some lower neurons and sending reciprocal
connections to these same neurons so that it can reacti-
vate them for information retrieval Quiroga (2012); Bausch
et al. (2021); Shimamura (2010). For simplicity we do not
model these reciprocal connections as such, but instead we
allow for information to flow in both directions along the
same connections: from interface neurons to O-neurons
and then to A-neurons for learning and querying, and the
other way round for retrieving information. A key point is

3

Figure 3. Schema of the SNN. O-neuron #1 encodes the
concept [#0,Cold,SouthWall,WestWall,OK], and A-
neuron #1 encodes the concept [[#0,Cold,SouthWall,
WestWall,OK],[E,Orth],[#5,SouthWall,KO]].

that interface neurons are both input and output neurons,
depending on the computational phase.

Interface neurons (I-neurons for short) mainly support
the representation of features, be it of the visited locations
or of the agent’s own motor activities. An additional neu-
ron acts as a failure detector, specifically firing when the
agent bumps into a wall and remains at the same place. All
of them have their labels fixed from the start.

The first layer of hidden neurons is composed of 100
integrate and fire neurons, with a differentiated dynamics
depending on whether their input source is I-neurons or
A-neurons. O-neurons learn co-occurrences of perceived
features.

The second layer is composed of 400 compartment
neurons with three separate input compartments. The first
one receives connections from O-neurons, the second one
from motor activities I-neurons, and the third one from O-
neurons and Failure neuron. Inputs received at each com-
partment are unable to trigger a spike by themselves, but
the first and second compartments make their next com-
partment ready to receive and transmit inputs for a certain
amount of time. In this manner, inputs can only be effi-
cient if they occur in the correct order, so that A-neurons
encode sequences of inputs. The use of compartment neu-
rons to learn sequences was suggested in Cui, Ahmad, and
Hawkins (2016); Hawkins and Subutai (2016).

The Neural Network’s functioning

We present here the main ideas governing the network’s
functioning. Details of their neural implementation are
given in Supplementary Material. The network’s digital
implementation can be found in the provided code.

O-neurons’ Learning. Each time the agent observes
its current location, information from the perceptual sys-
tem is sent to the network’s interface, inducing the firing of
the I-neurons encoding the location’s features. This in turn
triggers the firing of a number of O-neurons. If this num-
ber reaches some fixed target number, the network directly
proceeds to make them learn. Otherwise it looks for ad-
ditional O-neurons by “boosting” their input. In practice,
boosting consists in multiplying the input received by each
non-firing O-neuron o by a factor bo, which is an increas-
ing function of the number of steps performed since o’s last
spike. This favors the firing of neurons that have been in-
active for a long time, which can then be re-allocated to a
new concept through learning.

The learning process depends on the accuracy of the
agent’s knowledge about its current location. To assess it,
the (pre-boosting) firing O-neurons send a backward in-
put to I-neurons, and the resulting set of firing I-neurons
(the retrieved information) is compared with the initial in-
put (the current observation). If all the observed features
can be retrieved from active O-neurons, then all inactive I-
synapses (if any) on the learning O-neurons are deleted and
replaced with synapses from input neurons. This procedure
tends to reinforce O-neurons’ connections with I-neurons
encoding well shared features at the expense of connec-
tions with those encoding more specific features, fostering
the learning of general concepts. If, on the contrary, not
all the observed features can be retrieved from the firing
O-neurons, then we pick one learning O-neuron with max-
imal number of steps since its last learning and replace all
its synapses, active or inactive, with synapses from input
neurons. This neuron thus learns the particular situation
with all its features. For the other learning neurons, the
learning process is similar as in first case.

Querying the network. To query the neural network,
the decision system first sends an input to the I-neurons
that encode the features of the initial situation. Their fir-
ing brings a number of O-neurons to fire, sending an in-
put to A-neurons’ first compartment. Given an envisaged
motor activity m, the decision system then sends an in-
put to the I-neurons that encode m’s features. These fire,
and send an input to A-neurons’ second compartment. A-
neurons’ spiking threshold is then gradually lowered un-
til a target number of them fire, sending a backward in-
put to O-neurons through their third compartment’s con-
nections. The O-neurons that fire in response to that input
in turn send a backward input to I-neurons, the firing of
which is the network’s response to the query. The value
of A-neurons’ spiking threshold at the moment a given I-
neuron spikes determines the agent’s confidence in the fea-
ture’s prediction: the higher its value, the higher the con-
fidence. So, formally, the querying process returns a set
Pm = {(f1, c1), ...(fn, cn)}, where fi is a feature and ci
the degree of confidence the agent has in its prediction.

Now, among the A-neurons that receive a significant
amount of input, some encode more particular action con-

4

cepts than others. Obviously, we want the neurons sup-
porting more particular concepts to take precedence over
those supporting more general concepts, as they convey
more adequate information. To achieve this, we first assess
the generality of the object concepts (/motor activity fea-
tures) encoded by O- (/ I-) neurons and then we modulate
the input they send to A-neurons by applying to it a multi-
plying factor that depends on that assessed generality (the
more particular the input concept/feature, the greater the
multiplying factor). Generality is assessed by checking the
weight sum of O- (/ I-) neurons’ connections to A-neurons,
as neurons with fewer outward connections tend to encode
more particular concepts.

A-neurons’ Learning. At each step, O-neurons re-
sponding to the depart location and I-neurons responding
to the performed motor activity send inputs to, respectively,
A-neurons’ first and second compartments. A-neurons
reaching a certain threshold are selected for learning. If
their number reaches some fixed target number, the net-
work directly proceeds to make them learn, otherwise it
looks for additional A-neurons by boosting their input in a
way similar to the one used for O-neurons. The learning
process depends on the accuracy of the agent’s predictions
relative to the action’s outcome. If these are correct (i.e.,
all the expected features are actually present) and complete
(i.e., all the actually present features were expected), then
the learning process promotes generalization by erasing
and replacing inactive synapses on all three compartments,
otherwise it allows a few neurons to specialize on the in-
put by also erasing and replacing some active synapses (see
Supplementary Material for details).

6. Functioning of the Agent

Suppose the agent is at some depart location and observes
it: information from its perceptual system triggers the fir-
ing of the I-neurons encoding the location’s features, which
brings a number of O-neurons to fire and send inputs to A-
neurons’ first compartments. Concomitantly, the informa-
tion is transmitted to the decision system, which decides to
make a step.

The agent’s choice of a motor activity depends on
whether it wants to exploit its current knowledge about
its environment, or to explore it to improve its knowl-
edge. The exploration/exploitation dilemma is a well-
known problem in online learning Watkins (1989); Sutton
and Barto (2018), and changing environments make it even
more difficult. We therefore do not try to reach an opti-
mal solution here, but instead we simply make the agent’s
decision system choose at random with equal probability
between an Exploration and an Exploitation mode.

This choice being made, for each motor activity m out
of the eight possible the decision system queries the se-
mantic memory for the outcome of the action having the
current location for initial situation and m for motor activ-
ity. It then rates each of them for its suitability, by building
the sets S (for “Suitable”), US (“Unsuitable”) and UD
(“Undecided”):

• S = {(m, c) | (OK, c) ∈ Pm}
• US = {(m, c) | (KO, c) ∈ Pm or (Failure, c) ∈ Pm}

• UD = {m | ∄ c s.t. (m, c) ∈ S ∪US}

The decision system then chooses a motor activity de-
pending on the selected mode. In Exploration mode, the
agent is willing to take risks and chooses an action with
the most uncertain outcome possible: if UD ̸= ∅ it picks
one from it, otherwise it goes for one with the least c in
S ∪ US . In Exploitation mode by contrast, the agent just
wants to avoid KO boxes and failure as much as possible.
So, if S ̸= ∅ it chooses one with the greatest c, otherwise
if UD ̸= ∅ it picks one from it, and if both S and UD are
empty it chooses one with the least c in US .

The decision system then transmits its decision to the
motor system to perform the selected motor activity. The
I-neurons that encode its features are activated by proprio-
ception and send an input to A-neurons’ second compart-
ment.

We simulate the agent’s move by computing its arrival
location and its features. If the agent bumps into a wall, the
Failure neuron fires and sends an input to A-neurons’ third
compartment, and the agent directly learns the action (see
A-neurons’ learning above). Otherwise, it first learns rele-
vant object concepts about its new location (see O-neurons’
learning above), and then the action. After that, the agent
is ready for the next step.

7. Results

To test the agent’s learning abilities, we placed it at location
(0, 0) and prompted it to perform a succession of series
of steps, each complete sequence of series of steps being
called a trial. The results we present here are averaged
over 50 trials.

In a first group of tests, trials consisted in 65536 steps
in total with the door kept closed all along, so that the
agent had no access to the second room. First, we tested
the agent’s ability to learn an action over one single expe-
rience (one-shot learning). To do so, after each step we
asked the agent to redo the prediction that led to the just
realized action, and compared this new prediction with the
action’s actual outcome. 96% of these post-learning pre-
dictions were both correct and complete (i.e., the predicted
features were exactly those of the arrival location; see Ta-
ble 5 in Supplementary Material).

To test whether the acquired knowledge was retained
in the long run, after each series of steps we froze the sim-
ulation, deactivated learning and placed the agent succes-
sively in each location of each room. There, we asked it
for its predictions for each of the eight possible motor ac-
tivities and compared its answers with the actions’ actual
outcomes. Tables 1 and 2 show each feature’s mean Hit
Rate (that is, its chances of being predicted when effec-
tively present), and Correctness (its chances of being ef-
fectively present when predicted)1 for each room. For lack
of space we only show the results for some series. Values
for the first room (white lines) show that learned actions are
indeed recalled long after having been performed. Values

1Hit Rate is also known as True Positive Rate, Recall or Sensitivity,
while Correctness is also known as Precision or Positive Predictive
Value – see for example Kohavi and Provost (1998) for definitions.
Here we multiplied the obtained figures by 100 to get percentages.

5

N
b

of
St

ep
s

R
oo

m

O
K

K
O

Fa
il.

W
al

l

C
ol

d

So
un

d

B
ox

N
am

e

1 1 8.6 18.1 0.0 0.0 0.0 0.0 1.4
2 8.7 17.6 0.0 0.0 0.0 0.0 0.0

8 1 35.1 44.4 26.0 13.9 8.9 0.0 4.2
2 30.3 42.0 25.5 11.1 0.0 0.0 0.0

64 1 78.3 77.8 45.4 35.0 31.2 0.0 22.0
2 64.7 69.6 39.3 21.5 0.0 0.0 0.0

512 1 94.9 93.2 69.8 64.2 57.7 0.0 50.1
2 86.9 88.2 40.0 24.7 0.0 0.0 0.0

8192 1 96.9 95.1 84.3 80.2 75.8 0.0 73.5
2 91.6 86.3 56.2 26.8 0.0 0.0 0.0

32768 1 97.3 93.8 85.0 79.7 79.5 0.0 74.7
2 92.7 85.1 56.0 26.4 0.0 0.0 0.0

Table 1. Predictions’ Hit Rates after n steps.

N
b

of
St

ep
s

R
oo

m

O
K

K
O

Fa
il.

W
al

l

C
ol

d

So
un

d

B
ox

N
am

e
1 1 13.3 23.7 0.0 0.0 0.0 0.0 4.0

2 14.5 25.3 0.0 0.0 0.0 0.0 0.0
8 1 49.3 42.4 28.8 19.6 6.2 0.0 5.0

2 49.0 42.3 21.6 13.5 0.0 0.0 0.0
64 1 75.2 74.2 55.9 35.2 33.9 0.0 22.6

2 72.1 72.5 36.5 19.1 0.0 0.0 0.0
512 1 90.3 86.6 87.0 70.9 78.8 0.0 66.6

2 83.9 83.3 55.3 28.9 0.0 0.0 0.0
8192 1 93.4 92.6 95.2 88.7 96.1 0.0 84.2

2 86.3 87.6 66.6 37.1 0.0 0.0 0.0
32768 1 93.1 93.8 94.0 89.9 92.3 0.0 85.4

2 86.5 87.4 69.8 37.3 0.0 0.0 0.0

Table 2. Predictions’ Correctness after n steps.

for the second room (grey lines) show that despite never
having been in this room (since we kept the door closed)
the agent was able to correctly predict OK and KO features
and to a lesser extent Failure —and this, even though loca-
tions from the second room have different sets of features,
including for some of them a new feature, Sound. The poor
performance at wall prediction is due to the lack of general
rules of the universe observable in the first room regarding
the presence of walls in adjacent boxes. The agent thus
relies on particular concepts of individual boxes to predict
them in the first room, which cannot be used for the second
room. The mixed result at failure prediction comes from
a competition between general action concepts, the control
of which needs to be improved.

To test the agent’s ability to use its knowledge to make
appropriate decisions, we recorded the outcome of each
action taken in Exploitation mode during the trials. Fig-
ure 4.A shows the percentages of OK, KO and Failure out-
comes thus obtained for each series of steps. We kept track
of the visited locations to check that the agent was not loop-
ing indefinitely on the same boxes: all boxes kept being
visited, be it very rarely, at any point of the trials, due to
the Exploration mode.

Finally, to test whether the agent would be able to use
the knowledge acquired in the first room to act judiciously
in the second room, at the end of each series of steps we
asked it to chose a move for each of the second room’s
type of locations (we say that two locations are of the same
type if they have exactly the same features). Figure 4.B
shows the percentages of OK, KO and Failure obtained in
this manner. These results reflect the agent’s performance

Figure 4. Actions’ mean outcomes with door closed; Green:
OK, Red: KO, Blue: Failure, Grey: no data

at making predictions about the second room’s locations:
it successfully predicts OK and KO boxes, but has more
difficulties predicting failure.

In a second group of tests, we kept the same setup but
opened the door at the 2048th step. The agent sponta-
neously went in the second room, and spent a variable but
significant amount of time in it (36.0% of steps on average,
standard deviation = 9.3). Tables 3 and 4 show the features’
Hit Rates and Correctness from the moment the door was
opened. These results show that the agent was able to learn
new concepts involving the Sound feature. The rather low
Hit Rates for the feature are due to the lack of observable
cues in boxes at the direct south of boxes with sound, which
prevents the agent from being able to predict it in 40% of
the cases.

It should be noted that this learning did not lead to
significant loss of previous knowledge regarding the first
room: a moderate drop in Hit Rates can be observed for
boxes’ names, Cold and walls, but not for OK, KO and
Failure. Accordingly, the agent’s ability to make appropri-
ate decisions in the first room was not impacted by the door
being opened. In fact, the bar chart of OK, KO and Fail-
ure outcomes obtained in this second run of tests showed
no visible difference with the one obtained with the door
closed shown Figure 4.A. This is due to the use of selective
forgetting in the learning process. Forgetting is inevitable
for an agent with finite memory living in an unbounded
world, but the boosting of inputs used in O- and A- neu-
rons’ learning processes (see 5 above) allows the agent to
preferentially forget its less used knowledge such as spe-
cific details and/or memories that have not been used for
long, preserving general concepts and often used memo-
ries. How much is forgotten depends on how much needs
to be learned (the amount of novelty), and on the initial
amount of redundancy in the SNN (how many neurons en-
code a same concept).

To better assess the agent’s ability to update its knowl-
edge to accommodate world changes, we conducted a third
experiment. As before, we kept the agent in the first room
for 2048 steps before opening the door, but then we had
it run 50 series of 100 steps. Half way through these, we
changed sound’s location by removing the Sound feature
from the boxes (3, 3) - (8, 3) while adding it to the boxes
(3,−1) - (8,−1). At the end of each series of steps, we
asked the agent to make predictions about the outcome of
two actions having Sound as the only available information
about the depart location: the first one when considering
a north move, and the second, when considering a south

6

N
b

of
St

ep
s

R
oo

m

O
K

K
O

Fa
il.

W
al

l

C
ol

d

So
un

d

B
ox

N
am

e

2048 1 95.7 94.6 78.3 75.4 69.5 0.0 64.8
2 88.5 87.3 46.8 25.5 0.0 0.0 0.0

4096 1 96.6 96.2 78.2 63.8 56.2 0.0 53.4
2 91.3 93.7 56.3 34.4 0.0 33.9 4.0

8192 1 96.9 95.6 81.0 67.0 60.9 0.0 58.4
2 93.5 91.6 58.4 32.0 0.0 28.4 4.7

16384 1 97.9 96.0 84.3 67.5 63.5 0.0 59.6
2 93.6 90.4 70.0 35.5 0.0 32.3 5.1

32768 1 97.8 97.3 88.0 70.4 69.4 0.0 60.3
2 95.2 92.1 74.4 37.3 0.0 33.3 4.0

65536 1 97.8 96.5 88.9 71.1 68.0 0.0 61.7
2 94.3 92.4 77.0 37.0 0.0 31.0 5.8

Table 3. Predictions’ Hit Rates after n steps.

N
b

of
St

ep
s

R
oo

m

O
K

K
O

Fa
il.

W
al

l

C
ol

d

So
un

d

B
ox

N
am

e
2048 1 92.7 89.6 91.8 82.4 90.5 0.0 79.0

2 85.0 84.6 58.7 36.1 0.0 0.0 0.0
4096 1 94.9 91.8 90.7 74.6 94.1 0.0 88.7

2 90.7 87.6 72.2 45.2 0.0 61.5 0.9
8192 1 95.9 92.5 90.3 80.4 95.9 0.0 90.9

2 91.1 87.9 73.5 45.5 0.0 66.5 1.0
16384 1 95.9 94.1 92.7 80.1 96.4 0.0 92.0

2 92.1 90.3 76.1 47.1 0.0 60.5 1.9
32768 1 96.5 95.7 94.9 82.4 99.5 0.0 94.9

2 92.6 91.8 81.4 51.0 0.0 57.7 1.3
65536 1 96.9 95.5 94.5 83.8 98.2 0.0 93.4

2 93.7 92.2 82.3 50.3 0.0 71.4 1.7

Table 4. Predictions’ Correctness after n steps.

move. Once the door was opened, the agent first learned
to predict a north wall in the arrival box when considering
a north move, but when the Sound feature was moved it
stopped to do so and learned to predict a south wall in the
arrival box when considering a south move instead. Fig-
ure 5 shows that learning and updating were both fast and
robust, considering that learning occasions are very scarce
(less than 0.8% of taken steps on average for each rule).

As regards computing time, it takes about 12 seconds
on a conventional computer for the agent to run 2048 steps
while keeping track of all the test data. We made no attempt
to optimize the computing time, as it seems less critical in
the case of online learning of autonomous agents, which
can learn while physically performing their actions.

8. Conclusion and Future Developments

In this paper we have given a proof of concept of the ar-
chitecture of a fully autonomous agent that learns action
laws online and accommodates environment changes. This
agent relies on general concepts to handle new situations
and dynamically adjusts its concepts to its current environ-
ment. This makes it well suited for open worlds: if a new
door were to open to a third room with new objects and
laws, it would learn them just as it did in the second one.
Of course, this would come at the cost of the forgetting of
its least used concepts, but these are precisely the ones it
needs the less. In fact, the agent’s ability to selectively for-
get its less used knowledge ensures that it will always be
able to adapt to new environments by replacing old unused

Figure 5. Prediction of walls in arrival boxes given Sound as
information about the depart location. Black dotted line: door
opens; Red dotted line: sound changes location; Blue: North-
Wall predictions considering a north move; Orange: SouthWall
predictions considering a south move (average over 50 trials).

concepts by new useful ones.
As regard scalability to larger environments, the num-

ber of neurons needed in each layer of the network (inter-
face, O-neurons, A-neurons) grows linearly with the num-
ber of items (features, object concepts, action concepts) to
encode; the number of synapses needed on each O-neuron
grows linearly with the maximum number of features to
be remembered for a given object/situation. However the
agent’s ability to form general concepts out of individual
experiences and to use them to make decisions makes it un-
necessary to encode each individual object with all its fea-
tures and each performed action, so these are upper bounds.

Further work remains to be done to allow the agent to
live in more complex and realistic environments. A first di-
rection of work would be to endow the agent with planning
abilities. To do so, one would need a notion of applicable
action law. It seems that an action law represented by an
action concept [x,y,z] could be deemed applicable in a
situation s if s satisfies all the features in x and z ̸= Fail-
ure. To live in open worlds the agent would need to build
its own set of possible situations (states) online. It appears
that the set of its object concepts could be used for this.
The decision system should be augmented so as to handle
goals and a cost function.

Another beneficial improvement would be to make the
agent able to use incomplete information as input for learn-
ing and querying, as real world agents’ observations are
rarely complete. We could then make the agent able to
query its semantic memory for object properties given
some partial input. It would also be useful to implement
negation in the network, to allow the agent to represent the
fact that a given object does not have a given feature. Neu-
ral inhibition could probably be used for this, but the ap-
propriate learning rules remain to be found. It seems to us
that taken together these two improvements would bring
the agent to draw non-monotonic inferences in the spirit of
Grimaud (2016).

It would also be useful to allow the agent to distinguish
between objects and their locations, as actions can modify
one, the other or both. Biological brains process the “what”
and the “where” components of observations in two sepa-
rate pathways before reunifying them, and this could be an
inspiration source.

A last line of research would be to investigate how an
agent should decide between Exploration and Exploitation
modes in an open world.

7

References

Bausch, M.; Niediek, J.; Reber, T. P.; Mackay, S.; Boström,
J.; Elger, C. E.; and Mormann, F. 2021. Concept neurons
in the human medial temporal lobe flexibly represent ab-
stract relations between concepts. Nature communica-
tions, 12(1): 6164.

Bolander, T.; and Gierasimczuk, N. 2018. Learning to
act: qualitative learning of deterministic action models.
Journal of Logic and Computation, 28(2): 337–365.

Bonet, B.; Frances, G.; and Geffner, H. 2019. Learning
features and abstract actions for computing generalized
plans. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 33, 2703–2710.

Cui, Y.; Ahmad, S.; and Hawkins, J. 2016. Continuous on-
line sequence learning with an unsupervised neural net-
work model. Neural computation, 28(11): 2474–2504.

Das, D.; Chernova, S.; and Kim, B. 2023.
State2explanation: Concept-based explanations to
benefit agent learning and user understanding. Ad-
vances in Neural Information Processing Systems, 36:
67156–67182.

Farebrother, J.; Machado, M. C.; and Bowling, M. 2018.
Generalization and regularization in DQN. arXiv
preprint arXiv:1810.00123.

Freund, M. 2008. On the notion of concept I. Artificial
Intelligence, 152(1): 105–137.

Ghorbani, A.; Wexler, J.; Zou, J. Y.; and Kim, B. 2019. To-
wards automatic concept-based explanations. Advances
in neural information processing systems, 32.

Grimaud, C. 2016. Modelling reasoning processes in natu-
ral agents: a partial-worlds-based logical framework for
elemental non-monotonic inferences and learning. Jour-
nal of Applied Non-Classical Logics, 26(4): 251–285.

Gupta, A.; and Narayanan, P. 2024. A survey on Concept-
based Approaches For Model Improvement. arXiv
preprint arXiv:2403.14566.

Hase, P.; Chen, C.; Li, O.; and Rudin, C. 2019. Inter-
pretable image recognition with hierarchical prototypes.
In Proceedings of the AAAI Conference on Human Com-
putation and Crowdsourcing, volume 7, 32–40.

Hawkins, J.; and Subutai, A. 2016. Why Neurons Have
Thousands of Synapses, a Theory of Sequence Memory
in Neocortex. Frontiers in Neural Cicuits, 10.

Kheradpisheh, S. R.; Ganjtabesh, M.; Thorpe, S. J.; and
Masquelier, T. 2017. STDP-based spiking deep convo-
lutional neural networks for object recognition. Neural
Networks, 99: 56–67.

Kirk, R.; Zhang, A.; Grefenstette, E.; and Rocktäschel, T.
2023. A survey of zero-shot generalisation in deep re-
inforcement learning. Journal of Artificial Intelligence
Research, 76: 201–264.

Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.;
Desjardins, G.; Rusu, A. A.; Milan, K.; Quan, J.; Ra-
malho, T.; Grabska-Barwinska, A.; et al. 2017. Over-
coming catastrophic forgetting in neural networks. Pro-
ceedings of the national academy of sciences, 114(13):
3521–3526.

Koh, P. W.; Nguyen, T.; Tang, Y. S.; Mussmann, S.; Pier-
son, E.; Kim, B.; and Liang, P. 2020. Concept bottleneck
models. In International conference on machine learn-
ing, 5338–5348. PMLR.

Kohavi, R.; and Provost, F. 1998. Glossary of Terms.

Lesort, T.; Lomonaco, V.; Stoian, A.; Maltoni, D.; Filliat,
D.; and Dı́az-Rodrı́guez, N. 2020. Continual learning
for robotics: Definition, framework, learning strategies,
opportunities and challenges. Information fusion, 58:
52–68.

Moerland, T. M.; Broekens, J.; Plaat, A.; Jonker, C. M.;
et al. 2023. Model-based reinforcement learning: A sur-
vey. Foundations and Trends® in Machine Learning,
16(1): 1–118.

Quiroga, R. Q. 2012. Concept cells: the building blocks of
declarative memory functions. Nature Reviews Neuro-
science, 13: 587–597.

Shimamura, A. P. 2010. Hierarchical relational binding in
the medial temporal lobe: the strong get stronger. Hip-
pocampus, 20(11): 1206–1216.

Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.

Thiele, J.; Bichler, O.; and Dupret, A. 2018. Event-based,
timescale invariant unsupervised online deep learning
with STDP. Front. Comput. Neurosci. 12, 46 (2018).

Thorpe, S. 2023. Timing, Spikes, and the Brain. In Time
and Science: Volume 2: Life Sciences, 207–236. World
Scientific Publishing Europe Ldt.

Thorpe, S.; Masquelier, T.; Martin, J.; Yousefzadeh, A. R.;
and Linares-Barranco, B. 2019. Method, digital elec-
tronic circuit and system for unsupervised detection
of repeating patterns in a series of events. Patent
US20190286944A1.

Wang, A.; Lee, W.-N.; and Qi, X. 2022. Hint: Hierar-
chical neuron concept explainer. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 10254–10264.

Wang, L.; Zhang, X.; Su, H.; and Zhu, J. 2024. A com-
prehensive survey of continual learning: theory, method
and application. IEEE Transactions on Pattern Analysis
and Machine Intelligence.

Wang, Y.; Yao, Q.; Kwok, J. T.; and Ni, L. M. 2020. Gen-
eralizing from a few examples: A survey on few-shot
learning. ACM computing surveys (csur), 53(3): 1–34.

Watkins, C. J. C. H. 1989. Learning from delayed rewards.

8

Zabounidis, R.; Campbell, J.; Stepputtis, S.; Hughes, D.;
and Sycara, K. P. 2023. Concept learning for inter-
pretable multi-agent reinforcement learning. In Confer-
ence on Robot Learning, 1828–1837. PMLR.

9

Supplementary Material
Post Learning Predictions

The table below is referred to in section 7, first group of
tests. Results are averaged over 50 trials.

We call a prediction Correct and Complete (CC) if the
predicted features are exactly those of the arrival location.
The table’s first line shows the mean percentage of steps
leading to a CC post-learning prediction, for each series
of steps. The second line (MF for “Missed Features”)
shows the average percentage of features occurrences that
the agent failed to predict after learning. The third line (PE
for “Predictions Errors”) shows the average percentage of
wrongly predicted features occurrences.

N
b

of
St

ep
s

1 2 4 8 16 32 64 12
8

25
6

CC 100.0 100.0 99.0 99.5 99.8 98.0 96.4 92.8 89.2
MF 0.0 0.0 0.3 0.2 0.1 0.9 2.0 3.9 5.6
PE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.3

N
b

of
St

ep
s

51
2

10
24

20
48

40
96

81
92

16
38

4

32
76

8

65
53

6

G
lo

ba
l

CC 90.7 92.8 94.7 95.3 95.5 96.1 96.7 96.5 96.3
MF 4.5 3.4 2.5 2.2 2.1 1.8 1.6 1.6 1.7
PE 0.4 0.2 0.2 0.2 0.1 0.1 0.1 0.1 0.1

Table 5. Mean post-learning predictions percentages over n tri-
als. CC: Correct and Complete, MF: Missing Features, PE: Pre-
diction Errors.

These results show a good performance at immedi-
ate recall after learning. The lower CC prediction scores
around 128-2048 steps can be explained as follows. At
start up, the network has a lot of unused neurons at its
disposal and simply learns the particular concepts with all
their features, so specific features are well learned. But
as the network accumulates knowledge, unused neurons
get scarce and the network recruits less used neurons for
learning. A trade-off is made between learning the current
observation’s specific features and not forgetting the com-
mon features already encoded by the neurons, which makes
specific features more difficult to learn. Yet after repeated
encounters the specific features are finally learned, so the
score improves again.

The Network’s implementation

We provide here a more detailed account of the network’s
implementation. All parameters can be found in the sup-
plied code.

We respectively note L, M, and F the sets of interface
neurons that encode location’s features, motor activity fea-
tures, and failure. I = L ∪ M ∪ F is the set of interface
neurons.

We note O the set of O-neurons, and A the set of A-
neurons. For convenience we call “L-neurons” the neu-
rons from L, and similarly for the other above sets. For
any l ∈ L and o ∈ O, wl,o denotes the weight of the con-
nection between l and o. Similarly, for n ∈ {1, 2, 3},

x ∈ O ∪ M ∪ F, and a ∈ A, wn
x ,a denotes the weight

of x’s connection on a’s nth compartment. All weights
are positive integers and are initialized at random, in a way
such that the sum of weights on any O-neuron is equal to
some fixed integer WSO , and the sum of weights on any
A-neuron’s nth compartment is equal to some fixed inte-
ger WSA. We store these connexions in separate arrays
cnxLO , cnxOA1 , cnxMA2 and cnxOA3 . cnxLO reads
“connexions from L to O”, and similarly for the others.
The agent’s learning consists in the update of these arrays.

For each O-neuron we set at random a fixed spike
threshold ST o comprised between some minimal and max-
imal possible values. L-neurons all have the same spike
threshold, and the Failure neuron has its own spike thresh-
old. We do not specify spike thresholds for M neurons, as
we shall not need them. Spike thresholds for A-neurons are
dynamically adjusted, in a way we shall see below.

O-Neurons
At any point of time, we note inputLO the set of L-
neurons that fire in response to an input from either the
perceptual system or the decision system, and send an in-
put to O-neurons. Inputs from the perceptual system cor-
respond to the fact that the agent is observing its current
location, while inputs from the decision system correspond
to the fact that the agent is querying its semantic memory.

Firing. The set of O-neurons that fire in response
to an input inputLO is noted firedO . To compute it,
for any neuron o in O we first calculate the total input
inputSumOo =

∑
l∈inputLO wl,o received by o, and then

the difference overT o with o’s spike threshold (that is,
overT o = inputSumOo−ST o). Starting with firedO
= ∅, we then successively add to it the O-neurons with the
highest positive overT o value, until either no O-neuron
with positive overT o remains or the number |firedO | of
firing O-neurons reaches some target number TnbFiredO
(so that we keep the number of firing neurons under con-
trol).

For any neuron o in O, we note lastSpikedOo the num-
ber of steps performed by the agent since the last time o
underwent learning. These values are initialized at random
using some upper bound, and updated each time the neuron
learns or the agent makes a step.

Learning. Learning of object concepts occurs when-
ever the agent observes its current situation. To com-
pose the set learningO of learning O-neurons, we first
set learningO = firedO . If |learningO | reaches some
target number TnbQueryO , we directly proceed to the
neurons’ learning (TnbQueryO < TnbFiredO). Other-
wise, we look for some more neurons to make learn, by
boosting the input received by O-neurons. In practice, for
any o ∈ O − firedO we define boostedInputSumOo =
inputSumOo ∗ (lastSpikedOo + b)/b, with b ∈ N a
fixed parameter. We then pick the neurons with the high-
est boosted input sum values and successively add them
to learningO until |learningO | ≥ TnbQueryO . This
method allows to recruit O-neurons that did not learn for
a long time and ensures that all neurons are used by the
network in the long run.

The learning of O-neurons essentially consists in

10

replacing their afferent connections from non-firing L-
neurons with afferent connections from firing L-neurons
(namely, those from inputLO). To decide which neu-
ron from inputLO will establish new connections with
a given O-neuron, we define a probability distribution
probaNewSynapsesLO on inputLO . For any neuron l
in inputLO , this probability is a decreasing function of∑

o∈O wl,o, accounting for the fact that neurons cannot in-
definitely grow new forward connections, so a neuron hav-
ing already a lot of them should be less prone to establish
new ones than a neuron having fewer of them.

The learning process depends on the accuracy of the
agent’s knowledge relative to the current situation. To as-
sess it, we use the set firedO as a backward input to L-
neurons, and compare the resulting set firedL of firing
L-neurons with the initial input inputLO . This corre-
sponds to the agent comparing what it sees (represented
by inputLO) with what it expected based on its current
knowledge (represented by firedL). If inputLO ⊆ firedL,
that is, if all the observed features can be retrieved from
the firing O-neurons, then for any neurons o in learningO
and l in L − inputLO the connection wl,o is reset to 0.
In other words, we delete all O-neurons’ inactive synapses.
We then replace them with as many new synapses from
neurons from inputLO , following the above mentioned
probability distribution. This procedure tends to reinforce
O-neurons’ connections with interface neurons encoding
well shared features, at the expense of connexions with in-
terface neurons encoding more specific features, and is the
driving force for the formation of general object concepts.

If, on the contrary, inputLO ̸⊆ firedL, we first check
if |learningO | reaches TnbFiredO . If not, we look for
one more neuron to add to learningO , using the same
method as previously except that only one neuron is added.
The learning process is then similar to the one above, ex-
cept that we pick one neuron with maximal lastSpikedOo

value and replace all its synapses, whether active or inac-
tive. This neuron thus evades the general trend towards
generalization and learns the particular situation instead,
with all this features. Note that in both learning proce-
dures the sum of afferent connections weights

∑
l∈L wl,o

remains unchanged for all neurons o, in line with the JAST
learning rule’s spirit.

A-Neurons
At any point of time, we respectively note inputOA1 ,
inputMA2 and inputOA3 the sets of neurons from O and
M and O∪F that send inputs to A-neurons’ first, second
and third compartments. We note firedA the set of firing A-
neurons. Inputs on the first compartment encode an initial
situation, inputs on the second compartment encode motor
activity features, and inputs on the third compartment en-
code an action’s outcome. These inputs may occur in two
different situations: when the decision system queries the
neural network for the expected outcome of an envisaged
action, and when the neural network learns about a given
action.

Querying the network. To query the neural network,
the decision system sends an input to interface neurons so
as to trigger the firing of the L-neurons that encode the fea-
tures of the initial situation. These firing L-neurons are an

input set inputLO for O-neurons, and bring some of them
to fire. The set firedO of spiking O-neurons is an input set
inputOA1 to A-neurons’ first compartment, but it does not
provide enough input to bring them to spike. The decision
system then sends a second input to interface neurons, so
as to provoke the firing of the M-neurons that encode the
features of the envisaged motor activity. The set of firing
M-neurons is an input set inputMA2 to A-neurons’ sec-
ond compartment. Querying the network amounts to bring-
ing some A-neurons to spike in response to this incomplete
input and send backward input to O-neurons through the
third compartment’s connexions, so that these spike and
send backward input to interface neurons. The resulting
firing of interface neurons is the network’s answer to the
query.

Now, among the A-neurons that receive a significant
amount of input, some support the representation of gen-
eral action concepts (such as, e.g., [[OK],[NE],[OK]]),
while others support the representation of more particular
action concepts (such as, say, [[OK,NorthWall],[NE],
[Failure]]). Obviously, we need the neurons that sup-
port the more particular concepts to take precedence over
those supporting more general concepts, as more particular
concepts convey more adequate information. To achieve
this, we modulate the inputs inputOA1 and inputMA2
received by A-neurons by applying a multiplying fac-
tor to their connections weights. For any neuron o in
inputOA1 , the multiplying factor is a decreasing function
of

∑
a∈A w1

o,a. The idea behind this is that neurons with
fewer output connections generally support more particular
concepts than neurons with more output connections, and
so that the A-neurons to which they connect should also
encode more particular concepts. Multiplying factors for
cnxMA2 are defined in the same manner. The modulated
input sums are then computed in the usual way for each
compartment of each A-neuron, and summed up to get the
total input received by the neuron. The set firedA of firing
A-neurons is obtained by first adjusting A-neurons’ spike
threshold so that only the A-neurons with the highest in-
put sum fire, and then gradually lowering it until |firedA|
reaches a target number TnbQueryA. Backward input to
O-neurons is computed incrementally as A-neurons fire,
bringing O-neurons to fire as soon as their spike threshold
is reached, and similarly for interface neurons.

The value of A-neurons’ spike threshold at the time a
given A-neuron a fires measures how well a responds to
inputOA1 and inputMA2 . It depends on both the ac-
curacy of the action concept encoded by a relative to the
terms of the query (i.e., the initial situation and the envis-
aged motor activity), and the concept’s degree of general-
ity: the more adequate and particular the encoded concept,
the higher the received input, hence the spike threshold.
Since information conveyed by adequate particular con-
cepts is more reliable than information conveyed by less
adequate or more general concepts, the value of A-neurons’
spike threshold at the time an interface neuron spikes un-
der backward input is a good indicator of the prediction’s
reliability. This allows the agent to associate a confidence
degree to each predicted feature.

Learning. For each A-neuron a, we note
lastSpikedAa the number of steps performed by the
agent since the last time a underwent learning. These

11

values are initialized at random using some upper bound,
and updated each time the neuron learns or the agent
makes a step. Learning of action concepts takes place
after each step made by the agent. In this case, inputOA1
is the set firedO resulting from the agent observing its
depart location, inputMA2 is the set of M-neurons firing
by proprioception as the agent performs the motor activity,
and inputOA3 is either the set firedO resulting from
the agent observing its arrival location or {Failure},
depending on the case.

To select the set learningA of A-neurons to make
learn, we compute, for each a in A, the total input sum
inputSumA1A2 a received by a on its first and second
compartments. If inputSumA1A2 a reaches a certain
threshold learnAT , we put a in learningA. If the num-
ber of A-neurons obtained in this manner reaches the target
number TnbQueryA, we directly proceed to the learning.
Otherwise, we search for some more neurons, by boosting
the inputs inputOA1 and inputMA2 in a way similar to
the one used for O-neurons.

For each input set i in {inputOA1 , inputMA2
inputOA3}, we compute a probability distribution
probaNewSynapsesAi on i that models the propensity of
each neuron x in i to grow new connections to A-neurons’
corresponding compartment. As previously for O-neurons,
for each i and x this probability is a decreasing function
of

∑
a∈A wn

x,a (with n ∈ {1, 2, 3} depending on the input
set).

For each neuron a from learningA, we compute a’s
learning rate LRa. The learning rate is an integer com-
prised between 1 and the sum WSA of the weights of
the connections to A-neurons’ compartments. It repre-
sents the neuron’s basic propensity to modify its synapses
through learning, and is calculated in a way such that A-
neurons with maximal lastSpikedA value among those in
learningA get the maximal learning rate WSA, those with
minimal lastSpikedA value get the learning rate 1, and the
others get learning rates in between.

The learning process depends on the accuracy of the
agent’s expectations relative to the action’s outcome. If
these expectations were both correct (i.e., all expected fea-
tures are actually present) and complete (i.e., all actually
present features were expected), then for any A-neuron a
in learningA, the learning process replaces all of a’s inac-
tive synapses in the first two compartments, but only some
of them in the third one. Here, the exact number of re-
placed inactive synapses is min(LRa, i), where i is the
number of inactive synapses, the synapses to replace be-
ing chosen at random among the inactive ones. In all three
compartments, the new synapses replacing the deleted ones
are chosen at random, following the input set’s probabil-
ity distribution (the process is similar to the one described
above for O-neurons). If the agent’s expectations were
not correct, then for any a in learningA the learning pro-
cess not only replaces all inactive synapses on a’s first two
compartments, but also some active ones. Here the num-
ber of synapses to be replaced is max(LRa, i), where i
is the number of inactive synapses, and the deleted active
synapses are chosen at random. As for a’s third com-
partment, the learning process is the same as in the first
case. If the agent’s expectations were not complete, then

for any a in learningA the number of replaced synapses
is max(LRa, i) in all three compartments. In the case
where the predictions were neither correct nor complete,
the learning process successively runs the two above proce-
dures. This differentiated learning process aims at promot-
ing generalization when predictions are correct and com-
plete while allowing a few neurons to specialize when they
are not.

Computing Infrastructure

Research was carried out on a MacBook Pro with Apple
M1 Max chip (2022). Operating System: macOS-15.2-
arm64-arm-64bit. We used Python with Spyder IDE.

. Spyder version: 6.0.0 (standalone)

. Python version: 3.11.9 64-bit

. Qt version: 5.15.8

. PyQt5 version: 5.15.9

12

