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Abstract  
The world of technology is advancing by the day, presenting innovative and efficient solutions across various 
sectors, with healthcare being no exception. This review study majorly focuses on eliciting the impact of 
machine learning and deep learning techniques to improve the delivery of healthcare. It investigates the 
different frameworks of previous research studies to establish facts regarding the application of machine 
learning and deep learning, as well as where enhancement of the model is required. The strengths and 
weaknesses of the techniques used are identified. Our review study shows that the impact of machine 
learning and deep learning techniques cannot be berated, notably in prediction modelling, pattern 
recognition, classification, regression, and image processing, among other applications of the models. 
Furthermore, the study identifies numerous benefits of model explainability and different model explanation 
techniques, such as Alibi, InterpretML, Explainerdashboard, etc. We also show that prospective studies could 
employ ensemble learning using boosting and deep learning algorithms as core learning units.  
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1. Introduction 

The involvement of technology in healthcare has achieved major improvements in resolving human 
health challenges. Explainability focuses on making an AI model's decisions understandable and 
accessible, providing user-friendly explanations that support causal reasoning [1]. In clinical medicine, 
it is crucial to have a clearer and deeper understanding of the stans made by the algorithms used to 
prevent occurrence of faulty conclusion and adverse patient outcomes [2]. To ensure these 
explanations are accessible to other professionals that are not computer experts and to obtain a 
greater level of fundamental comprehension among experts, straightforward explanation interfaces 
are essential [2].  

 The integration of Internet of Things (IoT) facilities for dataset collection along with patient 
monitoring has contributed to the improvement of healthcare mainly for medical staff decision 
support systems [3], [4]. Furthermore, with its prominent advantages like networking, sensing, 
expression, safety, and intelligence, the IoTs have become vital component of the healthcare industry 
[5]. The IoTs represents the interconnectedness of physical objects in cyberspace to exchange data. In 
addition to communicating, they are remotely controlled and observed. To maintain health records, 
data are gathered from a variety of devices, including blood glucose monitors, electrocardiograms 
(ECGs), and fetus monitors [5]. The IoT facilities help collect individual health relevant information in 
real-time. By leveraging data mining and ML/DL techniques, the data are often used to recommend 
health-related services or suggest lifestyle changes for the individual. [6]. Many modern medical 
sensors and gadgets are often linked over different networks, giving access to vital data regarding 
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patients' status. The data can be employed for many functions, including remote patient monitoring, 
prognosticating disease, and recuperation by gaining a deeper understanding of symptoms and 
enhancing the diagnosis and treatment procedure through enhanced automation and mobility [3]. 

Machine learning and deep learning (ML/DL) are two subgroups of artificial intelligence (AI), that 
often learn from collected data, for intelligent decisions making. Their use in healthcare has improved 
the precision of diagnoses, customize treatment regimens, forecast patient outcomes, and accelerates 
operational efficiency [3]. There has been significant growth in the application of EHR resources 
recently which has accelerated the application of ML/DL to create patient phenotypes from EHR data 
[6]. EHR is regarded as rich spring of longitudinal experimental data that have the capability to house 
all important clinical and administrative data pertinent to a patient's care under a specific provider, 
including vital signs, prescriptions, medical history notes, demographics, and laboratory results [6].  

ML models are often considered as black box algorithms, where the internal processes behind their 
predictions are not easily interpretable. In medicine, however, trust and explainability are crucial, as 
healthcare professionals and patients need to understand how decisions are being made. 
Explainability in machine learning refers to the ability to understand and articulate the inner workings 
of a model, its predictions, and the factors influencing those predictions. This transparency is essential 
for ensuring trust, accountability, and effective communication with stakeholders in automated 
decision-making systems. [7]. 

It is obvious that artificial intelligence with the use of ML/DL has contributed immensely to the 
rapidly growing achievements in healthcare. However, there is room for improvement. This review 
examines various ML/DL approaches previously used to extract critical information from state-of-the-
art techniques. It also highlights their limitations and identifies areas where further solutions are 
necessary to enhance performance in healthcare.  

This review paper is organized as follows. Section 2 presents the context and objectives of our 
study. Section 3 highlights the main research studies applying IA to healthcare. Detailed information 
regarding the ML/DL algorithms applied to healthcare can be found in Section 4. In section 5, we 
address healthcare data collection and data types. Explainability in the healthcare context is discussed 
in Section 6.  Finally, Section 7 presents the conclusion and future works.  

2. Context and Objectives 

To develop individualized treatment routines, data is often collected and analyzed using ML/DL. 
Algorithms can predict a patient's response to different therapies based on their genetic composition. 
Moreover, predictive analytics is performed using models to forecast each patient's unique disease 
risk, making possible more individualized medical interventions. 

ML/DL techniques are often used to examine EHR data to predict patient outcomes, readmission 
rates, and notify patients of high danger for certain situations. The EHR, formerly known as Clinical 
Information System, was described as a warehouse for healthcare big data [8]. The data can be 
numerical, text (for NLP), or medical imaging (e.g. Positron Emission Tomography, X-ray, Computed 
Tomography, and Ultrasound identification of tumors, fractures, and lesions) [8]. Most of the previous 
research studies have adopted EHR for their analytics, as an example, we can cite the studies named 
“Prediction of mortality in paralytic ileus patients” [9], “predicting post-pneumonia using deep neural 
network approaches”, [10], or also “Predicting the onset of type 2 diabetes” [11], among other 
research studies. 

Real-time health data, like blood pressure, glucose levels, and heart rate, are gathered by wearable 
technology and IoTs sensors. These data are analyzed using ML/DL algorithms to monitor patient 
health and send out notifications to the concerned stakeholders in case of any abnormalities. AI-
powered chatbots and virtual assistants facilitate telehealth by setting up appointments, making initial 
diagnoses, and responding to patient questions. Moreover, IoT was used for the collection of live data 
in real-time (time series), which is the case of the study [5] about heart disease prediction where IoT 
devices were used to collect live data.  



To guarantee that medical professionals understand and can rely on AI-driven decisions, there is 

an increasing emphasis on creating models that yield clear and comprehensible outcomes. ML/DL 

models are sometimes considered black boxes, due to difficulties in explaining the internal operations 

of the models. However, through interpretable models, model-agnostic methods, visualization 

techniques, and a balance between complexity and interpretability; giving practitioners a clear 

understanding of the results, fostering better and more responsible use of machine learning 

technologies [12]. 

There are numerous techniques for achieving explainability, but it is crucial to grasp the key themes 
underlying different types of explainers. These include factors such as scope (local vs. global), model 
type (black box vs. white box), task (e.g., classification or regression), data type (tabular, images, text, 
etc.), and insights (feature attributions, counterfactuals, influential training instances, and more) [13]. 
Furthermore, explainers serve as interfaces that can work together with the model. For black-box 
techniques, this interaction typically involves analyzing the inputs and outputs. In contrast, for white-
box techniques, explainers can access and interpret the internal workings of the model [14].  

3.  State of the art 

Ahmed et al. [9] purported a predictive model that combines statistical techniques with machine 
learning algorithms to enhance the predictive performance of the models. Statistical data analysis was 
performed on the data obtained using IBM SPSS to examine the statistical significance of the features, 
for features reduction. The machine learning algorithms used are decision tree, linear discriminant 
analysis, K-Nearest Neighbors, gaussian naive bayes, and support vector machines with linear kernel 
and radial basis functions. Based on the results of the model, SVM with (radical basic function, RBF 
kernel) has the highest accuracy and ROC-AUC score. However, there was no method of data 
validation such as K-fold validation. Hyper-parameter tuning could be used for better optimization of 
the model.  

Ge et al. [10] developed a post-stroke pneumonia predictive model applying ML/DL techniques, 
which combine both time series and time-insensitive attributes. As part of the preprocessing, the 
numerical observations of the data were normalized to tackle data sparseness and convert the 
laboratory test to categorical. The data were divided into two parts (in the proportion of 85% and 
15%) for training and testing respectively, and three machine learning (LR, SVM, XGBoost) and deep 
learning (MLP and attention augmented GRU) algorithms were tested. 10 (k-fold) cross-validation was 
applied to the training set. To assess the performance of the model ROC, AUC, sensitivity, and 
specificity were applied to the test set. Based on the results, deep learning outperformed all the 
machine learning methods employed, where attention augmented gated recurrent unit (GRU) model 
achieved the highest AUC score. Subsequently, hyper-parameter tuning for optimization such as grid 
search or Bayesian optimization could be applied to identify the best hyper-parameter values. 
Moreover, exploratory data analysis may be administered to the dataset to aid the feature selection 
and to identify the statistical significance of the data. 

Gupta et al. [5] proposed ML-based models for heart disease detection. The statistical correlation 
matrix was used on the collected data to examine the significance of the features. The model phase 
was carried out by dividing the entire collected data into two proportions for training and testing of 
the model. The algorithms used include K-Nearest Neighbors (K-NN), Support Vector Machine (SVM), 
Naive Bayes (NB), Random Forest (RF) and Decision Tree (DT). Furthermore, to determine the K-value 
of the K-NN, a score graph method was used, where the highest score was identified at the K-value of 
3. The performance metrics were accuracy, sensitivity, miss rate, and confusion matrix. However, the 
best model was selected to validate the live dataset. Thus, real-time data are gathered by attaching 
several sensors to the body of the patients to measure different parameters. This data is then fed into 
the trained model to predict the outcome. The result of training and testing identified K-NN (3-NN) as 
the best algorithm. Therefore, K-NN was used for the prediction of heart diseases on the collected live 
data. 



Nguyen et al. [11] developed a prediction model that can identify patients at high risk for 

developing type 2 diabetes using electronic health record data. The collected data is divided into 

training and tests (respectively 70% and 30%). 10-fold cross-validation was applied to the training set. 

Due to an imbalance in the data, SMOTE [11] was adopted. Also, the stochastic gradient descent 

optimizer and the binary cross-loss function were adopted for model training, with an ensemble 

learning model. The sensitivity, specificity, and ROC AUC were the performance metrics used for this 

study. The predictive model for T2DM was developed and comparisons of the algorithms used were 

made. The outcome of data with the application with and without SMOTE were compared. However, 

models using SMOTE showed higher sensitivity but no significant improvement for the other metrics. 

Moreover, ensemble models without SMOTE showed higher AUC and specificity compared to SMOTE-

enhanced models. No explainability techniques were adopted for a better understanding of the model 

as well as for transparency. 

Sood et al. [4] proposed healthcare IoT-fog technology to diagnose patient’s hypertension stages 
and make prediction of hypertension occurrences based on users' health data collected. The study 
aims to leverage fog computing [15] to provide continuous monitoring for hypertensive patients and 
establish an efficient mechanism for sharing medical records and implementing precautionary 
measures. The system consists of three subsystems: an IoT-based subsystem for users, a health smart 
gateway (fog subsystem), and a cloud subsystem. The user subsystem utilizes various IoT devices to 
capture hypertension-related data, which is then transmitted to the health fog subsystem for real-
time processing and diagnosis. Upon identifying a potential health issue, the health fog subsystem 
generates an alert message, sent directly to the user's mobile phone, allowing for timely precautionary 
action. Simultaneously, the analysis results and compiled medical records are stored in a cloud system, 
where they can be shared with authorized medical professionals, including doctors, pharmacies, 
hospitals, and healthcare providers. The cloud subsystem facilitates data storage and sharing, enabling 
domain experts to take swift action and offer precautionary advice in emergencies. The algorithms 
used for classification and prediction are Artificial Neural Network (ANN), K – Nearest Neighbours (K-
NN), Multi-Layer Perceptron (MLP), and Logistic Regression (LR) [4]. The evaluation metrics include 
accuracy, time, sensitivity and precision. According to the system result, ANN outperforms all other 
classification algorithms in terms of accuracy, time, and standard metrics, for predicting the 
classification of hypertension attacks. The alert-generating result also reveals high values for 
sensitivity, specificity, precision, and coverage and low values for the Mean Absolute Error (MAE), 
Root Absolute Squared Error (RASE), Relative Absolute Error (RAE) and Root Relative Squared error 
(RRSE). These two latter are given by the following formulas:  

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 (𝑅𝐴𝐸)  =  
∑ |𝑦𝑖  − 𝑦̂𝑖|𝑛

𝑖 =1

∑ |𝑦𝑖  − 𝑦̅𝑖|𝑛
𝑖 =1

                            

𝑅𝑜𝑜𝑡 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑆𝑞𝑢𝑎𝑟𝑒𝑑 𝐸𝑟𝑟𝑜𝑟 (𝑅𝑅𝑆𝐸)  =  √
∑ (𝑦𝑖  −  𝑦̂𝑖)2𝑛

𝑖 =1

∑ (𝑦𝑖  −  𝑦̅𝑖)2𝑛
𝑖 =1

               

Where yi is the actual value, ŷi is the predicted value, n is the number of instances, and ȳ is the 
mean of the actual values. 

Furthermore, when it comes to alert production efficiency, fog monitoring-based alerts have the 
lowest delay times when compared to alerts based on cloud monitoring and alerts based on manual 
monitoring. Nonetheless, the security and privacy of data created by several layers of fog and cloud 
computing could be added in future studies. 

Nguyen et al proposed in [16] three deep ensemble learning (DEL) approaches, for different data 
types (statistical, image-based and sequential). These are deep-stacked generalization ensemble 
learning, gradient deep learning boosting, and deep aggregation learning. Following the data reading 
phase, preprocessing of datasets was carried out using various techniques to convert the data into 
appropriate forms (e.g., converting the pictures to numerical data with the application of 
Convolutional Auto-Encoder, CAE). Subsequently, in the next phase, the suggested models and 



additional conventional machine learning models were constructed following the dataset comprising 
various data. During this phase, the models' hyperparameters were also adjusted. Ultimately, they 
assessed the models and the suggested model in the last phase and compared the models' 
performances. A confusion matrix and metrics derived from it were used to evaluate the predictions’ 
performance. The accuracy, Matthew’s correlation coefficient (MCC), precision, F1-score, recall, and 
AUC metrics were obtained from the confusion matrix. MCC is defined as: 

𝑀𝐶𝐶 =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
                  

The findings demonstrate that, across all dataset types, the deep ensemble learning (DEL) family 
of techniques outperforms all other based deployed models in terms of performance. The experiment 
results show that when DL is used as the CLU, the GDLB strategy is appropriate for numerical dataset, 
the DAL method is suggested for image dataset, and the DeSGEL [16] technique is suggested for 
sequential data. For more transparency of the developed model, the application of explainability 
techniques could be adopted. Also, developing an XGBoost algorithm for Neural networks which drops 
layers instead of pruning branches in decision trees. 

4.  ML/DL algorithms applied to healthcare 

Research studies have shown that there are various ML/DL algorithms, which can be applied to 
healthcare. This section presents basic concepts of some common algorithms.  

Ensemble Learning: Boosting, Bagging and Stacking 

Ensemble methods hybridize several algorithms to build more powerful predictive models to obtain 
better performance than an individual based model [17]. The most typical kinds are bagging, boosting, 
and stacking.  

Tree-based gradient boosting technique, XGBoost is flexible [18]. It integrates weak classifiers to 
produce prediction with high level of precision. While the classic gradient boosting approach optimizes 
using only the first derivative, XGBoost conducts the second-order Taylor expansion of the cost 
function and, for improved efficiency, adds a regularization item to the cost function [10]. 

Bagging is an ensemble machine learning technique, where many models are trained 
simultaneously on a random subset using the bootstrap aggregating approach. Using samples 
generated through sampling with replacement, the multiple algorithms are trained in the 
bootstrapping approach. The predictions from each model are then averaged. This algorithm 
considers the most evolved algorithms' categorization capability based on the voting mechanism. 
Reducing variance during training minimizes the likelihood of overfitting, which is a well-known 
specification of this approach [17], [19]. Random forest algorithm is one the major examples of 
bagging. 

Boosting trains weak learners in a stepwise manner, where the mistakes made by earlier learners 
in the series are improved by each succeeding learner. First, a subset of the original dataset is selected. 
Following its training on this data, the first model predicts the outcome. Predictions about the samples 
may be accurate or inaccurate. For training the subsequent model, the incorrectly predicted samples 
are presented again. This allows the improvement of errors in earlier models by later versions. By 
aggregating the outcomes at each stage, boosting gathers the results earlier than bagging, which does 
it at the conclusion. A weighted average is used to combine them. Based on how successfully a model 
predicts the future, it is given a varying weight via weighted averaging [17], [19], [20]. Row and column 
resampling are also used by the boosting algorithms; these methods are used to prevent overfitting 
[21]. 

Support Vector Machine (SVM) 

SVM algorithms, which are considered supervised learning are often used to create a model that 
classifies objects or data into different categories, by finding the maximum-margin hyperplane for the 
binary classification of new data points from known classified data points [3], [8], [22], [23]. This aids 



the new input sets to be predicted more quickly than in other predictive models, regardless of the size 
of the training set in the domain. The goal of SVM is to locate the largest margin hyperplane, to divide 
the data and provide the best fit to arrange it [8]. By applying classical statistical learning theory, the 
SVM produces a model that is easily interpreted and provides good generalization of fresh data. Since 
they support the placement of the dividing hyperplanes, the nearest points are known as support 
vectors. This implies that the hyperplanes cannot be changed by shifting the nonsupport vectors, and 
vice versa [22]. Due to its ability to classify objects, SVM is often utilized in clinical imaging analysis to 
classify or categorize diagnoses [23]. 

SVMs exhibit the advantage of being very preventive to overfitting issues. SVMs are not limited to 
employing linear classifiers; they can also be used to classify data using non-linear functions by utilizing 
non-linear kernels [3]. A model demonstrating an SVM classifier that performed better than previous 
classifiers for determining whether a person has influenza-like illnesses (ILI) often referred to as acute 
respiratory infections was proposed by [24]. In location verification, SVM is determined to be the most 
accurate, and it doesn't need channel characteristics data to function [3]. 

Random Forest (RF) 

Multiple decision trees can be trained concurrently using random forests to generate a single output. 
Random Forest is one of the bagging ensemble machine learning that involves merging decision trees 
[3]. Al Hossain et al. [25] provided evidence of the use of a random forest algorithm that outperformed 
alternative models in estimating the number of influenza cases in public areas with a 95% accuracy 
rate. Because it can integrate the results from every decision tree, it demonstrates a high degree of 
accuracy. 

Naive Bayes (NB) 

The Bayes theorem operates as the conceptual foundation for Naive Bayes classification. The term 
"naive" describes the belief that each attribute is independent of the others. A response vector and a 
feature matrix are created from the data [3]. The whole set of data is presented in the feature matrix's 
rows as vectors, each of which denotes a different relative variable type. Conversely, every row in the 
response vector denotes a class of outcome. Naive Bayes classifier performed significantly well in 
classifying in controlling the social networks during pandemic catastrophe, where it outperformed 
other classifiers [26]. 

Extreme Gradient Boost 

As an ensemble learning technique, where weak learners are combined to produce a stronger learner 
for better accuracy, boosting establishes decision boundaries for every weak learner and weights 
them according to how well the boundaries identified or approximated the data. Until a workable 
model is produced, this is repeated. Gradient boosting involves the sequential creation of numerous 
boundaries, or learners so that each learner can partially account for the errors of the preceding one 
[3]. Through parallel processing, pruning of decision trees, management of missing values, and 
reducing the likelihood of bias or overfitting in a model, extreme gradient boosting (XGBoost) is used 
to optimize gradient boosting techniques. Each iteration's tree is computed using the first- and 
second-order gradient of the loss function, and the shrinkage parameter is used to add the predictions 
to the current function and minimize the optimal node predictions made in each iteration [30]. 
XGBoost is a potent and adaptable algorithm that may be applied to a range of problems, including 
regression and classification, forecasting, and ranking. Ensuring that machines are operating as 
efficiently as possible in terms of mobility, scalability, and accuracy is the primary objective of the 
XGBoost model. On the other hand, extreme gradient boosting, or XGBoost, is renowned for its 
meticulous tuning to yield better outcomes with fewer resources while remaining effective [27]. Heart 
patients' irregular cycles were predicted with 92.1% accuracy using extreme gradient boosting [28]. 
Analogously, speech signals obtained from wearables can be utilized to identify Parkinson's disease 
symptoms in their early stages [29], while predictive analytics can be employed to identify diabetes 
[3], [30]. 



Artificial Neural Network (ANN)  

ANN is an ML model that simulates the way the human brain learns. It consists of an input layer that 
accepts information, many tiers that analyze the input, and an output layer that gives results. If the 
outputs are inaccurate, they are propagated backwards through the preceding layers using a cost 
function to adjust the weights until the answers are received with a high enough degree of precision. 
“It calculates several weighted sums, which are then passed through layers with weights and sums 
until they reach the last layer, which uses an activation function to determine the output” [3]. ANNs 
are very flexible in application and are often used in pattern recognition-related fields. Sood and 
Mahajan [4] employed a fog-layer system to store patient data related to heart attacks and to detect, 
monitor and treatment of hypertension (BP) cases [3], [4]. 

Convolutional Neural Network (CNN) 

CNN is regarded as a feed-forward neural network and is usually used in classification challenges. The 
input is decomposed into its constituent pieces, which are subsequently sent to a convolution layer, 
and then these parts are combined in various ways until patterns are produced (convolution) [3], [31]. 
The input images are then mapped against these patterns using a Rectified Linear Unit (ReLU) layer, 
creating a rectified feature layer, which is then passed on to a pooling layer. To create a pooled feature 
map, the map is reduced by the pooling layer. This map is then flattened to create a linear vector, 
which is then served into a completely linked network to classify the input. CNNs are widely utilized 
in fields where visual interpretation of grid-like-topped images is required [3]. Brain wave values 
acquired as a 2D-time series were converted to forecast epileptic incidents and immediately notify 
health authorities [32]. Ke et al. [33] suggested utilizing lightweight CNN to assess depression using 
raw electroencephalograms (EEGs). Ciocca et al. [34] utilized picture recognition to recognise food 
and, consequently, calories, a finding with implications for fitness and nourishment. Alhussein and 
Muhammad [35] applied deep learning on pitch tones in mobile healthcare frameworks to identify 
speech disorders. Using the LUNA16 dataset, Bansal [36] developed a resnet-based model for lung 
disease classification and 3D dissection, where an excellent accuracy of segmentation and 
classification was obtained [36]. 

Thus, numerous ML/DL techniques can be used to healthcare to perform various activities 
including prediction, classification, regression, among others. Some of the algorithms have been 
highlighted above and various research studies have identified the efficiency of these algorithms 
based on the adopted parameters.  

5.  Healthcare data collection and data types 

In the application or development of ML/DL modelling, one of the major factors to be considered is 
the approach of data gathering and the type of collected data. This section presents some instances 
of data collected and used in previous research studies. 

 
Table 1  
Methods of data collection and data types 

Study Source of data Component of the data Data type 

[9] The data collected for the study 
contained different ICU records from 
2001 to 2012.  

The dataset made up of 46476 patients 
admitted to ICU, where 1021 patients 
were diagnosed with paralytic ileus and 
>= 18 years old was used for the 
prediction model. 

Numerical 
and 
Categorical 

[10] The dataset was collected from the 
EHR of a hospital in the space of 10 
years from 2007 to 2017.  
 

The data contains 13930 records of 
patients, where 1012 had pneumonia 
while in the hospital. Some of the 
records are time sensitive (medication, 

Numerical 
and 
categorical 



laboratory tests) and others are time 
insensitive (demographic information). 

[5] Data used for the study was 
collected from the UCI repository.  

The data consists of 303 instances of 14 
features, which are grouped into 
numerical (such as age) and categorical 
(sex, chest pain type, etc) features. 

Numerical 
and 
categorical. 

[11] The data was collected from the EHR 
of a hospital in the United States 
from 2009 to 2011. 

The data comprises 9948 patients’ 
records, where 1904 patients were 
diagnosed with type 2 diabetes mellitus. 

Numerical 
and 
categorical 

[4] The data were collected via users’ 
subsystems comprising several IoT 
facilities to obtain hypertension 
activities. They are then 
communicated to a fog system for 
concurrent processing and diagnosis. 
Alerts are generated and shared with 
the staff concerned. The data is 
stored in the cloud. 

Data collected by this system are 
categorized into six groups, which are 
health data (such as obesity, SBP, DBP, 
etc), environmental data (room 
temperature, noise level, air quality), 
physical activity data (such as sleeping, 
sitting, walking, etc), behavioural data 
(anxiety level, restlessness, etc), dietary 
data (Diet type, quantity), and GPS data 
(location and time). 

Numerical 
and 
categorical 

[16] Three different open datasets were 
used, which are Heart Disease UCI 
(HDU) data, X-ray data, and the 
Depresjon data. 
 

HDU: 270 instances (containing 120 and 
150 records of having and not having 
heart disease respectively) with 13 
attributes. 
X-ray: 5856 samples (made up of 4273 
and 1583 images with and without 
pneumonia respectively) 
Depresjon: 267 and 547 samples of 
depressed patients and non-depressed 
people respectively 

HDU: 
Numerical  
X-ray: 
Image 
Depresjon: 
Numerical 

 
We showed in table 1 that healthcare data for ML/DL modelling can be obtained from different 

sources. More so, part of the benefits of adopting ML/DL techniques is the capability to deal with 
different types of input data (numerical, categorical, image-based, text based, etc.). The data can be 
time sensitive or time insensitive. The selection of the most appropriate ML/DL model depends on all 
these characteristics of the dataset, in addition to the target result of the application (prediction, 
classification…). The trust of the obtained result is also closely dependent on its explainability which 
is discussed in the following part. 

6. Explainability in healthcare context 

Model explainability, often known as explainable AI, describes methods for making machine learning 
(black box and white box) models' predictions more comprehensible to human observers, particularly 
when there are difficulties in explaining the internal operations of the models [12]. A strong machine 
learning system must have the capacity to justify predictions to foster confidence in the decisions 
made in the model's process [37]. The explanation’s target insights vary greatly depending on who 
uses them, from regulators auditing the models to data scientists troubleshooting them. Therefore, 
to meet the needs of the target audience, a variety of approaches are required. This is because stand-
alone explanation techniques may produce explanations that are deceptive or lacking in context [38], 
[39]. This implies that explaining models holistically is necessary. Explainability in machine learning is 
essential for ensuring transparency, trust, and accountability in automated decision-making systems 



[40]. It involves understanding how models make predictions and being able to communicate this 
knowledge to various stakeholders [41], [42]. The interpretation ability, which assesses the influence, 
relationship, and correlation of conditioning components within a model, highlights the benefits of 
XAI above traditional techniques. Explainability was proposed to enhance the prediction capability of 
infections related to healthcare in patients admitted into intensive care units while preserving the 
model. This goes beyond the artificial neural network black box paradigm by using a parsimonious and 
robust semi-parametric approach. More so, the saliency map was used to examine and justify the 
additional predictive capability of this model [7]. 

Explainability and causality in the medical field are also critical for regulatory compliance, further 
highlighting its relevance [43]. These interfaces not only help keep humans involved in the process but 
also permit for the incorporation of their experiential knowledge and conceptual understanding into 
AI operations. While the importance of a person-in-the-loop is sometimes undervalued, implicit 
knowledge and human expertise remain indispensable in medical diagnosis [44]. By following 
diagnostic steps, individual components that contribute to a diagnosis can be identified and applied 
to train and improve models prospectively [45]. 

Explainability frameworks 

The rapid advancements in ML/DL technologies, along with the increasing adoption of AI, highlight 
the need for greater awareness of AI's operational mechanisms, making explainable modelling 
essential. There are various examples of model explainers, which include but are not limited to the 
ones highlighted in table 2. 

Although there is a wide variety of approaches accessible for explainability, it is critical to 
comprehend the overarching themes of the many categories of Explainers. Among them are: scope 
(local (L) and global (G)), type of model (white box (Wbox) and black box (Bbox)), Task (regression (R), 
classification (C), time-series (TS), image (I), etc.), type of data (text (Tt), image (I), tabular (Tab), etc.) 
and Insight (attributions of features, counterfactuals, significant training examples, etc.). However, 
these systems exhibit data flow patterns like those of explainers functioning as interfaces. Particularly, 
a lot of them call for the users to enable them to communicate both with the model and the data it 
processes; in the case of black-box techniques, this refers to the inputs and outputs, while in the case 
of white-box techniques, it refers to the internal workings of the models [14]. 

 
Table 2 
Explainability Frameworks 

Explainer 
 
Feature  

Alibi DALEX Interpret 
ML 

Explainer 
dashboard 

SHAP  Alibi-
detect 

Captum 

Scope G, L G, L G, L G, L G  G, L G, L 

Model 
type 

Bbox, 
Wbox 

Bbox, 
Wbox 

Bbox, 
Wbox 

Bbox, 
Wbox 

Bbox,  Bbox,  Bbox,  

Task C, R R, C, I  C, R C, R C, R TS, I, C I, TS, C, R  

Data type Tab, Tt, I Tab, Tt, I Tab Tab Tab Tab, Tt, I Tab, Tt, I 

Insight Feature 
attributio
n, 
influential 
training 
instances 

Feature 
importanc
e, PDP, 
residua 
diagnostic, 
surrogate 
model 

Feature 
importanc
e, EBM, 
SHAP, 
LIME, etc.  

Feature 
importance, 
SHAP, PDP, 
Decision 
Path 
Visualizatio
n 

Summary 
plots, 
PDP, 
interacti
on effect, 
feature 
importan
ce 

Local 
Outlier 
Factor, 
Isolation 
Forest, 
Visualizati
on, 
anomaly 
score 

Saliency 
map, layer-
wise 
attribution, 
neuron 
attribution 



In [7], authors introduced a two-step methodology for predicting ICU-acquired infections 
(ICU-AIs) using high-resolution longitudinal data combined with survival models. The study applied a 
saliency map model explainer to examine the images of signal present in the used data and the 
outcome of the model [7].  

Model explainability can be categorized as either ante-hoc or post-hoc. Ante-hoc models are 
inherently self-explainable, while post-hoc models require the use of explainable AI (XAI) methods to 
provide explanations for their decisions [12], [43]. Once a machine learning model has been trained 
and has made its predictions, post-hoc explainer techniques examine and clarify its decision-making 
procedure to provide insights into how the model operates. In contrast, ante-hoc approaches are 
inherently interpretable; often referred to as intrinsically explainable, transparent, or glass-box 
models. Like interactive machine learning (iML), these approaches focus on embedding 
interpretability directly into architecture of the model, ensuring transparency and explainability from 
the outset [43], [46], [47], [48].  

One common post-hoc method involves determining the significance of various attributes in 
producing a specific result [49]. Post-hoc methods based on game theory, such as Shapley values, can 
quantify the importance of individual features. Similarly, Anchors, another post-hoc approach, 
provides insights into coverage, and the region where the explanation is applicable, and helps define 
the boundaries of attributes. Anchors are particularly useful for classification models involving text-
based, and tabular data [50]. According to Dandl et al. [51], counterfactuals are an XAI technique that 
describes the smallest modification to the attribute values that affects the prediction to explain 
specific forecasts [43], [51]. 

Decision trees (DT) are one of the well-known examples of interpretable machine learning models. 
They operate by repeatedly splitting the data based on specific threshold values of the features, 
creating distinct subsets of the dataset, with each instance assigned to one of these subsets [52]. 
These models are interpretable because their structure can be easily followed, commencing from the 
root node, through the subsequent nodes and edges, until the leaf node with the predicted outcome 
is reached. The DT algorithms are considered interpretable due to their structure of hierarchy such as 
if-then-else rules that can be easily visualized, understood, and interpreted by humans [43]. 

7. Conclusion and Future works 

We focus in this paper on identifying the impact of ML/DL and their applications in providing solutions 
to health challenges. These include prediction modelling, enhancing models using ensemble machine 
learning and optimization techniques, application of fog facilities and cloud systems for collecting, 
sharing and storing data as well as easy retrieval of the data. We considered the main research studies 
applying ML/DL algorithms to healthcare. We highlighted the benefits of using EHR: some of the 
collected datasets adopted for the training, validation and testing in the simulation processes of the 
model development were stored in the EHR. Various data types are considered.  Moreover, we 
examined the most well-known explainability frameworks and their different characteristics. 

However, there are several challenges or shortfalls in the previous research studies, which require 
prospective investigation to further enhance the impact of ML/DL applications in the healthcare 
sector. For example, making predictions requires the involvement of optimization techniques such as 
hyperparameter tuning, grid-search techniques, etc.  Further studies could engage the application of 
ensemble learning approaches along with model explainer techniques to enhance the adoption of 
ML/DL in healthcare. Furthermore, transparency in the model undeniably fosters trust, which in turn 
promotes its adoption and contributes to improving the developed model. 
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