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The Active Flux method for the Euler equations

on Cartesian grids

Rémi Abgrall1, Wasilij Barsukow2, Christian Klingenberg3

Abstract

Active Flux is an extension of the Finite Volume method and additionally incorpo-
rates point values located at cell boundaries. This gives rise to a globally continuous
approximation of the solution. The method is third-order accurate. We demonstrate
that a new semi-discrete Active Flux method (first described in [AB23a] for one
space dimension) can easily be used to solve nonlinear hyperbolic systems in multi-
ple dimensions, such as the compressible Euler equations of inviscid hydrodynamics.
Originally, the Active Flux method emerged as a fully discrete method, and required
an exact or approximate evolution operator for the point value update. For nonlin-
ear problems such an operator is often difficult to obtain, in particular for multiple
spatial dimensions. With the new approach it becomes possible to leave behind these
difficulties. We introduce a multi-dimensional limiting strategy and demonstrate the
performance of the new method on both Riemann problems and subsonic flows.

Keywords: Compressible Euler equations, Active Flux, High-order methods
Mathematics Subject Classification (2010): 65M08, 65M20, 65M70, 76M12

1 Introduction

The Active Flux method uses as its degrees of freedom both cell averages and point values
at cell interfaces. While the averages require a conservative update, the update of the point
values is essentially not restricted by more than the condition that the resulting method
should be stable. To this end it needs to incorporate upwinding, and the earliest version
of the Active Flux method ([vL77], for linear advection in 1-d) traced a characteristic back
to the time level tn where a reconstruction of the data was evaluated. This approach was
extended in [Bar21] to nonlinear scalar conservation laws in multiple dimensions, and to
hyperbolic systems of conservation laws in one spatial dimension. The exact calculation
of the characteristic curve was replaced by a sufficiently accurate approximation. This
approach was used, for example, in [BB23] to solve the shallow water equations in presence
of dry areas.

For hyperbolic systems in multiple spatial dimensions, even if they are linear, charac-
teristic curves no longer exist. Also, values in general are not transported, but the solution
is a convolution of the initial data with a more or less complicated kernel. For the acoustic
equations with the speed of sound c, for example, the solution in x at time t depends on
the initial data in a disc with radius ct around x. This disc is the interior of the intersection
of the hypersurface of initial data with the cone of bicharacteristics which has its vertex
at (t, x). In [ER13], a solution operator was given for the acoustic equations, which relied
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on smoothness of the initial data, and in [BK22] a solution in the sense of distributions
was obtained which could be used to solve e.g. Riemann problems. These operators can
be implemented efficiently and used to update the point values in an Active Flux method
(as achieved in [BHKR19]), but their derivation comes at great cost. Suitably high-order
approximate evolution operators for multi-dimensional nonlinear systems of conservation
laws are currently unavailable.

All these Active Flux methods were 3rd order accurate and fully-discrete. In [Abg22],
a semi-discrete version of Active Flux was introduced. In order to obtain an equation for
the point values, the spatial derivative in the PDE is discretized using finite difference
formulae. At the price of a slightly reduced CFL condition this approach is immediately
applicable to all kinds of nonlinear problems. In [AB23a, AB23b] it has been applied to
one-dimensional nonlinear problems, and extended to arbitrary order. The aim of the
present work is, maintaining 3rd order of accuracy, to extend it to the multi-dimensional
Euler equations.

The paper is organized as follows: Section 2 describes the method and Section 3 presents
a novel multi-dimensional limiting strategy. Numerical results are shown in Section 4.

2 The semi-discrete Active Flux method

Here, we let ourselves guide by the approach of [AB23a] and extend it to multi-dimensional
Cartesian grids. Consider a hyperbolic m × m system of conservation laws in d spatial
dimensions4

∂tq +∇ · f(q) = 0 q : R+
0 × Rd → Rm (1)

For simplicity, we restrict ourselves to two spatial dimensions (d = 2) and write f = (fx, f y),
∇qf

x = Jx, ∇qf
y = Jy.

2.1 Update of the averages

Integrating (1) over the Cartesian cell

Cij :=
[
xi− 1

2
, xi+ 1

2

]
×
[
yj− 1

2
, yj+ 1

2

]
(2)

and denoting the cell average by

q̄ij(t) :=
1

∆x∆y

∫
Cij

q(t,x)dx (3)

one finds

d

dt
q̄ij +

1

∆x∆y

∫
∂Cij

n · f(q) = 0 (4)

As there are degrees of freedom located at the boundary ∂Cij of cell Cij, we intend to use
them as quadrature points for a sufficiently accurate quadrature of the integral appearing

4Boldface letters denote “spatial” vectors, i.e. those whose natural dimension is that of space (d). Other
collections of scalars (such as the conserved quantities q) are not typeset in boldface.
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in (4). Inspired by previous approaches (e.g. [BHKR19, HKS19]) we use three Gauss-
Lobatto points per edge, where the extreme points (corners) are shared. Note also that we
enforce global continuity: the point values on an edge are the same as seen from either of
the adjacent cells and a value at a corner is involved in the update of four cells. This is in
contrast to e.g. discontinuous Galerkin methods.

On Cartesian grids it is convenient to adopt the following notation for the 8 point values
on the boundary of cell Cij:

qi− 1
2
,j+ 1

2
qi,j+ 1

2
qi+ 1

2
,j+ 1

2

qi− 1
2
,j qi+ 1

2
,j

qi− 1
2
,j− 1

2
qi,j− 1

2
qi+ 1

2
,j− 1

2

Then,

d

dt
q̄ij +

1

∆x∆y

∫ y
j+1

2

y
j− 1

2

dy
(
fx(q(t, xi+ 1

2
, y))− fx(q(t, xi− 1

2
, y))

)
(5)

+
1

∆x∆y

∫ x
i+1

2

x
i− 1

2

dx
(
f y(q(t, x, yj+ 1

2
)− f y(q(t, x, yj− 1

2
)
)
= 0 (6)

using Simpson’s rule (ω− 1
2
= ω 1

2
= 1

6
, ω0 =

2
3
) becomes

d

dt
q̄ij(t) +

1

∆x

∑
K=− 1

2
,0, 1

2

ωK

(
fx(qi+ 1

2
,j+K(t))− fx(qi− 1

2
,j+K(t))

)
(7)

+
1

∆y

∑
K=− 1

2
,0, 1

2

ωK

(
f y(qi+K,j+ 1

2
(t))− f y(qi+K,j− 1

2
(t))
)
= 0 (8)

This method is conservative, with e.g. the x-flux through the cell interface (i+ 1
2
, j) being

given by

f̂x
i+ 1

2
,j
=

∑
K=− 1

2
,0, 1

2

ωKf
x(qi+ 1

2
,j+K) (9)

=
fx(qi+ 1

2
,j− 1

2
) + 4fx(qi+ 1

2
,j) + fx(qi+ 1

2
,j+ 1

2
)

6
(10)

It is also at least 3rd order accurate, for it is exact for biparabolic functions.

2.2 Update of the point values

The update of the cell averages, as described above, now needs to be complemented by
an update of the point values. In the one-dimensional case, it was proposed in [AB23a]
to replace the spatial derivatives appearing in (1) by finite differences. Here, the multi-
dimensional case shall be addressed. Note first that hyperbolicity of (1) implies that it
is always possible to define the positive and negative parts of the Jacobians via their
eigenvalues. With Jx = Rdiag(λ1, . . . , λm)R

−1 one has

(Jx)+ := Rdiag(λ+1 , . . . , λ
+
m)R

−1 (11)

(Jx)+ := Rdiag(λ−1 , . . . , λ
−
m)R

−1 (12)
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where, for scalars a ∈ R the positive/negative parts are simply a+ = max(0, a), a− =
min(0, a).

The finite difference formulae are obtained by differentiating a reconstruction. Define
first the unique biparabolic polynomial

qij,recon ∈ P 2,2, qij,recon :

[
−∆x

2
,
∆x

2

]
×
[
−∆y

2
,
∆y

2

]
→ Rm (13)

that interpolates the degrees of freedom of cell ij:

qij,recon

(
−∆x

2
,
∆y

2

)
= qi− 1

2
,j+ 1

2
qij,recon

(
0,

∆y

2

)
= qi,j+ 1

2

qij,recon

(
∆x

2
,
∆y

2

)
= qi+ 1

2
,j+ 1

2

qij,recon

(
−∆x

2
, 0

)
= qi− 1

2
,j qij,recon

(
∆x

2
, 0

)
= qi+ 1

2
,j

qij,recon

(
−∆x

2
,−∆y

2

)
= qi− 1

2
,j− 1

2
qij,recon

(
0,−∆y

2

)
= qi,j− 1

2

qij,recon

(
∆x

2
,−∆y

2

)
= qi+ 1

2
,j− 1

2

and

1

∆x∆y

∫ ∆x
2

−∆x
2

∫ ∆y
2

−∆y
2

qij,recon(x, y) dydx = q̄ij (14)

This reconstruction has already been used in [BHKR19, HKS19] and is given there
explicitly. Then we define the finite differences in the corner as

(Dx)+
i+ 1

2
,j+ 1

2

q := ∂xqij,recon

(
x,

∆y

2

)∣∣∣∣
x=∆x

2

(15)

(Dx)−
i+ 1

2
,j+ 1

2

q := ∂xqi+1,j,recon

(
x,

∆y

2

)∣∣∣∣
x=−∆x

2

(16)

(Dy)+
i+ 1

2
,j+ 1

2

q := ∂yqij,recon

(
∆x

2
, y

)∣∣∣∣
y=∆y

2

(17)

(Dy)−
i+ 1

2
,j+ 1

2

q := ∂yqi,j+1,recon

(
∆x

2
, y

)∣∣∣∣
x=−∆y

2

(18)

Observe that due to continuity,

(Dx)+
i+ 1

2
,j+ 1

2

q = ∂xqi,j+1,recon

(
x,−∆y

2

) ∣∣∣
x=∆x

2

(19)

such that this would be an equivalent definition that gives the same result (and similarly
for the other finite differences). Analogously, we define the finite differences on the edges

(Dx)+
i+ 1

2
,j
q := ∂xqij,recon (x, 0)|x=∆x

2
(20)

(Dx)−
i+ 1

2
,j
q := ∂xqi+1,j,recon (x, 0)|x=−∆x

2
(21)

(Dy)i+ 1
2
,jq := ∂xqij,recon

(
∆x

2
, y

)∣∣∣∣
y=0

(22)
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Observe that due to continuity, there is no distinction between (Dy)+
i+ 1

2
,j
and (Dy)−

i+ 1
2
,j
.

Here, again, the symmetric definition

(Dy)i+ 1
2
,jq := ∂yqi+1,j,recon

(
−∆x

2
, y

)∣∣∣∣
y=0

(23)

yields the same result. The derivatives at (i, j+ 1
2
) are obtained analogously. For reference

we now state their explicit forms:

(Dx)+
i+ 1

2
,j
q =

1

4∆x

(
4
(
−9q̄ij + 2

(
qi− 1

2
,j + 2qi+ 1

2
,j

))
+ 4

(
qi,j− 1

2
+ qi,j+ 1

2

)
+qi− 1

2
,j− 1

2
+ qi+ 1

2
,j− 1

2
+ qi− 1

2
,j+ 1

2
+ qi+ 1

2
,j+ 1

2

)
(Dx)−

i+ 1
2
,j
q = − 1

4∆x

(
−36q̄i+1,j + 8

(
2qi+ 1

2
,j + qi+ 3

2
,j

)
+ qi+ 1

2
,j− 1

2

+4
(
qi+1,j− 1

2
+ qi+1,j+ 1

2

)
+ qi+ 3

2
,j− 1

2
+ qi+ 1

2
,j+ 1

2
+ qi+ 3

2
,j+ 1

2

)
(Dy)i+ 1

2
,j q =

qi+ 1
2
,j+ 1

2
− qi+ 1

2
,j− 1

2

∆y

(Dy)+
i,j+ 1

2
q =

1

4∆y

(
4
(
qi− 1

2
,j − 9q̄ij + qi+ 1

2
,j

)
+ qi− 1

2
,j− 1

2
+ qi− 1

2
,j+ 1

2

+qi+ 1
2
,j− 1

2
+ qi+ 1

2
,j+ 1

2
+ 8

(
qi,j− 1

2
+ 2qi,j+ 1

2

))
(Dy)−

i,j+ 1
2
q = − 1

4∆y

(
4
(
qi− 1

2
,j+1 − 9q̄i,j+1 + qi+ 1

2
,j+1

)
+ qi− 1

2
,j+ 1

2

+qi+ 1
2
,j+ 1

2
+ qi− 1

2
,j+ 3

2
+ qi+ 1

2
,j+ 3

2
+ 8

(
2qi,j+ 1

2
+ qi,j+ 3

2

))
(Dx)i,j+ 1

2
q =

qi+ 1
2
,j+ 1

2
− qi− 1

2
,j+ 1

2

∆x

(Dx)+
i+ 1

2
,j+ 1

2
q =

qi− 1
2
,j+ 1

2
− 4qi,j+ 1

2
+ 3qi+ 1

2
,j+ 1

2

∆x

(Dx)−
i+ 1

2
,j+ 1

2
q =

4qi+1,j+ 1
2
− 3qi+ 1

2
,j+ 1

2
− qi+ 3

2
,j+ 1

2

∆x

(Dy)+
i+ 1

2
,j+ 1

2
q =

qi+ 1
2
,j− 1

2
− 4qi+ 1

2
,j + 3qi+ 1

2
,j+ 1

2

∆y

(Dy)−
i+ 1

2
,j+ 1

2
q =

4qi+ 1
2
,j+1 − 3qi+ 1

2
,j+ 1

2
− qi+ 1

2
,j+ 3

2

∆y

However, in some situations one might be willing to employ a different reconstruction,
as is, for instance, the case in Section 3 concerned with limiting. At this point one has to
resort to the more general formulae (15)–(22).

Finally, the upwinding is defined as

(JxDx
i+K,j+L)

upwq := (Jx)+(Dx)+i+K,j+Lq + (Jx)−(Dx)−i+K,j+Lq (24)

with K,L ∈ {−1
2
, 0, 1

2
} and an analogous definition for Jy.

5



We propose to update the point values as follows:

d

dt
qi+ 1

2
,j + (JxDx

i+ 1
2
,j
)upwq + JyDy

i+ 1
2
,j
q = 0 (25)

d

dt
qi,j+ 1

2
+ JxDx

i,j+ 1
2
q + (JyDy

i,j+ 1
2

)upwq = 0 (26)

d

dt
qi+ 1

2
,j+ 1

2
+ (JxDx

i+ 1
2
,j+ 1

2
)upwq + (JyDy

i+ 1
2
,j+ 1

2

)upwq = 0 (27)

As the finite differences are exact for biparabolic function, one expects 3rd order of
accuracy.

The complete method consists of the ODEs (8) (average update), (25)–(26) (point
values at edge midpoints) and (27) (point values at nodes). We propose to integrate these
with an SSP-RK3 method. In [AB23b], it was shown for the one-dimensional case that
this approach leads to a stable scheme with a maximum CFL number of 0.41.

3 Limiting

Existing approaches to limiting in the context of standard Finite Volume methods modify
the values of the reconstruction at a cell interface. They cannot be used for Active Flux
due to its global continuity and the fact that point values at cell interfaces are prescribed
and cannot be modified arbitrarily. Limiting employed in [HKS19] therefore gives up
on continuity. Approaches to limiting that maintain continuity so far have only been
treating the situation in which a parabolic reconstruction of monotone discrete data (point
values and average) is not monotone, i.e. has an artificial extremum. In [RLM15], a
piecewise linear/parabolic reconstruction is used in this case, and in [Bar21] the same
situation is handled by replacing the parabola by a power law. One can show that then
the reconstruction is always monotone whenever the discrete data are. Such modified
reconstructions are effective in drastically reducing spurious oscillations, but they do not
guarantee to remove them entirely. This is because the update of the averages is not limited
and can itself create artificial extrema in the discrete data. However, in absence of better
approaches, e.g. the power-law reconstruction is a viable limiting strategy. In particular,
it is not computationally intensive.

In multiple spatial dimensions, a similar strategy is presented here for the first time.
The multi-dimensional case is, however, much more complex because every cell has access
to 8 point values. Consider point values at edge centers qN, qS, qW, qE and at vertices
qNE, qSE, qNW, qSW of a (reference) Cartesian cell c = [−∆x

2
, ∆x

2
]×[−∆y

2
, ∆y

2
] and a cell average

q̄ to be given. We shall refer to the four edges as N-edge, S-edge, W-edge and E-edge,
respectively. The reconstruction shall simply be denoted by qrecon : c → R for simplicity.
There exist two types of maximum-principle violation, which can occur independently of
each other:

1. It can happen that the parabolic reconstruction along an edge (as part of a biparabolic
reconstruction in the cell) overshoots/undershoots the three point values along the edge
in question. For the example of an N-edge, this happens if either

• the point values qNW, qN, qNE are not monotone and qNW ̸= qNE, or if

6



• they are monotone (i.e. either qNW < qN < qNE or qNW > qN > qNE), but∣∣∣∣qN − qNE + qNW

2

∣∣∣∣ > |qNE − qNW|
4

(28)

such that the parabolic reconstruction has an artificial extremum.

In this case the reconstruction along the edge shall be chosen continuous piecewise linear
(“hat”). We shall say that the reconstruction along the edge is limited, or just
that the “edge is limited”. To ensure continuity, the reconstruction in any cell with a
limited edge can then no longer be biparabolic, but needs to be modified as detailed
below and in Section A.1.

2. Define

m := min(qN, qS, qW, qE, qNE, qSE, qNW, qSW) (29)

M := max(qN, qS, qW, qE, qNE, qSE, qNW, qSW) (30)

It can happen that despite

m < q̄ < M (31)

the reconstruction qrecon inside the cell c fails to fulfill the maximum-principle, i.e.

∃x ∈ c such that either qrecon(x) < m or qrecon(x) > M (32)

This situation shall be improved by introducing a piecewise defined reconstruction with
a central region where the function is constant (“plateau”), and connecting the plateau
to the (parabolic or hat) reconstructions along the edges in a continuous fashion. More
details are given below and in Section A.2; Figures 1 and 2 show examples. This new
reconstruction fulfills

m < qrecon(x) < M ∀x ∈ c (33)

We shall say that the reconstruction inside the cell is limited, or just that the
“cell is limited”.

This situation appears already in 1-d, in which case it has been suggested in [Bar21]
to replace the parabolic reconstruction in the cell by a power law. A multi-dimensional
analogue of the power law seems unfeasible, though, and we resort here to a piecewise
defined, but easier function.

The two situations are independent: any number of edges along the boundary of a cell
might require limiting, and this will not generally imply anything about whether the cell
itself is to be limited. The possible presence of hat functions along the boundary requires
the reconstruction inside the cell to flexibly adapt to the different combinations of edge-
reconstructions in order to be continuous. For instance, the plateau reconstruction needs
to connect the plateau continuously to either a parabola, or a hat function (see Section
A.2). Also, if there exists at least one edge that is reconstructed as a hat function, then
one cannot use a biparabolic reconstruction inside the cell any longer, whether the cell is

7



Figure 1: Left : An example of a plateau reconstruction. Here, qNW = 1, qW = 1.35,
qSW = 0.6, qS = 0.4, qSE = 0, qE = −0.2, qNE = 0.0, qN = 1, q̄ = 0.9 (the S-edge is on
the left). All edges but the S-edge are reconstructed as hats, the S-edge is reconstructed
parabolically. Right : A piecewise-biparabolic reconstruction of the same data; one clearly
observes an overshoot. The isolines have a spacing of 0.1.

Figure 2: Left : An example of a plateau reconstruction. qNE = 1, qNW = 2, qSW =
−4, qSE = 0, qN = −1, qS = 4, qW = −5, qE = −3, q̄ = 2 (the W-edge is on the left). All
edges are reconstructed as hats. Right : A piecewise-biparabolic reconstruction of the same
data; one clearly observes an overshoot. The isolines have a spacing of 0.25.

8



limited or not. Here, if the cell is not limited, but at least one edge, a piecewise-biparabolic
reconstruction shall be used, detailed in Section A.1.

As we are aiming at a globally continuous reconstruction, that is computed locally from
merely the cell average and the point values of the cell, the reconstruction along an edge
can only depend on the three values associated to this edge, and cannot depend on other
values in the cell. Indeed, if edge-reconstruction of one of edges of c were to depend on,
say, the average in the cell c, then the reconstruction in the neighbouring cell c′ would also
need to know about the average in c.

Due to the particular choice of degrees of freedom for Active Flux the reconstruction
has to fulfill two types of conditions: It is supposed to interpolate the point values at cell
interfaces and its average is supposed to be equal to the given one. The latter condition –
merely to simplify the calculations – shall be replaced by a (yet unknown) point value qC
at cell center which is kept as a variable in the formulae. Once the type of reconstruction
in all regions of the cell has been determined, their integrals over the respective domains
of definition can easily be found as functions of qC, and qC is then determined by imposing
the average of the reconstruction over the entire cell. This is a linear equation in qC due
to linearity of the interpolation problem which makes qC enter linearly everywhere. The
explicit formulae below therefore also depend on qC, but the reconstruction in a cell in the
end only depends on the point values along its boundary and on its average. This detour
does not change the result but simplifies the algorithm.

The overall structure of the reconstruction algorithm is:

1. Decide for every edge of the cell whether it is reconstructed parabolically, or as a hat
function.

2. Assume as hypothesis that the cell does not require limiting (i.e. that it is recon-
structed in a piecewise biparabolic fashion) and compute the value of qC that ensures
that the average of the reconstruction agrees with the given cell average.

3. Check (31) and if true, decide whether the piecewise-biparabolic reconstruction ob-
tained in 2 violates the maximum principle5

4. If this is the case, the cell needs to be limited with a plateau reconstruction. Compute
the parameters η, qp (see below) of the plateau reconstruction that ensure maximum
principle preservation and the correct value of the average of the reconstruction.

A pedagogical derivation of the reconstruction algorithm is given in Section A. Here,
we only state all the relevant results in a concise way.

Theorem 3.1. The following reconstruction qrecon :
[
−∆x

2
, ∆x

2

]
×
[
−∆y

2
, ∆y

2

]
→ R is con-

tinuous, interpolates all the point values along the boundary of the cell, its average agrees
with the given cell average and the reconstruction has the following properties:

(i) If Condition (31), i.e. m < q̄ < M is fulfilled, then m ≤ qrecon(x) ≤ M for all x
inside the cell.

(ii) If qNW < qN < qNE, then qNW ≤ qrecon(x) ≤ qNE for all x along the N-edge, and
similarly for all the other edges.

5This happens numerically by testing a given number of locations.
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The definition of the reconstruction is as follows: If m < q̄ < M is not fulfilled, or if
additionally m < qpw. biparab.

recon (x, y) < M for all (x, y) ∈ c, then

qrecon(x, y) := qpw. biparab.
recon (x, y) (34)

otherwise

qrecon(x, y) := qplateaurecon (x, y), (35)

the two types of reconstruction being defined as follows:

qpw. biparab.
recon (x, y) := qWrecon

(
qSW
2
, qW,

qNW

2
, x, y, S,N,W,

∆q̄

4

)
(36)

+ qSrecon

(
qSE
2
, qS,

qSW
2
, x, y,E,W, S,

∆q̄

4

)
+ qNrecon

(
qNW

2
, qN,

qNE

2
, x, y,W,E,N,

∆q̄

4

)
+ qErecon

(
qNE

2
, qE,

qSE
2
, x, y,N, S,E,

∆q̄

4

)
+ (q̄ −∆q̄)

with

qSrecon(qSE, qS, qSW, x, y,E,W, S, q̄) = qWrecon(qSE, qS, qSW, y,−x,E,W, S, q̄) (37)

qNrecon(qNW, qN, qNE, x, y,W,E,N, q̄) = qWrecon(qNW, qN, qNE,−y, x,W,E,N, q̄) (38)

qErecon(qNE, qE, qSE, x, y,N, S,E, q̄) = qWrecon(qNE, qE, qSE,−x,−y,N, S,E, q̄) (39)

and

qWrecon(qSW, qW, qNW, x, y, S,N,W, q̄) (40)

=



(79) N,S,W parabolic

(80)–(81) W parabolic, N,S hat

(83)–(84) W,S parabolic, N hat

(86)–(87) W,N parabolic, S hat

(93) and (91) W hat, N,S parabolic

(93) and (94)–(95) W,N hat, S parabolic

(91) and (97)–(98) W,S hat, N parabolic

(94)–(95) and (97)–(98) W,S,N hat

Here, N/S/E/W denote the edges of the cell. qC fulfills

qC = 1
16 (36q̄ − qNW − qSW − 4qW) N,S,W parabolic

qC = 1
32 (72q̄ − 3qNW − 3qSW − 8qW) W parabolic, N,S hat

qC = 1
32 (72q̄ − 3qNW − 2qSW − 8qW) W,S parabolic, N hat

qC = 1
32 (72q̄ − 2qNW − 3qSW − 8qW) W,N parabolic, S hat

q̄ = 2qC
9 + qSW+qW

24 + 2qC
9 + qNW+qW

24 W hat, N,S parabolic

q̄ = 2qC
9 + qSW+qW

24 + 2qC
9 + 1

576 (35qNW + qSW + 22qW) W,N hat, S parabolic

q̄ = 2qC
9 + qNW+qW

24 + 2qC
9 + 1

576 (qNW + 35qSW + 22qW) W,S hat, N parabolic

q̄ = 2qC
9 + 1

576 (35qNW + qSW + 22qW) + 2qC
9 + 1

576 (qNW + 35qSW + 22qW) W,S,N hat

10



qplateaurecon (x, y) :=



qp if (x, y) ∈
[
∆x
(
η − 1

2

)
,∆x

(
1
2 − η

)]
×
[
∆y
(
η − 1

2

)
,∆y

(
1
2 − η

)]
qtrapeze W
recon (qSW, qW, qNW, x, y,W, η, qp) if (x, y) ∈ W-trapeze

qtrapeze S
recon (qSE, qS, qSW, x, y,S, η, qp) if (x, y) ∈ S-trapeze

qtrapeze N
recon (qNW, qN, qNE, x, y,N, η, qp) if (x, y) ∈ N-trapeze

qtrapeze E
recon (qNE, qE, qSE, x, y,E, η, qp) if (x, y) ∈ E-trapeze

with

qtrapeze W
recon (qSW, qW, qNW, x, y,W, η, qp) =

{
(108) (x, y) ∈ W parabolic

(117)–(118) (x, y) ∈ W hat
(41)

defined only in

W-trapeze =

{
(x, y) s.t. x ∈

[
−∆x

2
,−∆x

(
1

2
− η

)]
and y ∈

[
x

∆y
∆x,− x

∆y
∆x

]}
(42)

The reconstructions of the other trapezes are

qtrapeze S
recon (qSE, qS, qSW, x, y, S, η, qp) = qtrapeze W

recon (qSE, qS, qSW, y,−x, S, η, qp) (43)

qtrapeze N
recon (qNW, qN, qNE, x, y,N, η, qp) = qtrapeze W

recon (qNW, qN, qNE,−y, x,N, η, qp) (44)

qtrapeze E
recon (qNE, qE, qSE, x, y,E, η, qp) = qtrapeze W

recon (qNE, qE, qSE,−x,−y,E, η, qp) (45)

The parameters qp and η are found according to procedure of Section A.2.4.

Proof. Continuity is a consequence of Theorem A.3. The pointwise and average interpo-
lation property follows from Theorems A.2 and A.5. The pointwise interpolation property
is, in fact, trivially guaranteed by construction (see Sections A.1.1, A.1.1, A.2.1).

Preservation of the maximum principle along the edges is clear from (28) and the idea
of reconstructing a hat function along the edge. Preservation of the maximum principle
follows from Theorem A.5.

Theorem 3.2. The usage of the reconstruction from Theorem 3.1 in every cell leads to a
globally continuous reconstruction.

Proof. It follows trivially by construction (see Sections A.1.1, A.1.1, A.2.1) that the re-
construction in a cell c continuously turns into the reconstruction along the edge as
c ∋ (x, y) → s ∈ ∂c. The reconstructions along the edges only depend on the three
point values located on the edge, and thus the limit as (x, y) approaches the same edge
from the other cell is the same.

4 Numerical results

Here, the Euler equations with q = (ρ, ρu, ρv, e),

fx = (ρu, ρu2 + p, ρuv, u(e+ p)) (46)

f y = (ρv, ρuv, ρv2 + p, v(e+ p)) (47)

e =
p

γ − 1
+

1

2
ρ(u2 + v2) (48)

and γ = 1.4 are solved using the Active Flux method described above. Initial data are
denoted by ρ0, u0, v0, p0.

11



Figure 3: Convergence study. Left : Setup at initial time and at t = 0.05, shown as scatter
plot as a function of radius, computed on a 256×256 grid. Right : L1 error of the numerical
solution of the point values.

4.1 Convergence study

For a convergence analysis, the following initial data (similar to those used in [HKS19,
Bar21]) are solved until t = 0.05 on grids of different resolution:

u0(x, y) = v0(x, y) = 0 (49)

ρ0(x, y) = p0(x, y) = 1 +
1

2
exp

(
−80(x2 + y2)

)
(50)

Figure 3 shows the setup and the error, computed with respect to a reference solution
obtained on a grid of 1024×1024. Limiting is not used. One observes third order accuracy
in agreement with the expectation.

4.2 Spherical shock tube

As a first test with discontinuities, Figure 4 shows a 2-dimensional version of Sod’s shock
tube:

ρ0(x, y) =

{
1 r < 0.3

0.125 else
p0(x, y) =

{
1 r < 0.3

0.1 else
(51)

u0(x, y) = v0(x, y) = 0 (52)

with r =
√
(x− 1

2
)2 + (y − 1

2
)2. One observes that the limiting is successful in suppressing

oscillations. Global continuity does not impede Active Flux from converging to weak
solutions, because the update of the averages is conservative and fulfills a version of the
Lax-Wendroff-theorem ([Abg22]).

4.3 Multi-dimensional Riemann problems

In [LL98], particular multi-dimensional Riemann problems were studied, designed such
that the one-dimensional Riemann problems outside the central interaction region result

12



Figure 4: Radial scatter plot of the two-dimensional version of Sod’s shock tube solved on
a 100 × 100 grid. The solid line shows a finely resolved solution of the one-dimensional,
radial Euler equations obtained with a standard Finite Volume method. Left : No limiting.
Right : Limiting used.

in elementary waves. Inside the interaction region these Riemann problems display a lot
of sophisticated structure. They shall illustrate the ability of the proposed method to
solve complex interactions of shocks, rarefactions and slip lines. All the Riemann problems
shown in Figure 5 are solved on grids with ∆x = ∆y = 1

200
(double of what has been used

in the original publication) with a domain slightly larger than the one shown (to exclude
the influence of boundary conditions). A CFL number of 0.05 was used, as well as limiting,
as described in Section 3. Figures 6–7 show a comparison between results obtained with
and without limiting. It seems that the intricate structures in the interaction region are
not significantly smeared out by the limiting while oscillations at shocks are very efficiently
suppressed.

4.4 Kelvin-Helmholtz instability

A special kind of a Kelvin-Helmholtz instability triggered by the passage of an acoustic
wave has been used in [MRKG03] to assess the properties of the numerical method for
subsonic flow. The initial data are

ρ0(x, y) = 1 +
M
5
ψ(x) + φ(y) u0(x, y) =

√
γψ(x) (53)

p0(x, y) =
1

M2
+

1

M
γψ(x) v0(x, y) = 0 (54)

with

φ(y) :=

{
2My y < 4

2M(y − 4)− 0.4 else
ψ(x) := 1 + cos(πMx) (55)

13



Figure 5: Multi-dimensional Riemann problems solved on a grid with ∆x = ∆y = 1
200

using limiting as described in Section 3. Configurations 6 (top left), 11 (top right), 12
(bottom left) and 16 (bottom right) from [LL98] are shown. Color-coded is density.

Figure 6: Influence of limiting on the central region in Configuration 12. Left : Limiting off.
Right : Limiting on. Without limiting one observes some undershoots inside the vortices.
The structure of the solution feature is, however, not degraded by applying the limiter.
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Figure 7: Influence of limiting on Configuration 12. Density is shown along the lines x =
0.4325 and x = 0.7525 (as indicated in the inset). One observes that limiting successfully
removes spurious oscillations in the vicinity of discontinuities. However, it also gently
shifts the location of the central double-vortex and smears out the feature along the x = y
diagonal in the first quadrant.
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The restriction of these initial data to the x-direction only

ρx0(x) := 1 +
M
5
ψ(x) ux0(x) :=

√
γψ(x) (56)

px0(x) :=
1

M2
+

1

M
γψ(x) (57)

is a right-running sound wave: The linearized Euler equations

∂tρ
x(t, x) + ρ̄∂xu

x(t, x) = 0 (58)

∂tu
x(t, x) +

1

ρ̄
∂xp

x(t, x) = 0 (59)

∂tp
x(t, x) + ρ̄c2∂xu

x(t, x) = 0 (60)

are solved by

ρx(t, x) = ρx0(x− ct) ux(t, x) = ux0(x− ct) px(t, x) = px0(x− ct) (61)

with c2 = 5γ
M2 and ρ̄ = 1√

5
.

The non-linearity of the full Euler equations leads to a self-steepening of the sound
wave. Additionally, due to the density change in y-direction, a shear flow is induced, which
causes a Kelvin-Helmholtz instability. Here we show this setup on grids of 400×80 (Figure
8) and 800× 160 (Figure 9) with a CFL of 0.15 and M = 1

20
. No limiting was used. One

observes that the method is able to adequately resolve both the instability and the sound
waves passing through the domain.

5 Conclusions

Active Flux combines aspects of Finite Volume and Finite Element methods. The evolu-
tion of cell averages ensures shock-capturing properties, while the incorporation of point
values at cell interfaces leads to a globally continuous reconstruction. The incorporation of
additional degrees of freedom and thus the compact nature of the stencil makes the method
high-order, but efficient for parallelization or the implementation of boundary conditions.
The shared degrees of freedom imply less memory cost than DG methods. Finally, point
values do not need to be expressed in conservative variables, i.e. Active Flux offers more
freedom than conventional approaches.

The continuous reconstruction is of course the great difference to Godunov methods.
There are, however, certain parallels between the history of development of Godunov meth-
ods and of Active Flux: Both started out as fully discrete methods requiring a fairly com-
plex and expensive ingredient: an exact Riemann solver in the case of Godunov methods
and an exact evolution operator in the case of Active Flux. Both can be understood as
exact solutions for different IVPs: Riemann problem data in the case of Godunov methods
and continuous, piecewise parabolic data in case of Active Flux. Then, for both types
of methods there was a quest for simpler and more flexible approaches, with the passage
from fully discrete methods to semi-discrete methods. For Godunov methods, for example,
approximate Riemann solvers came up, and for Active Flux, approximate evolution oper-
ators were studied (e.g. in [Bar21]). However, due to the inherent high-order nature of
Active Flux these latter needed to have high order of accuracy, and hence were non-trivial
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Figure 8: A Kelvin-Helmholtz instability is triggered by the passage of an acoustic wave.
The setup is computed on a 400 × 80 grid without using limiting. Density is shown at
times t = 3, 6, 9, 12.
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Figure 9: Same setup as Figure 8, but on a grid of 800× 160.
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to find. Once Active Flux was rephrased as a semi-discrete method ([Abg22, AB23a]),
these difficulties were overcome, for it is easy to derive spatial discretizations that use the
degrees of freedom of Active Flux and to immediately write down evolution equations for
the point values. The semi-discrete problem can then be integrated in time using standard
methods.

To show that such an Active Flux method can be successfully used to solve the multi-
dimensional Euler equations is the aim of the present work. One finds that, endowed
with a limiting strategy, Active Flux is indeed able to easily solve complex flow problems.
This has been demonstrated here for examples of multi-dimensional Riemann problems
and for subsonic flows. The approach is generic and can immediately be applied to other
hyperbolic systems of conservation laws. Further research is necessary to understand the
theoretical aspects of this method, such as entropy inequalities. Future work will also
be directed towards improving and simplifying the limiting and towards preservation of
physical conditions such as positivity of the pressure.
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A Detailed derivation of the multi-dimensional limit-

ing

A.1 Piecewise-biparabolic reconstruction

If none of the edges needs to be limited, then the natural choice of the reconstruction is
biparabolic, as it has been used already since [BHKR19, HKS19]. In presence of limited
edges the reconstruction shall be defined in a piecewise fashion, subdividing the cell into
quadrants or halves. If the discrete data fulfill condition (31), it is then tested (in an
approximate way) whether this reconstruction fulfills m ≤ qrecon(x) ≤ M . In case not, it
is discarded and replaced by the plateau reconstruction of Section A.2.

However, if one of the edges is reconstructed as a hat, then something else needs to
be done inside the cell in order to ensure continuity. We generally choose to subdivide
the cell into regions (quadrants or halves, depending on the situation) and to reconstruct
biparabolically in every such region while maintaining global continuity.

Linearity of the problem (in the point values and the average) shall be exploited by
considering the average and all point values apart from qSW, qW, qNW to vanish:

Definition A.1. Consider all point values apart from qSW, qW, qNW, qC and the average q̄
to vanish. Then a reconstruction of the cell that interpolates these values pointwise and
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whose average agrees with q̄ is called the edge-basis-function qWrecon of the W-edge:

qWrecon

(
−∆x

2
,
∆y

2

)
= qNW qWrecon

(
−∆x

2
, 0

)
= qW (62)

qWrecon

(
−∆x

2
,−∆y

2

)
= qSW

1

∆x∆y

∫ ∆x
2

−∆x
2

∫ ∆y
2

−∆y
2

qWrecon(x, y)dxdy = q̄ (63)

Similar notions shall be used for the other edges.

Observe that an edge-basis-function is a reconstruction of the entire cell. In the follow-
ing, only the edge-basis-functions for the W-edge shall be given explicitly, as those for the
other edges can be obtained by rotation, as long as ∆y = ∆x (otherwise some rescaling is
necessary).

Theorem A.1. If the edge-basis-function for the W-edge is

qWrecon(qSW, qW, qNW, x, y, S,N,W, q̄) (64)

then the other basis functions are

qSrecon(qSE, qS, qSW, x, y,E,W, S, q̄) = qWrecon(qSE, qS, qSW, y,−x,E,W, S, q̄) (65)

qNrecon(qNW, qN, qNE, x, y,W,E,N, q̄) = qWrecon(qNW, qN, qNE,−y, x,W,E,N, q̄) (66)

qErecon(qNE, qE, qSE, x, y,N, S,E, q̄) = qWrecon(qNE, qE, qSE,−x,−y,N, S,E, q̄) (67)

The edge-basis-function depends on qSW, qW, qNW, on whether the reconstruction of
the W-edge is parabolic or hat, and – this complicates things a little – on whether the
neighbouring edges (S and N) are reconstructed as hats or as parabolae. This is necessary
due to global continuity and because the corner values qSW, qNW are shared with the S-
and N-edges. As mentioned before, the value qC of the reconstruction at the cell center
is chosen such that the average of the reconstruction agrees with the given one (zero for
edge-basis-functions).

The final reconstruction is obtained through summation:

Theorem A.2. The following reconstruction qrecon interpolates all the point values along
the boundary of the cell and its average agrees with the given cell average:

qrecon(x, y) := qWrecon

(
qSW
2
, qW,

qNW

2
, x, y, S,N,W,

∆q̄

4

)
(68)

+ qSrecon

(
qSE
2
, qS,

qSW
2
, x, y,E,W, S,

∆q̄

4

)
+ qNrecon

(
qNW

2
, qN,

qNE

2
, x, y,W,E,N,

∆q̄

4

)
+ qErecon

(
qNE

2
, qE,

qSE
2
, x, y,N, S,E,

∆q̄

4

)
+ (q̄ −∆q̄)

where ∆q̄ := q̄− qSW+qW+qNW+qN+qNE+qE+qSE+qS
8

. Moreover, as all the point values tend to q̄,

qrecon(x, y) → q̄ (69)

for all x, y.
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Proof. The pointwise interpolation property is clear because, for example,

qrecon

(
∆x

2
,
∆y

2

)
= qNrecon

(
qNW

2
, qN,

qNE

2
,
∆x

2
,
∆y

2
,W,E,N,

∆q̄

4

)
(70)

+qErecon

(
qNE

2
, qE,

qSE
2
,
∆x

2
,
∆y

2
,N, S,E,

∆q̄

4

)
(71)

=
qNE

2
+
qNE

2
= qNE (72)

The correctness of the average follows from

1

∆x∆y

∫ ∆x
2

−∆x
2

∫ ∆y
2

−∆y
2

qWrecon(x, y)dxdy = 4 · ∆q̄
4

+ q̄ −∆q̄ = q̄ (73)

Finally, property (69) is trivial if q̄ = 0, because the reconstruction is linear in all the
point values and in the average, and thus qrecon(x, y) → 0 uniformly in this case. If the
point values tend to q̄ ̸= 0, then ∆q̄ → 0 and thus

qrecon(x, y) → 0 + q̄ −∆q̄ → q̄ (74)

Remark A.1. : One might think that it would be sufficient to define the reconstruction as

qWrecon

(qSW
2
, qW,

qNW

2
, x, y, S,N,W,

q̄

4

)
+ qSrecon

(qSE
2
, qS,

qSW
2
, x, y,E,W, S,

q̄

4

)
(75)

+qNrecon

(qNW

2
, qN,

qNE

2
, x, y,W,E,N,

q̄

4

)
+ qErecon

(qNE

2
, qE,

qSE
2
, x, y,N, S,E,

q̄

4

)
(76)

This function also has the interpolation properties in Theorem A.2. However, in the limit
of all the point values converging to q̄, property (69) is not guaranteed. Linearity merely
implies that in the limit, qrecon will be proportional to q̄, but it can still have a non-trivial
dependence on x, y.

If the reconstruction happens on the unit square, then ∆x = ∆y = 1 should be used
in the formulas below. The sketches of the interpolation problem are encoded as follows:

denotes the central value qC, / denotes a value that is not on the W edge and
thus zero (gray if it is not used in the interpolation), / denotes one of the values
qNW, qW, qSW (gray if it is not used in the interpolation). Values marked with an arrow do
not, in principle, need to be included in the interpolation stencil, but are included here.
The colored area denotes the support of the different functions that make up the piecewise
defined reconstruction. denotes an edge that is reconstructed linearly, in other words,
as part of the interpolation procedure, we impose that the restriction of the reconstruction
onto that edge is linear (the quadratic term vanishing).

In many cases, the reconstruction is (piecewise) biparabolic, i.e. of the form

(a0 + a1x+ a2x
2) + (a3 + a4x+ a5x

2)y + (a6 + a7x+ a8x
2)y2 (77)

In the following, biparabolic reconstructions are given by specifying the values of these 9
coefficients.
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Figure 10: All edges are reconstructed parabolically, and the corresponding edge-basis-
function is a simple biparabolic interpolation. qNW = 1.6, qW = 1.35, qSW = 0.6.

A.1.1 Parabolic reconstruction on W edge

If edges W, S and N are all reconstructed parabolically, then the W-edge-basis-function is
a biparabolic function. If either S or N (or both) are reconstructed as hat functions, the
reconstruction in the cell is defined piecewise: the left and the rights halves of the cell have
individual biparabolic reconstructions, which are joined in a continuous fashion.

Parabolic reconstruction on both neighbouring edges If both neighbouring edges
(N and S) are reconstructed parabolically, then the reconstruction inside the cell is the
trivial biparabolic reconstruction (see Figure 10):

qWrecon =

{
a0 = qC, a1 = − qW

∆x
, a2 = −2(2qC − qW)

∆x2
, a3 = 0, a4 = −qNW − qSW

∆x∆y
, (78)

a5 =
2(qNW − qSW)

∆x2∆y
, a6 = − 4qC

∆y2
, a7 = −2(qNW + qSW − 2qW)

∆x∆y2
,

a8 =
4(4qC + qNW + qSW − 2qW)

∆x2∆y2

}
qC =

1

16
(36q̄ − qNW − qSW − 4qW) (79)

Hat reconstruction on both neighbouring edges The interpolation problem is
shown in Figure 11.
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Figure 11: Top: The case of both neighbouring edges reconstructed using hat func-
tions, while the primary edge is reconstructed parabolically. Bottom: The W edge is
reconstructed parabolically, while the two neighbouring reconstructions are hat functions.
qNW = 1.6, qW = 1.35, qSW = 0.6.
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qWrecon

∣∣∣
x<0

=

{
a0 = qC, a1 = − qW

∆x
, a2 = −2(2qC − qW)

∆x2
, a3 = 0, a4 = −2(qNW − qSW)

∆x∆y
,

(80)

a5 = 0, a6 = − 4qC
∆y2

, a7 = −4(qNW + qSW − qW)

∆x∆y2
, a8 =

8(2qC − qW)

∆x2∆y2

}
qWrecon

∣∣∣
x≥0

=

{
a0 = qC, a1 = − qW

∆x
, a2 = −2(2qC − qW)

∆x2
, a3 = 0, a4 = 0, (81)

a5 = 0, a6 = − 4qC
∆y2

, a7 =
4qW

∆x∆y2
, a8 =

8(2qC − qW)

∆x2∆y2

}
qC =

1

32
(72q̄ − 3(qNW + qSW)− 8qW) (82)

Hat reconstruction on just one neighbouring edge If the N edge is reconstructed
using a hat function, and both the W-edge and the S-edge parabolically, then one recon-
structs the cell as follows (Figure 12):

qWrecon

∣∣∣
x<0

=

{
a0 = qC, a1 = − qW

∆x
, a2 = −2(2qC − qW)

∆x2
, a3 = 0, a4 = −2qNW − qSW

∆x∆y
, (83)

a5 = − 2qSW
∆x2∆y

, a6 = − 4qC
∆y2

, a7 = −2(2qNW + qSW − 2qW)

∆x∆y2
,

a8 =
4(4qC + qSW − 2qW)

∆x2∆y2

}
qWrecon

∣∣∣
x≥0

=

{
a0 = qC, a1 = − qW

∆x
, a2 = −2(2qC − qW)

∆x2
, a3 = 0, a4 =

qSW
∆x∆y

, (84)

a5 = − 2qSW
∆x2∆y

, a6 = − 4qC
∆y2

, a7 = −2(qSW − 2qW)

∆x∆y2
,

a8 =
4(4qC + qSW − 2qW)

∆x2∆y2

}
qC =

1

32
(72q̄ − 3qNW − 2(qSW + 4qW)) (85)
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Figure 12: Top: The case of the N edge reconstructed using hat functions, while the
primary edge and the S-edge is reconstructed parabolically. Bottom: The W and S edge
is reconstructed parabolically, while the N edge is reconstructed using a hat function.
qNW = 1.6, qW = 1.35, qSW = 0.6.
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Figure 13: Top: The case of the S edge reconstructed using hat functions, while the
primary edge is reconstructed parabolically. Bottom: The W and N edge is reconstructed
parabolically, while the S edge is reconstructed using a hat function. qNW = 1.6, qW = 1.35,
qSW = 0.6.

If it is the S edge, then (Figure 13):

qWrecon

∣∣∣
x<0

=

{
a0 = qC, a1 = − qW

∆x
, a2 = −2(2qC − qW)

∆x2
, a3 = 0, a4 = −qNW − 2qSW

∆x∆y
, (86)

a5 =
2qNW

∆x2∆y
, a6 = − 4qC

∆y2
, a7 = −2(qNW + 2qSW − 2qW)

∆x∆y2
,

a8 =
4(4qC + qNW − 2qW)

∆x2∆y2

}
qWrecon

∣∣∣
x≥0

=

{
a0 = qC, a1 = − qW

∆x
, a2 = −2(2qC − qW)

∆x2
, a3 = 0, a4 = − qNW

∆x∆y
, (87)

a5 =
2qNW

∆x2∆y
, a6 = − 4qC

∆y2
, a7 = −2(qNW − 2qW)

∆x∆y2
,

a8 =
4(4qC + qNW − 2qW)

∆x2∆y2

}
qC =

1

32
(72q̄ − 2qNW − 3qSW − 8qW) (88)
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Proof of continuity It is obvious from the sketches of the interpolation problem in
Figures 10–13 that the reconstructions interpolate the values on the cell interfaces. What
remains to be shown is that the piecewise defined reconstruction is continuous:

Theorem A.3. The reconstructions from Sections A.1.1–A.1.1 are continuous along the
line x = 0 where the two pieces are joined.

Proof. As is obvious from the sketches of the interpolation problems in Figures 11–13, the
three points along x = 0, i.e.

qrecon

(
0,

∆y

2

)
= 0 qrecon (0, 0) = qC qrecon

(
0,−∆y

2

)
= 0 (89)

are part of the interpolation. Recall that the restriction of a biparabolic function onto the
straight line x = 0 is a parabola in y, and that the latter is uniquely defined by three points.
Therefore, all the values of the reconstruction along x = 0 agree for all the reconstructions
presented in Sections A.1.1–A.1.1.

A.1.2 Hat reconstruction on W edge

If the W-edge is reconstructed as a hat function, then necessarily one needs to consider a
piecewise defined reconstruction with the pieces joined along y = 0. The reconstruction in
each piece only depends on whether the other adjacent edge is reconstructed parabolically
or as a hat function. One thus has less cases to consider.

Consider the top piece, i.e. the one defined on [−∆x
2
, ∆x

2
] × [0, ∆y

2
]. It is bordered by

the N-edge. If the N-edge is reconstructed as a hat function then one needs additionally
to define the reconstruction piecewise in the left and right halves (joined along x = 0),
i.e. the reconstruction is piecewise by quadrant. This is not necessary if the N-edge is
reconstructed parabolically.

Parabolic reconstruction on at least one neighbouring edge Here, the situation is
considered in which either the N-edge or the S-edge are reconstructed as parabolae. Then
it is possible to provide a biparabolic reconstruction of, respectively, the top or bottom
half of the cell.

These cases can occur individually or simultaneously. If both the N-edge and the S-edge
are reconstructed parabolically, then the entire reconstruction of the cell is given by the
two pieces given in (90)–(92). If, for example, the N-edge is reconstructed parabolically,
and the S-edge as a hat function, then the top piece of the reconstruction in the cell is
to be taken from (90), while the bottom piece used should be the one from (97)–(98) in
Section A.1.2.

See Figure 14 for the setup of the interpolation problem.
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Figure 14: Top: The case of the neighbouring edges reconstructed using parabolas, while
the primary edge is reconstructed using the hat function. Bottom: The W edge is re-
constructed as a hat function, the other edges are reconstructed parabolically. qNW = 1,
qW = 1.5, qSW = 0.
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qWrecon

∣∣∣
y≥0

=

{
a0 = qC, a1 = − qW

∆x
, a2 = −2(2qC − qW)

∆x2
, a3 = 0, a4 = −2(qNW − qW)

∆x∆y
, (90)

a5 =
4(qNW − qW)

∆x2∆y
, a6 = − 4qC

∆y2
, a7 = 0, a8 =

16qC
∆x2∆y2

}
1

∆x∆y

∫
y≥0

qrecon dxdy =
2qC
9

+
qNW + qW

24
(91)

qWrecon

∣∣∣
y<0

=

{
a0 = qC, a1 = − qW

∆x
, a2 = −2(2qC − qW)

∆x2
, a3 = 0, a4 =

2(qSW − qW)

∆x∆y
, (92)

a5 = −4(qSW − qW)

∆x2∆y
, a6 = − 4qC

∆y2
, a7 = 0, a8 =

16qC
∆x2∆y2

}
1

∆x∆y

∫
y<0

qrecon dxdy =
2qC
9

+
qSW + qW

24
(93)

Hat reconstruction on at least one neighbouring edge In this case the reconstruc-
tion is additionally defined piecewise on each quadrant. The biparabolic reconstructions
are obtained from interpolation problems shown in Figure 15.

If the N edge is reconstructed as a hat function, then the top half [−∆x
2
, ∆x

2
] × [0, ∆y

2
]

of the cell is to be reconstructed as

qWrecon

∣∣∣
y≥0,x<0

=

{
a0 = qC, a1 = − qW

∆x
, a2 = −2(2qC − qW)

∆x2
, a3 = 0, a4 = −3qNW − 2qW

∆x∆y
,

(94)

a5 =
2(qNW − 2qW)

∆x2∆y
, a6 = − 4qC

∆y2
, a7 = − 2qNW

∆x∆y2
,

a8 =
4(4qC − qNW)

∆x2∆y2

}
qWrecon

∣∣∣
y≥0,x≥0

=

{
a0 = qC, a1 = − qW

∆x
, a2 = −2(2qC − qW)

∆x2
, a3 = 0, a4 =

qSW
∆x∆y

, (95)

a5 = − 2qSW
∆x2∆y

, a6 = − 4qC
∆y2

, a7 = −2(qSW − 2qW)

∆x∆y2
,

a8 =
4(4qC + qSW − 2qW)

∆x2∆y2

}
1

∆x∆y

∫
y≥0

qrecon dxdy =
2qC
9

+
1

576
(35qNW + qSW + 22qW) (96)

If the S edge is reconstructed as a hat function, then the reconstruction reads
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Figure 15: Top: The case of (possibly) all three edges reconstructed using hat functions.
The reconstruction inside the cell is defined on four quadrants. Middle: The W edge is
reconstructed as a hat function, and also N (left) / S (right). Bottom: All edges are
reconstructed as hat functions.
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qWrecon

∣∣∣
y<0,x<0

=

{
a0 = qC, a1 = − qW

∆x
, a2 = −2(2qC − qW)

∆x2
, a3 = 0, (97)

a4 = −−3qSW + 2qW
∆x∆y

, a5 = −2(qSW − 2qW)

∆x2∆y
, a6 = − 4qC

∆y2
,

a7 = − 2qSW
∆x∆y2

, a8 =
4(4qC − qSW)

∆x2∆y2

}
qWrecon

∣∣∣
y<0,x≥0

=

{
a0 = qC, a1 = − qW

∆x
, a2 = −2(2qC − qW)

∆x2
, a3 = 0, a4 = − qNW

∆x∆y
, (98)

a5 =
2qNW

∆x2∆y
, a6 = − 4qC

∆y2
, a7 = −2(qNW − 2qW)

∆x∆y2
,

a8 =
4(4qC + qNW − 2qW)

∆x2∆y2

}
1

∆x∆y

∫
y<0

qrecon dxdy =
2qC
9

+
1

576
(qNW + 35qSW + 22qW) (99)

Proof of continuity

Theorem A.4. The reconstructions in Sections A.1.2–A.1.2 are continuous along x = 0
and along y = 0.

Proof. In complete analogy to the proof of Theorem A.3 one observes from the sketches
of the interpolation problem in Figures 14–15 that the points along x = 0 and y = 0 are
always included. The three points along x = 0 and the three points along y = 0 each define
a unique parabola.

A.2 Plateau-limiting

Consider a situation in which (31) is true, while the reconstruction described above exceeds
m or M . In that case, the idea of a plateau reconstruction is to introduce a rectangle a
distance η∆x/η∆y away from the cell boundary, i.e.[

∆x

(
−1

2
+ η

)
,∆x

(
1

2
− η

)]
×
[
∆y

(
−1

2
+ η

)
,∆y

(
1

2
− η

)]
with η ∈ (0, 1

2
) where the value of the reconstruction shall be constant and equal to qp, a

value to be determined to ensure that the average of the reconstruction equals the given
average (see Figure 1 for an example). This rectangle shall be referred to as plateau.
The remaining four trapezes shall be the supports of functions that continuously join
the reconstruction along the edge to the plateau in the simplest possible way. Because
reconstructions along edges are either parabolas or hats, every trapezoidal region is either
joining the plateau to a parabola or to a hat function. η shall be chosen in such a way that
the maximum principle is guaranteed. It is clear that, as (31) is true, this can always be
done by choosing η small enough.
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Figure 16: Sketch of the interpolation between the plateau and the boundary of the cell.

A.2.1 Interpolation in the trapezes

Consider for definiteness the northern trapeze. Define a point Aα :=
(
−∆x

2
+ α∆x, ∆y

2

)
∈

R2 parametrized by α ∈ [0, 1]. Define a point

Bα :=

(
∆x(−1

2
+ η) + α∆x(1− 2η),∆y(

1

2
− η)

)
on the northern edge of the plateau. Observe that as α goes from 0 to 1, both points move
all the way from the left to the right on their respective edges. The straight line

gα :=

{
(x, y) :

x

∆x
= −1

2
+ α−

(
y

∆y
− 1

2

)
(1− 2α)

}
(100)

connects them. Obviously, given x and y there is a unique

α =

x
∆x

+ y
∆y

2 y
∆y

=
x∆y + y∆x

2y∆x
(101)

The idea of the reconstruction is to associate to a point (x, y) the value given by a linear
interpolation between the value of the reconstruction at Aα and the (constant) value qp at
Bα. In particular this means that the diagonal edges of the reconstruction (connections
between the corners of the cell and the corners of the plateau) are straight lines.

The four trapezes can be reconstructed individually, because continuity along the diag-
onal segments where they join is already guaranteed by the above procedure. For a given
trapeze, the choice of reconstruction thus merely depends on whether the adjacent edge is
reconstructed parabolically (see Section A.2.2) or as a hat function (see Section A.2.3).

A.2.2 Parabolic reconstruction along the edge

The parabolic reconstruction along the N-edge is given by

qNparabolic(x) = qN +
x

∆x
(qNE − qNW) + 2

x2

∆x2
(qNE + qNW − 2qN) x ∈

[
−∆x

2
,
∆x

2

]
(102)
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The value of this parabolic reconstruction is sought at the location ξ of point Aα with α
given by (101):

ξ = ∆x

(
−1

2
+

x
∆x

∆y + y

2y

)
= ∆x

x
∆x

2 y
∆y

(103)

Finally, the reconstruction at (x, y) is assigned the value

qNrecon(x, y) := qNparabolic(ξ) +

(
y − ∆y

2

)
qp − qNparabolic(ξ)

−∆yη
(104)

= qNparabolic(ξ)

(
1 +

y
∆y

− 1
2

η

)
−

y
∆y

− 1
2

η
qp (105)

with

qNparabolic(ξ) = qN +
x̂

2ŷ
(qNE − qNW) + 2

(
x̂

2ŷ

)2

(qNE + qNW − 2qN) (106)

and x̂ := x
∆x

and ŷ := y
∆y

. Observe that the reconstruction is not polynomial, but lies in

span

(
1, x̂, ŷ,

x̂

ŷ
,
x̂2

ŷ
,
x̂2

ŷ2

)
(107)

For reference we give the four reconstructions:

qtrapeze W
recon (x, y) = qp

1 + 2x̂

2η
+ (−1 + 2η − 2x̂)

(
qW
2η

− (qNW − qSW)y

4ηx̂
+

(qNW + qSW − 2qW)ŷ2

4ηx̂2

)
(108)

qtrapeze E
recon (x, y) = qp

1− 2x̂

2η
+ (−1 + 2η + 2x̂)

(
qE
2η

+
(qNE − qSE)ŷ

4ηx̂
− (2qE − qNE − qSE)ŷ

2

4ηx̂2

)
(109)

qtrapeze N
recon (x, y) = qp

1− 2ŷ

2η
+ (−1 + 2η + 2ŷ)

(
− (2qN − qNE − qNW)x̂2

4ηŷ2
+

(qNE − qNW)x̂

4ηŷ
+

qN
2η

)
(110)

qtrapeze S
recon (x, y) = qp

1 + 2ŷ

2η
+ (1− 2η + 2ŷ)

(
(2qS − qSE − qSW)x̂2

4ηŷ2
+

(qSE − qSW)x̂

4ηŷ
− qS

2η

)
(111)

The integrals over the four regions are

1

∆x∆y

∫
trapeze W

qrecon dxdy =
1

36
η
(
6(3− 4η)qP − (2η − 3)(4qW + qNW + qSW)

)
(112)

1

∆x∆y

∫
trapeze E

qrecon dxdy =
1

36
η
(
6(3− 4η)qP − (2η − 3)(4qE + qNE + qSE)

)
(113)

1

∆x∆y

∫
trapeze N

qrecon dxdy =
1

36
η
(
6(3− 4η)qP − (2η − 3)(4qN + qNE + qNW)

)
(114)

1

∆x∆y

∫
trapeze S

qrecon dxdy =
1

36
η
(
6(3− 4η)qP − (2η − 3)(4qS + qSE + qSW)

)
(115)

and the integral over the plateau obviously

1

∆x∆y

∫
plateau

qrecon dxdy = (1− 2η)2qp (116)
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A.2.3 Hat-function reconstruction along the edge

If an edge is reconstructed using a hat-function, then the reconstruction of the trapeze
follows the algorithm outlined at the beginning of Section A.2, but is naturally defined in
a piecewise fashion. The reconstruction of the W-trapeze is

qtrapeze W
recon (x, y)

∣∣∣
y≥0

= qW − ∆x(qNW − qW)y

x∆y
+

(
∆x
2
+ x
) (
qP − qW + ∆x(qNW−qW)y

x∆y

)
∆xη

(117)

qtrapeze W
recon (x, y)

∣∣∣
y<0

= qW +
∆x(qSW − qW)y

x∆y
+

(
∆x
2
+ x
)
(qP − qW − ∆x(qSW−qW)y

x∆y

∆xη
(118)

1

∆x∆y

∫
trapeze W

qrecon dxdy =
1

6
(3− 4η)ηqp +

1

24
η(2η − 3)(qNW + qSW + 2qW) (119)

The reconstructions of the other trapezes can be obtained by rotation as in Equations
(37)–(39).

A.2.4 Choice of the plateau value and the maximum principle

Theorem A.5. There exists a choice of η such that the reconstruction is conservative and
m ≤ qrecon(x, y) ≤M for all x, y inside the cell.

Proof. For any choice of qp ∈ (m,M), the reconstruction inside the cell fulfills m ≤ qrecon ≤
M , because the reconstructions inside the trapezes are interpolations along straight lines
between qp and a maximum-preserving reconstruction along the edge. For the same reason,
as η → 0, the average of the reconstruction over the cell approaches qp, because the recon-
structions inside the trapezes remain bounded and their contribution to the cell average
thus vanishes in the limit. Thus, for all ϵ > 0 sufficiently small one can find an η > 0 such
that 1

∆x∆y

∫
c
qrecon(x, y) dxdy = qp + a with |a| < ϵ. Then, choosing qp := q̄ − a ensures

conservativity of the reconstruction. At the same time, as m < q̄ < M , one simply needs
to choose ϵ < min (M − q̄, q̄ −m) to ensure that m < qp < M .

For example, if all edges are reconstructed parabolically, then the average of the recon-
struction over the entire cell is

qp −
1

9
η(2η − 3)

(
4E − 6qp + 2V

)
!
= q̄ (120)

(where 4V := qNE+ qNW+ qSE+ qSW, 4E := qE+ qN+ qS+ qW) which gives the value of qp:

qp =
9q̄ + η(2η − 3)(4E + 2V )

3(3− 6η + 4η2)
(121)

The polynomial in the denominator does not have real zeros.
What thus remains is the choice of η. The only bounds on η originate from the condition

m < qp < M (122)

The equation qp = µ ∈ {m,M} is quadratic in η – and this is true in general and not just
in this example. It is therefore easy to identify real, positive solutions and to take their
minimum. In practice, having established a minimum, η is chosen to be half of it. In case
no real, positive solutions are identified, η is not subject to any conditions and we choose
η = 1

4
.
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