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Abstract

Turgor is the driving force of plant growth, making possible for roots
to overcome soil resistance or for stems to counteract gravity. Maintain-
ing a constant growth rate while avoiding the cell content dilution, which
would progressively stop the inward water flux, imposes the production or
import of osmolytes in proportion to the increase of volume. We coin this
phenomenon stationary osmoregulation. The article explores the quanti-
tative consequences of this hypothesis on the interaction of a cylindrical
cell growing axially against an obstacle.

An instantaneous axial compression of a pressurized cylindrical cell
generates a force and a pressure jump which both decrease toward a lower
value once water has flowed out of the cell to reach the water potential
equilibrium. In a first part, the article derives analytical formula for these
force and over-pressure both before and after relaxation. In a second
part, we describe how the coupling of the Lockhart’s growth law with
the stationary osmoregulation hypothesis predicts a transient slowdown
in growth due to contact before a re-acceleration in growth. We finally
compare these predictions with the output of an elastic growth model
which ignores the osmotic origin of growth: models only match in the
early phase of contact for high stiffness obstacle.
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1 Introduction

Plant growth requires water fluxes that are generated by gradients of water
potential between the growing cells and the water source. The water potential
gradient is tightly regulated by the growing cell through both osmoregulation
and cell wall relaxation, a viscous process, which acts on the volume of the plas-
molyzed cell. These regulations modify the cell internal pressure, called turgor
pressure [1]. The maintenance of turgor pressure and thus of osmotic pressure
requires osmolyte synthesis or import to compensate for the increase of the
cell volume. We coin this process ”stationary osmoregulation”. The generated
driving force is sufficient to counteract the resistance of the surrounding fluids
(air, water, tissue or soil). Before touch-induced regulations [2] have time to be
effective or osmolyte production rate to be altered, the pressure pattern within
a growing organ encountering a rigid obstacle will be theorically modified by
the resistance opposed by the obstacle, the pressure rising in the most impeded
parts. On a longer time scale, hard obstacles are counteracted by the active
modification of the cell turgor, through the increase of osmotic pressure, as pre-
viously shown in roots [3], [4].
Turgor can in certain conditions positively regulate cell wall growth through the
Lockhart’s law, which tells that the growth rate allowed by cell wall relaxation
is proportional to the pressure above a threshold [5]. Lockhart’s model can even
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be a quantitative tool to predict how the force caused by obstacle modifies the
growth dynamics [6], [7]. Meanwhile, the coupling between Lockhart’s law and
osmolyte production has been mainly studied in the context of growth rate os-
cillation for pollen tubes [8], [9] rather than in the context of force generation.
Cylindrical organs, omnipresent in the vegetal world, range from unicellular
cylindrical internodes of Characeae, to multicellular plant stems and roots. The
present note is focused on a single cylindrical cell presenting a surface extending
homogeneously in the axial direction, which is coined monoaxial diffuse growth
[10]. We quantify how an obstacle will modify the cell wall stress pattern and
the cell internal pressure as well as the growth dynamics. More generally our
model can be applied to other ”walled” cells of organisms other than plants,
such as the fungus Phycomyces blackeslaneus or the Gramm positive bacteria
Bacillus subtilis: these organisms present a cell wall and a positive regulation
of growth by turgor similar to the one observed in plants [11], [12].
The mechanical analysis of giant cellular internode was traditionally considered
as broadly applicable to the multicellular cylindrical organs (stems, hypocotyls
...) [13]. However patterns of cell wall stress in multicellular cylindrical organs
can be more complex: recent studies have suggested that the maximal stress
direction in the epidermis of hypocotyls is axial, contrarily to single cells where
it is circumferential [14], [15]. Another difference between a single cylindrical
cell and a cylindrical organ lays on water potential gradients: for a single cell,
the water potential gradient necessary to move water into the cell during growth
is small compared to the internal pressure [16] while for multicellular organs, in
general the water potential gradient cannot be neglected in front of the inter-
nal pressure [17]. Nevertheless the present results modeled for a single cell can
serve as a valuable guide to interpret the effect of an obstacle on the growth of
cylindrical multicellular organs with similar stress patterns.
Two theoretical scenarii are explored theoretically and solved analytically: the
first scenario consists in compressing the cell to impose instantaneously a smaller
length than the natural length (Figure 1a) and the second scenario consists in
the progressive loading of the cell by its proper axial growth (Figure 1b). With-
out an increase of the osmolyte content through import or internal production,
the water inflow in the growing cell that increases the protoplast volume would
dilute the osmolytes, decrease the osmotic pressure and thus decrease turgor.
Our model quantifies how the force generated by a stationary osmolyte synthe-
sis/import and the elastic force (cell wall, obstacle) retroact on growth through
the Lockhart’s law. Parameters can be directly estimated from pressure probe
literature [5]. The growth scenario is an opportunity to compare our physiolog-
ical model to a phenomenological approach, coined morpho-elasticity, based on
an analogy with metal thermo-elasticity [18].
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Figure 1: Schema of the theoretical scenarii. a. Inflation and compression
scenario. From left to right: Plasmolyzed cell, turgid cell, compressed turgid
cell before relaxation and compressed turgid cell after relaxation. R∗ (resp. L∗)
are the plasmolyzed radius (resp. the plasmolyzed length). R0 (resp. L0) are the
turgid radius (resp. the turgid length) before compression. Lind is the length of
the compressed cell.When the cell undergoes compression from the obstacle (in
violet), Rbr and Pbr are the turgid radius and turgor pressure before relaxation,
while Rar and Par are the turgid radius and turgor after relaxation. b. Growth
scenario against an obstacle. From left to right: Schema of a plasmolyzed cell
and of the obstacle (in violet), schema of the turgid cell once the growth has
pushed the obstacle. R∗ (resp. L∗) are the plasmolyzed radius (resp. the
plasmolysed length). Lc is the length of the turgid cell at contact. R (resp.
L) are the turgid radius (resp. the turgid length) during the contact and F is
the force exerted by the obstacle. c. Schema of the morphoelastic model. Ltar

stands for the target length and Lobs stands for the observed length, once the
growth has pushed the obstacle.
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Figure 2: Relationship between parameters in the compression scenario. The
symbols + stand for the data before relaxation and filled circles • for the data
after relaxation. The color code of symbols tells the Poisson ratio ν (blue
ν = 0, red ν = 0.25, yellow ν = 0.5). Black color is used when the variable
is independent of ν. a. Normalized pressure P/P0, P0 being the turgor before
compression. The pressure increment after relaxation, (Par − P0)/P0, which is
of the same order as the longitudinal strain, is represented in the top left insert.
b. Normalized radius R/R0. c. Normalized force F/(2πER∗h) vs relative
longitudinal strain due to the compression (L0 − Lind)/L

∗.

2 Determination of the apparent stiffness by a
compression scenario

We aim to measure the apparent stiffness of a cylindrical cell of turgor P0

by compressing the cell to a given length and measuring the resulting force.
It corresponds experimentally to a compression of the cell with a force sen-
sor of infinite stiffness. We start with a cylindrical cell without turgor, whose
plasmolyzed length and radius are L∗ and R∗ respectively and with a cell wall
thickness h ≪ R∗. The cell wall is mechanically characterized by a Young’s
modulus E and a Poisson ratio ν. The cell is inflated at turgor P0 and the
resulting turgid length and turgid radius are L0 and R0 respectively. According
to the elastic theory of thin shells (valid for wall thickness much smaller than
cylinder radius and for small strains), h stays constant (at first order) and the
cell wall longitudinal and circumferential (hoop) stresses before compression are
given respectively by σLL,0 = P0R0/(2h) , σΘΘ,0 = P0R0/h and the radius and
the length are provided by the two classical formula for cylindrical cells [19]:

R0 =
R∗

1− P0R∗(2− ν)/(2Eh)
,

L0 =
L∗(1− (1 + ν)P0R

∗/(2Eh))

1− P0R∗(2− ν)/(2Eh)
,

We suppose the cell to be at water potential equilibrium which gives the
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following osmotic (molar) content [20]: Ni = πL0R
2
0(Πext + P0)/(RT ), Πext

being the external osmotic pressure and R the perfect gas constant. We latter
suppose Πext = 0. Considering the high membrane hydraulic conductivity we
suppose Ni, the number of moles of osmolytes to stay constant until the water
potential equilibrium.
The compression scenario consists in imposing instantaneously a new length,
Lind to the cell; as water has no time to move out of the cell, the volume is at first
the same as before the compression, which imposes the radius before relaxation
to be: Rbr = R0

√
L0/Lind. This statement supposes that there is no barreling

of the cell when compressed (see Annex 6.7). Longitudinal and circumferential
stresses before relaxation read: σLL,br = PbrRbr/(2h)−Fbr/(2πRbrh), σΘΘ,br =
PbrRbr/h. For small elastic deformation, the mechanical equilibrium reads:(

Lind/L
∗ − 1

Rbr/R
∗ − 1

)
=

(
1 −ν
−ν 1

)(
PbrRbr/(2Eh)− Fbr/(2πERbrh)

PbrRbr/(Eh)

)
(1)

Pbr, being the pressure before relaxation and Fbr, the force before the relaxation.
Consistently with the linear elasticity hypothesis, the second order term can be
neglected, which gives the following simple formula (See Annex 6.1):

Rbr = R0 +R∗ (L0 − Lind)

2L∗ ,

Pbr = P0 +
Eh

R∗
1− 2ν

2(1− ν2)

L0 − Lind

L∗

Fbr = (2πER∗h)

(
5

4
− ν

)
L0 − Lind

L∗(1− ν2)
.

Figure 2 (with symbols +) shows how these parameters linearly increase with
the longitudinal strain, the slope depending in particular on the cell wall Poisson
ratio ν for the evolution of turgor Pbr and force Fbr. The apparent stiffness kbr
of the cell before relaxation, defined from Fbr = kbr (L0 − Lind) reads:

kbr =

(
5/4− ν

1− ν2

)
2πER∗h

L∗ .

Once water has moved out of the cell and the water potential equilibrium is
reached, the pressure and radius after relaxation (Par and Rar) are linked by:

Par = RTNi/(πR
2
arLind).

Substituting the expression for Par in the mechanical equilibrium provides:(
Lind/L

∗ − 1
Rar/R

∗ − 1

)
=

(
1 −ν
−ν 1

)(
RTNi/(2EhπRarLind)− Far/(2πERarh)

RTNi/(EhπRarLind)

)
(2)

Neglecting the second order term yields the radius, pressure and force after
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relaxation (See Annex 6.2 and Figure 2 (with symbols •)):

Rar = R0 + νR∗ (L0 − Lind)

L∗

Par = P0

(
1 + (1− 2ν)

(L0 − Lind)

L∗

)
(3)

Far = (2πER∗h)
(L0 − Lind)

L∗ .

The apparent stiffness after relaxation reads:

kar =
2πER∗h

L∗ . (4)

For a one centimeter long Chara corallina internodal cell, the calculation of the
stiffness gives a value of kar = 3141N m−1 (See Annex 6.5 for the parameters).
A similar stiffness was derived in [21] by physical argument.
The formula 3 for Par tells that the pressure in an hemipermeable cell impeded
by an obstacle will rise quicker under the water inflow. The water potential equi-
librium will be reached for a smaller volume increment and at a higher pressure
than without the obstacle. Though the water potential equilibrium is not a
valid hypothesis in general for growing tissues [22], the encounter with a rigid
obstacle should modify the pressure pattern in a growing tissue before inducing
other responses: the pressure will rise in the most deformed parts tightening
the water potential gradient and altering the water fluxes toward these regions.

The forces before and after relaxation depend solely on the Young’s modulus,
the thickness of the cell wall, the plasmolyzed radius and the Poisson ratio, not
on the initial turgor. ∆P = Pbr − Par, (resp. ∆F = Fbr − Far) the difference
of pressure (resp. force) before and after relaxation, are zero for ν = 0.5 and
maximal for ν = 0:

∆P = (1− 2ν)

(
Eh

2R∗(1− ν2)
− P0

)
L0 − Lind

L∗ ,

∆F = (2πER∗h)

(
1
2 − ν

)2
1− ν2

L0 − Lind

L∗ .

The linear elasticity hypothesis implies: P0R
∗

Eh ≪ 1. Though not visible with the
scales of main Figure 2a, the insert shows that the pressure after relaxation is
higher than the initial turgor for ν < 0.5. However the jump between the initial
turgor and the pressure after relaxation (ie. Par −P0) being small compared to
Pbr − P0, ∆P can be approximated by Pbr − P0.

3 Growth interaction with an obstacle under sta-
tionary osmolyte synthesis

Growth can be introduced in the model by adding two equations, one for the
production or import of osmolytes and one for the cell wall relaxation. Other
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processes such as the change of mechanical properties of the cell wall due to
maturation will not be considered herein. The growth of giant internodal cell
is one-dimensional and exponential. We coin ”stationary osmoregulation” an
exponential osmolyte production, which compensate the dilution due to the
exponential growth: Ni = Ni(0) exp(γt), γ being the osmolyte production rate.
For giant internodal cells, the water potential gradient necessary to drive water
into the cell can be neglected in front of the absolute value of cell turgor and
osmotic pressure [16]; P , the turgor pressure satisfies the following relation:

P = (RTNi)/(πLR
2)−Πext. (5)

For matter of simplicity we suppose the external osmotic pressure Πext to be 0.
As the cell is always supposed to be at the water potential equilibrium, we call
cell stiffness the stiffness of the cell after relaxation (Formula 4):

kcell = kar.

The obstacle can be described as a spring of stiffness k. At the time of contact
set at t = 0, Lc is the turgid length of the cell and L∗

c is the plasmolyzed length.
At t > 0, L (respectively L∗) stands for the turgid (resp. plasmolyzed) length
and the force is F = k(L−Lc). The stresses read: σLL = PR/(2h)−F/(2πRh)
and σΘΘ = PR/h. Substituting the pressure expression provides:

σLL = (RTNi)/(2πhRL)− F/(2πRh), (6)

σΘΘ = (RTNi)/(πhRL). (7)

The mechanical equilibrium is supposed to be always satisfied: solving (5, 6, 7)
while neglecting second order terms following linear elasticity hypothesis (see
Annex 6.3) provides the longitudinal and circumferential (hoop) strains in the
cell wall:

ϵLL =
(1− 2ν)RTNi/(2EhπR∗L∗)− k(L∗ − Lc)/(2πER∗h)

1 + k(2L∗ − Lc)/(2πER∗h)
, (8)

ϵΘΘ = (1− ν2)RTNi/(EhπR∗L∗)− νϵLL. (9)

The longitudinal stress reads:

σLL/E = ϵLL + νRTNi/(EhπR∗L∗). (10)

In some cylindrical organs at a late stage of development (stems, internodes
...), the cylindrical organ grows solely in length. The growth allowed by the
relaxation dynamics of the cell wall will be introduced by an equation on the
dynamics of the plasmolyzed length:

dL∗

dt
= f(L∗, t) (11)

The function f could correspond to different scenarii. In the simplest one, there
is no retroaction of the force on relaxation (f is proportional to the rest length)
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but this scenario does not describe the phenomenology of the growth slowdown
after contact observed for several experimental models: root [23], pollen tube
[24], root hair [25], Gramm positive bacteria [21], fission yeast [6]. The next step
of complexity is the Lockhart’s law which tells that growth rate is proportional
to the pressure above a threshold fP = L∗mP (P−YP )+ [26]. In characea intern-
odes, the linearity of Lockhart’s law above the yield threshold has been shown
for up to 120% of the initial turgor during long lasting measurements (more
than 5 hours) (See [5], Figure 5 and 7). Lockhart’s law can also be formulated
in cell wall strains fϵ = L∗mϵ(ϵLL−Yϵ)+ [27] or stresses fσ = L∗mσ(σLL−Yσ)+
[28]. As a compression tends to slightly increase the turgor after relaxation (See
Section 2), the traditional pressure formulation of the Lockhart’s law would pre-
dict a slight acceleration of the growth during the contact, which is contrary to
most experimental observations. Herein fσ, the stress formulation will be used
as it has been recently proven that it can quantitatively predict how the maize
root growth slows down when encountering an axial rigid obstacle [7]. Formally
speaking, the stress formulation is equivalent to a Bingham-type rheology for
the cell wall, where the extensibility in stress (mσ in Pa−1.s−1) is the inverse of
a plastic viscosity. After contact, the equation for the stress formulation reads:

dL∗

dt
= mσE

(
(1− 2ν)RTNi/(2EhπR∗)− kL∗(L∗ − Lc)/(2πER∗h)

1 + k(2L∗ − Lc)/(2πER∗h)
+

νRTNi

πER∗h
− YσL

∗

E

)
+

.

(12)
γ, the osmolyte production rate is chosen such as the pressure remains constant
before the contact. As the cell grows solely in length, the volume increase rate
equals the length increase rate before the contact:

dNi/dt

Ni
=

dL∗/dt

L∗ ,

which provides γ:

γ ≈ f(L∗
c , 0)

L∗
c

. (13)

To generalize and simplify the formulation of equations, we introduced the fol-
lowing non-dimensional variables:

L̂∗ =
L∗

L∗
c

, P̂ =
RTNi

2πR∗hL∗
cE

, P̂c =
RTNi(0)

2πR∗hL∗
cE

, Ŷσ =
Yσ

E
, (14)

k̂ =
k

kcell
, γ̂ =

(
P̂c − Ŷσ

)
+
, t̂ = mσEt (15)

The cell wall being mechanically characterized by its Young’s modulus E,
a straightforward way to obtain non-dimensional (ND) cell wall stresses is to
divide them by E. Before contact, the longitudinal stress σLL is directly pro-
portional to the turgor P through a geometrical factor R

2h . Incorporating the

formula (5) for turgor into σLL

E provides the ND longitudinal elastic stress P̂ be-

fore contact. In the same way, P̂c and Ŷσ are introduced and correspond to the
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ND longitudinal elastic stress at contact and to the ND yield threshold. Thus γ̂
is the ND increment above the threshold for an elastic stress formulation. From
the Lockhart’s extensibility mσ, the parameter 1/(mσE) has the dimension of
a time and is naturally introduced to define the ND time t̂.

For Chara corallina for example, the characteristic time 1/(mσE) is 960s
(See Annex 6.5). Linear elasticity supposes small strains which correspond to a
normalized pressure P̂c of less than a few percent. The normalized Lockhart’s
threshold Ŷσ is also less than a few percent because the cell is supposed to grow
before the contact occurs (Y < Pc).

These non-dimensional variables can be used to rewrite (12) (See Annex
6.5):

dL̂∗

dt̂
= f̂(L̂∗, t̂) (16)

with:

f̂(L̂∗, t̂) =

(
(1− 2ν)P̂c exp(γ̂t̂)− k̂L̂∗(L̂∗ − 1− (1− 2ν)P̂c)

1 + k̂(2L̂∗ − 1− (1− 2ν)P̂c)
+ 2νP̂c exp(γ̂t̂)− ŶσL̂

∗

)
+

.

(17)
The equation was numerically solved with Matlab function ode23s (See 6.5

for the parameters of the ODE which corresponds to an internodal cell Chara
corallina whose length at contact with the obstacle is 1 cm. The initial growth
dynamics can be studied by solving analytically the linearized problem associ-
ated with (16) (See Annex 6.5) which provides a combination of two exponential
functions:

L̂∗(t̂) ≈ 1 + β̂
(
exp

(
γ̂t̂
)
− 1
)
+∆L̂∗ (1− exp

(
−γ̂it̂

))
, (18)

and:

γ̂i =
k̂

1 + k̂
+ Ŷσ, β̂ =

P̂c

(
1 + 2νk̂

)
(1 + k̂)P̂c + k̂

, ∆L̂∗ = (1− β̂)
γ̂

γ̂i
.

It corresponds to a normalized turgid length:

L̂(t̂) ≈ L̂∗(t̂)(1 + ϵLL(t̂)), (19)

which after substitution reads:

L̂(t̂) ≈ 1 + (1− 2ν)P̂c +
P̂c(exp(γ̂t̂)− 1)(1− 2ν + k̂)

(1 + k̂)((1 + k̂)P̂c + k̂)
+ ∆L̂

(
1− exp

(
−γ̂it̂

))
with :

∆L̂ =
1− β̂

1 + k̂

γ̂

γ̂i
.

It corresponds to a normalized force:

F̂ (t̂) ≈ k̂(L̂− L̂c) (20)
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Figure 3: (a) Normalized plasmolyzed length, (b) normalized pressure and (c)

normalized force vs normalized time for different normalized stiffness k̂ = 1/100

(blue), k̂ = 1/10 (violet), k̂ = 1/5 (dark red), k̂ = 1 (orange), k̂ = 5 (yellow).
Other parameters are detailed in the annex (6.5). Plain lines, + symbol, dotted
line stand for the numerical solution, the analytical solution and the morphoe-
lastic solution respectively. The upper plot is a zoom on the initial behavior (5
first hours) whereas the lower plot is integrated until one of the strains equals
3%. The morphoelastic solution is not represented on panel a and b because
neither the plasmolyzed length nor the turgor pressure are relevant in morphoe-
lasticity.
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which reads after substitution of L̂ and L̂c:

F̂ (t̂) ≈ k̂

1 + k̂

(
P̂c(exp(γ̂t̂)− 1)(1− 2ν + k̂)

((1 + k̂)P̂c + k̂)
+ (1− β̂)

γ̂

γ̂i

(
1− exp

(
−γ̂it̂

)))
.

(21)

In the limit k̂ ≫ 1, and after the initial relaxation phase (γ̂t̂ > 3), the normalized
force is independent of the stiffness and follows the normalized pressure (See
Figure 3 lower panel):

F̂ (t̂) ≈ P̂c(exp(γ̂t̂)− 1). (22)

For Chara corallina, the characteristic time of the positive exponential is 1/γ =
213 h while the characteristic time of the negative exponential ranges from
1/γi = 21 h for very low stiffness to 1/γi = 16 min for high stiffness. For
various organs (maize roots [29], Characeae internodes [5] · · · ), (P −Y )/Y lays
between 1/5 and 1/10, it implies that γ/γi is in general less than 1/5. The
linearized solution for the plasmolyzed length (equation (18)) is the sum of a
positive exponential (characteristic time 1/γ̂) and a negative exponential with a
smaller characteristic time, 1/γ̂i : on short time scale (Figure 3(a) upper plot)
the solution relaxes toward a plateau according to the negative exponential
while on longer time it follows the positive exponential (Figure 3(a) lower plot)

dictated by the osmolyte production rate. For high stiffnesses (β ≈ P̂c(2ν)

(1+P̂c)
which

is second order term according to the linear elasticity hypothesis) the transient
plateau is more pronounced than for low stiffnesses (β ≈ 1) as the respective
weight of the two exponential functions in the sum shifts from almost 0 to 1
(Figure 3(a)). Analytical and numerical solutions match very well. Regardless
of stiffness, the plasmolyzed length keeps diverging exponentially for high t (See
Annex 6.6):

L∗ ∼t→∞
2νNi(t)

π(R∗)2(P0 + Eh/R∗)
. (23)

At t = 0, the turgid cell is under positive longitudinal elastic strain, while for
high t (equation (23)) longitudinal strains are strongly negative ϵLL = −50%,
outside the hypothesis of linear elasticity. In order to ensure that the numerical
model output remains in the linear elasticity hypothesis, the maximal integra-
tion time (Figure 3) was chosen such that both strains remain small (< 3%).
Due to the constant osmolyte production rate and the slow-down of growth rate
after contact, the pressure keeps increasing with time (Figure 3(b)). For an
obstacle of low stiffness, (k ⩽ kcell/10), the stationary osmoregulation is more
effective and the pressure remains fairly constant in the early phase of the inter-
action with the obstacle (Figure 3 (b), blue curve) while for an obstacle of high
stiffness (k ⩾ kcell), the pressure increases from the beginning of the interaction
(Figure 3 (b), yellow curve). For a 1 cm Chara corallina internodal cell, an
increase of 1 bar is reached in approximately 5 hours for an obstacle stiffness
of 31.42 N.m−1 (kcell/100) and in 90 min for a stiffness of 3142 Nm−1 (kcell).
Lockhart’s growth law has been monitored on this time scale, for 5 hours (see
reference [5], Figure 5). In this timeframe, pressure remains below 120% of its
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initial value (Figure 3 (b)), that is in the linear regime of the Lockhart’s law
(according to [5], Figure 7). Besides non-linear effects, some adaptations to ex-
ternal stresses (compression or tension) such as microfibrill reorientation, have
been observed on Characeae but on longer time scale (four days) [30]. The force
dynamics presents two successive regimes: a first phase of steep rise (Figure 3
(c) upper panel) followed by a second phase of weaker increase resulting from the
turgor pressure increase dynamics (Figure 3 (c) lower panel). For a 1 cm Chara
corallina internodal cell and for high stiffness obstacle, the transition occurs for
a force of a few tenth of mN after a time lag of a tenth of minutes. During
the whole simulation represented in Figure 3, the force remains lower than the
Euler criterion force, preventing instabilities such as buckling or barreling (See
Annex 6.7).

For multicellular cylindrical organs (roots and stems), the cell wall Young’s
modulus and the cell wall thickness vary among cells layers and are not uniquely
defined. The well-defined variable is the global organ stiffness. Then, to ease the
comparison of single-cell with multicellular cylindrical organs, non-dimensionalized
parameters are expressed with the cell stiffness and with the pressure formula-
tion of the Lockhart’s parameter (as obtained from the pressure probe littera-
ture):

t̂ = mPP∞t, P̂ =
P

P∞
, Ŷσ =

YP

P∞
, γ̂ =

(P − YP )+
P∞

, γ̂i =
k̂

1 + k̂
+

YP

P∞
, P∞ =

kcellL
∗
c

π(R∗)2
.

(24)
If we could approximate the Zea mays root growth zone by a single cylin-

drical cell at water potential equilibrium and diffuse growth (See Annex 6.5),
1/(mPP∞) = 50s would be twenty times smaller than for Chara corallina, and
the characteristic time of the positive exponential would be 1/γ = 3 h while the
characteristic time of the negative exponential would range from 1/γi = 33 min
for very low stiffness to 1/γi = 97 s for high stiffness.

4 Comparison with an elastic growth model

The growing cell is now modeled as a growing spring in series with one spring
for the obstacle. This morphoelastic model is similar to a model developed for
the growth of bacteria in a gel [21]; we present it here for comparison with the
physiological model developed above. The analytical solution of the compres-
sion scenario provides the cell spring stiffness. Growth is phenomenologically
introduced by increasing the rest cell length (coined target length Ltar). The
target length increase rate and the negative force retro-acting on growth can be
incorporated in the model thanks to two phenomenological constants (c1 and c2
(See Annex 6.8)) calibrated with the analytical solution. Elastic model totally
ignores water fluxes; it is thus not easy to incorporate the stationary osmoreg-
ulation hypothesis.
The elastic growth model (See Annex 6.8) provides an expression for the tempo-
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ral evolution of the non-dimensionalized observed length, L̂obs after the contact:

L̂obs(t̂) =
k̂L̂c

1 + k̂
+

L̂cγ̂el exp(γ̂elt̂)

(1 + k̂)γ̂ + k̂L̂c exp(γ̂elt̂)
,

with: γ̂el = P̂c

(
1 + (1− 2ν) k̂

1+k̂

)
− Ŷσ + k̂

1+k̂
. The solution saturates for a

length increment after the contact:

∆L̂obs =
P̂c − Ŷσ

k̂
. (25)

The elastic growth model predicts a saturation of the observed (turgid) length
which corresponds to a transient behavior of the physiological growth model
more pronounced at high obstacle stiffness. In general both the relaxation rate
(γ̂i = k̂/(1 + k̂) + Ŷσ) and the length increment differ with the elastic growth
model outputs:

∆L̂ =
k̂ + k̂P̂c (1− 2ν)

(1 + k̂)P̂c + k̂

P̂c − Ŷσ

k̂ + (1 + k̂)Ŷσ

.

As P̂c ≪ 1, and Ŷσ ≪ 1, γi equals γel and ∆L equals ∆Lobs at the first order of
approximation supposing k ⩾ kcell; both models coincide in the early phase of
the interaction (a few minutes for a 1 cm long Chara corralina internodal cell for
an obstacle stiffness superior to 3142 Nm−1). The morphoelastic model predicts
the same asymptotic force independently of the obstacle stiffness (Figure 3 (c)).

5 Conclusion

An apical compression is the simplest way to probe the mechanics of a cylin-
drical cell. The article derives the forces (before and after relaxation) exerted by
the sensor on the compressed cell and it shows that the forces are independent
on the pressure at the first order. The initial pressure, equilibrated by the ten-
sion in the cell wall, does not contribute to the forces. The forces only depend
on the surface modulus Eh multiplied by the radius and the force drop observed
during the relaxation is Poisson ratio dependent; the force drop is null when the
cell wall is an incompressible material, that is for a Poisson ratio of 0.5, and is
maximal for a zero Poisson ratio. A compression also induces a turgor pressure
jump which drops strongly during relaxation due to water outflow: before the
relaxation, the pressure jump is proportional to the surface modulus divided by
the radius while after the relaxation, the pressure jump is proportional to the
initial pressure. According to the linear elasticity hypothesis PR/Eh is inferior
to 1%, meaning the pressure jump after relaxation can be neglected in front of
the pressure jump before relaxation. As in the case of isotropic poroelastic gels,
the ratio between the force before and the force after relaxation only depends on
the Poisson ratio. However the ratio value for cylindrical cells

(
5
4 − ν

)
/(1− ν2)

is different from that for gels 2(1− ν) [31]; interestingly in both cases the ratio
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equals one for an incompressible material. As a perspective, the model should
be refined to describe the anisotropic properties of plant cell wall which could
induce a stronger drop of the force or of the pressure during the relaxation.

The model explores how a stationary osmoregulation process coupled with
the stress-formulated Lockhart’s law predicts the dynamics of turgor pressure
and cell length throughout the contact of a cell growing against an obstacle. The
phenomenology of the growth against a stiff obstacle is reproduced: a transient
growth arrest (Figure 3) followed by a second phase with a slower variation of
growth velocity which remains strictly positive (See [7] Figure 6 top left panel for
forces superior to 0.04N ). Interestingly this regime corresponds to the growth
behavior of Bacillus subtilis, a Gramm positive bacteria, in gels with an agarose
concentration ranging between 1% and 8% [21]. The article also provides the
opportunity to compare a physiological model to a more phenomenological ap-
proach, coined morphoelasticity, which neglects the osmotic origin of the growth.
Both models are calibrated to be equivalent before the contact with obstacle.
The morphoelastic model and the physiological model are not equivalent in gen-
eral; they only coincide for high obstacle stiffness (k ⩾ kcell) on short time scale
(γt ≪ 1). The physiological model could be extended to describe the invasive
growth of fungi (hyphe) or of some plant organ (pollen tube, root hairs ...) [32]
by adapting the framework to apical growth; the analytical approach is solvable
as analytical solutions linking the force to the apical deformation are available
[33].
A contact and more generally a force exerted on a cell is known to induce many
biological regulations. Some regulations tend to stop growth (touch responses)
[2], [34], [23] while other regulations on the contrary tend to favor growth despite
the cell wall tension drop, such as cell wall loosening [35] or through the increase
of osmotic pressure [3], [4]). The deviations from the quantitative predictions of
our model are a good base to quantify how these active responses act and differ
from the stationary osmoregulation.
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6 Annex

6.1 Force and pressure before relaxation

We start with the equations of mechanical equilibrium before compression
of the cell. The longitudinal ϵLL,0 and circumferential ϵΘΘ,0 strains in the cell
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wall can be written as:(
ϵLL,0

ϵΘΘ,0

)
=

(
(1− 2ν)P0R

∗(1 + ϵΘΘ,0)/(2Eh)
(2− ν)P0R

∗(1 + ϵΘΘ,0)/(2Eh)

)
(26)

with ϵLL,0 = L0/L
∗ − 1 and ϵΘΘ,0 = R0/R

∗ − 1. At the first order in strain,
(26) rewrites: (

ϵLL,0

ϵΘΘ,0

)
=

(
(1− 2ν)P0R

∗/(2Eh)
(2− ν)P0R

∗(2Eh)

)
(27)

leading to:

R0 = R∗(1 + (2− ν)P0R
∗/(2Eh)), (28)

L0 = L∗(1 + (1− 2ν)P0R
∗/(2Eh)). (29)

Then we write the equations following the instantaneous compression before
the relaxation occurs. The volume is conserved which implies:

Rbr = R0

√
L0/Lind.

At first order,

Rbr = R0 +R∗ (L0 − Lind)

2L∗

substituting with the values of (28,29), it gives:

Rbr = R∗
(
1 +

(
2− ν +

1− 2ν

2

)
P0R

∗/(2Eh)− 1

2
(Lind/L

∗ − 1)

)
(30)

Developing the formula (1) of the mechanical equilibrium, it gives:(
Lind/L

∗ − 1
Rbr/R

∗ − 1

)
=

(
(1− 2ν)PbrR

∗/(2Eh)− Fbr/(2πER∗h)
(2− ν)PbrR

∗/(2Eh) + νFbr/(2πER∗h)

)
The force Fbr can be expressed:

Fbr = (πERbrh)
(−2 + ν)(Lind/L

∗ − 1) + (1− 2ν)(Rbr/R
∗ − 1)

1− ν2
,

Substituting the expression for Rbr (30) gives:

Fbr = (πERbrh)
(−2 + ν)(Lind/L

∗ − 1) + (1− 2ν)
((
2− ν + 1−2ν

2

)
P0R

∗/(2Eh)− 1
2 (Lind/L

∗ − 1)
)

1− ν2

which rewrites neglecting second order terms:

Fbr = (πER∗h)
(−2 + ν)(Lind/L

∗ − 1) + (1− 2ν)
((
2− ν + 1−2ν

2

)
P0R

∗/(2Eh)− 1
2 (Lind/L

∗ − 1)
)

1− ν2
.
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It can be simplified by reintroducing L0:

Fbr = (πER∗h)

(
5

2
− 2ν

)
(L0 − Lind)

L∗(1− ν2)
(31)

The mechanical equilibrium also provides the pressure:

Pbr = (Eh)
(Rbr/R

∗ − 1) + ν(Lind/L
∗ − 1)

(1− ν2)R∗

Substituting the expression for Rbr and rearranging the term to make appear
L0 gives:

Pbr = P0 + Eh
(1− 2ν)

2(1− ν2)

L0 − Lind

L∗R∗ . (32)

6.2 Force and pressure after relaxation

The equation (2) can be rewritten as:(
ϵLL,ind

ϵΘΘ,ar

)
=

(
(1− 2ν)RTNi/(2EhπR∗(1 + ϵΘΘ,ar)Lind)− Far/(2πER∗(1 + ϵΘΘ,ar)h)
(2− ν)RTNi/(2EhπR∗(1 + ϵΘΘ,ar)Lind) + νFar/(2πER∗(1 + ϵΘΘ,ar)h)

)
(33)

with ϵLL,ind = Lind/L
∗ − 1 and ϵΘΘ,ar = Rar/R

∗ − 1. Multiplying the both
sides of (33) by (1 + ϵΘΘ,ar) and truncating at the first order in strain gives:(

ϵLL,ind

ϵΘΘ,ar

)
=

(
(1− 2ν)RTNi/(2EhπR∗Lind)− Far/(2πER∗h)
(2− ν)RTNi/(2EhπR∗Lind) + νFar/(2πER∗h)

)
which can be expanded in:(

Lind/L
∗ − 1

Rar/R
∗ − 1

)
=

(
(1− 2ν)RTNi/(2EhπR∗Lind)− Far/(2πER∗h)
(2− ν)RTNi/(2EhπR∗Lind) + νFar/(2πER∗h)

)
.(34)

Substracting (27) from (34) gives:(
(Lind − L0)/L

∗

(Rar −R0)/R
∗ − 1

)
=

(
−Far/(2πER∗h)
νFar/(2πER∗h)

)
.

which provides easily:

Rar = R0 + νR∗ (L0 − Lind)

L∗ , (35)

Far = (2πER∗h)
(L0 − Lind)

L∗ . (36)

The apparent stiffness after relaxation kar equals (2πER∗h)/L∗. The pressure
after relaxation reads:

Par = RTNi/(πR
2
arLind)

which at the first order in strain:

Par = P0

(
1 + (1− 2ν)

(L0 − Lind)

L∗

)
.
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6.3 First order solution for the osmotic equilibrium and
the mechanical equilibrium with an obstacle

Substituting (5) in (6,7) gives:(
L/L∗ − 1
R/R∗ − 1

)
=

(
1 −ν
−ν 1

)(
RTNi/(2EhπRL)− k/(2πERh)(L− Lc)+

RTNi/(EhπRL)

)
(37)

Introducing the small deformations ϵLL and ϵΘΘ gives:(
ϵLL

ϵΘΘ

)
=

(
1 −ν
−ν 1

)(
RTNi/(2EhπR∗L∗(1 + ϵLL)(1 + ϵΘΘ))− k(L∗(1 + ϵLL)− Lc)+/(2πER∗(1 + ϵΘΘ)h)

RTNi/(EhπR∗L∗(1 + ϵLL)(1 + ϵΘΘ))

)
(38)

Multiplying both sides by (1 + ϵLL)(1 + ϵΘΘ) gives:(
ϵLL(1 + ϵLL)(1 + ϵΘΘ)
ϵΘΘ(1 + ϵLL)(1 + ϵΘΘ)

)
=

(
(1− 2ν)RTNi/(2EhπR∗L∗)− k(1 + ϵLL)(L

∗(1 + ϵLL)− Lc)+/(2πER∗h)
(2− ν)RTNi/(2EhπR∗L∗) + νk(1 + ϵLL)(L

∗(1 + ϵLL)− Lc)+/(2πER∗h)

)
(39)

At the first order in ϵLL and ϵΘΘ:(
ϵLL

ϵΘΘ

)
=

(
(1− 2ν)RTNi/(2EhπR∗L∗)− k(L∗(1 + 2ϵLL)− Lc(1 + ϵLL))+/(2πER∗h)
(2− ν)RTNi/(2EhπR∗L∗) + νk(L∗(1 + 2ϵLL)− Lc(1 + ϵLL))+/(2πER∗h)

)
(40)

It rewrites:

(1 + k(2L∗ − Lc))/(2πER∗h)) ϵLL = (1−2ν)RTNi/(2EhπR∗L∗)−k(L∗−Lc)/(2πER∗h)

which yields:

ϵLL =
(1− 2ν)RTNi/(2EhπR∗L∗)− k(L∗ − Lc)/(2πER∗h)

1 + k(2L∗ − Lc)/(2πER∗h)
. (41)

Exploiting:
ϵΘΘ + νϵLL = (2− 2ν2)RTNi/(2EhπR∗L∗), (42)

it provides ϵΘΘ:

ϵΘΘ = (1− ν2)RTNi/(EhπR∗L∗)− νϵLL. (43)

The longitudinal stress reads:

σLL/E = (ϵLL + νϵΘΘ)/(1− ν2) = ϵLL + νRTNi/(EhπR∗L∗). (44)

6.4 First order expression of the Lockhart’s model

Substituting (44) in the time derivative of the plasmolyzed length corre-
sponding to the stress-based formulation Lockhart’s law gives:

fσ = mσE

(
(1− 2ν)RTNi/(2EhπR∗)− kL∗(L∗ − Lc)/(2πER∗h)

1 + k(2L∗ − Lc)/(2πER∗h)
+

νRTNi

πER∗h
− YσL

∗

E

)
+

.

(45)
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The growth ODE (12) thus reads:

dL∗

dt
= mσE

(
(1− 2ν)RTNi/(2EhπR∗)− kL∗(L∗ − Lc)/(2πER∗h)

1 + k(2L∗ − Lc)/(2πER∗h)
+

νRTNi

πER∗h
− YσL

∗

E

)
+

.

At t = 0, the contact time, the force exerted by the obstacle is zero and the
classical formula (29) for a turgid cylinder is applicable:

Lc = L∗
c(1 + (1− 2ν)RTNi(0))/(2πR

∗hL∗
cE)).

Introducing the variables P̂c = RTNi(0)/(2πR
∗hL∗

cE), Ŷσ = Yσ/E, and substi-
tuting with the expression for Lc provides:

dL∗

dt
= mσE

(
(1− 2ν)P̂c exp(γt)L

∗
c − kL∗(L∗ − L∗

c(1 + (1− 2ν)P̂c))/(2πER∗h)

1 + k(2L∗ − L∗
c(1 + (1− 2ν)P̂c))/(2πER∗h)

+ 2νP̂c exp(γt)L
∗
c − ŶσL

∗

)
+

.

(46)
The obstacle stiffness can be non-dimensionalized with kar = 2πR∗hE/L∗

c , the

cell stiffness after relaxation at contact (4), by introducing k̂ = k/kar:

dL∗

dt
= mσE

(
(1− 2ν)P̂c exp(γt)L

∗
c − k̂L∗(L∗/L∗

c − (1 + (1− 2ν)P̂c))

1 + k̂(2L∗/L∗
c − (1 + (1− 2ν)P̂c))

+ 2νP̂c exp(γt)L
∗
c − ŶσL

∗

)
+

.

(47)
The growth ODE (47) can be rewritten with the non-dimensional time and
length variables t̂ = mσEt and L̂∗ = L∗/L∗

c :

dL̂∗

dt̂
=

(
(1− 2ν)P̂c exp(γ̂t̂)− k̂L̂∗(L̂∗ − (1 + (1− 2ν)P̂c))

1 + k̂(2L∗ − (1 + (1− 2ν)P̂c))
+ 2νP̂c exp(γ̂t̂)− ŶσL̂

∗

)
+

.

(48)

with: γ̂ =
(
P̂c − Ŷσ

)
+
.

It corresponds to a non-dimensional growth ODE function (16):

f̂σ(L̂
∗, t̂) =

(
(1− 2ν)P̂c exp(γ̂t̂)− k̂L̂∗(L̂∗ − 1− (1− 2ν)P̂c)

1 + k̂(2L̂∗ − 1− (1− 2ν)P̂c)
+ 2νP̂c exp(γ̂t̂)− ŶσL̂

∗

)
+

.

(49)
The longitudinal elastic strain (41) can be rewritten in term of the non-dimensional
variables:

ϵLL =
(1− 2ν)P̂c/L̂

∗ exp(γ̂t̂)− k̂(L̂∗ − 1− (1− 2ν)P̂c)

1 + k̂(2L̂∗ − 1− (1− 2ν)P̂c)
. (50)

The L̂∗ derivative of f̂σ reads:

∂L̂∗ f̂σ = −

 k̂
(
2L̂∗ − 1− (1− 2ν)P̂c + 2L̂∗ϵLL

)
1 + k̂

(
2L̂∗ − 1− (1− 2ν)P̂c

) + Ŷσ

 . (51)
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making use of (50) to introduce ϵLL.
For t̂ > 0 and a length which equals the contact length, the normalized length
derivative reads:

f̂σ(L̂
∗ = 1, t̂) =

(
(1− 2ν)P̂c exp(γ̂t̂) + k̂(1− 2ν)P̂c

1 + k̂(1− (1− 2ν)P̂c)
+ 2νP̂c exp(γ̂t̂)− Ŷσ

)
+

,

(52)

∂L̂∗ f̂σ(L̂
∗ = 1, t̂) = −

 k̂
(
1− (1− 2ν)P̂c + 2ϵLL

)
1 + k̂

(
1− (1− 2ν)P̂c

) + Ŷσ

 . (53)

Following the hypothesis of linear elasticity, longitudinal elastic strain ϵLL =
(1− 2ν)P̂c is small. Keeping the dominant order provides:

f̂σ(L̂
∗ = 1, t̂) =

(
exp(γ̂t̂)P̂c

(
1 + 2νk̂

1 + k̂

)
+ P̂c

(
(1− 2ν)k̂

1 + k̂

)
− Ŷσ

)
+

, (54)

∂L̂∗ f̂σ(L̂
∗ = 1, t̂) = −

(
k̂

1 + k̂
+ Ŷσ

)
. (55)

6.5 Analytical solution of the linearized problem

The equation (48) linearized at (L̂∗ = 1, t̂) reads:

dL̂∗

dt̂
≈ f̂σ

(
1, t̂
)
+ (∂L̂∗ f̂σ)

(
1, t̂
) (

L̂∗ − 1
)
. (56)

(54) tells ∂L̂∗ f̂σ is independent of the time at first order. The solution of (56)
reads:

L̂∗ = 1 + exp
(
∂L̂∗ f̂σ(1, 0)t̂

)∫ t̂

u=0

f̂σ (1, u) exp
(
−∂L̂∗ f̂σ(1, 0)u

)
du. (57)

Once substituted with (56), the integral reads:∫ t̂

u=0

(
exp ((γ̂ + γ̂i)u) P̂c

(
1 + 2νk̂

1 + k̂

)
+ exp (γ̂iu)

(
P̂c

(
(1− 2ν)k̂

1 + k̂

)
− Ŷσ

))
du

(58)

with γ̂ = P̂c − Ŷσ and γ̂i =
k̂

1+k̂
+ Ŷσ. The solution can be explicited:

L̂∗(t̂) ≈ 1 + β̂
(
exp

(
γ̂t̂
)
− 1
)
+ (1− β̂)

γ̂

γ̂i

(
1− exp

(
−γ̂it̂

))
, (59)

with:

β̂ =
P̂c

(
1 + 2νk̂

)
(1 + k̂)P̂c + k̂

.
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For a Chara corallina internode of length at contact Lc = 1cm, the mechanical
parameters are of the following order of magnitude [28]:

E = 1GPa, h = 10µm, ν = 0.3, R∗ = 500µm.

The Lockhart’s parameters expressed in pressure read:

P = 0.55MPa, YP = 0.5MPa, mP = 2.6000× 10−5(MPa)−1s−1,

which correpond to Lockhart’s parameters expressed in stresses obtained with
these formula:

σLL =
PR

2h
, Yσ =

YPR

2h
, mσ =

2hmP

R
.

It corresponds to a cell stiffness after relaxation: kar = π × 103N/m.
The hypothesis of our model do not apply to a maiz root growth zone.

Nonetheless we provide its parameters in order to provide a qualitative compar-
ison point with Chara corallina. Approximating the maize root growth zone by
a single cell of contact length Lc = 1cm, the mechanical parameters of the root
taken as a plain rod are the following (Paragraph 4.2.6.3 of [36] ):

Erod = 24MPa, R∗ = 450µm.

It corresponds to a stiffness

kcell =
π(R∗)2Erod

Lc
= 1527N/m

The Lockhart’s parameters expressed in pressure read [29]:

P = 0.7MPa, YP = 0.6MPa, mP = 8× 10−4(MPa)−1s−1.

6.6 Asymptotic behavior of the Lockhart’s model with an
obstacle

The time derivative of (12) gives:

d2L∗

dt2
= ∂tfσ(L

∗, t) + ∂∗
Lfσ(L

∗, t)
dL∗

dt
.

Let suppose dL∗

dt equals zero for a given tzero:

d2L∗

dt2
(tzero) = ∂tfσ(L

∗(tzero), tzero)

The time derivative reads:

∂tfσ(L
∗(tzero), tzero) = mσγ

RTNi(tzero)

2hπR∗L∗

(
1 + 2νk(2L∗ − Lc)/(2πER∗h)

1 + k(2L∗ − Lc)/(2πER∗h)

)
,

21



Figure 4: Force versus time in real units. k = kcell/100 (blue), k = kcell/10
(violet), k = kcell/5 (dark red), k = kcell (orange), k = 5kcell (yellow). Other
parameters are detailed in the annex (6.5). Plain lines and + symbols stand
for the numerical and analytical solutions respectively. The dotted line is the
morphoelastic solution. The dashed line is the Euler criterion corresponding to
the numerical solution. The left plot is a zoom on the five first hours of growth
(corresponding to the duration of the experiment of reference [5], Figure 5); the
right plot is integrated until one of the strains equals 3%.
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which implies:
d2L∗

dt2
(tzero) > 0.

L∗ is thus strictly increasing with no fixed point; L∗ asymptotic limit reads:

lim
t→∞

L∗ = +∞.

The longitudinal stress reads:

σLL =

(
(1− 2ν)RTNi/(2EhπR∗L∗)− k(L∗ − Lc)/(2πR

∗h)

1 + k(2L∗ − Lc)/(2πER∗h)
+

νRTNi

πR∗hL∗

)
.

When t → ∞ it can be rewritten:

σLL = −E

2
+

νRTNi

πER∗hL∗ + ot→∞

(
RTNi

πR∗hL∗

)
.

(45) can be rewritten:

dL∗

dt
= mσ

(
−EL∗

2
+

νRTNi

πR∗h
− YσL

∗ + ot→∞

(
RTNi

πR∗h

))
+

. (60)

Let write the time derivative of ρ = L∗/Ni:

dρ

dt
=

1

Ni

dL∗

dt
− L∗

N2
i

dNi

dt

Substituting the value of Ni and of L̇∗:

dρ

dt
= mσ

(
−E

2
ρ+

νRT

πR∗h
− Yσρ+ ot→∞

(
RT

πR∗h

))
+

− γρ

Substituting the value of γ = mσ(P0R
∗/(2h)− Yσ) gives:

dρ

dt
= mσ

(
−E

2
− P0R

∗/(2h)

)
ρ+mσ

νRT

πR∗h
+ ot→∞

(
mσ

RT

πR∗h

)
(61)

Let take a very high to, and integrate the ODE from the time to (61):

ρ = exp

(
mσ

(
−E

2
− P0R

∗/(2h)

)
(t− to)

)(
ρ0 −

2νRT

πR∗h(Eh+ P0R∗)

)
+

2νRT

πR∗h(Eh+ P0R∗)
(62)

Finally, L∗ has a simple equivalent for high t:

L∗ ∼t→∞
2νRTNi(t)

πR∗(P0R∗ + Eh)
, (63)

it corresponds to a value of elastic strain outside of the range of linear elasticity:

lim
t→∞

ϵLL = −1/2, (64)

and an asymptotic pressure:

lim
t→∞

P =
P0 + Eh/R∗

2
. (65)
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6.7 Cell buckling and barreling

The Euler criterion that gives the force threshold for buckling of an hollow
cylinder is provided by [37]:

Fb =
π2(R∗)3hE

(L∗)2
(66)

The force exerted by the obstacle remains well under the Euler criterion during
the whole growth (Figure 4, Right Panel).

The barreling criterium can be calculated by a complex numerical procedure
described in [38] but not repeated herein. In [38] Figure 3 for a slightly differ-
ent constitutive law (neo-Hookean C1 = 1) and a slightly different geometry
(h/R = 0.01 instead of h/R = 0.02 for Chara corallina), the barreling criterium
expressed lays under the Euler criterium for the ratio (R/L = 0.05) of Chara
corallina meaning the force for barreling is higher than the Euler criterion; this
result should remain valid for a 1 cm internode.

6.8 Elastic growth model

The contact scenario is modeled by one spring of a constant stiffness kcell
and an increasing target length Ltar and one spring of constant rest length Lc

and a constant stiffness k (See Figure 1c). The observed length Lobs is provided
by the mechanical equilibrium:

kcell(Lobs − Ltar) + k(Lobs − Lc) = 0, (67)

thus:

Lobs =
kLc + kcellLtar

kcell + k
. (68)

To retrieve the phenomenology, we suppose the target length evolution rate
decreases linearly with the force:

L̇tar = Ltarf(Ltar) (69)

with f(Ltar) = (c1 − c2k(Lobs − Lc)) the growth rate. c1 corresponds to the
growth rate before the contact:

c1 = mσ

(
PcR

2h
− Yσ

)
. (70)

c2 can be estimated by considering the growth rate tangent at the contact time:

c2 =
( L̇L − c1)

F
. (71)

Approximating dL/dt/L by dL∗/dt/L∗ at a contact time which is reasonable
according to the analytical solution for the Lockhart model:

c2 =
mσ

2πRh
. (72)
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Substituting (68) in (69) gives:

dLtar

dt
= Ltar

(
mσ

(
PcR

2h
− Yσ

)
− mσ

2πRh

kcellk

kcell + k
(Ltar − Lc)

)
+

. (73)

The equation can be non-dimensionalized using the following non-dimensional
variables:

t̂ = mσEt, L̂tar =
Ltar

L∗
c

, P̂c =
RTNi(0)

2πR∗hL∗
cE

, Ŷσ =
Yσ

E
, (74)

k̂ =
k

kcell
, γ̂ =

(
P̂c − Ŷσ

)
+
, γ̂el = γ̂ +

k̂

1 + k̂
L̂c. (75)

The non-dimensionalized equation reads:

dL̂tar

dt̂
= L̂tar

(
γ̂el −

k̂

1 + k̂
L̂tar

)
+

. (76)

It rewrites:

dL̂tar

dt̂

 1

L̂tar

+

k̂
1+k̂

γ̂el − k̂
1+k̂

L̂tar

 = γ̂el.

We suppose the contact takes place at time t = 0; it implies Ltar(0) = Lc. The
expression (76) can be integrated:

log(L̂tar/L̂c)− log

 γ̂el − k̂
1+k̂

L̂tar

γ̂

 = γ̂elt̂.

Finally:

L̂tar(t̂) =
L̂cγ̂el exp(γ̂elt̂)

γ̂ + k̂L̂c

1+k̂
exp(γ̂elt̂)

. (77)

The solution saturates for an increment:

∆L̂tar =
γ̂el(1 + k̂)

k̂
− L̂c.

Substituting with the value of γ and ∆L̂tar rewrites:

∆L̂tar =
γ̂(1 + k̂)

k̂
.

Combining (77, 68) provides the observed length dynamics:

L̂obs(t̂) =
k̂L̂c

1 + k̂
+

L̂cγ̂el exp(γ̂elt̂)

(1 + k̂)γ̂ + k̂L̂c exp(γ̂elt̂)
, (78)

which saturates for a non-dimensionalized observed length increment:

∆L̂obs =
γ̂

k̂
. (79)
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