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Suspension of particles in a fluid solvent are ubiquitous in nature, for example, water mixed with
sugar or bacteria self-propelling through mucus. Particles create local flow perturbations that can
modify drastically the effective (homogenized) bulk properties of the fluid. Understanding the link
between the properties of particles and the fluid solvent, and the effective properties of the medium
is a classical problem in fluid mechanics. Here we study a special case of a two dimensional model of
a suspension of undeformable particles in a liquid crystal solvent. In the dilute regime, we calculate
asymptotic solutions of the perturbations of the velocity and director fields and derive an explicit
formula for an effective shear viscosity of the liquid crystal medium. Such effective shear viscosity
increases linearly with the area fraction of particles, similar to Einstein formula but with a different
prefactor. We provide explicit asymptotic formulas for the dependence of this prefactor on the
material parameters of the solvent. Finally, we identify a case of decreasing the effective viscosity
by increasing the magnitude of the shear-flow alignment coefficient of the liquid crystal solvent.

INTRODUCTION:

Liquid crystals are anisotropic fluids where particles
align on average along a common direction, called the
director field [1]. In nematic phases, the director field
is equivalent to its opposite and therefore characterises
an axis in space. Due to their unique properties, liquid
crystals are of considerable technological importance and
have attracted interest in a broad range of fields. Some
recent examples are from ferroelectric liquid crystals to
thin liquid-crystal films or from active nematics to bio-
logical physics [2–5].

The motion of colloidal particles can be influenced by
properties of the liquid crystal solvent [6]. For example,
the director field in the surrounding region of particles
can be distorted due to the anchoring of the director field
on the interface of particles. These distortions can, for
instance, induce additional long-ranged interactions be-
tween particles [7–11]. Moreover, the motion of colloidal
particles can be used to measure rheological properties
of a solvent. A method that has been widely used in
biological systems like actin or microtubule suspension,
[12–17], bacteria suspensions [18–21] or tissues [22–25].
Here we are interested in understanding how the bulk
properties of liquid crystals are modified by a suspension
of particles.

Several mathematical approaches have been developed
for coarse-graining microscopic models. Among them,
homogenization theory offers mathematical tools to deal
with well-separated scales both numerically and analyt-
ically. In the context of fluid mechanics, this line of
research dates back to the seminal work by Einstein
1905 [26] who calculated the homogenized viscosity of a
dilute suspension of particles in Stokesian fluids. Subse-
quently, this work was extended to non-dilute regimes, re-
quiring the inclusion of pairwise particle interactions [27].

Since then, numerous extensions of the problem have
been explored, including suspensions of particles with
different shapes [28–30] or suspensions with particles
that self-propel [31–34]. Other approaches such as the
BBGKY hierarchy has been widely used to coarse-grain
assemblies of self-propelled particles [35–41].

Various experimental and theoretical techniques have
been developed to measure the effective viscosities of liq-
uid crystals. The pioneering work of Miesowicz [42] first
reported on the anisotropy of viscosity coefficients in pure
liquid crystals under shear flow. In [43, 44], the authors
computed the frictional drag on a sphere moving through
a liquid crystal solvent with a uniform director alignment
parallel to the flow direction at infinity. More recently,
[45] introduced the shear horizontal wave method, which
measures an effective viscosity averaged over the depth of
the liquid crystal solvent, offering a novel experimental
approach to obtain the bulk viscosity.

In this work, we first introduce a 2D mathematical
model for describing a suspension of particles immersed
in a liquid crystalline medium based on the Ericksen-
Leslie model. Next, we perform a two-scale expansion
to obtain the local problem for a single particle, which
is known in homogenization theory as the cell problem.
Then, we determine the effective viscosity in the dilute
regime up to first order in area fraction. Finally, we dis-
cuss a case of decreasing the effective viscosity by chang-
ing parameters of the liquid crystal solvent.

ERICKSEN-LESLIE MODEL FOR SUSPENSIONS

In this section, we present the theoretical framework
for describing a suspension of solid particles in a liquid
crystal. This suspension is modeled by an ε-periodic
square array of undeformable identical discs Pε =

⋃
n Pε

n
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immersed in a liquid crystaline medium occupying a do-
main Ωε = Ω \ Pε with Ω ⊂ R2, see Fig. 1a. The pa-
rameter ε is the spacing between centers of particles (i.e.
period of the square array) and the parameter aε is the
radius of the discs. In the subsequent sections, we con-
sider the dilute regime by taking the limit aε/ε → 0.
Note that because the domain Ω is divided into an ε-
periodic array, it can be partitioned into a periodic array
of cells where each cell Yf contains a single particle Pε

n,
see Fig. 1b.

FIG. 1. Schematic of a periodic suspension of particles in
a liquid crystal. a) ε-periodic square array of undeformable
identical discs (black) Pε =

⋃
n Pε

n. The radii of the par-
ticles is aε. The particles are immersed in a liquid crys-
talline medium occupying a domain Ωε = Ω \ Pε with
Ω ⊂ R2 being the domain of the container. The vector
ŝ = {cos (θs), sin (θs)} is the anchoring on the boundary of
the container ∂Ω with phase θs. b) Schematic of the unit cell
problem on domain Yf . The dimensions of the periodic cell
are rescaled such that the size of the domain Yf is 1 and the
size of the particle is a. The vector t̂ = {cos (θt), sin (θt)} is
the anchoring of the director on the particle boundary ∂Pε

with phase θt. Dotted black lines represent the director field
nε.

While, in the literature, there are several descriptions
for the liquid crystal solvent, in this work, we choose the
Ericksen-Leslie model (1)-(4) because it is amenable to
analytical studies. The liquid crystal is described by a
velocity field uε and a director field nε. Because the liq-
uid crystal has nematic symmetry, the system of contin-
uum equations governing the hydrodynamics of the liquid
crystal are invariant under the transformation nε → −nε

and it takes the form

∇ · σε = 0 x ∈ Ωε

∇ · uε = 0 x ∈ Ωε

∂tn
ε + (uε · ∇)nε +A(uε) · nε

= Γhε − νD(uε) · nε x ∈ Ωε

|nε| = 1 x ∈ Ωε

(1)

(2)

(3)

(4)

where σε is the total stress tensor [1] of the form

σε(x) = 2ηD(uε)− pε +
ν

2
(nεhε + hεnε)

+ 1
2 (n

εhε − hεnε)−K(∇nε)(∇nε) (5)

In the limiting case where inertial effects are negligible
and in the absence of external forces, the conservation
of momentum reduces to the force balance equation (1).
In Eq. (5), the first term on the right hand side (RHS)
is the viscous stresses with the shear viscosity η, where
D(uε) is the symmetric part of the velocity gradient ten-
sor D(uε) = (∂αu

ε
β + ∂βu

ε
α)/2. The second term pε is

the pressure field, which acts as a Lagrange multiplier
to enforce the incompresibility constraint (2). The next
three terms are stresses due to distortions of the director
field which depend on the field hε = −δFd/δn

ε often
called the molecular field in the context of liquid crystals
[1]. Here δ/δnε refers to the functional derivative of Fd

which is the part of the total free-energy that depends on
distortions of the director field. Here, Fd is given by the
Frank free-energy in the one-constant approximation [1]

Fd =

∫
Ωε

(
K

2
(∇nε)2 + λε|nε|2

)
da (6)

The elastic coefficient K is the reduced Frank constant
in two dimensions and da is an infinitesimal element of
area. The field λε is a Lagrange multiplier that enforces
the constraint (4), which means that the liquid crystal is
deep into a nematic phase. Using Eq. (6), the expression
of the molecular field becomes

hε := − δF
δnε

= K∆nε − λεnε, (7)

The dynamics of the director field are governed by
Eq. (3). The terms on the left hand side (LHS) of Eq. (3)
represent the co-rotational convective time derivative of
nε, where A(uε) is the anti-symmetric part of the ve-
locity gradient tensor A(uε) = (∂αu

ε
β − ∂βu

ε
α)/2. The

first term on the RHS of Eq. (3) is the elastic torque
associated with perturbation of the director field, where
Γ is the inverse of the rotational viscosity. The second
term on the RHS in Eq. (3) couples the dynamics of nε

to the local shear flows with the parameter ν called the
shear-flow alignment coefficient. This coefficient controls
two regimes of the dynamics of the director field: The
tumbling regime |ν| < 1, where the director field rotates
when subjected to shear flows, and the aligning regime
|ν| > 1, where the director field aligns when subjected to
shear flows. It follows from the Onsager relations that
the coefficient ν in Eq. (5) and in Eq. (3) are equal [1].

As shown in Appendix A, Eq. (3) can be further sim-
plified by representing the director field as

nε = {cos(ψε), sin(ψε)} (8)

where ψε is the angle of the director field with respect
to an arbitrary axis. Note that this expression automat-
ically satisfies the constraint (4). Then, the continuum
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equations (1)-(4) become:

∇ · σε = 0 x ∈ Ωε

∇ · uε = 0 x ∈ Ωε

∂tψ
ε + (uε · ∇)ψε + nε

⊥A(u
ε)nε

= Γhε⊥ − νnε
⊥D(uε)nε x ∈ Ωε

Γhε∥ = νnεD(uε)nε x ∈ Ωε

(9)

(10)

(11)

(12)

where

hε⊥ = nε
⊥ · hε = K∆ψε (13)

hε∥ = nε · hε = −K|∇ψε|2 − λε (14)

are the perpendicular and parallel components of hε

with respect to nε
⊥ = {− sin(ψε), cos(ψε)} and nε re-

spectively. Since λε is a Lagrange multiplier, then hε∥
in Eq. (14) becomes a Lagrange multiplier that is fixed
through Eq. (12).

Next, we introduce boundary conditions for the system
(9)-(12). Here, there are two boundaries: the boundary
of the particles ∂Pε =

⋃
n ∂Pε

n and the exterior boundary
of the container ∂Ω. The set of boundary conditions
reads

D(uε) = 0 x ∈ Pε

uε = E · x x ∈ ∂Ω

K(N̂ · ∇)ψε =W sin (2(θt(x)− ψε)) x ∈ ∂Pε

ψε = θs(x) x ∈ ∂Ω

(15)

(16)

(17)

(18)

The rigidity condition (15) extends the velocity uε to a
constant inside Pε and so that at the particle bound-
ary ∂Pε the velocity field is continuous. At the con-
tainer boundary, we impose in Eq. (16) that the veloc-
ity is a linear shear flow given by E · x, where E is a
symmetric traceless matrix. In addition, the director
field on the particle boundary satisfies the torque bal-
ance equation (17), where the term on the RHS of (17)
corresponds to the torques generate by misalignment of
the director field with respect to a preferred anchoring
t̂ = {cos(θt(x)), sin(θt(x))} with phase θt(x), Fig. 1b.
The strength of the anchoring alignment is controlled by
the parameter W in (17). Vector N̂ is the outward nor-
mal to the particle boundary. Likewise, on the container
boundary in (18), we impose that the director field aligns
with a preferred anchoring ŝ = {cos(θs(x)), sin(θs(x))}
with a fixed given phase θs(x), Fig. 1a.
Note that the model (9)-(18) depends on the follow-

ing set of parameters: the size of a cell ε, the radii of
discs aε, and the size of the container |Ω| which does not
depend on ε, the shear viscosity η and the rotational vis-
cosity 1/Γ, the elastic coefficients K and W , two given
phases θs(x) on the boundary of the container and θt(x)
on the boundary of the particles, the shear flow rate E,
which has two independent components, and the dimen-
sionless shear-flow alignment coefficient ν. In the follow-
ing, we consider the special case where the phases are

equal and constant θs = θt = constant and without loss
of generality this constant phase is set to zero. Moreover,
we choose an extensional shear flow at infinity for shear
strength γ > 0

E = γ

(
1 0
0 −1

)
(19)

Our focus is on steady state solutions and therefore we
consider time-independent physical fields and disregard
the time derivative in (11).
Note that in the absence of particles, the liquid crystal

in the configuration ψε = 0 is linearly stable to long-
wavelength perturbations of the phase when νγ < 0, [1].
In this work, we choose to consider the range of γ > 0
and therefore the stable range is ν < 0.

TWO-SCALE EXPANSION

In this section, we perform a two-scale expansion of
the solutions (uε, ψε) to the Eqs. (9)-(18) (see also (8)).
We consider the limit ε≪ 1 and derive the so-called cell
problem which describes the local flows around a particle.
We solve the cell problems under two conditions on the
range of the parameters ν and aε.

I. Two limiting regimes of the shear-flow alignment
coefficient, where cell problem can be solved asymp-
totically: |ν| ≪ 1 and |ν| ≫ 1.

II. The dilute regime where aε/ε→ 0 and interparticle
interactions can be neglected.

Two-scale expansion is an asymptotic technique that is
useful in constructing approximate solutions for problems
with two well-separated scales. This technique has been
used in a wide variety of contexts e.g., [46–48]. For exam-
ple, it has been used to study suspensions in the Stokes
fluids [49] as well as nonhomogeneous materials, includ-
ing elastic materials and conductive materials [50, 51]. In
short, we consider the physical fields, uε and nε (equiv.
ψε), as vectorial functions of slow varying spatial coor-
dinate x and “fast” variable y = x/ε. This expansion
describes two well-separated length scales in the system
and the key mathematical idea is to treat x and y as in-
dependent variables. The slow variable x represents vari-
ations of the physical fields on the scale of the domain Ω
which we normalize to be of order O(1) as ε → 0. On
the other hand, the fast variable y represents variations
of the physical fields on the scale of the interparticle dis-
tance of order O(ε). Then, the gradient operator writes
as:

∇f(x,y) =

(
∇x +

1

ε
∇y

)
f(x,y) (20)

where the superscripts in ∇ denote derivatives with re-
spect to either the slow variable x or the fast variable y.
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We expand the unknown physical fields in a power series
in ε for uε, ψε, pε, hε⊥ and hε∥:



uε(x,y) =
∑∞

n=0 u
(n)(x,y)εn

ψε(x,y) =
∑∞

n=0 ψ
(n)(x,y)εn

pε(x,y) =
∑∞

n=−1 p
(n)(x,y)εn

hε⊥(x,y) =
∑∞

n=−2 h
(n)
⊥ (x,y)εn

hε∥(x,y) =
∑∞

n=−2 h
(n)
∥ (x,y)εn

(21)

The superscripts in the coefficient fields denote the order
of the term in the two-scale expansion (21). Because the
domain Ω is partitioned into an ε-periodic array of cells
Y ε
f , we consider all terms in the RHS of Eq. (21) to have

the same ε-periodicity in y.
Substituting Eqs. (21) into the system (9)-(12)

and (15)-(18) (see Appendix B to D for calculations),
we obtain at the lowest order ε−2

ψ(0)(x) = θs (22)

u(0)(x) = E · x (23)

p(−1) = h
(−2)
⊥ = h

(−2)
∥ = 0 (24)

The lowest order terms given by Eqs. (22)-(24) do not
depend on the fast variable y and therefore represent the
macroscopic (or coarse-grained) physical fields.
Due to the presence of particles, local perturbations

can be generated on the physical fields, which are ac-
counted for by the next order terms in the two-scale
expansions Eqs. (21). To order ε−1, the perturbations
of the director phase and of the two components of the

molecular field vanish, ψ(1) = 0 and h
(−1)
⊥ = h

(−1)
∥ = 0

(see Appendix B). Moreover, the perturbations of the
velocity and pressure field solve the following ”cell prob-
lem” (see Appendix C and D)

η1∂
y
11u

(1)
1 + η2∂

y
22u

(1)
1 − ∂y1 p̄

(0) = 0 y ∈ Yf

η1∂
y
11u

(1)
2 + η2∂

y
22u

(1)
2 − ∂y2 p̄

(0) = 0 y ∈ Yf

∂y1u
(1)
1 + ∂y2u

(1)
2 = 0 y ∈ Yf

u(1) periodic y ∈ ∂Yf

u(1) = −E · y y ∈ ∂P

(25)

(26)

(27)

(28)

(29)

where η1 = η + (ν − 1)2/4Γ and η2 = η + (ν + 1)2/4Γ
are two effective viscosities. The subscripts in the deriva-
tives denote the Cartesian coordinates in two dimensions.
The pressure field p(0) is expressed in terms of p̄(0), which
satisfies the Laplace equation (see Appendix D). Because
the ansatz (21) is ε-periodic in the fast variable y, it is
sufficient to find the solution in a single cell Yf with peri-
odic boundary conditions on ∂Yf (28) and the boundary
conditions (29) on ∂P. This is the so-called cell prob-
lem which depends on the radius of the particles and the
material parameters of the liquid crystal solvent, such as

the shear-flow alignment coefficient ν. We note that since
the cell problem only depends on y the domain Yf is of
size 1 and the particle radius becomes a, see Fig. 2a

FIG. 2. Schematic of the unit cell domain Yf and the rescaled
domain in the dilute limit. a) In the unit cell domain Yf , the
particle is of size a in a container of size 1. In this work,
we choose the scaling of a with ε in Eq. (32). b) Rescaled
domain for the choice of scaling of a with ε in Eq. (32). In
this domain, the particle is of size 1 in a container of size ε−1.
The dotted curves represents the director field and the black
circles represent the particles.

The cell problem (25)-(27) describe an anisotropic fluid
with two viscosities η1 and η2. Because the fluid is in-
compressible, the velocity field can be expressed in terms

of a streamfunction Ψ(1), such that u
(1)
1 = −∂y2Ψ(1) and

u
(1)
2 = ∂y1Ψ

(1). This streamfunction is a solution of a gen-
eralised (anisotropic) biharmonic equation (see Appendix
D) with the general form

Ψ(1)(y) = Re

[
f(y1 + iy2) + g

(
y1√
η1

+ i
y2√
η2

)]
(30)

where f and g are analytic functions and y1 and y2 are the
Cartesian coordinates of the fast variable y. By incom-
pressibility, the pressure field p̄(0) satisfies the ∆p̄(0) = 0.
In order to solve the cell problem (25)-(27) analytically,
we focus on the limiting regime I introduced at the be-
ginning of this section controlled by the parameter ν (see
Appendix E for calculations).
In the limit of small shear-flow alignment |ν| ≪ 1, we

solve the cell problem by expanding the perturbations of
the streamfunction and pressure field as a power series
in ν. {

Ψ(1)(y) =
∑

k=0 ν
kΨ

(1,k)
s (y)

p̄(0)(y) =
∑

k=0 ν
kp̄

(0,k)
s (y)

(31)

This allows us to transform (25)-(27) into a set of PDEs
for the functions Ψ(1,k)(y) and p̄(0,k)(y) which describe
an isotropic fluid solvent with shear viscosity η + 1/4Γ
and forcing terms determined by the previous order in ν
(see Appendix E).
Next, we consider the dilute limit of the cell problem

where the particle radius a→ 0. Since the PDE for u(1)

reduces to an isotropic Stokes equation in the limit of
|ν| ≪ 1, we choose the scaling [49]

aε ∝ ε2, a ∝ ε (32)
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Later we will show that this choice of scaling for the ra-
dius a leads to corrections to the rate of total dissipation
for the suspension.

The cell problem on domain Yf can be rescaled so the
radius of the particle is of size 1 and the domain is of size
ε−1, Fig. 2b. In the dilute limit (a → 0) this rescaled
domain approaches R2 \ P and we replace the periodic
boundary conditions on Yf (28) with decay condition at
infinity u(1) → 0 at ∞. Then, we solve for Ψ(1) and
p̄(0) on the infinite domain. The solution in this infinite
domain is an approximation to leading order of the cell
problem on a domain of size 1 with a particle of size a,
Fig. 2a. Up to order k = 2 in ν, the particular solution
in the unit cell takes the form (see Appendix E)

Ψ
(1,0)
s = γa2

(
1− a2

2r2

)
sin(2θ)

Ψ
(1,1)
s = γa2

2(1+4Γη)

(
1− a2

r2

)2

sin(4θ)

Ψ
(1,2)
s = γa2

6(1+4Γη)2

(
2− 5a2

r2

)(
1− a2

r2

)2

sin(6θ)

p̄
(0,0)
s = −γa2(1+4Γη)

Γr2 cos(2θ)

p̄
(0,1)
s = 0

p̄
(0,2)
s = − 4γa2η

(1+4Γη)r2 cos(2θ)

(33)

where the Cartesian coordinates y1 = r cos θ and y2 =
r sin θ are expressed in the polar coordinates r and θ.

In the limit of large shear-flow alignment |ν| ≫ 1, we
solve the cell problem in a similar way and expand the
perturbations of the streamfunction and pressure field as
a power series in 1/ν.{

Ψ(1)(y) =
∑

k=0 ν
−kΨ

(1,k)
l (y)

p̄(0)(y) = ν2
∑

k=0 ν
−kp̄

(0,k)
l (y)

(34)

By a similar procedure, up to order k = 2 in 1/ν, the
particular solution in the unit cell takes the form (see
Appendix E)

Ψ
(1,0)
l = γa2

(
1− a2

2r2

)
sin(2θ)

Ψ
(1,1)
l = γa2

2

(
1− a2

r2

)2

sin(4θ)

Ψ
(1,2)
l = γa2

6

(
2− 5a2

r2

)(
1− a2

r2

)2

sin(6θ)

p̄
(0,0)
l = −γa2

Γr2 cos(2θ)

p̄
(0,1)
l = 0

p̄
(0,2)
l = − 4γa2η

r2 cos(2θ)

(35)

where the Cartesian coordinates y1 = r cos θ and y2 =
r sin θ are expressed in the polar coordinates r and θ.

In both limiting regimes of ν, the net force and net
torque on the particle boundary associated with either
perturbation (33) or (35) vanish, and therefore the par-
ticle’s linear and angular velocity vanish (see Appendix
F for calculations).

DISSIPATION RATE AND EFFECTIVE
VISCOSITY

In this section, we will determine an effective viscosity
of a suspension of colloidal particles in a liquid crystal
solvent. Using the results from the two-scale expansion
in the previous section, we will determine the rate of total
dissipation for two systems: a dilute suspension of parti-
cles in a liquid crystal solvent and an homogenized liquid
crystal. The comparison between the two rates of total
dissipation allows us to identify an effective viscosity for
the suspension and its dependence on the particle density
and material parameters of the liquid crystal solvent.
Finding an equivalent homogenized medium without

particles that produces the same rate of total dissipation
in a macroscopic volume as a suspension in a solvent is
a classical problem in fluid dynamics, [26, 27]. In the
case of a suspension of rigid particles in a liquid crystal
solvent, the rate of total dissipation is equal to the time
variation of the total free-energy which takes the form

dF
dt

= −
∫
Ωε

2ηD(uε) : D(uε) + Γhε · hεda (36)

where uε is defined in (21), hε is defined in (7), and
the operator : denotes a contraction of the two indices
of the symmetric velocity gradient tensor D(uε). In this
expression, the first term is the rate of dissipation due
to viscous stresses and the second term is the rate of
dissipation due to dynamics of the director field, which
has no counterpart in Newtonian fluids.
We first focus on the dissipation due to viscous stresses

in Eq. (36). We express the area of the container |Ω|
minus the area of the particles of radius aε

|Ωε| = |Ω| −Npπ(a
ε)2 (37)

where Np = Cε−2 is the number of particles, see Fig. 1a
and aε is given by Eq. (32). Substituting the two-scale
expansion (21) into the first term in the RHS of Eq. (36)
to obtain∫

Ωε

2ηD(uε) :D(uε)dx = 4ηγ2(|Ω| −Npπ(a
ε)2)

+

∫
Ωε

2ηDy(u(1)) : Dy(u(1))dx+O(ε3) (38)

where we used that
∫
Ωε D

y(u(1))da = 0 and γ is the shear
strength. The first contribution in the RHS in Eq. (38) is
the rate of dissipation due to the macroscopic shear flow
in the solvent. The second term in the RHS in Eq. (38)
is the rate of dissipation due to the flow perturbations
in the surrounding region of particles. As written, this
term has contributions of order εn for n ≥ 2 which comes
from the dependence of Ψ

(1,k)
s or Ψ

(1,k)
l on the radius of

the particle a in Eqs. (33) and (35) and the dependence
of the domain Ωε on aε. In the following, we ignore the
additional contributions at order εn for n > 2.
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Because Eqs. (25)-(29) are linear in the perturbation
flows u(1) and u(1) is ε-periodic in y, the second term in
the RHS in Eq. (38) is expressed as the sum of the rate of
dissipation by the flow perturbations of a single particle
P in the unit cell, Fig. 2a.∫

Ωε

2ηDy(u(1)) : Dy(u(1))dx =

Npε
2

∫
Yf

2ηDy(u(1)) : Dy(u(1))dy (39)

We focus on the dilute regime ε→ 0, (32), where inter-
particle interactions can be neglected, and approximate
the integral on the RHS by using the solutions of the
perturbations in the two limiting cases of ν, (33) and
(35), where the integration domain is replaced by R2/P.
The results obtained take the form

−
∫
Ωε

2ηD(uε) : D(uε)da = −4ηγ2πR2 ∗{
(1 + ϕ 2ν2

(1+4α)2 ) +O(ϕ2) +O(|ν|3) if |ν| ≪ 1

1 +O(ϕ2) +O(|ν|−1) if |ν| ≫ 1
(40)

where ϕ = Np(a
ε)2/R2 = ε2/R2 is the area fraction of

particles in the container Ω, and α = Γη is a dimension-
less parameter that arises from the ratio between the two
viscosities η and 1/Γ.

Recall that the limit in ν is performed before the limit
in a. In a similar way, the rate of dissipation due to
dynamics of the director field in Eq. (36) takes the form
in the limit |ν| ≪ 1,

−
∫
Ωε

Γhε · hεda = −γ
2πR2

Γ
∗ (41)(

ν2 + 2ϕ

(
1− (1 + 8α)ν2

(1 + 4α)2

))
+O(ϕ2) +O(|ν|3)

and in the limit |ν| ≫ 1,

−
∫
Ωε

Γhε · hεda = (42)

− γ2πR2

Γ

(
ν2 + 2ϕ

)
+O(ϕ2) +O(|ν|−1)

Adding these two expressions yields the rate of total
dissipation in the suspension. In the regime of small
|ν| ≪ 1, dissipation due to viscous stresses (40) is mod-
ified by parameters that control the dynamics of the di-
rector field such as ν and Γ. Conversely, dissipation due
to the dynamics of the director field (42) is modified by
parameters that control the viscous stresses, such as the
shear viscosity η. This shows that the presence of par-
ticles modifies the rate of total dissipation of the sus-
pension by coupling the two sources of dissipation in the
liquid crystal solvent.

The presence of a particle in a solvent influences the
rate of total dissipation in suspensions in several ways.

On the one hand, particles create perturbations to the
macroscopic fields in a region surrounding the particles,
increasing the density of dissipation in the solvent. On
the other hand, particles occupy space in the container
which reduces the area of the solvent which reduces the
total dissipation per unit time (see the first term on the
RHS of Eq. (38)). The balance between these opposing
contributions determines the first order correction in ϕ
of the various sources of dissipation (40) and (42).
Next, we determine the rate of total dissipation of an

homogenized liquid crystal with effective material param-
eters. For clarity we denote with the superscript H, the
physical fields and material parameters of the homoge-
nized medium. A priori, all material parameters of the
homogenized medium can differ from the material pa-
rameters of the solvent. In this work we focus on the
computation of the effective viscosity ηH via the solution
of the cell problem (25)-(29), but we note that the effec-
tive rotational viscosity 1/ΓH and shear-flow alignment
coefficient νH could be computed in a similar manner.
For simplicity, we set ΓH = Γ and νH = ν. The homoge-
nized medium is subjected to the same extensional shear
flow and preferred anchoring at the boundaries of the
container as the suspension (16) and (18). The expres-
sion of the physical fields of the homogenized medium are
determined in Appendix G.
The time variation of the total free-energy in the ho-

mogenized liquid crystal is

−dF
H

dt
=

∫
Ω

2ηHD(uH) : D(uH) + ΓhH · hHda (43)

Substituting the expression of the physical fields of the
homogenized medium (see Appendix G), the rate of total
dissipation up to O(ε3) in (43) takes the form in the two
limits of ν

dFH

dt
= −CR∗{
(1− 2ϕ) +O(ϕ2) +O(|ν|3) if |ν| ≪ 1;
(1− 2ϕ) +O(ϕ2) +O(|ν|−1) if |ν| ≫ 1.

(44)

where the constant CR =
(
4ηH + ν2

Γ

)
γ2πR2.

Balancing the sum of Eqs. (40) and (42) to Eq. (44)
allows us to define an effective viscosity up to O(ε3) for
the homogenized medium in the limit |ν| ≪ 1:

ηH

η
= (45)

1 + ϕ

(
1 + 4α

2α
− ν2(1 + 8α)

8α2(1 + 4α)

)
+O(ϕ2) +O(|ν|3)

and in the limit |ν| ≫ 1:

ηH

η
= 1 + 2ϕ

(
1 +

1

ν2

)
+O(ϕ2) +O(|ν|−1) (46)
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Note that in the limit Γ → ∞, we recover the well-known
viscosity of a two-dimensional suspension in a Stokesian
fluid ηH/η = 1+2ϕ+O(ϕ2). The effective viscosity (45)
and (46) depends linearly on the area fraction of particle
ϕ and the dimensionless parameters α and ν.
For sufficiently small values of |ν| ≪ 1, the effective

viscosity (45) depends on α even in the case of vanishing
ν. At a fixed area fraction, the effective viscosity can
be reduced by modifying properties of the liquid crystal
solvent, such as increasing the parameter |ν| or the di-
mensionless parameters 1/α. For sufficiently large values
|ν| ≫ 1, we recover the Einstein formula for a Stokesian
fluid in Eq. (46), ηH/η = 1 + 2ϕ+O(ϕ2).
Previous studies of suspensions of active swimmers in a

Stokesian fluid have shown both experimentally and the-
oretically that the homogenized viscosity (i.e., effective
viscosity) of the suspension can be decreased by increas-
ing the area fraction ϕ [31–34, 52–55]. This effect is cap-
tured by a negative term due to activity in the classical
Einstein formula. Observe that there is a negative term
in (45) (second order in ν and first order in ϕ). This
term can cause a decrease of the effective viscosity by
either increasing the parameter |ν| or decreasing the pa-
rameter α at a fixed area fraction ϕ. However, it cannot
lead to a decrease of the effective viscosity (ηH < η) by
increasing the area fraction ϕ in the parameter regimes
considered above (|ν| ≪ 1 and |ν| ≫ 1). To illustrate
that in our case ηH > 0, we computed the density of
energy dissipation per unit time in the solvent (i.e., the
integrand in Eq. (36)), see Fig 3, and found that it is
overall negative in the two regimes of |ν|. As the area
fraction increases the suspension dissipates more energy
per unit time, leading to an increase in the effective vis-
cosity (ηH > η), as shown in Eqs. (45) and (46). An
interesting open question is whether there exists an in-
termediate parameter regime in 0 < |ν| < ∞ where this
effective viscosity is negative.

DISCUSSION

In this work, we obtained an effective viscosity for a
dilute suspension of solid particles in a liquid crystal sol-
vent. A key aspect of our analysis is the consideration of
two limits: |ν| ≪ 1 and |ν| ≫ 1 (shear-flow alignment)
and aε/ε→ 0 (diluteness parameter). The order in which
these limits are taken can be critical, as it could affect
the resulting behavior of the macroscopic flow and the
bulk properties of the homogenized liquid crystal. While
|ν| ≪ 1 and |ν| ≫ 1 are regular perturbations of a mate-
rial parameter of the liquid crystal solvent, the diluteness
parameter aε/ε is a geometric parameter which affects
the solution at both microscopic and macroscopic scales
and thus may not commute with the former limit in ν.
By performing the limit in ν first, we obtain an isotropic
Stokes Eqs. (111)-(113) and (117)-(119) for which the

FIG. 3. Flow perturbation u(1) in the limit |ν| ≪ 1 (tumbling
phase) (a) and in the limit |ν| ≫ 1 (aligning phase) (b). For a
background shear flow that extends in the horizontal axis and
contracts in the vertical axis. Colormap of the density of en-
ergy dissipation per unit time (integrand in (36)) in the limit
|ν| ≪ 1 (c) and in the limit |ν| ≫ 1 (d). Note that locally,
the density of energy dissipation remains negative (shown in
blue). In panels a-d, the parameter set is: γ = 2, 1/Γ = 10,
η = 1 and a = 1. In panels a and c, we used ν = 0.01 and in
panels b and d, we used ν = 10. In panels c and d, the dashed
circle represents the boundary of a particle with radius a.

scaling of aε/ε for the dilute regime are known [49]. Un-
derstanding the relationship between ν and aε/ε deserves
further attention in the future.
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Appendix A: The derivation of the molecular field

In this Appendix, we derive Eqs. (11)-(13), which respectively express the dynamics of the director field nε and
the components of the molecular field hε in terms of the phase ψε of the director field.

In two dimensions, the director field can be expressed as nε = {cos(ψε), sin(ψε)}. Inserting this expression into
Eq. (7), one obtains

hε = K∆nε − λεnε = nε
(
−K|∇ψε|2 − λε

)
+ nε

⊥ (K∆ψε) (47)

where nε
⊥ = {− sin(ψε), cos(ψε)} is a vector perpendicular to nε. Therefore the components of the molecular field are

hε⊥ = nε
⊥ · hε = K∆ψε (48)

hε∥ = nε · hε = −K|∇ψε|2 − λε (49)

Note that the Lagrange multiplier λε associated with the constraint |nε|2 = 1 can be re-expressed such that hε∥
becomes a Lagrange multiplier.

Inserting the above expression of the director field into the Ericksen-Leslie equation (3), one obtains

nε
⊥ (∂tψ

ε + uε · ∇ψε + nε
⊥A(u

ε)nε) = Γhε − νD(uε)nε (50)

and its projections in the direction parallel and perpendicular to the director field takes the form

∂tψ
ε + uε · ∇ψε + nε

⊥A(u
ε)nε = Γhε⊥ − νnε

⊥D(uε)nε (51)

Γhε∥ = νnεD(uε)nε (52)

which correspond to Eqs. (11) and (12) in the main text. The dynamics of the phase ψε are governed by Eq. (51),
where hε⊥ is given by Eq. (48). The Lagrange multiplier hε∥ is fixed by Eq. (52).
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Appendix B: Two-scale expansion of the equations for director

In this Appendix, we perform the two-scale expansion for Eqs. (11)-(13) as well as for the boundary conditions (17)-
(18). For more details on the two-scale expansion, we refer the reader to the main text and to references [46, 47].

Inserting the relations (21) into Eqs. (11)-(13) and Eqs. (17)-(18) and treating the derivative as in Eq. (20), one
obtains to the lowest order in ε that

ε−2 : Γh
(−2)
⊥ = 0 x ∈ Ωε

ε−2 : h
(−2)
⊥ = K∆yψ(0) x ∈ Ωε

ε−2 : Γh
(−2)
∥ = 0 x ∈ Ωε

ε−1 : K(N̂ · ∇y)ψ(0) = 0 x ∈ ∂Pε

ε0 : ψ(0) = 0 x ∈ ∂Ω

(53)

(54)

(55)

(56)

(57)

The solution of this set of PDEs is

ψ(0) = 0 (58)

The corrections to the next order in ε of Eqs. (11)-(13) and Eqs. (17)-(18) are

ε−1 : Γh
(−1)
⊥ = n

(0)
⊥ Ay(u(0))n(0) + νn

(0)
⊥ Dy(u(0))n(0) x ∈ Ωε

ε−1 : h
(−1)
⊥ = K∆yψ(1) x ∈ Ωε

ε−1 : Γh
(−1)
∥ = νn(0)Dy(u(0))n(0) x ∈ Ωε

ε0 : K(N̂ · ∇y)ψ(1) = 0 x ∈ ∂Pε

ε1 : ψ(1) = 0 x ∈ ∂Ω

(59)

(60)

(61)

(62)

(63)

The advection in Eq. (11) does not appear at order ε−1 because the lowest order term of the director’s phase ψ(0) is
independent on the fast variable.

In Appendix D, we will show that the lowest order term of the velocity field u(0) is only a function of the slow

variable x. Note that in this case Eqs. (59) and (61) simplify to h
(−1)
⊥ = h

(−1)
∥ = 0, and therefore the solution of the

previous set of PDEs is

ψ(1) = 0 (64)

Finally, the corrections to order ε0 of Eqs. (11) and (12) are

Γh
(0)
⊥ = n

(0)
⊥

(
Ax(u(0)) +Ay(u(1))

)
n(0) + νn

(0)
⊥

(
Dx(u(0)) +Dy(u(1))

)
n(0) (65)

Γh
(0)
∥ = νn(0)

(
Dx(u(0)) +Dy(u(1))

)
n(0) (66)

In our special case, both the lowest order term and the first correction to the director phase vanish ψ(0) = ψ(1) = 0
and thereby the advection in Eq. (11) does not appear at order ε0.

Appendix C: Two-scale expansion of the stress

In this Appendix, we perform the two-scale expansion for the total stress tensor (5). The results from Appendix
B are used to express the molecular field hε in terms of velocity field gradients. The two-scale expansion of the total
stress is performed up to first order corrections in ε.

We start from the total stress in index notation and perform the two-scale expansion in component-wise. From (5)

σε
ij(x) = η(∂iu

ε
j + ∂ju

ε
i ) +

ν

2
(nεih

ε
j + hεin

ε
j) +

1

2
(nεih

ε
j − hεin

ε
j)−K(∂in

ε
j)(∂in

ε
j)− pεδij (67)

We use the notation ∂αi where i = 1, 2 is the vector index and α = x, y denotes either the slow or fast variable

respectively. Correspondingly for a function u
(l)
k , k = 1, 2 denotes the vector index and l denotes the order of ϵ in the
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two-scale expansion. In addition, plugging (47) into the total stress, the second and third terms on the RHS of (67)
are

ν

2
(nεih

ε
j + hεin

ε
j) =

ν

2

(
2hε∥n

ε
in

ε
j + hε⊥(n

ε
i (n⊥)

ε
j + (n⊥)

ε
in

ε
j)
)

(68)

1

2
(nεih

ε
j − hεin

ε
j) =

1

2
hε⊥(n

ε
i (n⊥)

ε
j − (n⊥)

ε
in

ε
j) (69)

which together with the solution ψ(0) = 0 from Appendix B, simplifies (67) at order ε−1 to

σ
(−1)
11 = 2η∂y1u

(0)
1 + νh

(−1)
∥ − p(−1) (70)

σ
(−1)
22 = 2η∂y2u

(0)
2 − p(−1) (71)

σ
(−1)
12 = η

(
∂y1u

(0)
2 + ∂y2u

(0)
1

)
+
ν + 1

2
h
(−1)
⊥ (72)

σ
(−1)
21 = η

(
∂y2u

(0)
1 + ∂y1u

(0)
2

)
+
ν − 1

2
h
(−1)
⊥ (73)

Next, we express Eqs. (59) and (61) from Appendix B in components and obtain the equations for h
(−1)
∥ and h

(−1)
⊥ in

terms of velocity gradients:

Γh
(−1)
∥ = ν∂y1u

(−1)
1 (74)

Γh
(−1)
⊥ =

(ν − 1)

2
∂y1u

(0)
2 +

(ν + 1)

2
∂y2u

(0)
1 (75)

Finally, substituting (74) and (75) into Eqs. (70)-(73), one obtains at order ε−1:

σ
(−1)
11 = (2η +

ν2

Γ
)∂y1u

(0)
1 − p(−1) (76)

σ
(−1)
22 = 2η∂y2u

(0)
2 − p(−1) (77)

σ
(−1)
12 = (η +

ν2 − 1

4Γ
)∂y1u

(0)
2 + (η +

(ν + 1)2

4Γ
)∂y2u

(0)
1 (78)

σ
(−1)
21 = (η +

(ν − 1)2

4Γ
)∂y1u

(0)
2 + (η +

ν2 − 1

4Γ
)∂y2u

(0)
1 (79)

Through a similar procedure, one obtains the corrections of the stress components at order ε0, which take the reduced
form:

σ
(0)
11 = (2η +

ν2

Γ
)
(
∂x1u

(0)
1 + ∂y1u

(1)
1

)
− p(0) (80)

σ
(0)
22 = 2η

(
∂x2u

(0)
2 + ∂y2u

(1)
2

)
− p(0) (81)

σ
(0)
12 = (η +

ν2 − 1

4Γ
)
(
∂x1u

(0)
2 + ∂x1u

(1)
2

)
+ (η +

(ν + 1)2

4Γ
)
(
∂x2u

(0)
1 + ∂x2u

(0)
1

)
(82)

σ
(0)
21 = (η +

(ν − 1)2

4Γ
)
(
∂x1u

(0)
2 + ∂x1u

(1)
2

)
+ (η +

ν2 − 1

4Γ
)
(
∂x2u

(0)
1 + ∂x2u

(0)
1

)
(83)

where we used Eqs. (65) and (66) from Appendix B in components:

Γh
(0)
∥ = ν

(
∂x1u

(0)
1 + ∂y1u

(1)
1

)
(84)

Γh
(0)
⊥ =

(ν − 1)

2

(
∂x1u

(0)
2 + ∂y1u

(1)
2

)
+

(ν + 1)

2

(
∂x2u

(0)
1 + ∂y2u

(1)
1

)
(85)

Finally, because the pressures p(−1) and p(0) are Lagrange multipliers, we redefine them as follows in order to
simplify the stress components in Eqs. (80)-(83):

p̄(−1) = p(−1) − ν(ν + 1)

2Γ
∂y1u

(0)
1 = p(−1) +

ν(ν + 1)

2Γ
∂y2u

(0)
2 (86)

p̄(0) = p(0) − ν(ν + 1)

2Γ
(∂x1u

(0)
1 + ∂y1u

(1)
1 ) = p(0) +

ν(ν + 1)

2Γ
(∂x2u

(0)
2 + ∂y2u

(1)
2 ) (87)
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where the equality follows from the incompressibility conditions Eqs. (98) and (104). Then, the stress components in
Eqs. (76)-(79)

σ
(−1)
11 =

(
2η +

ν2 − ν

2Γ

)
∂y1u

(0)
1 − p̄(−1) (88)

σ
(−1)
22 =

(
2η +

ν2 + ν

2Γ

)
∂y2u

(0)
2 − p̄(−1) (89)

σ
(−1)
12 = (η +

ν2 − 1

4Γ
)∂y1u

(0)
2 + (η +

(ν + 1)2

4Γ
)∂y2u

(0)
1 (90)

σ
(−1)
21 = (η +

(ν − 1)2

4Γ
)∂y1u

(0)
2 + (η +

ν2 − 1

4Γ
)∂y2u

(0)
1 (91)

and Eqs. (80)-(83) become

σ
(0)
11 =

(
2η +

ν2 − ν

2Γ

)(
∂x1u

(0)
1 + ∂y1u

(1)
1

)
− p̄(0) (92)

σ
(0)
22 =

(
2η +

ν2 + ν

2Γ

)(
∂x2u

(0)
2 + ∂y2u

(1)
2

)
− p̄(0) (93)

σ
(0)
12 = (η +

ν2 − 1

4Γ
)
(
∂x1u

(0)
2 + ∂x1u

(1)
2

)
+ (η +

(ν + 1)2

4Γ
)
(
∂x2u

(0)
1 + ∂x2u

(0)
1

)
(94)

σ
(0)
21 = (η +

(ν − 1)2

4Γ
)
(
∂x1u

(0)
2 + ∂x1u

(1)
2

)
+ (η +

ν2 − 1

4Γ
)
(
∂x2u

(0)
1 + ∂x2u

(0)
1

)
(95)

Appendix D: Computing the force balance PDE

In this Appendix, we use the results in Appendix C to perform the two-scale expansion for Eqs. (9)-(10) as well as
for the boundary conditions (15)-(16) up to the first order corrections in ε.
Inserting the relations (21) into Eqs. (9)-(10) and Eqs. (15)-(16) and treating the derivative as in Eq. (20), one

obtains to the lowest order in ε that

ε−2 : η1∂
y
11u

(0)
1 + η2∂

y
22u

(0)
1 − ∂y1 p̄

(−1) = 0 x ∈ Ωε

ε−2 : η1∂
y
11u

(0)
2 + η2∂

y
22u

(0)
2 − ∂y2 p̄

(−1) = 0 x ∈ Ωε

ε−1 : ∂y1u
(0)
1 + ∂y2u

(0)
2 = 0 x ∈ Ωε

ε−1 : u(0) = E · x x ∈ ∂Pε

ε0 : u(0) = E · x x ∈ ∂Ω

(96)

(97)

(98)

(99)

(100)

where we used the stress components (70)-(73) in Appendix C. The parameters η1 = η + (ν − 1)2/4Γ and η2 =
η + (ν + 1)2/4Γ are two effective viscosities. The solution of this set of PDEs is

u(0) = E · x (101)

Note that because the strain rate E represents a simple shear flow, it is traceless and symmetric. Therefore ∂x1u
(0)
1 +

∂x2u
(0)
2 = 0.

Since the velocity and pressure fields are ε-periodic in the fast variable y, the corrections to the next order in ε of
Eqs. (9)-(10) and Eqs. (15)-(16) are

ε−1 : η1∂
y
11u

(1)
1 + η2∂

y
22u

(1)
1 − ∂y1 p̄

(−1) = 0 y ∈ Yf

ε−1 : η1∂
y
11u

(1)
2 + η2∂

y
22u

(1)
2 − ∂y2 p̄

(−1) = 0 y ∈ Yf

ε0 : ∂y1u
(1)
1 + ∂y2u

(1)
2 = 0 y ∈ Yf

ε0 : u(1) = −E · y y ∈ ∂P
ε1 : u(1) periodic y ∈ ∂∂Yf

(102)

(103)

(104)

(105)

(106)
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Because the fluid is incompressible, the velocity field can be expressed in terms of a streamfunction such that

u
(1)
1 = −∂y2Ψ(1) and u

(1)
2 = ∂y1Ψ

(1). Taking the curl of (102) and (103), one obtains that Ψ(1) solves an anisotropic
biharmonic equation

(η1∂
y
11 + η2∂

y
22)(∂

y
11 + ∂y22)Ψ

(1) = 0 (107)

Taking the divergence of (102) and (103), one obtains that p̄(0) solves the Laplace equation

(∂y11 + ∂y22)p̄
(0) = 0 (108)

The set of PDEs (102)-(106) is solved using asymptotic expansions in Appendix E.

Appendix E: Computing the Weak Anisotropic Limit:

In this Appendix, we perform the asymptotic expansion of the physical fields in the limits ν ≪ 1 and ν ≫ 1 in
the anisotropic Stokes Eqs. (102)-(106) obtained in Appendix D. This reduces the PDEs to a set of isotropic Stokes
equations with forcing terms.

We start from expanding the velocity and pressure field in the anisotropic Stokes Eq. (25)-(27) as a power series in
small shear-flow alignment |ν| ≪ 1 (31) 

u(1)
s =

∞∑
k=0

νku(1,k)
s

p̄(0)s =

∞∑
k=0

νkp̄(0,k)s

(109)

(110)

where we denote the ε-order α and ν-order β function by u(α,β). We collect terms at each order νk

ν0 :

{
η̄∆u(1,0)

s −∇p̄(0,0)s = 0

∇ · u(1,0)
s = 0

y ∈ Yf (111)

ν1 :

η̄∆u(1,1)
s −∇p̄(0,1)s +

1

2Γ

(
∂y22u

(1,0)
s − ∂y11u

(1,0)
s

)
= 0

∇ · u(1,1)
s = 0

y ∈ Yf (112)

ν2 :


η̄∆u(1,2)

s −∇p̄(0,2)s +
1

2Γ

(
∂y22u

(1,1)
s − ∂y11u

(1,1)
s

)
+

1

4Γ

(
∂y11u

(1,0)
s + ∂y22u

(1,0)
s

)
= 0

∇ · u(1,2)
s = 0

y ∈ Yf (113)

where η̄ = η + 1/4Γ. We solve this system by a streamfunction Ψ
(1,k)
s

Ψ(1,k)
s := A(k)(r) sin(2(k + 1)θ) (114)

Furthermore, we expand Eq. (25)-(27) as a power series in large shear-flow alignment |ν| ≫ 1. From Eq. (34)
u
(1)
l =

∞∑
k=1

ν−ku
(1,k)
l

p̄
(0)
l =

∞∑
k=0

ν−kp̄
(0,k)
l

(115)

(116)
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ν2 :

{
η̄∆u

(1,2)
l −∇p̄(0,2)l = 0

∇ · u(1,2)
l = 0

y ∈ Yf (117)

ν1 :

η̄∆u
(1,1)
l −∇p̄(0,1)l +

1

2Γ

(
∂y22u

(1,1)
l − ∂y11u

(1,1)
l

)
= 0

∇ · u(1,1)
l = 0

y ∈ Yf (118)

ν0 :


η̄∆u

(1,0)
l −∇p̄(0,0)l +

1

2Γ

(
∂y22u

(1,1)
l − ∂y11u

(1,1)
l

)
= 0

+
1

4Γ

(
∂y11u

(1,2)
l + ∂y22u

(1,2)
l

)
= 0

∇ · u(1,0)
l = 0

y ∈ Yf (119)

where we use the streamfunction Ψ
(1,k)
l

Ψ
(1,k)
l := B(k)(r) sin(2(k + 1)θ), k = 0, 1, 2 (120)

Using the scaling (32), we pass to the dilute limit in both (111)-(113) and (117)-(119) by taking the particle radius
a → 0 as ε → 0, see Fig. 2. In this limit, we rescale the domain Yf such that it becomes an infinite domain R2 \ P
with a particle of size 1 and we replace the periodic boundary condition with a decay condition u(1) → 0 at infinity.
Solving for the coefficients A(k), B(k) in the streamfunction ansatze (114) and (120) in the infinite domain R2 \ P, we
obtain (33) and (35), respectively, after rescaling back to the unit cell domain Yf .

We solve explicitly the velocity field u(1) by finding for either streamfunction Ψ
(1,k)
s or Ψ

(1,k)
l

u
(1,k)
1 = −∂y2Ψ(1,k), u

(1,k)
2 = ∂y1Ψ

(1,k), k = 0, 1, 2 (121)

Due to the incompressibility constraint the pressure satisfies a Laplace equation at each order

∆p̄(0,k) = 0, k = 0, 1, 2 (122)

Note that for the 2D isotropic Stokes Eqs. (111)-(113) and Eqs. (117)-(119), the solution to the problem with
rigidity condition (15) coincides (see for example [56], Section 2) with the solution with a no-slip condition boundary
condition

u = 0 (123)

where the velocity of the particle is assumed to be 0, see Appendix F.

Appendix F: Net force and net torque on the particle boundary:

In this Appendix, we determine the net force and net torque on the particle boundary as a result of the perturbations
of the physical fields. For these calculations, we will use the result from Appendix B to E. For more details on the
derivation of the net force and net torque on the interface of a liquid crystal, we refer to [57, 58].

Because the particles are undeformable, their motion is limited to translations and rotations. The linear and angular
velocities of a particle are determined by enforcing that the net force and the net torque on the particle boundary
vanishes.

On the interface of a liquid crystal and in the absence of external sources, the expressions of the net force and net
torque are ∫

∂Pε

σε · N̂dl = 0 (124)∫
∂Pε

r × (σε
d · N̂)dl = 0 (125)
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where σε is the total stress tensor, N̂ is the outward facing normal vector, and

σε
d = 2ηD(uε) +

ν

2
(nεhε + hεnε) +

1

2
(nεhε − hεnε) (126)

and dl is an infinitesimal element of length on the boundary, which in our case is the boundary of a particle.
The two-scale expansion of the stress components of σε and (126) can be determined using the results in Appendix

C. To order ε0, the components of σε are given by Eqs. (92)-(95) and the components of takes a similar form

σ
(0)
d,11 = (2η +

ν2

Γ
)
(
∂x1u

(0)
1 + ∂y1u

(1)
1

)
(127)

σ
(0)
d,22 = 2η

(
∂x2u

(0)
2 + ∂y2u

(1)
2

)
(128)

σ
(0)
d,12 = (η +

ν2 − 1

4Γ
)
(
∂x1u

(0)
2 + ∂x1u

(1)
2

)
+ (η +

(ν + 1)2

4Γ
)
(
∂x2u

(0)
1 + ∂x2u

(0)
1

)
(129)

σ
(0)
d,21 = (η +

(ν − 1)2

4Γ
)
(
∂x1u

(0)
2 + ∂x1u

(1)
2

)
+ (η +

ν2 − 1

4Γ
)
(
∂x2u

(0)
1 + ∂x2u

(0)
1

)
(130)

Using the expression for u(0) in Eq. (101) and the expression for u(1) in Eqs. (33) or (35), one can show that the net
force and net torque vanish in the two limiting cases controlled by ν. As a consequence the particle velocity vanishes.

Appendix G: Macroscopic field of an homogenized medium:

In this Appendix, we determine the form of the physical fields of an homogenized liquid crystal medium that is
subjected to the same extensional shear flows and preferred anchoring as the suspension (17) and (18).

When the homogenized medium is subjected to an external shear flow, each particle can create a disturbance on the
macroscopic scales that can influence the and the integrate effect can generate corrections to the macroscopic flows.
Following [26], we consider that the flow field of the homogenized medium is

uH = E · x+

Np∑
n=1

u(1)(x,y = x− xi) (131)

where the summation runs over all particles in the medium and xi is the center of the i-th particle. Because in our
case, particles do not perturb the director field (see Appendix B), the corrections of an ensemble of particles to the
macroscopic director field vanishes.

The corrected macroscopic shear flow is defined as

EH
αβ = Eαβ +

 Np∑
n=1

∂xα(u
(1)
β (x,y = x− xi))

 |x=0 (132)

where the first term on the RHS represents the macroscopic flows and the second term on the RHS represents the
sum of the disturbance flows generated by each particle. Considering that the particles are evenly distributed and
taking the continuum limit, we can express (132) as

EH
αβ = Eαβ +

Np

|Ω|

∫
Ω

∂xα(u
(1)
β (x,y = x− x′))|x=0dx

′ (133)

= Eαβ − Np

|Ω|

∫
Ω

u
(1)
β (x,y = x− x′)|x=0x

′
αdx

′ (134)

Substituting the expression of the perturbation flows u
(1)
α in the two limits of ν, Eqs. (33) or (35), leads to the same

expression for the homogenized macroscopic shear flow

EH =

(
γ(1− ϕ) 0

0 −γ(1− ϕ)

)
(135)
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