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Population growth on a time varying network.

Michel Benaim * Claude Lobry † Tewfik Sari ‡

Edouard Strickler §

November 13, 2024

Abstract

We consider a population spreading across a finite number of sites. Indi-
viduals can move from one site to the other according to a network (oriented
links between the sites) that vary periodically over time. On each site, the
population experiences a growth rate which is also periodically time varying.
Recently, this kind of models have been extensively studied, using various
technical tools to derive precise necessary and sufficient conditions on the pa-
rameters of the system (ie the local growth rate on each site, the time period
and the strength of migration between the sites) for the population to grow.
In the present paper, we take a completely different approach: using elemen-
tary comparison results between linear systems, we give sufficient condition
for the growth of the population This condition is easy to check and can be
applied in a broad class of examples. In particular, in the case when all sites
are sinks (ie, in the absence of migration, the population become extinct in
each site), we prove that when our condition of growth if satisfied, the pop-
ulation grows when the time period is large and for values of the migration
strength that are exponentially small with respect to the time period, which
answers positively to a conjecture stated by Katriel in [24].

1 Introduction

An habitat where a population resides is called a "source" when, in the absence of
migration, environmental conditions ensure population growth, and called a "sink"
otherwise. When ”sources” and ”sinks” are connected in a network through which
migrations occur, population growth on the network depends on various factors:
the ”environmental conditions” at each site of the network, the structure of the
network and the intensity of migrations. All these factors depend on time, in a
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more or less random way. Determining the growth conditions of a population on
a network is a central theme in ecology, both for theoretical and practical reasons
(see [2, 14]) described in [7] which we quote below :

In the real world, patches of habitat vary greatly in the resources they provide
for animals and in the disturbance they experience. Consequently, some pop-
ulations can be regarded as ‘sources’ that produce a net surplus of animals
that are available as potential colonists to other habitat patches. On the other
hand, ‘sinks’ are those populations in which mortality exceeds natality and
the persistence of the population depends on a regular influx of immigrants
(...). There are, as yet, limited data on the relative frequency of sources and
sinks in natural environments but theoretical models suggest that the relative
proportions of each and the level of dispersal between them, may have a sig-
nificant influence on regional population dynamics and species conservation.

The present paper is a contribution to the theoretical models mentioned above.
As early as 1997 and 1998 it was noticed by Holt [17] and Jansen and Yoshimura

[23] a paradoxical effect, later called inflation by Gonzalez and Holt [18] :

When environmental conditions vary over time, it can happen that two habitats
that are ”sinks” in isolation can become ”sources” when linked by migration.

This paradoxical effect has motivated theoretical studies on continuous and dis-
crete time models, deterministic and stochastic, for instance [25, 29, 31, 11, 32]
(see [3], [4] and the references therein for more information).

Recently Katriel [24] and the authors of the present paper [3, 4, 5, 6] started
a detailed mathematical study of the linear continuous time model when the local
growth rate on each site is periodic [24], periodic or stochastic [3, 4, 5, 6]. In [24]
Katriel suggests renaming the inflation phenomenon Dispersal Induced Growth
(DIG). Since this expression is more mathematically meaningful, we’ll use it here.
In all these articles, the inflation phenomenon is characterized in terms of the domi-
nant eigenvalue λ (m,T ) of certain positive matrices associated with the model, de-
pending on parameters such as the migration intensity m and the period T . Thanks
to mathematical results on certain symmetric positive operators [24], Tychonov’s
theorem on singular perturbations of differential equations and Perron Frobenius’
theorem [3, 4, 5, 6] it is then possible to describe the behavior of λ (m,T ) accord-
ing to various assumptions on the migration process (see also [27] for asymptotic
development of λ (m,T ), as T goes to 0 or infinity).

In the present paper, we take a completely different approach. Instead of trying
to characterize the values of the parameters m and T for which inflation occurs, in
a less ambitious way, we simply look for sufficient conditions that can cause the
phenomenon. This allows us to consider migration networks that are much more
general, and therefore more realistic, than those imposed by the mathematical tools
used previously. We consider a model where migration is described by a succession
N 1, N 2, · · · of oriented graphs on a set of sites representing an evolution over the
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time of the structure of the migration network. This approach, although absolutely
elementary, explains, in our view, the reasons for the inflation phenomenon. More-
over it also answers a question raised in [24, 3, 4] about the order of magnitude of
the m-threshold at which the phenomenon appears.

A suitable mathematical framework for describing our model is that of dy-
namic networks, increasingly considered in computer science and social network
modelling (see for example [8],[10]) and recently appearing in theoretical ecol-
ogy (see for instance [26]). Unfortunately, in the field of population dynamics, we
know of no reference directly applicable to our situation. We therefore devote Sec-
tion 2 to a detailed description of our model using notations close to those of graph
theory. Section 3 is the mathematical description of our central result. In Section 4
we apply our technique to solve some questions raised in [24, 3, 4, 6] and, finally,
in Section 5 we show briefly how our techniques apply to random systems.

Our main result, Proposition 3, is mathematically totally elementary, and we
offer a detailed demonstration of it in an appendix which, for the reader’s conve-
nience, recalls some basic results on linear differential systems that can be found
in any textbook.
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2 Model and notations

2.1 The model

Sites. We denote by
Π = {π1,π2, · · · ,πi, · · · , πn} (1)

a set of n sites and by xi(t) the size of the population on the i−th site at time t. We
denote by

x =
(
x1, · · · ,xi, · · · ,xn

)
the vector of the xi

′ and conversely [x]i is the i−th component of x. The vertor x is
the meta-population. If a = πi is some site we denote xa(t) = xi(t).

Equations of the dynamic. We are interested in the system

Σ(ri(.), ℓi, j(.),m,T ) =

{
dxi

dt
= ri(t)xi +m

n

∑
j=1

ℓi j(t)x j i = 1, · · · ,n (2)

where

◦ the fonctions ri(t) and ℓi j(t), are T-periodic,

◦ the matrix (mℓi j(t)) is a migration matrix which means that ℓi, j(t) ≥ 0 and
ℓi,i(t) = −∑ j ̸=i ℓ j,i and thus ∑ i ℓi j = 0. This last assumption is standing all
over the paper and will not be repeated.

The system Σ(ri(.), ℓi, j(.),m,T ) is therefore a non-autonomous linear system of
period T . The term ri(t) is the growth rate on the site πi at time t and the term
mℓi j(t)x j is the migration rate from the site π j to the site πi at time t.

System (2) is a linear system of the form dx
dt = A(t)x where A(t) is a matrix with

positive off-diagonal elements (Metzler matrix). Solutions of (2) with positive ini-
tial conditions are positive (see appendix A.2).

We discuss the influence of parameters T and m on metapopulation growth.

Link, network. A link on Π is an arrow pointing from one site to another. It is
noted

π j → πi

The link is outgoing from π j and incoming in πi.
A set of links on Π is a network, denoted N . In other words the pair (Π,N )

is a directed graph (di-graph) in the terminology of graph theory.
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Seasonality. The following assumptions are made. The interval [0,T ] is the
union of p intervals

[0,T ] = [Tt0 = 0,Tt1]∪ [Tt1T, t2]∪·· ·∪ [Ttk−1,Ttk]∪·· ·∪ [Ttp−1,Ttp = T ] (3)

Hypothesis 1 All functions ri(t) and ℓi j(t) are constant on intervals ]Ttk−1,Ttk[
and we note

ri(t) = rk
i ℓi j(t) = ℓk

i j if t ∈]Ttk−1,Ttk[ (4)

The interval [Ttk−1,Ttk] is the k-th ”season” and T (tk − tk−1) is its duration. When
there is no seasonality (there is only one season), the system is said to be static.

The upper subscripts in rk
i , ℓ

k
i, j therefore indicate the season when these param-

eters are effective. With these notations and an obvious interpretation in terms of
"switched systems" (see [3]), we can rewrite the system (2) as

Σ(rk
i , ℓ

k
i, j,m,T ) =


dxi

dt
= rk

i xi +m
n

∑
j=1

ℓk
i jx j t ∈ [Ttk−1, Ttk[

i = 1, · · · ,n k = 1, · · · , p
(5)

which means that after having integrated the system (5) up to time Ttk one takes
xi(Ttk); i = 1 · ·n as initial conditions for an integration on the interval [Ttk, Ttk+1].

Migrations on time varying networks.

Hypothesis 2 It is assumed that all ℓk
i j with i ̸= j take only 0 or 1 values.

This hypothesis, which means that if there is migration between to sites its rate
is always the same, is rather restrictive. Actually we make it in order to keep the
things as simple as possible but it can be relaxed (see subsection 3.1).

The ℓk
i j matrix is therefore equivalent to a N k network on Π, by

π j → πi ∈ N k ⇐⇒ ℓk
i j = 1 (6)

The N k network is the migration network of the k−th season. The system (5) is
associated with the sequence

N [1..p] =
{

N 1, · · · ,N k, · · · ,N p
}

(7)

of p networks. More generally a sequence, finite or not

N [1···k··· ] =
{

N 1, · · · ,N k, · · ·
}

(8)

of networks is called a time varying (or dynamic) network ; the underlying network
of system (5) is a p-periodic network.
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Exemple. In the paper [26] A periodic Markov model to formalize animal migra-
tion on a network, A. Költz and al. consider migration networks that change with
seasons. In Figure 1 we see on the left a scheme extracted from Figure 1 of the
paper [26]. It represents four sites where birds are living. In summer (season 1)
there is no migration (and most of the population is on site 1), in autumn there is
migration to sites 3 and 4 through site 2, in winter (season 3) no migration and in
spring (season four) migration back from sites 3 and 4 to site 1. On the right of our
Figure 1 one sees the representation of this dynamic network in the style that we
use in our paper.

Season 1 Season 2 Season 3 Season 4

Site 1

Site 2

Site 3

Site 4

Figure 1: A migration network from [26] .

2.2 Terminology : paths, circuits.

Path A simple path (without loops) in a network N is sequence of links γi, all
different, such that the origin of γi+1 is the extremity of γi, never returning to a
previously visited site. Precisely :

A simple path aΓb of length l(aΓb) of the network N is a sequence

aΓb = {a = πi(0) → πi(1) → ··· → πi( j) → ·· · → πi(l) = b} (9)

of all different sites πi( j) of Π linked by πi( j−1) → πi( j). The index l is the length
l(aΓb) of the path aΓb.

If there exists a path π jΓπi the site π j is said ”upstream” of πi and πi is said ”down-
stream” of π j.

Time varying path. Let N [1···k··· ] =
{
N 1, · · · ,N k, · · ·

}
be a time varying net-

work.

7



A simple time varying path of N [1···k··· ] is a sequence

a0Γ
1a1Γ

2a2 · · ·ak−1Γ
kak · · · (10)

where each · · ·ak−1Γkak is a simple path of N k.

T-simple-circuit. A T-simple-circuit (T-circuit in short) of the periodic time vary-
ing network N [1..p] of period p is a time varying simple path

a0Γ
1a1Γ

2a2 · · ·ak−1Γ
kak · · ·ap−1Γ

kap (11)

such that ap = a0.
Figure 2 shows an example of a time varying network (5 sites and 3 seasons)

with a T-circuit issued from site 3 in red.

Site 1

Site 2

Site 3

Site 4

Site 5

Season 1 Season 2 Season 3

r31

r32

r33

r34

r35

r11

r12

r13

r14

r15

r21

r22

r23

r24

r25=

=

Figure 2: In red a T-circuit in a time varying network (black arrows).

3 Main results

3.1 Sources and sinks in a time varying network.

Consider the T-periodic switched system (5) with the underlying time varying net-
work

N [1..p] =
{

N 1, · · · ,N k, · · · ,N p
}

(12)
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One says that, in absence of migration, a site πi is a ”source” if ∑
p
k=1 rk

i (tk −
tk−1) > 0 which is equivalent to say that the solution of the T-periodic switched
system

dxi

dt
= rk

i xi t ∈ [Ttk−1, Ttk[ xi(0) = xo > 0 (13)

tends to infinity as t tends to infinity. In the opposite case the site is called a ”sink”.

Remark 1 If we recall the definition of ri(t) (see hypothesis 1) as ri(t)= rk
i if t ∈

]Ttk−1,Ttk[ the system (13) reads

dxi

dt
= ri(t)xi xi(0) = xo > 0

and the condition ∑
p
k=1 rk

i (tk − tk−1) > 0 is the same as 1
T

∫ T
0 ri(t)dt > 0 which is

the time average growth rate on the site πi.

We extend the definition of ”source” and ”sink” to the whole system Σ(rk
i , ℓ

k
i, j,m,T )

by saying that it is a ”’source” when, given an initial condition x(0)> 0 the corre-
sponding total population S(t,m,T,x(0))) = ∑

n
i=1 xi(t,m,T,x(0)) tends to infinity

when t tends to infinity. Since (due to linearity) the fact that S(t,m,T,x(0)) tends
to infinity is independent of the positive initial condition x(0) we omit it in the
following.

Definition 1 Let S(t,m,T ) be the total population of Σ(rk
i , ℓ

k
i, j,m,T ). The m(T)-

threshold of Σ(rk
i , ℓ

k
i, j,m,T ) is the number

m∗(T ) = inf{m : S(t,m,T )→ ∞} (14)

The DIG phenomenon refers to the fact that the total population growth rate can be
higher than all the mean growth rates of the isolated sites. In particular we adopt
the following definition from [24].

Definition 2 DIG [24]. We consider system Σ(rk
i , ℓ

k
i, j,m,T ) for which we assume

that every site is a ”sink” (i.e. ∀ i : ∑
p
k=1 rk

i (tk − tk−1) < 0). One says that there
is DIG (Dispersal Induced Growth) for Σ(rk

i , ℓ
k
i, j,m,T ) if there exists values m,T

such that for these values of the parameters, the whole system is a ”source" (i.e.
S(t)→ ∞) or, in other words, if there is some T such that m∗(T )< ∞

In [24] Katriel introduced the ”growth index” :

Definition 3 Growth-index of the system.
The growth index of the system Σ(rk

i , ℓ
k
i, j,m,T ) is the number

χ =
p

∑
k=1

(
n

max
i=1

rk
i

)
(tk − tk−1) =

1
T

∫ T

0

n
max
i=1

ri(t)dt (15)

Then Katriel proved the following
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Proposition 1 - Necessary condition for DIG (Katriel [24]). A necessary condi-
tion for the system Σ(rk

i , ℓ
k
i, j,m,T ) to be a ”source” for some m,T , is that its growth

index χ be positive. In other words, a necessary condition for the existence of DIG
is that the growth index χ be positive.

Proof. One has

dS
dt

=
n

∑
i=1

ri(t)xi(t)+
n

∑
j=1

ℓi j(t)x j(t)=
n

∑
i=1

ri(t)xi(t)≤
n

∑
i=1

(
n

max
i=1

ri(t))xi(t)= (
n

max
i=1

ri(t))S(t)

Let ρ(t) = maxn
i=1 ri(t), one has dS

dt ≤ ρ(t)S(t) which implies S(T ) ≤ e
∫ T

0 ρ(s)ds

which, by definition of χ is S(T ) ≤ eT χS(0). Hence, if χ < 0 the total population
tends to 0 and the system is not a ”source”.□

We introduce now the growth of a T-circuit which is the growth index of the
system reduced on the T-circuit. Precisely

Definition 4 Growth index of a simple T-circuit.
Let

C = a0Γ
1a1Γ

2a2 · · ·ak−1Γ
kak · · ·ap−1Γ

pa0 (16)

with
ak−1Γ

kak =
{

ak−1 = πik(0) → πik(1) → ···πik( j) → πik(lk) = ak

}
be a simple T-circuit defined on the underlying time varying network of the system
(5). We call growth index of the circuit C the number

χC =
p

∑
k=1

(tk − tk−1)max
πi∈Γk

rk
i (17)

Note that the growth index of χC of a T-circuit is always smaller than χ since
max
πi∈Γk

rk
i < max

i=1··n
rk

i .

Proposition 2 - Sufficient condition for DIG. Consider the T-periodic system
Σ(rk

i , ℓ
k
i, j,m,T ). Assume that there exists a T-circuit C of the underlying time

varying network of Σ(rk
i , ℓ

k
i, j,m,T ) such that χC > 0. Then there exist T ∗ and

0 < a(T ∗)< b(T ∗) such that :

T ≥ T ∗ m ∈ [a(T ∗),b(T ∗)] =⇒ Σ(rk
i , ℓ

k
i, j,m,T ) is a source.

Which we can rephrase as : If χC > 0 we’re certain that for T large enough and
for m neither too small nor too large, the system is a source.

The proof of this proposition relies on the minoration of the growth given in
the following proposition.
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Proposition 3 Consider the system Σ(rk
i , ℓ

k
i, j,m,T ) on the underlying network (12).

Consider the T−circuit C defined by (80) and its growth index χC . Then there exist
T ∗ and constants C > 0 and µ > 0 (independent of m) such that

T > T ∗ =⇒ xi1(0)(T )≥CmLeT(χC −µ×m)xi1(0)(0) (18)

where L is the total length of the circuit.

So, after one period, the value of the population size at the beginning site of the
T-circuit is minorized by CmLeT(χC −µ×m) times the initial value. If this number is
greater than 1 the size of the population is increasing. The proof of this proposition,
which is elementary but a bit intricate, is given in appendix B. We give here the
idea behind the proof.

◦ We isolate the T-circuit C from the whole dynamic network by cutting all
the links incoming from outside of C and we add to each site of C outgoing
links to the clouds such that the total number of links leaving each site is
n− 1 ; each link to the clouds can be considered as an added mortality rate
m.

◦ This new dynamic network defines a new system whose solutions minorize
those of Σ(rk

i , ℓ
k
i, j,m,T ). This is straightforward since cutting incoming links

suppresses positive terms in the right hand of (5) and the addition of out
going links adds negative ones.

◦ On each path Γk of the T-circuit the maximum rk of the growth rates is at-
tained some dominant site πik(d) and it is possible (lemma 1) to prove by
direct computation that for large enough T , for all the sites which are down
stream of πik(d) the growth rate is rk. Actually this is straightforward in the
case of two sites. In this case the system is :

dx1

dt
= (r1 −m)x1

dx2

dt
= mx1 +(r2 −m)x2

m

r1

r2
m

Integration of the first equation gives x1(T ) = eT (r1 −m)x1(0) and the second
one (see appendix A.1)

x2(T )= eT (r2−m)

{
x2(0)+

∫ T

0
e−s(r2−m)mes(r1−m)x1(0)ds

}
≥ eT (r2−m)

∫ T

0
es(r1−r2)dsmx1(0)

x2(T )≥ eT (r2−m) 1
r1 − r2

[
eT (r1−r2)−1

]
mx1(0)= eT (r1−m) 1− eT (r2−r1)

r1 − r2
mx1(0)

11



Since r1 > r2 the term eT (r2−r1) tends to 0 when T tends to ∞ and by the way
is smaller than 1/2 for T large enough and thus

∃T ∗such thatT ≥ T ∗ =⇒ x2(T )>
1

r1 − r2
meT (r1−m)x1(0)

which looks like (18) with µ = 1. Proving the general case is just a matter
of notations.

◦ The iteration of this inequality along the paths of the T-circuit gives rise to
(18).

Relaxation of hypothesis 2

Consider the system

Σ(rk
i ,α

k
i , ℓ

k
i, j,m,T ) =


dxi

dt
= (rk

i −mα
k
i )xi +m

n

∑
j=1

ℓk
i jx j t ∈ [Ttk−1, Ttk[

i = 1, · · · ,n k = 1, · · · , p αk
i ≥ 0

(19)
where the growth rate on each site decreases linearly with the parameter m. It is
clear that the system

Σ(ρk
i ,α, ℓk

i, j,m,T ) =


dxi

dt
= (rk

i −mα
k)xi +m

n

∑
j=1

ℓk
i jx j t ∈ [Ttk−1, Ttk[

i = 1, · · · ,n k = 1, · · · , p α ≥ 0
(20)

with α = maxi,k αk
i minorizes the system Σ(rk

i ,α
k
i , ℓ

k
i, j,m,T ). So proposition 3 is

still true for this system with a new µ equal to µ +α .
Now we do not assume that ℓi, j ∈ {0,1} in system Σ(rk

i , ℓ
k
i, j,m,T ). Let

ℓ= min
ℓi, j>0

ℓi, j βi, j = 1 if ℓi, j > 0, βi, j = 0 otherwise.

For i ̸= j we have mℓi, j ≥ mℓβi, j and the system

Σ(rk
i ,α

k
i ,β

k
i, j,m,T )=


dxi

dt
= (rk

i −mα
k
i )xi +mℓ

n

∑
j=1

β
k
i jx j t ∈ [Ttk−1, Ttk[

i = 1, · · · ,n k = 1, · · · , p
(21)

with βi,i = −∑ j ̸= j β k
i, j and αk

i = ∑i̸= j(lk
i, j − ℓ), to which we can apply proposition

3 minorizes, the system Σ(rk
i , ℓ

k
i, j,m,T ). Thus we can relax hypothesis 2.

3.2 The shape of the minimizing function.

Let us see now how proposition 2 follows immediately from proposition 3. Indeed
from (18), there exist T ∗ and C and µ such that

T > T ∗ =⇒ xi10
(T )≥CmLeT (χC −µ×m)xi10

(0)

12



Thus CmLeT (χC −µ×m) > 1 implies that the sequence j ∈ N 7→ xi10
( j×T ) tends to

infinity which means that Σ(rk
i , ℓ

k
i, j,m,T ) is a ”source”.

Let us denote :
H(m,T ) def

= mLeT (χC −(n−1)×m)

the minimizing function appearing in (18). From elementary calculus it follows
that when χC > 0

◦ H(m,T ) is positive

◦ the function t 7→ H(m,T ) is in-
creasing,

◦ the function m 7→ H(m,T ) is in-
creasing, passes through a maxi-
mum M(T ) and then decreases to
0,

◦ moreover M(T )→ ∞ as T → ∞

(Above the graphs of the functions m 7→ H(m,T ) = m7eT (2−4m) for T = 9 (red),
T = 10 (blue), T = 11 (green).)

Thus, for T large enough, there is an interval [a(T ),b(T )] where H(m,T )> 1.
which proves the proposition 2.

3.3 An exemple.

Site 1

Site 2

Site 3

Season 1 Season 2 season 3

−1

−1

1

=

1

−1

−1

−1

=

1

−1

Consider the system Σ defined by the
scheme on the left and assume that each
season is of duration 1/3. Each isolated
site is a ”sink" (one sequence with growth
rate equal to 1 against two with a decay
rate of −1). Consider the T-circuit C
shown in red, that is :

C =
season1
|1 → 3|

season2
|3 → 1 → 2|

season3
|2 → 3 → 1|

Since in each season the growth rate of the dominant site is +1 the growth index of
the circuit is 1

3 +
1
3 +

1
3 = 1 and thus is strictly positive. From proposition 2 there

is possibility of DIG. We have simulated the system Σ from the initial condition
(1,1,1) in the case T = 24 and increasing values of m. On figure 3 one sees the
logarithm of the population size on each site as a function of time.

◦ For m = 0 all the sites are disconnected. Unsurprisingly, since we’ve taken
the logarithm, growth at site 1 is a straight line with a slope of +1 for 1/3 of

13



m = 0 m = 0.0001 m = 0.00055

m = 0.01 m = 0.1

m = 0.001

m = 1 m = 1.2

Figure 3: Simulations of Σ in the case T = 28 . One sees the logarithm of the
population on site 1 (in red), on site 2 (in green) and site 3 (in blue)

the period, followed by a slope of -1 for the remaining two-thirds. The same
occurs with the two other sites with a shift in the growing period.

◦ For m = 0.0001 the total population is still decaying, while for m = 0.001 it
is growing with a threshold around m = 0.00055.

◦ The rate of growth increases for m = 0.01 and m = 0.1 and decreases later
for m = 1

◦ For m = 1.2 one sees that the system is again a ”sink”.

An interesting point in this example is that the first value for which one observes an
increase of the population is around 0.00055 which is rather small compared to the
parameters. This is actually a general feature that we explain in the next paragraph.

3.4 The m-threshold is exponentially small with respect to T .

Let us define m∗(T ) as the first value of m such that, for a given T , the system
Σ(rk

i , ℓ
k
i, j,m,T ) is a source. Precisely

m∗(T ) = inf
m
{m such that Σ(rk

i , ℓ
k
i, j,m,T ) is a source} (22)

Proposition 4 Consider the T-periodic system Σ(rk
i , ℓ

k
i, j,m,T ). Assume that there

exists a T-circuit C of the underlying time varying network of such that χC > 0.
Then there exist T ∗ and α > 0 such that

T > T ∗ =⇒ m∗(T )≤ e−αT

14



Proof. From proposition 2 we know that Σ(rk
i , ℓ

k
i, j,m,T ) is growing provided

H(m,T ) =CmLeT (χC −µm) > 1

When m < χC

2µ
we have H(m,T )>CmLeT χC

2 and thus

CmLeT χC

2 > 1 =⇒ Σ(rk
i , ℓ

k
i, j,m,T ) is growing

One easily check that

m ≥ e−T χC

2LC1/L =⇒ CmLeT χC

2 > 1

which proves the proposition with α = χC

2LC1/L .□

This proposition says that the m threshold for DIG is exponentially small with
respect to T . It answers positively to the question asked in [24, 4].

4 Some applications

4.1 The case of irreducible migration matrices

In [4] we considered the system

Σ(ri(.), ℓi, j(.),m,T )
dxi

dt
= ri(t/T )xi +m

n

∑
j=1

ℓi j(t/T )x j i = 1, · · · ,n

where ri(τ) and ℓi j(τ) were piecewise continuous functions of period 1, in the
case where the migration matrix M(τ) = (ℓi j(τ)) is irreducible for every value of
τ . We proved (as a consequence of Perron-Frobenius theorem) that the Lyapunov
exponent

Λ(m,T )[xi]
def
= lim

t→∞

1
t

log(xi(t))

is actually independent of the site i and, by the way, is denoted Λ(m,T ). The
description of the growth of the system in terms of Λ(m,T ) is more precise than
the one we propose here by just minorizing the growth but relies on the stronger
assumption that M(τ) is irreducible. Nevertheless, our proposition 4 answers pos-
itively (at least in the piecewise constant case) to a question that was already asked
in [24, 4] : Assume that the growth index χ is positive. Is the growth threshold
exponentially small with respect to T ? Indeed, if for any τ the migration matrix is
irreducible, during any season any site is connected to every site by a patch. Then,
starting from a dominant site at time 0 there exists a simple path during season 1
that connects it to one of the dominant sites of season 2, then, during season 2 there
exists a simple path that connects it to a dominant site of season 3, and so on until
the last season when we return to the starting site; this defines a T-circuit whose
growth index is precisely χ which allows us to apply the proposition 4 which gives
a positive answer to the conjecture.
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4.2 Large migration rate.

As we have seen (see subsection 3.2) the minimizing function tends to 0 as T tends
to ∞ but we can’t draw any conclusions about the system’s growth, since it’s a
minorization. Thus it is of interest to have a better understanding of what happens
when the migration rate tends to infinity.

"Dead end-path"..

Consider the two static systems defined by the schemes below

Migration to the ’’source’’ m

r

ss < 0 < r

m

r

s

s < 0 < r

Migration to the ’’sink’’

In the case of migration to the ”sink” we have the system

dx1

dt
= (r−m)x1

dx2

dt
= mx1 + sx2 s < 0 < r (23)

The system is triangular and the two eigenvalues are r−m ans s. So one sees that,
as soon as m > r, the population is decaying in both sites . In the case of migration
to the ”source” the picture is completely different. We have the system

dx1

dt
= (s−m)x1

dx2

dt
= mx1 + r x2 s < 0 < r (24)

whose solutions are

x1(t) = et(s−m)x1(0) x2(t) = et r
{

x2(0)+
m

r+m− s

(
1− et(s−r−m)

)
x1(0)

}
(25)

and we see that even in the case where x1(0) = 0, provided x2(0)> 0, the popula-
tion grows in the source site at the rate r for all the positive values of m. In fact,
this is obvious without even looking at the equations: as soon as the population is
non-zero at site 2, since there is no emigration from this site, there is growth at rate
r.

This remark can be generalized as follows. Let us consider the system defined
on a simple path like the one below:

16



i rsl−1
m

s1
⋯0 1s0

l − 1 lm m

where si < 0 < r. The double arrow directed upward symbolizes a positive growth
while directed downward it symbolizes decay. We call such a simple path which
ends by a ”trap” a ”dead-end path” (the concept of ”trap” is important in compart-
mental analysis, see for instance [22]). In this case we prove the following

Proposition 5 Consider the system

dx0

dt
= (s0 −m)x0

dxi

dt
= mi−1xi−1 +(si −m)xi i = 1 · · · l −1

dxl

dt
= ml−1xl−1 + rxl

(26)

For every m > 0, as soon as one of the x j(0)’s is strictly positive the population
xl(t) on the last site is growing at rate r.

Proof If the initial condition xl(0)> 0 we have xl(t)≥ xl(0)etr which grows at the
rate r. If it is not the case, x j > 0 for some j and since the migration rate m is
strictly positive we are sure that as soon as t∗ > 0, xl(t∗)> 0 and we can take it as
initial condition in the last equation. □

Migratory birds example.

Thus, in the presence of a dead-end simple path we have a minoration of the growth
which is potentially positive even when m → +∞. The larger m, the greatest the
inflation effect. The possibility of having dead-end paths in a time varying network
is not exceptional in natural networks. Consider for instance seasonally migrating
species such as storks. It can be idealized by the following model. Let’s consider
two sites, say π1 = for north, π2 for south and let’s consider two seasons, say winter
and summer. Assume that in winter the south is a ”source” and the north is a ”sink”
while in summer the opposite is the case.

On the figure 4, on the left, we indicate a migration from north to south in
winter and vice versa in summer which could be called a ”migration to the source”.
The corresponding equations are

Winter


dx1

dt
= (r1

1 −m)x1

dx2

dt
= mx1 + r1

2x2

Summer


dx1

dt
= r2

1x1 +mx2

dx2

dt
= (r2

2 −m)x2

(27)
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SummerWinter

Migration to the source

m

r11

r12

m

r21

r22

Migration to the sink

SummerWinter

m

r11

r12

m

r21

r22South

North

South

North

Figure 4: Two possibilities for migration.

where r1
1 < 0 < r1

2 and r2
2 < 0 < r2

1. In this example both paths ”north”→”south” in
winter and ”south”→”north” are dead-end paths and C =”north”→”south”→”north”
is a circuit such that χC > 0. From proposition 2 we expect that the whole system
is a source with T large enough and m not too small nor too large. But we can say
more, since the two ”migration to the source” are ”dead-end” paths in se sense of
the previous remark we can drop the ”m not too large of proposition 2 and claim
that as soon as t and m are large enough the system is a source and, moreover, the
larger m, the higher the growth rate.

For this very simple system is is possible (using formal calculus software) to
compute explicitly the growth. Indeed, let r1

1 = r2
2 = s, r1

2 = r2
1 = 1 with s < 0 , and

assume that the two seasons are of equal length T
2 and let

A1 =

(
s−m 0

m 1

)
A2 =

(
1 m
0 s−m

)
(28)

the matrix of the linear system operating during winter and during summer respec-
tively. After winter the population is given by

x(T/2) = e
T
2 ·A

1
x(0)

and after summer by

x(T ) = e
T
2 ·A

2
x(T/2) = e

T
2 ·A

2
e

T
2 ·A

1
x(0)

The matrix
M(m,T ) def

= e
T
2 ·A

2
e

T
2 ·A

1

(called the monodromy matrix of the periodic system) expresses the growth after
one period. Let λ (m,T ) be its dominant eigenvalue (i.e. with the greatest mod-
ulus). One knows that the system (27) is a source if λ (m,T ) > 1 and a sink if
λ (m,T ) < 1. Moreover one knows that log(λ (m,T ))

T is the asymptotic growth rate
(i.e. the Lyapunov exponent) of x1(t) and x2(t) :

log(λ (m,T ))
T

= lim
t→∞

log(x1(t))
T

= lim
t→∞

log(x2(t))
T

18



m

T

m

T

log(λ(m, T ))
T

log(λ(m, T ))
T

Figure 5: On the left : growth of system (27). On the right growth of system (??).
Parameters :r1

1 = r2
2 =−2; r1

2 = r2
1 = 1

In principle it is not difficult to compute M(m,T ) and its eigenvalues but it is a bit
intricate and it is better to ask to some software (here we used Maple) to compute
them for us. Maple says that the dominant eigenvalue is given by

λ (m,T ) =

(
A+

√
(B+C+D+E)m2

)
2(m− s+1)2

A =−4
(
− s

2 +m+ 1
2

)
(s−1)e−

T (−1+m−s)
2 +m2eT +m2e−T (m−s)

B =−8
(
− s

2 +m+ 1
2

)
(s−1)e−

T (−1+3m−3s)
2

C =
(
−2m2 +(16s−16)m−8(s−1)2

)
e−T (−1+m−s)

D =−8
(
− s

2 +m+ 1
2

)
(s−1)e−

T (m−s−3)
2

E =
(
e−2T (m−s)+ e2T

)
m2

This is a complicated expression but we can see that when m is large one can
neglect all the terms which have e−T m in factor ans it remains only

λ (m,T )≈ m2eT

(1+m− s)2

which is easily understood. But we can also ask to Maple to plot the exact graph of
(m,T ) 7→ log(λ (m,T ))

T which is done on figure 5-left. So the faster is the migration
from the ”sink” to the ”source” te better will be the growth.

It is interesting to look now to the same system but with the direction of migra-
tions reversed as it is shown on figure 4-right.
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For this system C =”north”→”south”→”north” is a circuit such that χC >
0 (actually it has the same growth index than previously). Thus, proposition 2
applies, which is somewhat counter intuitive. How is it possible to have growth
when the population systematically flees out the "source" site to go to the "sink"
site? Like previously we can compute the monodromy matrix of this system and
ask to Maple the expression of its dominant eigenvalue µ(m,T ) (that we do not
show here) and the graph of (m,T ) 7→ log(λ (m,T ))

T which is shown on the right of
figure 5.

This figure compares the Lyapunov exponents for the "migration towards the
source" and the "migration towards the sink" for the same parameter value ri

j. We
can see that the two plots are very different. In the case of "migration towards the
source", except for the small blue region corresponding to low migration rates or
to a short period, the growth rates are positive and increasing with m and T . On the
contrary, in the case of "migration towards the sink", the growth rate is essentially
negative, which is expected, except for a small region corresponding to very large
values of T and very small values of m, which is not intuitive but was predicted by
proposition 2.

4.3 Minimizing is not characterizing.

As said in proposition 2, the existence of a circuit with positive growth index is a
sufficient condition for the existence of DIG. Here we show that this condition is
far from being necessary.

4.4 Two examples.

3 sites, 2 seasons.

Consider the system Σ defined by the
scheme on the right. It is the T-periodic
system Σ(r,s,m,T ) defined by

dx
dt

= A1x if t ∈ [0,
T
2
[

dx
dt

= A2x if t ∈ [
T
2
,T [

with
0 T

2
T

r

m

s

m

1

2

3

s

m

s

m

r

s

A1 =

 s−m 0 0
m s−m m
0 m r−m

 A2 =

 r m 0
0 s−m 0
0 0 s

 (29)

We assume that s<−r < 0. With this condition it is easily seen that, in the absence
of migration, each site is a ”sink”. As one can sea easily, the only T-circuit of this
system is the circuit C = |1 → 2||2 → 1| whose growth index χC is s

2 +
r
2 < 0. so

the proposition 2 does not apply and we cannot conclude to the existence of DIG.
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However, there are T and m such that the system is growing, as we will now
show. Define

M(r,s,m,T ) = eTA1eTA2 (30)

As we know the solution x(T ) of Σ(r,s,m,T ) at time T , from the initial condition
x0 is given by

x(T ) = M(r,s,m,T )x0 (31)

Now we ask to Maple to compute the matrix M(r,s,m,T ). With our computer
Maple is not able to compute the eigenvalues of M(r,s,m,T ) but fortunately it is
sufficient to consider its entry [M(r,s,m,T )]1,1 (first line, first column). Indeed we
have x1(T )≥ [M(r,s,m,T )]1,1x1(0) and by the way x1(mT )≥ [M(r,s,m,T )]m1,1x1(0).
Hence if [M(r,s,m,T )]1,1 > 1 the system is growing. From Maple we obtain

[M(r,s,m,T )]1,1 =
A+B+C+D+2E

2∆ (m− s+1)(s−1+∆)

with ∆ =
√

4m2 +(s−1)2 and

A =
(
(1− s)2 +(1− s)∆+2m2)e−

T (−3+2m−s+∆)
4

B =
(
(1− s)2 − (1− s)∆+2m2)e

T (−4m+3s+1+∆)
4

C =
(
−(1− s)2 − (1− s)∆−2m2)e−

T (4m−3s−1+∆)
4

D =
(
−(1− s)2 +(1− s)∆−2m2)e

T (3−2m+s+∆)
4

E =−
(
(m−2s+2)e−

T
2 (m−s−1)+ e−T (m−s) (s−1)

)
∆

We do not try to simplify
nor analyse directly this expres-
sion but ask to Maple to draw
for us the graph of (m,T ) 7→
[M(r,s,m,T )]1,1. On the right,
one sees the result in the case r =
1 and s=−2. As we observe, for
sufficiently large values of m an
T (for instance (5,10)) the entry
M(r,s,m,T )]1,1 is strictly greater
than 1. Thus there is DIG which
is not predicted by proposition 2.

T

m

If one looks carefully to this example one can see that the T-circuit (which is not a
simple circuit since it has a loop) |1 → 2 → 3 → 2||2 → 1| has an index which is
r
2 +

r
2 = r which is strictly positive.
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3 sites, 3 seasons

On figure 6 below one sees two periods of the underlying graph of the following
T-periodic system given by

x ∈ [0,
T
3
[ =⇒ dx

dt
= A1x; x ∈ [

T
3
,
2T
3
[ =⇒ dx

dt
= A2x; x ∈ [

2T
3
,T [ =⇒ dx

dt
= A3x

(32)
with r 0 0

0 s−m m
0 m s−m


︸ ︷︷ ︸

A1

 s−m 0 m
0 r 0
m 0 s−m


︸ ︷︷ ︸

A2

 s−m m 0
m s−m 0
0 0 r


︸ ︷︷ ︸

A3

(33)

It was proved in [4] (see § 4.5.2), thanks to the computation by Maple of the princi-
pal eigenvalue of M = e

T
3 A3e

T
3 A2e

T
3 A1 that for r = 1 and s =−1 DIG is not present,

while it occurs for r = 1 and s =−0.8 (see fig. 9 of [4]).
Since, as it is readily seen, there is no T-circuit in this system, our proposition

2 does not apply and thus is unable to predict the presence of DIG for s =−0.8.
The next section is devoted to some extensions to Proposition 2 that enable us

to deal with these two examples.

4.5 Better sufficient condition for DIG

For simplicity of exposition we have stated and proved a simple growth condition
(our proposition 2). But from this we can demonstrate the following more efficient
condition which is suggested by the two previous examples.

Let us consider the system (5) with p seasons.

Definition 5

◦ A static path :

a0 → a1 → ··· → ai−1 → ai → ···al−1 → al

is a sequence of links connecting sites a1, · · · ,ap without requiring, as in
the case of simple paths, that all the sites be different. Unlike a simple path,
such a path can have loops.

◦ A dynamic path is like previously a sequence of paths which respect the
seasons.

◦ qT-circuit. Let q be an integer. A qT-circuit C is a dynamic path such that

a0 ̸= ap;a0 ̸= a2p; · · · ;a0 ̸= a(q−1)p;a0 = aqp
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◦ The growth index of a qT-circuit C is :

χC =
1
q

q p

∑
k=1

(tk − tk−1)max
πi∈Γk

rk
i (34)

Proposition 6 Consider the system (5) on the underlying network (12). Let C be
a qT-circuit and its growth index χC . Then there exist T ∗, constant C > 0 and
µ > 0 (independent of m) such that

T > T ∗ =⇒ xi1(0)(qT )≥CmLeqT (χC −µ×m)xi1(0)(0) (35)

where L is the total length of the circuit.

Proof . In the appendix B.4 we explain how we can extend the lemma to a path
with one loop. From the idea of this extension, it’s not difficult to right a proof of
the proposition. □

Let’s return to the example of the section 4.4 of 3 sites over 2 seasons and
consider the T-circuit with a loop during season 1:

|1 → 2 → 3 → 2|︸ ︷︷ ︸
season1

|2 → 1|︸ ︷︷ ︸
season2

The growth index of such a circuit, calculated as before by taking the dominant
growth rate on consecutive paths, is :

1
2

r+
1
2

r = r

which is positive and Proposition 6 predicts the growth.

Let’s now take the example of 3 sites over 3 seasons given in Section 4.4 and ob-
serve a duration of 2 periods as shown in Figure 6. On this figure we can observe
the dynamic 2T-cicuit

|1 → 1||1 → 2||2 → 2||2 → 3||3 → 3||3 → |3 → 1| (36)

and remark that the succession of dominant growth rates on the six successive paths
is

r||s||r||s||r||s (37)

and the growth index is 1
2

(1
3 r+ 1

3 s+ 1
3 r+ 1

3 s+ 1
3 r+ 1

3 s
)
= r+s

2 which is positive as
soon as r >−s. Thus proposition 6 predicts, for instance, that

r = 1, s >−1 =⇒ growth for suitable (m,T )

The Lyapunov exponent of system (32) and (33) :

Λ(m,T ) =
log(λ (m,T ))

T
(38)
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Figure 6: Underlying network of system (32) and (33) on a duration of 2-periods.
Below the description of a 2T-circuit.

where λ (m,T ) is the dominant eigenvalue of e
T
3 A3e

T
3 A2e

T
3 A1, gives the asymptotic

growth rate of the system. It can be computed by Maple and and we show on figure
7 the graph of T 7→ Λ(0.5,T ). We see that with s = −0.9 there is growth as soon
as T > 20.

Proposition 6 implies that there is growth as soon as r >−s. Actually, it even
provides the following lower bound on the Lyapunov exponent of the system:

sup
(m,T )

Λ(m,T )≥ r+ s
2

.

A natural question is whether it is possible to find parameters m and T for which
Λ(m,T ) is strictly greater than r+s

2 . We have proven in [6, Proposition 18] that this
is not the case, and therefore that

sup
(m,T )

Λ(m,T ) =
r+ s

2
.

In other words, for this example, it is not possible to get a larger upper bound for
the growth than using our minimizing methods.

5 Extension to random perturbations of the duration of
seasons

In this section, we show that our results remain true if the duration of each season
is random, instead of being deterministic. More precisely we consider a succes-
sion of ”cycles” (or ”years”) indexed by j composed of a succession of p ”sea-
sons” indexed by k of random length TU j,k, where T > 0 is a parameter and
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Figure 7: Graph of T 7→ Λ(0.5,T ) (see (38)) for s =−0.9 (green), s =−1 (blue),
s =−1.1

U j = (U j,k)1≤k≤p is a random vector with values in Rp
+. We assume that (U j) j≥1

is a sequence of independent and identically distributed random variables

Remark 2 The periodic case corresponds to the case where U j,k = tk−tk−1 almost
surely, for all j ≥ 1 and k = 1, . . . , p.

In order to avoid that the duration of a season is 0 or has an infinite mean, we make
the following assumption:

Hypothesis 3 For all k = 1, . . . , p, P(U j,k = 0) = 0 and E(U j,k) = E(U1,k)<+∞.

The definition of a simple T-circuit is the same as in the periodic case and we
precise the definition of the growth index in that case:

Definition 6 Growth index of a circuit with random duration Let

C = a0Γ
1a1Γ

2a2 · · ·ak−1Γ
kak · · ·ap−1Γ

pap (39)

with
ak−1Γ

kak =
{

ak−1 = πik(0) → πik(1) → ···πik( j) → πik(lk) = ak

}
be a simple T-circuit defined on the underlying time varying network of the system
(21). We call random growth index of the j-th cycle of the simple T-circuit C the
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number

χ
j,C

stoc =
p

∑
k=1

U j,k lk

max
j=0

rk
ik( j) (40)

and mean growth index the number

χ
C
stoc =

p

∑
k=1

E(U1,k)
lk

max
j=0

rk
ik( j) (41)

Using exactly the same proof as for Proposition 3, we can prove:

Proposition 7 Consider the system (21) on the undelying network (12). Consider
the simple T-circuit C defined by (80) and its random growth index χC

stoc. Then for
all T > 0,

xi1(0)(T (U
1,1 + . . .+U1,p)≥

(
p

∏
k=1

Ck(TU1,k)

)
mLeT (χ1,C

stoc−nm)xi1(0)(0) (42)

where L is the total length of the circuit, and Ck(·) is the increasing function given
by Lemma 1 on the path πik(0)Γ

kπik(lk).

From this proposition, we can prove that the DIG threshold is exponentially
small with respect to the parameter T :

Proposition 8 Assume that E(| log(U j,k)|)<+∞ and that there exists a circuit C
with χC

stoc > 0. Then, for all ε > 0, there exists T ∗ > 0 such that for all T ≥ T ∗,
one has

m∗(T )≤ e
1
L (1−ε)T χC

stoc

Proof. Without loss of generality, we assume that i1(0) = 1. Set X0 = x1(0) and
for all j ≥ 1,

X j = x1

(
T

n

∑
j=1

p

∑
k=1

U j,k

)
.

Then, Proposition 7 implies that

X j ≥
n

∏
j=1

Y j X0,

where

Y j =

(
p

∏
k=1

Ck(TU j,k)

)
mLeT (χ j,C

stoc−nm)

Note that Y j is a sequence of i.i.d. random variables, such that E(| logY j|)<+∞.
Hence, the strong law of large numbers implies that, almost surely,

lim
j→∞

1
j

n

∑
j=1

log(Y j) = E(logY 1).
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Therefore,

limsup
j→∞

1
j

log(X j)≥ E(logY 1),

and the system is growing provided E(logY 1)> 0. Let

C̃(T ) =
p

∑
k=1

E
(

logCk(TU1,k)
)
,

then
E(logY 1) = C̃(T )+L log(m)+T (χC

stoc −nm)

Let ε > 0. We can assume that m < ε

2
χC

stoc
n−1 , so that

E(logY1)≥ C̃(T )+L log(m)+T (1− ε

2
)χC

stoc

Now, it is easily seen that for all k = 1, . . . , p, log(Ck(TU1,k) converges monotically
to a finite limit as T goes to infinity. Hence, by monotone convergence, 1

T C̃(T )→ 0
as T goes to infinity. Therefore, for some T ∗ > 0 and all T ≥ T ∗, we have C̃(T )≥
− ε

2 T χC
stoc, and thus

E(logY1)≥ L log(m)+T (1− ε)χC
stoc

6 Discussion

In this article, we considered the evolution of populations at different sites linked
by migration paths. Environmental conditions vary periodically over time, as do
migration rates between each site. The models are continuous time models. We
wanted to highlight how the evolution of the structure of the migration network
influences total population growth. But rather than give precise growth results for
a given model, we have sought to identify a method for minimizing growth, based
on certain properties of the dynamic graph underlying the dynamic system.

To do this, we defined the growth index χC of a simple T-circuit C . A simple
T-circuit is a route from site to site that respects the migration links existing during
a given season and returning to the starting point. Our main result, proposition 3 is
that if there is a simple T-circuit with a strictly positive growth index, then the total
population is growing for some values of m and T . Following [24] we called this
the DIG (Dispersal Induced Growth) effect.

Perhaps the most important point that we can emphasize here is that we do
not make the assumption that migration matrices are irreducible, which allows us
to cover realistic cases such as seasonal population migrations from one site to
another.

To keep things mathematically as simple as possible - we’re only using very
elementary mathematical results from undergraduate courses - we’ve chosen to
consider only periodic systems which coefficients are piecewise constant. There is
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little doubt that they are still true in the piecewise continuous case but this deserves
further investigations.

One of the advantages of the "piecewise constant" hypothesis is that it can be
immediately extended to systems where the length of the seasons is no longer a
fixed quantity but a random one, which is obviously much more realistic. As an
example of what can be done, in section 5 we define a stochastic version of the
growth index along a circuit and demonstrate that the growth threshold is exponen-
tially small with respect to the parameter T .

We studied the growth phenomenon as a function of two parameters, m which
measures the intensity of the migration, and T which measures the duration of the
cycles. In the observation of real phenomena, this latter parameter is not always
relevant, especially when cycles are years, months or other cyclic phenomena de-
termined by astronomical revolutions.

In models of population dynamics forced by a periodic environment, the period
is often fixed, e.g. year, month, and it is not very relevant, apart from mathematical
considerations, to take, as we did, the period as a parameter. A statement like “If
the duration of the year is long enough, then...” doesn’t make much sense. For
instance, a model of the form

Σ(ri(.), ℓi, j(.),m,S)
dxi(t)

dt
=
(
ri(t)+Sσi(t)

)
xi(t)+m

n

∑
j=1

ℓi, j(t)x j

with r(.),σi(.), ℓi, j(.) have a fixed period 1, where Sσi(.) is a fluctuation around
some average value ri is more relevant to express modification of environmental
parameters as a function of altitude, or latitude. There is no doubt that our method
of minorization along paths also works for Σ(ri(.), ℓi, j(.),m,S).

One area where our approach seems promising is that of epidemiology. In-
deed, [20, 21] have shown that the phenomenon of inflation plays a negative role
in the persistence of infected subjects. Network models are also well developed in
this field and the analysis of the T-circuits as defined here could be useful by de-
tecting where suppressing contact between infected and susceptible people is most
effective.

There is a large body of literature (see [32] and its bibliography for a recent ex-
ample) on the question of inflation in discrete-time models. Insofar as in a discrete-
time model it is possible to transfer the entire population instantaneously from one
site to another, which is not possible for continuous-time models, the questions that
arise in the two cases are not exactly the same and, as a result, the comparison of
results is not immediate. This could be the subject of further work.

Finally, we must make the following observation. On examples with few sites
like the ones we’ve looked at, it’s not difficult to determine the circuits and there-
fore calculate the associated growth indices. But what about systems with a large
number of sites? This is a question of graph theory that we have not yet addressed.

28



A Linear differential equations.

For the convenience of the reader we recall some elementary facts regarding linear
differential equations and systems that can be found in elementary textbooks.

A.1 Closed form solutions for non autonomous linear differential equa-
tions .

Let t 7→ a(t) and t 7→ b(t) be two integrable functions.

Proposition 9 Let x(t,x0) be the solution of the initial value problem

dx
dt

= a(t)x+b(t) x(0) = x0 (43)

If one denotes m(t) =
∫ t

0
a(τ)dτ one has

x(t,x0) = em(t)
(

x0 +
∫ t

0
e−m(s)b(s)ds

)
(44)

If a(t) is just a constant (44) reads

x(t,x0) = et ax0 +
∫ t

0
e−sab(s)ds (45)

A.2 Linear systems.

Notations

We use the following notations : for x, y ∈ RN , x ≥ y means that for all i, xi ≥ yi ;
x > y means that xi ≥ yi and x ̸= y ; and x >> y means that for all i, xi > yi. We
use the same notations for n× p matrices considered as elements of Rn×p. Given
the system of differential équation in Rn

Σ

{
dx
dt

= f (x, t)

we denote x(t,(x0, t0)) its solution with initial condition x(t0) = x0. We say that Σ

is positive (Σ ≥ 0) if x0 ≥ 0 =⇒ x(t,(x0, t0))≥ 0 and given two positive systems

Σ1

{
dx1

dt
= f (x1, t) Σ2

{
dx2

dt
= f (x2, t)

we say that Σ1 minorizes Σ2 (denoted Σ1 ≤ Σ2) if

0 ≤ x10 ≤ x20 =⇒ x1(t,(x10 , t0))≤ x2(t,(x20 , t0))
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Exponential of a matrix.

The exponential of a matrix allows to extend formula (45) to linear systems. Let
x = (x1, · · · ,xi, · · ·xn) be a vector of Rn and A an n×n matrix.

The matrix

Id+ tA+
t2

2!
A2 + · · ·+ tk

k!
Ak + · · ·=

∞

∑
k=0

tk

k!
Ak

where Id is the identity matrix, is well defined (the sum is convergent) for every
values (positive or negative) of t and is denoted etA. It has the following properties:

◦ t 7→ et Ax0 is the solution of the différential equation

dx
dt

= Ax x(0) = x0

◦ For every t1and every t2 one has et1Aet2A = e(t1+t2)A

◦ For every t the matrix etA is invertible and
(
etA
)−1

= e−tA

◦ Il t 7→ b(t) is an integrable mapping from R to Rn the solution of

dx
dt

= Ax+b(t) x(0) = x0 (46)

is given by

x(t) = etAx0 +
∫ t

0
e(t−τ)Ab(τ)dτ (47)

Proposition 10 Let x0 ̸= 0. Then, for every t one has etAx0 ̸= 0

Proof. This follows from the fact that etA is invertible.□

Invariance of the positive orthant for Metzler systems.

A matrix M = (mi j) is a Metzler matrix if i ̸= j =⇒ mi j ≥ 0.

Proposition 11 If M is a Metzler matrix then for every x0 ≥ 0 and every t ≥ 0 one
has x(t) = etMx0 ≥ 0.

Proof. If x0 = 0 one has etMx0 ≡ 0 and the proposition is proved. We assume
x0 ̸= 0.
First step. We assume that

∀ i xi0 > 0 and ∀ i ∀ j : i ̸= j =⇒ mi j > 0 (48)

and suppose that etMx0 is not positive for every t > 0. From proposition 10 it is
not possible that all the components xi(t) vanish at the same time and thus, if all
the components xi(t) are not always strictly positive, there must exists t∗ > 0 (the
instant when a component vanishes for the firs time) with the following properties:
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1. There exists i such that xi(t∗) = 0 and 0 ≤ t < t∗ =⇒ xi(t)> 0

2. There exist at least one j ̸= i such that x j > 0

Since x(t) is a solution of
dx
dt

= Mx one has
dxi

dt
= miixi(t)+∑

j ̸=i
mi jx j(t) and, from

2) above, for t = t∗

dxi

dt
(t∗) = miixi(t∗)+∑

j ̸=i
mi jx j(t∗) = ∑

j ̸=i
mi jx j(t∗)> 0

which contradicts point 1). As a consequence such a t∗ cannot exist and we have
proved that under hypothesis (48)

∀ t,∀ i xi(t)> 0 (49)

Second step. Let M be a Metzler matrix and x0 ≥ 0. Let

Mk = M+
1
k


0 1 1 · · · 1
1 0 1 · · · 1
· · · · · · ·
1 · · · 1 0 1
1 · · · 1 1 0

 xk = x0 +
1
k


1
1
· · ·
1
1


We know that for every t ≥ 0 one has

lim
k→∞

etMk xk = etMx0

Since Mk, xk satisfy (48), each component xik(t) is strictly positive and its limit is
positive or equal to 0, which proves the proposition. □.

Comparison of solutions

We prove the following proposition which is about the comparison of solutions of
Metzler systems.

Proposition 12 Let M = (mi j) and N = (ni j) be two Metzler matrices such that :

∀ i ∀ j mi j ≤ ni j (which we denote by M ≤ N or N −M ≥ 0 )

Denote x(t,x0) = etMx0 and y(t,y0) = etNy0 then

∀ x0 ∀ y0 ∀ t ≥ 0 0 ≤ x0 ≤ y0 =⇒ x(t,x0)≤ y(t,y0)

Proof. Let z(t) = y(t,y0)−x(t,x0). We have

dz
dt

= Ny(t,y0)−Mx(t,x0) = N(y(t,y0)−x(t,x0))+(N −M)x(t,x0)
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dz
dt

= Nz(t)+(N −M)x(t,x0)

and from (46) and (47) we have

z(t) = etNz(0)+
∫ t

0
e(t−τ)Nu(τ)dτ (50)

with u(τ) = (N −M)x(τ,x0). Since ≤ x0 ≤ y0 we have z(0) ≥ 0 and since N is
Metzler, from proposition 11 we have etNz(0)≥ 0.

Let us look now to the second term of (50). Since M is Metzler and x0 ≥ 0 we
have x(τ,x0)≥ 0 and from the hypothesis N −M ≥ 0 we have (N −M)x(τ,x0) =
u(τ)≥ 0. Since N is Metzler, again from proposition 11 we have

∀τ ≤ t et−τ)Nu(τ)≥ 0

which implies ∫ t

0
e(t−τ)Nu(τ)dτ ≥ 0

and achieves the proof of the proposition.□

B Proof of proposition 3

B.1 Integration along a path.

One considers the system defined on the network

i r
m ⋯0 1

s
d − 1 d d + 1mm m ⋯m l

m

s ss s

by the equations

Σ(r,s, l,dm,T )



j = 0 · · ·d −1



dy0

dt
=

(
s−m

)
y0

dy j

dt
= my j−1 +

(
s−m

)
y j

dyd−1

dt
= myd−2 +

(
s−m

)
yd−1

j = d
{

dyd

dt
= myd−1 +

(
r−m

)
yd

j = d +1 · · · l



dyd+1

dt
= myd +

(
s−m

)
yd+1

dy j

dt
= my j−1 +

(
s−m

)
y j

dyl

dt
= myl−1 +(s−m)yl

(51)

with r > s and the initial condition (y0(t0)> 0,0 · · · ,0, · · · ,0).
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Lemma 1 There exists an increasing function θ 7→C(θ) such that :

t ≥ θ =⇒ yl(t + t0)≥C(θ)mlet(r−m)y0(t0) (52)

Moreover one has

C(θ) = vr,s,d

(
θ

l −d +1

)(
wr,s

(
θ

l −d +1

))l−d

(53)

with

vr,st,d(t) =
∫ t

0
e−τ(r−s) τd−1

(d −1)!
dτ wr,s(t) =

1
r− s

(
1− e−t(r−s)

)
(54)

which means that C(θ) is independent of m.

Proof.
Assume that t0 = 0. In the vector form one has

dy
dt

= Ay

with

A =



s−m 0 · · · · · · · · · · · · · · · · · · 0 0
m s−m 0 · · · · · · · · · · · · · · · · · · 0
0 m s−m 0 · · · · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · m s−m · · · · · · · · · · · · 0
0 · · · · · · · · · m r−m 0 · · · · · · 0
0 · · · · · · · · · · · · m s−m 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · m s−m 0
0 · · · · · · · · · · · · · · · · · · · · · m s−m


(55)

One sees immediately that

x(t) = e−t(s−m)y(t)

is solution of :
dx
dt

= Bx

with

B =



0 0 · · · · · · · · · · · · · · · · · · 0 0
m 0 0 · · · · · · · · · · · · · · · · · · 0
0 m 0 0 · · · · · · · · · · · · · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · · · · m 0 · · · · · · · · · · · · 0
0 · · · · · · · · · m r− s 0 · · · · · · 0
0 · · · · · · · · · · · · m 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · m 0 0
0 · · · · · · · · · · · · · · · · · · · · · m 0


(56)
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and the initial condition x(0) = (x0(0) = y0(0)> 0,0 · · · ,0, · · · ,0).
From site 0 to site d −1. By successives integrations one has

xd−1(t) = md−1 td−1

(d −1)!
x0(0) (57)

On the site d.
From proposition (9) the integration of the differential equation

dxd

dt
= mxd−1 +

(
r− s

)
xd xd(0) = 0

gives

xd(t) = et(r−s)
∫ t

0
e−τ(r−s)mxd−1(τ)dτ = et(r−s)

∫ t

0
e−τ(r−s)md τd−1

(d −1)!
x0dτ

Set

vr,s,d(t) =
∫ t

0
e−τ(r−s) τd−1

(d −1)!
dτ (58)

We have
xd(t) = et(r−s)mdx0(0)vr,s,d(t)

and, since vr,s,d(t) is an increasing function of t one has for every θ > 0 and every
integer p

t ≥ θ

p
=⇒ xd(t)≥ et(r−s)mdx0(0)vr,s,d

(
θ

p

)
(59)

where the parameter p will be specified later.

On the site d +1.
One has

xd+1(t) = m
∫ t

0
xd(τ)dτ

and from (59) one has

t ≥ θ

p
=⇒ xd+1(t)≥m

∫ t

θ

p

eτ(r−s)mdx0(0)vr,s,d

(
θ

p

)
dτ =md+1x0(0)vr,s,d

(
θ

p

)∫ t

θ

p

eτ(r−s)mddτ

One has∫ t

θ

p

eτ(r−s)mddτ =
1

r− s

(
et(r−s)− e

θ

p (r−s)
)
=

1
r− s

et(r−s)
(

1− e(
θ

p −t)(r−s)
)

And now, since r− s > 0, we have

t ≥ 2
θ

p
=⇒

∫ t

θ

p

eτ(r−s)mddτ ≥ 1
r− s

et(r−s)
(

1− e−
θ

p (r−s)
)

(60)
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If we denote

wr,s(t) =
1

r− s

(
1− e−t(r−s)

)
(61)

it follows

t ≥ θ

p
+1× θ

p
=⇒ xd+1(t)≥ md+1x0(0)vr,s,d

(
θ

p

)
wr,s

(
θ

p

)
et(r−s)

t ≥ 2
θ

p
=⇒ xd+1(t)≥ et(r−s)wr,s

(
θ

p

)
md+1x0(0)vr,s,d

(
θ

p

)
(62)

On the site d +2.
One has

xd+2(t) = m
∫ t

0
xd+1(τ)dτ

and from (62)

t ≥ 2
θ

p
=⇒ xd+2 ≥ wr,s

(
θ

p

)
md+2x0(0)vr,s,d

(
θ

p

)∫ t

θ

p +1× θ

p

eτ(r−s)dτ

and like previously

t ≥ 3
θ

p
=⇒ xd+2 ≥ wr,s

(
θ

p

)
md+2x0(0)vr,s,d

(
θ

p

)
wr,s

(
θ

p

)
et(r−s)

t ≥ 3
θ

p
=⇒ xd+2 ≥ et(r−s)

(
wr,s

(
θ

p

))2

md+2x0(0)vr,s,d

(
θ

p

)
(63)

Iterating the process up to k we have on the site d + k.

t ≥ (k+1)
θ

p
=⇒ xd+k ≥ et(r−s)

(
wr,s

(
θ

p

))k

md+kx0(0)vr,s,d

(
θ

p

)
(64)

On the site l = d + k.
If we apply (64) with k = l −d and p = l −d +1 we get

t ≥ θ =⇒ xl ≥ et(r−s)
(

wr,s

(
θ

l −d +1

))l−d

mlx0(0)vr,s,d

(
θ

l −d +1

)
(65)

and if we put C(θ) =
(
wr,s
(

θ

l−d+1

))l−d
vr,s,d

(
θ

l−d+1

)
t ≥ θ =⇒ xl(t)≥C(θ)et(r−s)mlx0(0) (66)

Now, if we turn back to yl(t) = et(s−m)xl(t)

t > θ =⇒ yl(t)>C(θ)mlet(r−m)y0(0) (67)

and, since the matrix A does not depend on t, for any initial condition y0(t0)

t > θ =⇒ yl(t + t0)>C(θ)mlet(r−m)y0(t0) (68)

which ends the proof of the lemma.□
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B.2 Minorization through a path

Let Π = {π1, · · · ,πi, · · · ,πn} be a set of n sites. In this subsection we consider the
system

Σ(ri, ℓi jm,T )

{
dxi

dt
= rixi +m

n

∑
j=1

ℓi jx j i = 1, · · · ,n (69)

where ri are constant and li j ∈ {0,1} are associated to the static network N

πi → π j ∈ N ⇐⇒ ℓ ji = 1

Consider an arbitrary simple path aΓb of N like the following one

i
m ⋯πi(0) mm m ⋯m πi(l)πi(d)πi(d−1)πi(1) πi(d+1)a = = b

For each site πi( j) we have represented in blue the incoming links (from any site of
the network) in the site, in black the link that connects to the next site in the path,
and finally, in red, the links that leave the site to some other site of the network.
Notice that there is no ”black arrow” leaving the last site.

Our aim in this subsection is to minorize xi(l)(t) given an initial condition such
that xi(0)(t0)> 0.

Compare the following picture to the previous one :

i
m ⋯πi(0) mm m ⋯m πi(l)πi(d)πi(d−1)πi(1) πi(d+1)

◦ We have cut all the blue links.

◦ The number of links leaving each site (red+black) is smaller than n−1. We
have added links (in green) to the ”clouds” in a number such that the total
links leaving the site is just the maximum total number n−1 of possible links
leaving a site.
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From this picture we define a new system on N in the following manner :

Σ(ri,aΓb,m,T )



πi /∈ aΓb =⇒ dξi

dt
=
(
ri −α −m

)
ξi

i = i(0) =⇒
dξi(0)

dt
=
(
ri(0)−α −m

)
ξi(0)

0 < j ≤ l =⇒
dξi( j)

dt
= mξi( j−1)+

(
ri( j)−α −m

)
ξi( j)

i = i(l) =⇒
dξi(l)

dt
= mξi(l−1)+

(
ri(l)−α −m

)
ξi( j)

(70)
where α =(n−2)×m. By construction it is evident that the system Σ(ri,aΓb,m,T )
minorizes the system Σ(ri, ℓi j,m,T )

Σ(ri,aΓb,m,T )≤ Σ(ri, ℓi j,m,T )

and that its restriction to aΓb, also denoted by Σ(ri,aΓb,m,T ), is independent of
the ξi(t) for πi /∈ aΓb.

Now define a ”dominant” site i(d) as a site such that for every j = 0 · ·l one
has ri(d) ≥ ri( j) ; let σ = min j=0..l ri( j)−1. The ”-1” in the definition of σ is there
to ensure that σ < ri(d). For j ̸= d replace in Σ(ri,aΓb,m,T ), the term ri −α −m
by s−m and ri(d)−m by r−m. We obtain

Σ(r,s, , l,d,m,T )



j = 0 · · ·d −1



dy0

dt
=

(
s−m

)
y0

dy j

dt
= my j−1 +

(
s−m

)
y j

dyd−1

dt
= myd−2 +

(
s−m

)
yd−1

j = d
{

dyd

dt
= myd−1 +

(
r−m

)
yd

j = d +1 · · · l



dyd+1

dt
= myd +

(
s−m

)
yd+1

dy j

dt
= my j−1 +

(
s−m

)
y j

dyl

dt
= myl−1 +(s−m)yl

(71)
Again, by construction

Σ(r,s, l,d,m,T )≤ Σ(ri, ℓi j,m,T ) (72)

The system Σ(r,s, ld,m,T ) is exactly the system (51) of the lemma 1 an by the way
(52) applies

t ≥ θ =⇒ yl(t + t0)≥C(θ)mlet(r−m)y0(t0) =C(θ)mlet(ri(d)−α−m)y0(t0) (73)
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with

C(θ) = vr,s,d

(
θ

l −d +1

)(
wr,s

(
θ

l −d +1

))l−d

(74)

and

vr,st,d(t) =
∫ t

0
e−τ(r−s) τd−1

(d −1)!
dτ wr,s(t) =

1
r− s

(
1− e−t(r−s)

)
(75)

Replacing r and s by their definition one has r− s = ri(d)−σ which gives

vr,st,d(t) =
∫ t

0
e−τ(ri(d)−σ) τd−1

(d −1)!
dτ wr,s(t) =

1
ri(d)−σ

(
1− e−t(ri(d)−σ)

)
(76)

which is independent of m. We have proved the proposition

Proposition 13 Consider the system Σ(ri, ℓi j,m,T )

Σ(ri, ℓi j,m,T )

{
dxi

dt
= rixi +m

n

∑
j=1

ℓi jx j i = 1, · · · ,n (77)

defined on some static network N and a simple path

aΓb = {a = πi(0) → πi(1) → ··· → πi( j) → ··· → πi(l) = b} (78)

on it. Let ri(d) = max j=0..l ri( j) σ = min j=0..l ri( j) − 1. Then there exist θ ,
C(θ)> 0 and µ > 0 such that :

t ≥ θ =⇒ xl(t + t0)≥C(θ)mlet(ri(d)−µ×m)x0(t0) (79)

(take µ = n−1 and C(θ) given by (74) and (76)).

Remark. In our proof we have added red links ”to the clouds” in number such
that the total outgoing links is n− 1 but it would has been enough in order to use
the lemma to add a number of links such that the number outgoing links is just a
constant and have a better minorization. This is why we prefer in the statement of
the proposition to be not explicit in the definition of µ .

B.3 Minorization through a T-circuit.

We come now to the proof of the proposition 3.
Consider the system Σ(rk

i , ℓ
k
i, j,m,T ) on the underlying network (12). Consider

the T−circuit C defined by

C = a0Γ
1a1Γ

2a2 · · ·ak−1Γ
kak · · ·ap−1Γ

pa0 (80)

with
ak−1Γ

kak =
{

ak−1 = πik(0) → πik(1) → ···πik( j) → πik(lk) = ak

}
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and its growth index χC .
We have to prove that there exist T ∗ an constants C > 0, µ > 0 (independent of

m) such that

T > T ∗ =⇒ xi1(0)(T )≥CmLeT(χC −µ×m)xi1(0)(0) (81)

where L is the total length of the circuit.
Let dk be a dominant site of the path ak−1Γkak and rk

dk the corresponding dom-
inant rate.

Consider the first simple path π1Γ1πi1(l1). Let θ > 0 and let C1 = CΓ1
(θ) where

CΓ1
(θ) is the function of proposition 13 applied to the first path. From (74) and

(75) we know that C1(θ)> 0. Let T ∗1 ≥ θ

t1
. From prop 13 we know that

T > T ∗1 =⇒ xi1(l1)(Tt1)>C1ml1
eTt1

(
r1

d1−µ×m
)
xi1(0)(0) (82)

On the interval [Tt1,Tt2] the proposition 13 applies again to the simple path (πi1(l1)=

πi2(0))Γ
2πi2(l2) and thus if we put C2 =CΓ2

(θ) and T ∗2 ≥ θ

t2−t1

T > T ∗2 =⇒ xi2(l2)(Tt2)>C2ml2
eT (t2−t1)

(
r2

d2−µ×m
)
xi1(l1)(Tt1) (83)

Combining the two inequalities (82) and (83) we obtain that

T >max{T ∗1,T ∗2} =⇒ xi2(l2)(Tt2)≥C1C2ml1+l2
eT
(
(r1

d1−µ×m)t1+(r2
d2−µ×m)(t2−t1)

)
xi1(0)(0).

If we iterate this application of proposition 13 to the successive simple paths of
the circuit up to the last one we get

T >max{T ∗1 · · ·T ∗p} =⇒ xip(lp)(Ttp)≥C1 · · ·Cpm∑k lk
eT
(

∑
p
1=1 rk

dk (tk−tk−1)−µ×m
)
xi1(0)(0)

Since xip(lp)(Ttp) = x1(T ) and by definition of χC one has

T > max{T ∗1 · · ·T ∗p} =⇒ x1(T )≥C1 · · ·Cpm∑k lk
eT(χC −µ×m)xi1(0)(0)

which proves the proposition.

B.4 Possible extensions

The lemma 1 assumes that the path has no loop. We now give an extension of this
lemma in the case of a network with a single simple loop where the dominant site
is in the loop.
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Consider the system defined by the network :

i
m ⋯m m ⋯m0

s s s s s
m1 j*
m

m

m

j* + 1

d
r

m
m

m

j* + k
s

j* + k + 1

l

and we leave it to the reader to write down the equations.

Proposition 14 For the above network, we have for all θ > 0 and all β ∈ (0,1),

t ≥ θ =⇒ yl(t + t0)≥C(βθ)C((1−β )θ)ml+1et(r−2m)y0(t0) (84)

Proof.
Assume that t0 = 0. The idea is to cut the loop into two simple paths, to each

of which we apply Proposition 13. First, consider in the above network the simple
path

0Γd = {0 → 1 → . . .→ j∗ → j∗+1 → . . .→ d}

Since the maximal number of links leaving a site is 2 (on site j∗), we deduce from
Proposition 13 that for all β ∈ (0,1) and θ > 0, one has

t ≥ βθ =⇒ yd(t)≥C(βθ)mdet(r−2m)y0(0) (85)

Next, consider the simple path (of length l −d +1 and maximal index r)

dΓl = {d → d +1 → . . .→ j∗ → j∗+ k+1 → j∗+ k+ l∗ = l}

Once again, the maximal number of links leaving a site is 2, so that for all β ∈
(0,1), for all t ′0 ≥ 0, for all θ > 0, we have

t ′ ≥ (1−β )θ =⇒ yl(t ′+ t ′0)≥C((1−β )θ)ml−d+1et ′(r−2m)yd(t ′0). (86)

Taking t = βθ in Equation (85), and t ′0 = βθ in Equation (86) yields

t ′ ≥ (1−β )θ =⇒ yl(t ′+βθ)≥C((1−β )θ)C(βθ)ml+1e(t
′+βθ)(r−2m)y0(0)

Noting that t ≥ θ is equivalent to t ′ = t −βθ ≥ (1−β )θ , we finally end up with

t ≥ θ =⇒ yl(t)≥C((1−β )θ)C(βθ)ml+1et(r−2m)y0(0).
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