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A Constrained Instrumental Variable Method for
Identification of Industrial Robots

Fabio Ardiani1, Alexandre Janot2 and Mourad Benoussaad3

Abstract—
Robot identification is a prolific topic with a long history

of results spanning decades. In recent years, there has been a
renewal of interest in this problem mainly due to a rapid increase
in robotic hardware platforms capable of accurate model-based
control. The standard approach exploits the inverse dynamic
model’s linearity to dynamic parameters and uses the linear
least-squares (LS) estimation. Since we identify robots with
closed-loop procedures, a correlation between errors remains,
and we should prefer the Instrumental Variable (IV) method
over the LS estimation. Thanks to the increase in computational
power, recent works suggest inserting physical constraints to
ensure the physical plausibility of estimates. These works have
emphasized the usefulness of these physical constraints, but few
papers consider their insertion into IV methods, the consistency
and optimality of estimates, and the effect of constraints on
estimates not addressed. This paper presents a new constrained
IV approach that uses physical constraints. It consists of two
nested iterative algorithms: an outer one that is a standard IV
method and an inner one that accounts for the constraints solved
by a Gauss-Newton algorithm. Besides, the conditions to obtain
consistent and optimal estimates are emphasized. Experimental
results and comparisons with other methods carried out with the
TX40 robot show the feasibility and effectiveness of such an IV
method: we can identify 60 physically consistent parameters in
less than one minute.

I. INTRODUCTION

A. Topic and general context

Robot identification involves identifying the dynamic pa-
rameters (mass, center of mass, rotational inertia, and friction)
that influence the relationship between applied forces and
resultant accelerations. It is a classical problem, with results
spanning recent decades; see the survey in [1]. Recent years
have witnessed a renewal in this problem due in part to a rapid
increase in robotic hardware platforms capable of accurate
model-based control [2]–[4], growth in the utilization of force-
controlled actuators, [5], [6], and better control techniques [7],
[8] and mechanical design [9].

The conventional method, referred to as the Inverse Dy-
namic Identification Model with Least-Squares estimation
(IDIM-LS method), [10], exploits the linearity of the inverse
dynamic model (IDM) to the dynamic parameters. However,
since we identify robots with closed-loop procedures, it in-
duces a correlation between errors that may lead to incon-
sistent IDIM-LS estimates, even in the case of proper data
filtering, [11], [12].
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Consequently, instrumental variable (IV) techniques or
Output-Error (OE) methods allow the users to get consistent
estimates despite the correlation between errors, [13]. In
[10] and [12], the authors have developed an OE approach
named the Direct and Inverse Dynamics Identification Mod-
els approach (DIDIM) and an IV approach called IDIM-IV,
respectively. Both methods combine the direct and inverse
dynamic models and converge quickly. However, because of
modeling errors, like other unconstrained approaches, DIDIM
and IDIM-IV could not guarantee that the direct dynamic
model (DDM) would be well-posed during their iterations.
Using physical constraints can address this deficiency for
unconstrained identification approaches.

B. Constrained identification methods for robots and in
Econometrics

In [14], the authors have proposed an approach to insert
physical constraints. In contrast, [15] has further improved
it by noting that the set of all possible inertial parameters,
which ensures a positive definite mass matrix, is known
to be convex. The authors suggest using 4x4 linear matrix
inequalities (LMIs) posed over the 10 inertial parameters of
each rigid body. This constrained method combining IDIM-
LS and physical constraints is called the Physically-Consistent
IDIM-LS method (PC-IDIM-LS). It was successfully applied
in [15]–[18]. However, these works did not treat the statistical
properties of PC-IDIM-LS. Consequently, [19] provides a
complete statistical analysis of PC-IDIM-LS and suggests
inserting the physical constraints into the DIDIM method. This
constrained OE method, PC-DIDIM, has been validated on a 6
degrees-of-freedom (DOF) robot and provides physically and
statistically consistent estimates. Besides, the results showed
that PC-DIDIM is more robust against modeling errors than
other unconstrained OE approaches.

In Econometrics, constrained identification has a long his-
tory; see, e.g., [20]–[27], and the references therein. Account-
ing for the equality and/or inequality constraints explicitly
is necessary to develop some identification methods and
hypothesis testing. Unsurprisingly, procedures with inequality
constraints are the most complex, [22] and [25], chapter 21.
To understand how constraints affect estimates, it is not rare
that the authors introduce intuitive explanations and/or exam-
ples, and they often relate the constrained and unconstrained
estimates. Indeed, provided that the unconstrained estimates
are consistent and satisfy the constraints, they must stick to
the constrained estimates. Finally, these works consider the
identifiable parameters only.



C. Motivations and contributions of the paper

The papers mentioned above in Robotics have not consid-
ered IV approaches while they have the reputation of being
more robust against modeling errors than OE methods, [28].
It could be wise to insert physical constraints into IDIM-
IV to ensure the physical feasibility of IV estimates while
securing the consistency of estimates. This way, we could get
a constrained IV approach that is more robust than constrained
OE methods. Besides, the authors used the standard dynamic
parameters that are not all identifiable, [29], [30]. It is some-
how puzzling to deal with parameters that do not affect the
dynamics. Indeed, we can hardly see how constraints could
make them identifiable or how constraints on such parameters
could impact dynamics. This point is not discussed in these
papers, whereas parameters’ identifiability is a key concept
in System identification, see [11], [13], [31] among others.
Finally, they did not explain why the constraints are not overly
restrictive while it is known that the choice of constraints
impacts the optimization process, [32], [25] chapter 21.

Inserting constraints implies the calculation of Lagrangian
multipliers and slack variables, see [25], [32], [33], and these
variables produce a nonlinear problem that is solved with
Newton’s method. So, from a problem that is initially linear
to the dynamic parameters, we finally deal with a nonlinear
problem because of the Lagrangian multipliers and slack
variables. The way to solve the constrained problem is not
tackled in the abovementioned papers.

It comes out that dealing with constrained identification
methods is challenging because we must: choose constraints
that are not overly restrictive, choose a criterion that is
suitable and easy to interpret for users, analyze the impact of
constraints on estimates, and deal with nonlinear optimization.
This outcome may explain why constrained identification
methods are not as popular as the unconstrained procedures
although they are of great importance, see, e.g., [21], [22],
[26]. It may also explain why a consistency analysis, or at
least a discussion on conditions that allow us to get consistent
estimates, is missing in [7], [14], [15], [17].

The first contribution of this paper proposes a constrained
IV approach, called PC-IDIM-IV, by expanding [34]. We ana-
lyze the consistency and efficiency of PC-IDIM-IV estimates
and the effect of constraints, and we show how to detect overly
constrained.

The second contribution concerns the experimental val-
idations. We validate and compare PC-IDIM-IV to other
standard approaches employed in robotics on the TX40 robot.
The experimental results show we can identify 60 dynamic
parameters with PC-IDIM-IV in less than one minute.

D. Organization of the paper

Section II reviews the background of robotic modeling and
identification, while Section III describes the PC-IDIM-IV
method and gives the conditions to get consistent estimates.
Details on the experimental setup of the TX40 robot and
the experimental results are shown in Section IV. Finally,
Section V concludes this paper.

II. BACKGROUND

A. Equations of motion of rigid robot model

The Inverse Dynamic Model (IDM) of a n-DOF rigid robot
expresses the joint torques as a function of the joint positions,
velocities, and accelerations, [29], [35]. It is given by

τ = M(q)q̈+N(q, q̇) + τf , (1)

where τ ∈ Rn is the vector of the joint torques; q, q̇, q̈ ∈ Rn

are the vectors of joint positions, velocities and accelerations,
respectively; N(q, q̇) ∈ Rn is the vector of Coriolis, cen-
trifugal and gravitational torques; M(q) ∈ R(n×n) is the
symmetric and positive definite inertia matrix; and τf ∈ Rn

are friction torques. Usually, we choose, see [36],

τfj = Fcj sign(q̇j) + Fvj q̇j , (2)

where τfj is the joint j friction vector; Fcj and Fvj are
Coulomb and viscous friction parameters, respectively. The
dynamics of link j includes 11 standard inertial parameters:
XXj , XYj , XZj , Y Yj , Y Zj and ZZj are the components of
the inertia tensor, Ij , considered from the origin of the link;
MXj , MYj and MZj are the components of its first moment
of inertia, with MSj = [MXj ,MYj ,MZj ]

T ; mj is its mass;
Iaj

is the actuator’s inertia. Fcj and Fvj complete the set, and
the dynamics of a link j is defined by 13 standard parameters.
Because the kinetic and potential energies are linear to the
standard parameters, so is the IDM, [29], [35]. We can write
equation (1) as

τ = IDMf (q, q̇, q̈)βf , (3)

where IDMf (q, q̇, q̈) ∈ R(n×nc) is the matrix of the IDM
concerning the vector βf ∈ Rnc of the nc standard parameters,
with nc = 13 ·n. However, all the standard parameters are not
identifiable because some are regrouped via linear relations
while others have no contribution. We can identify a set of
so-called base parameters determined by the expressions of
kinetic and potential energies, [30]. The IDM (3) reduces to

τ = IDM(q, q̇, q̈)β, (4)

where IDM(q, q̇, q̈) ∈ R(n×nb) is the matrix of the IDM to
the vector β ∈ Rnb of the nb base parameters. The joint j
torque, τj , is given by

τj = IDMj(q, q̇, q̈)βj , (5)

where IDMj(q, q̇, q̈) ∈ R(n×nbj
) is the matrix of the joint j

IDM to the vector βj ∈ Rnbj of the nbj base parameters of
the link j; and nb =

∑
nbj .

B. Data acquisition and controls

For safety considerations, robots are identified under closed-
loop control using linear controllers (e.g., PD, PID, etc., see
[29]). The torque delivered by each motor τj is then given by

τj = Cj(s)(qrj − qmj ) , (6)

where Cj(s) is the transfer function of the joint j controller;
qrj the reference; qmj

the measured angle of the joint position;
and s is the Laplace variable. Cj(s) is normally a PD or PID in



practice, see [29]. The bandwidth of the position closed-loop,
denoted as ωdyn, is usually less than 10Hz.

From this process, the data available for identification
includes the measured angles qm ∈ Rn, their references qr,
and the input torques τ .

C. Data filtering and construction of the Inverse Dynamic
Identification Model

The IDM given in (4) is sampled ns times while the
robot tracks reference trajectories. In (4), q is estimated
with q̂ obtained through the filtering of qm with a lowpass
Butterworth filter in both the forward and reverse directions.
One chooses ωbf , the cutoff frequency of the Butterworth filter,
as ωbf = 5.0 · ωdyn, [10]. Then, we calculate ˆ̇q, ˆ̈q with a
central differentiation algorithm of q̂, [10]. We get this over-
determined linear system

ym = Xm(q̂, ˆ̇q, ˆ̈q)β + εm , (7)

where ym ∈ Rrs is the vector of measured torques with rs =
ns × n; Xm(q̂, ˆ̇q, ˆ̈q) ∈ R(rs×nb) is the observation matrix
built from the sampling of IDM(q̂, ˆ̇q, ˆ̈q); and εm ∈ Rrs is
the vector of error terms.

In practice, the torque is perturbed by high-frequency ripples
removed before the identification with a parallel lowpass
filtering of each column of Xm and the vector ym. This
parallel low-pass filtering is part of a decimation procedure,
i.e., resampling to keep one sample over nd. We choose
ωdf , the cutoff frequency of the decimation filter, as ωdf =
2.0 · ωdyn, [10]. One has nd = ωsamp/ωdyn, where ωsamp is
the sampling frequency. We finally obtain the following filtered
over-determined linear system to β called the Inverse Dynamic
Identification Model (IDIM):

y = X(q̂, ˆ̇q, ˆ̈q)β + ε , (8)

where y ∈ Rr is the vector of filterred torques with r = ne×n;
X(q̂, ˆ̇q, ˆ̈q) ∈ R(r×nb) is the filtered observation matrix; and
ε ∈ Rr is the vector of the filtered error.

We assume that ε has the following covariance matrix, Ω =
diag

(
σ2
1Ine , . . . , σ

2
nIne

)
, where Ine is the ne × ne identity

matrix. The errors are assumed serially uncorrelated and with
finite variance. In the appendix VI-A, we give details about
data filtering and how it is linked with the process commonly
applied in the Automatic Control community.

D. The IDIM-LS method
The LS estimates of (8) and their covariance matrix are

given by
β̂LS =

(
XTX

)−1
XTy

Σ̂LS =
(
XTΩ−1X

)−1
,

(9)

see, e.g., [37]. Following the procedure in [10], each σj is
estimated from the standard deviation of the error in an IV
fit to the joint j torque, τj , alone. This method combines
IDIM and LS estimation and is termed the IDIM-LS method.
The IDIM-LS estimates are theoretically biased because robots
are identified with closed-loop procedures that induce noise
correlation [11], [12]. To overcome this issue, IV we can
employ IV procedures.

E. The IDIM-IV method

IV method has a long history in Econometrics, [37], chapter
7, [38] chapter 8, [39], [40], chapter 15, and [24], chapter 9,
among others, and in Automatic Control [11], [13], [28], [41],
[42], among others.

IV methods are usually iterative procedures that deal with
noise correlation by employing an instrumental matrix denoted
Z ∈ R(r×nb), [11], [28]. Z must fulfill two properties to secure
consistency: Z must be correlated with X so that ZTX is
invertible, and must be uncorrelated with the noise ε, see [11].
Formally, we have

rank
(
ZTX

)
= nb

E
(
ZTε

)
= 0 ,

(10)

where E() is the expectation operator.
According to [11], we can construct such a matrix Z by

simulating an auxiliary model based on previous IV estimates,
denoted as β̂

(k−1)

IV . For robot identification, this auxiliary
model is the DDM given by

q̈ = M(q)−1 (τ −N(q, q̇)− τf ) , (11)

that is simulated using β̂
(k−1)

IV and considering the same ref-
erence trajectory and control law for the actual and simulated
robot [12]. Hence, at iteration k, the IV estimates and their
covariance matrix are given by

β̂
(k)

IV = (ZTX)−1ZTy

Σ̂IV =
(
ZTΩ−1Z

)−1
,

(12)

where Z = X(qS , q̇S , q̈S , β̂
(k−1)

IV results from the sampling
and decimation of IDM (qS , q̇S , q̈S), where (qS , q̇S , q̈S) are
the simulated joint positions, velocities and accelerations,
respectively. Note that we use Z instead of Z(k) for better
clarity. Each σj is estimated from the standard deviation of
the error in an IV fit to the joint j torque, τj , alone. This
method combines IDIM and IV estimation and is termed the
IDIM-IV method.

Let Xnf ∈ R(r×nb) be the noise-free observation matrix
with X = Xnf +V; V ∈ R(r×nb) being the matrix gathering
all the noise within X with E(V) = 0. In [11], chapter 6,
the author showed that Z is an approximation of Xnf , i.e.,
Z ≈ Xnf , provided there are no modeling errors or such errors
prove to be negligible compared to noises. In [11], chapter 6,
the author showed that one has

Σ̂IV ⪰ Σopt
IV , (13)

where

Σopt
IV =

(
XT

nfΩ
−1Xnf

)−1
(14)

is the lower bound, [11], [13], [38]. If Σ̂IV ≈ Σopt
IV , then

we reach the optimal covariance matrix of the IV estimates.
Consequently, Xnf is the optimal instrumental matrix. This
result is consistent with [13].



F. DIDIM method
Now, we describe briefly the Direct and Inverse Dynamic

Identification Models (DIDIM) method; all the details are
given in [43]. DIDIM is a closed-loop input-error approach
that minimizes the following criterion

||y − ys (β) ||22 , (15)

where ys (β) ∈ Rr is the sampled vector of simulated torques.
To identify the parameters, we run an iterative algorithm as
usually done with output- or input-error methods, see [43].

Because of the control (6), ∂qs

∂β ≈ 0, ∂q̇s

∂β ≈ 0, and ∂q̈s

∂β ≈
0 hold. Hence at iteration k, we can show that the DIDIM
estimates and their covariance matrix are given by

β̂
(k)

DIDIM = (ZTZ)−1ZTy

Σ̂DIDIM =
(
ZTΩ−1Z

)−1
,

(16)

and this process is iterated until convergence. Note that we
have Z = X(qS , q̇S , q̈S , β̂

(k−1)

DIDIM ) in this case.

G. Physical constraints
In [15], the authors have provided linear matrix inequality

(LMI) constraints that are necessary and sufficient for the
physical plausibility of βfj . These results hinge on the so-
called pseudo-inertia matrix J(βfj ) ∈ R(4×4) of a rigid body
defined by

J(βfj ) =

[
1
2 tr(Ij)I3 − Ij MSj

MST
j mj

]
, (17)

where I3 is the (3× 3) identity matrix. Then, the parameters
βfj are physically consistent if and only if

J(βfj ) ≻ 0 . (18)

Since we further impose Iaj
> 0, Fvj > 0, Fcj > 0 for j =

1, · · · , n, the physical constraints are finally

J(βfj ) ≻ 0, Iaj
> 0, Fvj > 0, Fcj > 0 . (19)

This development allows a Physically-Consistent IDIM-LS
problem (PC-IDIM-LS) to be formulated as a semi-definite
program (SDP). Besides, in [19], the authors showed that the
constraints (19) turn to inequality constraints so that we obtain
the following constrained problem

minimize f0(βf ) ,

subject to hi(βf ) ≥ 0 , for i = 1, · · · , p ,
(20)

where f0(βf ) = ||ε||22 = ||y − Xfβf ||22; Xf ∈ R(r×nc)

results from the sampling of IDMf

(
q̂, ˆ̇q, ˆ̈q

)
; hi(βf ) are the

constraints obtained from (19); and p = 7 ·n is the number of
constraints.

In [19], the authors analyze PC-IDIM-LS. They proved that
the PC-IDIM-LS estimates are both physically and statistically
consistent if plimr→∞

(
1
rX

T
f ε
)
= limr→∞

(
1
rE
(
XT

f ε
))

=

0, so if E
(
XT

f ε
)
= 0, where plim is the limit in probability

as r tends to ∞. However, the authors have not analyzed the
impact of the constraints since they considered them fulfilled.
Besides, it is somehow puzzling to use standard parameters,
whereas we know we can identify only the base parameters.
This point is not treated in [14], [17], [19], [44].

III. PHYSICALLY CONSISTENT IDIM-IV

A. The Two Stage Least-Squares approach

The Two Stage Least-Squares (2SLS) approach considers
the following system instead of (8), see [37], [40], [45], [46],

y = Xβ + ε

X = ZΠ+V ,
(21)

where Z ∈ R(r×nz) is an instrumental matrix with nz ≥ nb;
Π ∈ R(nz×nb) is a matrix of coefficients that evaluates the
correlation between Z and X. In Econometrics, researchers
employ more instruments than regressors, i.e., columns of X,
because the models are mostly empirical. Note that one has
rank(Π) = nb if Z and X are well correlated, see [37], [40],
[45], [46].

The 2SLS method is executed as follows. In the first stage,
we calculate the LS estimate of Π given by

Π̂ =
(
ZTZ

)−1
ZTX . (22)

If rank
(
Π̂
)

= nb, then Z and X are well correlated, and
we can run the second stage; otherwise, they are not, meaning
that ZTX is not invertible, and we cannot pursue further. In
the second stage, X is replaced by X̂ = ZΠ̂, and we compute
the 2SLS estimates of β and their covariance matrix given by

β̂2SLS =
(
X̂TX

)−1

X̂Ty

Σ̂SLS =
(
X̂TΩ−1X̂

)−1

.

(23)

Note that if nz = nb, the 2SLS estimates reduce to the
classical IV estimates (12), see [37] chapter 7 and appendix
VI-C. Note further that one has

X̂ = PZX , (24)

where PZ = Z(ZTZ)−1ZT , with PZ ∈ R(r×r), is the
orthogonal projector onto the space generated by the columns
of Z. Interestingly, in Econometrics researchers and specialists
make no difference between IV and 2SLS, also known as
the Generalized IV method, and generally use (23). Interested
readers can find a complete theoretical description of the 2SLS
with various econometric applications in [24], [37], [38], [40],
[45], [46], and the references therein.

From now on, we assume that nz = nb, as is usually the
case in robotics. We further note that Π̂ is a consistent estimate
of Π, i.e., plimr→∞Π̂ = Π. In the rest of the analysis, we
assume that

rank
(
Π̂
)
= nb , (25)

holds, and this implies implies rank (Π) = nb, see appendix
VI-B. Finally, we indifferently use the term IV or 2SLS as
done in Econometrics.

B. Choice of physical constraints and criterion

Because the constraints given by (19) use the standard
parameters that are, as recalled in Section II, redundant in the
IDM, we propose physical constraints on the base parameters
only. This choice makes sense since the base parameters are



linear combinations of the standard parameters, [30]. Indeed,
we have

β = βI +KβNI , (26)

where βI ∈ Rnb is the vector of identifiable standard parame-
ters; βNI ∈ R(nc−nb) is the vector of non-identifiable standard
parameters regrouped with βI ; and K ∈ R(nb×(nc−nb)) is the

matrix of linear regroupings with βf =
[
βT
I βT

NI

]T
.

Then, according to [30], one has y = Xfβf = Xβ, and
it is evident that the parameters in βNI have no impact on
the IDM. It follows that some parameters in (19) do not
influence the dynamics questioning, therefore, their use as
physical constraints. Since the diagonal elements of Ij , mj ,
Iaj , fvj and fcj must be greater than zero, it is sufficient to
use the following constraints

Aβ ⪰ 0 , (27)

where A ∈ R(p×nb) is a constant matrix selecting the p base
parameters that must be greater than zero. We remark that
we can write (27) as βi ≥ 0 for i = 1, · · · , p, and we
further assume that rank(A) = p. Since these constraints
are physical, they cannot be overly restrictive. Using lower
and upper bounds in (27) now is not suggested because such
constraints may be overly restrictive. As we will see later, they
may deleteriously affect the estimation of β.

Regarding the criterion, we use the following IV criterion

f0(β) =
1

2
||PZε||22 , (28)

proposed in Econometrics. It appears suitable for robot identi-
fication because of its geometrical nature. Indeed, we project
the error onto the space generated by the instruments, see [37],
[40], making it easy to interpret. In [38], chapters 8 and 9, we
can find other criteria.

Expanding (28) yields f0(β) = 1
2 ||PZε||22 = 1

2y
TPZy −

βTXTPZy + 1
2β

TXTPZXβ = 1
2y

TPZy − βT X̂Ty +
1
2β

T X̂TXβ = 1
2β

TQZXβ−cTβ+α, where QZX = X̂TX;
c ∈ Rb = X̂Ty; and α = 1

2y
TPZy is a scalar. The criterion

is quadratic to β which is unique, see e.g. [31], [32], [47].
Note that one has QZX ≻ 0. Indeed, QZX =

XTZ(ZTZ)−1ZTX while it is assumed that rank
(
ZTX

)
=

nb with ZTZ ≻ 0. Note we do not necessarily assume
that Z ≈ Xnf for the derivation. We will discuss this
approximation in Section III-G.

C. Problem formulation and intuitive explanation

The problem of physically consistent robot identification is
equivalent to an inequality-constrained programming problem
formulated as

minimize f0(β) ,

subject to aTi β ≥ 0 , for i = 1, · · · , p ,
(29)

where aTi is the ith line of A
The Karush – Kuhn – Tucker (KKT) conditions for this

problem can be stated as follows: if β̂CIV , the PC-IDIM esti-

mates of β, is an optimizer for (29), there exists a multiplier
µ̂ ∈ Rp such that

QZX β̂CIV − c+AT µ̂ = 0 ,

β̂CIVi
≥ 0 , for i = 1 · · · p ,

µ̂iβ̂CIVi
= 0 for i = 1 · · · p ,

µ̂i ≥ 0 for i = 1 · · · p .

(30)

By introducing the slack variable s ≥ 0 with s ∈ Rp, the
above conditions can be equivalently formulated as follows

QZX β̂CIV − c+AT µ̂ = 0 ,

Aβ̂CIV − ŝ = 0 ,

ŝiµ̂i = 0 for i = 1 · · · p ,
ŝi, µ̂i ≥ 0 for i = 1 · · · p .

(31)

In [24] chapter 10, and [25], chapter 21, the authors provide
an intuitive understanding of (31). The equation (31) shows
that the problem becomes nonlinear because of the equation
ŝiµ̂i = 0 that is called exclusion constraint. This term is
intuitive since one has µ̂i = 0 and ŝi > 0 if the constraints are
satisfied or µ̂i > 0 and ŝi = 0 if the constraints are binding,
i.e., Aβ̂CIV < 0. Hence, assuming that the constraints are
satisfied, we have µ̂ = 0 and ŝ > 0, and (31) reduces
to QZX β̂CIV = c which is the unconstrained IV problem.
Assuming now that the constraints are not satisfied, we have
µ̂ > 0 and ŝ = 0, and (31) reduces to

QZX β̂CIV +AT µ̂ = c ,

Aβ̂CIV = 0 ,
(32)

which is the classical equality-constrained IV problem. We
will use this intuitive explanation to make the statistical
analysis.

In [20]–[22], the author stated that it is not mandatory to
detail the problem resolution, while the authors show how the
KKT conditions (31) can be viewed as moment conditions in
[27]. In this paper, we sketch the resolution to understand how
(31) is solved.

D. Problem resolution

An interior-point strategy whose main principles are
sketched here to support the resolution of the constraint satis-
faction problem described by (30). Indeed, such methods are
prevalent and easily accessible through multiple solvers used
by CVX [33], [48]. We note that the following approximations
∂qs

∂βf
≈ 0, ∂q̇s

∂βf
≈ 0, and ∂q̈s

∂βf
≈ 0 that yield ∂Z

∂β ≈ 0, [12],
hold and this eases the calculation of the KKT conditions.

The strategy is to find the optimal triplet (β,µ, s) satisfying
the KKT conditions given by (31). First, the nonnegativity
constraints are replaced with logarithmic barriers such that
f0(β) becomes f0(β)−ζ

∑p
i=1 log(si), where ζ is the barrier

parameter that usually has a small value. The idea behind the
definition of the log barrier is that it is a smooth approximation
of the indicator functions, I{si>0}(x), [32], chapter 11. As
ζ → 0, this approximation becomes closer to the indicator
function. Also, for any value of ζ, if any constraints are



violated, the value of the barrier approaches infinity, [32],
chapter 11-3. Second, we write the Lagrangian as

Lζ(β,µ, s) = f0(β)−ζ

p∑
i=1

log(si)−
p∑

i=1

µi(a
T
i β−si) , (33)

to get the first conditions given by

∇βLζ = ∂Lζ/∂β = QZXβ − c+ATµ = 0 ,

∇µLζ = ∂Lζ/∂µ = Aβ − s = 0 ,

∇sLζ = ∂Lζ/∂s = −ζD−1
s 1p + µ = 0 ,

(34)

where Ds ∈ R(p×p) is a diagonal matrix defined by Ds =
diag(s1, · · · , sp); and 1p ∈ Rp is a vector of ones defined by
1p = (1, · · · , 1)T . We remark that Ds is positive-definite since
one has si > 0 for compatibility with the logarithmic barrier.
Hence, we write Ds → 0 and si → 0 instead of Ds = 0
and si = 0 to be consistent with the theory of the logarithmic
barrier while adopting the philosophy of [25] chapter 21.

Third, by left multiplying ∇sLζ by Ds, we obtain the
following nonlinear mapping

Fζ (β,µ, s) =

QZXβ +ATµ− c
Aβ − s

DsDµ1p − ζ1p

 = 0 , (35)

where Dµ ∈ R(p×p) is a diagonal matrix defined by Dµ =
diag(µ1, · · · , µp). We note that the difference between (35)
and (31) is the presence of ζ1p such that the last equation
in (35) represents a perturbed complementarity condition.
Consequently, we write Dµ → 0 and µi → 0 (resp. Ds → 0
and si → 0) instead of Dµ = 0 and µi = 0 (resp. Ds = 0
and si = 0).

The idea is to apply Newton’s method to (35) to compute
the optimal triplet (β̂CIV , µ̂, ŝ) on the central path, and
automatically compute ζ with ζ = ςκ where ς ∈ [0, 1] is a
parameter chosen by the algorithm, and κ is a duality measure
introduced later, [32]. At iteration k, the Newton increments
(∆β̂

(k)

CIV ,∆µ̂(k),∆ŝ(k)) are the solution of the linear system
obtained from the linearization of (35) around the current
estimates (β̂

(k−1)

CIV , µ̂(k−1), ŝ(k−1)),QZX AT 0
A 0 Ip
0 Ds Dµ

∆β
(k)
CIV

∆µ(k)

∆s(k)

 =

−rc
−rb
gs

 (36)

where rc = QZX β̂
(k−1)

CIV +AT µ̂(k−1) − c; rb = Aβ̂
(k−1)

CIV −
ŝ(k−1); and gs = DsDµ1p − ςκ1p.

To resolve (35), it is preferable to stick to the philosophy
adopted in [25] chapter 21 because it is helpful for statistical
analysis. However, this approach is similar to the resolution
detailed in [32], chapters 10 and 11.

First, we remark that the Jacobian matrix on the left-hand
side of (36) is full rank, [32], chapter 11. Indeed, we have
rank(QZX) = nb because of (10), one has rank(A) = p by
assumption, and Ds, Dµ are full rank because of the logarith-

mic barrier. Second, (∆β̂
(k)

CIV ,∆µ̂(k),∆ŝ(k)) are calculated
with ∆β̂

(k)

CIV

∆µ̂(k)

∆ŝ(k)

 =

QZX AT 0
A 0 Ip
0 Ds Dµ

−1 −rc
−rb
gs

 (37)

To compute κ in (36), we recall that the set
of points (β,µ, s) satisfying Fζ(β,µ, s) = 0, for
some ζ, is called the central path, [32] chapter 11.
The new iterate is given by (β̂

(k)

CIV , µ̂
(k), ŝ(k)) =

(β̂
(k−1)

CIV , µ̂(k−1), ŝ(k−1)) + γ(∆β̂
(k)

CIV ,∆µ̂(k),∆ŝ(k)),
with γ chosen such that (β̂

(k)

CIV , µ̂
(k), ŝ(k)) stays feasible.

Given a feasible iterate we calculate the duality measure κ
with, [32],

κ =
(ŝ(k))T µ̂(k)

p
, (38)

Finally, this process is iterated until its convergence.

E. Relationship with [25] chapter 21

The equations (35), (36) and (37) emphasize how the
constrained IV problem is resolved. From initial values
(β

(0)
CIV ,µ

(0), s(0)), we compute increments so that the prob-
lem remains feasible. We solve the exclusion constraint with
the logarithmic barrier. If ŝi → 0, then the barrier, and so the
Lagrangian multiplier µ̂i, is activated and one gets β̂CIVi

→ 0.
If ŝi > 0, the barrier, and so the Lagrangian multiplier µ̂i, is
deactivated, and one obtains β̂CIVi

> 0. This is consistent
with the analysis made in [25], chapter 21.

We can pursue further the links with [25], chapter 21. First,
if the inequality constraints are all satisfied, Dµ → 0, Ds ≻ 0
and ∆µ̂(k) → 0 follows because of the third line of (36), while
the second line tells that Aβ̂

(k−1)

CIV = ŝ(k−1). Then, with the
first line of (36), one finally gets QZX∆β

(k)
CIV = −rc which is

the unconstrained IV solved with the Gauss-Newton algorithm,
see e.g., [31] and [28]. So, we retrieve the unconstrained IV
problem. Second, if the inequality constraints are not satisfied,
Ds → 0, Dµ ≻ 0 and ∆ŝ(k) → 0 follows because of the third
line of (36). Then, with the first and second lines of (36), one
finally gets [

QZX AT

A 0

] [
∆β

(k)
CIV

∆µ(k)

]
=

[
−rc
−rb

]
(39)

which is the IV estimation under equality constraints solved
by a Gauss-Newton algorithm, see [32], chapter 10.

To conclude this subsection, we consider constraints such
that hi(β) ≥ 0, for i = 1 · · · p, where each hi is a function
twice-differentiable. We must substitute QZX by Hkkt =

QZX +
∑p

i=1 µi∇2
βhi(β̂

(k−1)

CIV ) where ∇2
βhi(β̂

(k−1)

CIV ) ∈
R(nb×nb) is the Hessian matrix of hi(β) evaluated at β̂

(k−1)

CIV

in the left-hand side matrix in (36). Proving that this matrix is
still invertible is straightforward. Indeed, we have QZX ≻ 0

because rank
(
ZTX

)
= nb, and ∇2

βhi(β̂
(k−1)

CIV ) ≻ 0 by
definition of a Hessian matrix, [32] chapter 10. Then, it follows
straight that Hkkt ≻ 0 by addition of two positive-definitive
matrices, see [32], chapter 11.



F. Consistency of PC-IDIM-IV estimates

To make the consistency analysis, we assume that the
algorithm has converged which means the problem is feasible.
Since q, q̇, q̈ are quasi-stationary signals whose the first four
moments are finite, then plimr→∞

(
1
rQZX

)
exists and is

finite, [13], [37], chapter 7, and, [38], chapter 8. We further
assume that (10) holds and there is no modeling error. Let
β̂CIV , µ̂ and ŝ the estimates of β, µ and s, respectively,
obtained after the algorithm convergence.

If the constraints are satisfied, i.e., Aβ̂CIV ≻ 0, then µ̂ →
0, and one has β̂CIV = β̂IV , and so plimr→∞

(
β̂CIV

)
=

plimr→∞

(
β̂IV

)
= β. This is consistent with the result

exposed in [25], chapter 21. This result is unsurprising since
the IDIM-IV estimates satisfy the physical constraints if they
are consistent, [12], [19].

If the constraints are binding, the IV estimation under
inequality constraints turns to the IV estimation under equality
constraints. It comes out that the PC-IDIM-IV estimates are
given by

β̂CIV =

[
0(

ZT
UXU

)−1
ZT

Uy

]
, (40)

where XU ∈ R(r×(nb−p)) (resp. ZU ∈ R(r×(nb−p))) are
the nb − p columns of X (resp. Z) related to the nb − p
unconstrained parameters; see [24] chapter 10 and [25] chap-
ter 21. From (40), it is clear that β̂CIV ̸= β̂IV , and so
plimr→∞

(
β̂CIV

)
̸= β.

To pursue further this analysis, [25], chapter 21, shows that
we can relate β̂CIV and β̂IV . Let β̂

C

IV the p unconstrained IV
estimates related to the p constraints, and let β̂

U

IV the nb − p
remaining unconstrained IV estimates. One has

β̂CIV =

[
β̂
C

CIV

β̂
U

CIV

]
=

[
0

β̂
U

IV +
(
ZT

UXU

)−1
ZT

UXC β̂
C

IV

]
,

(41)
where β̂

C

CIV (resp. β̂
U

CIV ) are the p PC-IDIM-IV estimates
related to the p constrained (resp. nb − p unconstrained)
parameters; XC ∈ R(r×p) is the p columns of X related to the
p constrained parameters; see [25], chapter 21. It follows that
β̂
U

CIV ̸= β̂
U

IV unless the the columns of XC are orthogonal to
ZU . A short justification of (41) is given in appendix VI-D.
Interestingly, (41) shows that the estimation under equality
constraints turns into an omitted variable bias. Indeed, if the
inequality constraints are binding, then the initial constrained
problem turns into a procedure with equality constraints which
is equivalent to fixing some parameters at 0 in our case. These
fixed parameters are, thus, missing in the IDM, and it is an
omitted-variable bias problem.

G. Covariance matrix of PC-IDIM-IV estimates

Concerning the covariance matrix of β̂CIV , as stated in
[38], chapter 8, we can write

Σ̂CIV = Σ̂2SLS =
(
X̂T Ω̂−1X̂

)−1

, (42)

with Σ̂CIV ⪰ Σopt
IV , [38], chapter 8. Consequently, we can

conclude from (42)

√
r
(
β̂CIV − β

)
a∼N

0, plimr→∞

(
X̂TΩ−1X̂

r

)−1
 ,

(43)
where N is the normal distribution.

We now discuss the implications of Z ≈ Xnf . First, one
gets, E(X̂) = E (PZX) ≈ Xnf , E

(
X̂TX

)
≈ XT

nfXnf

and E
(
ZTX

)
≈ XT

nfXnf . It follows that the IV and 2SLS
estimates have the same asymptotic covariance matrix, and
so

√
r
(
β̂CIV − β

)
a∼
√
r
(
β̂IV − β

)
, and this result agrees

with the theory exposed in [38], chapter 8. Second, Π ≈ Ibe ,
where Ibe is the (nb×nb) identity matrix, follows. To validate
or invalidate the hypothesis Π̂ = Ibe , the authors introduced
a statistic in [49]. Since we use the DDM to construct Z and
the IDM to estimate β, it is natural to expect that Z ≈ Xnf

for robot identification, otherwise, it means that we identify β
with significant modeling errors.

It comes out that Z ≈ Xnf , or equivalently Π ≈ Ibe , is
crucial to constructing the optimal instrumental matrix.

We have conducted Monte Carlo simulations as in [19] to
validate (42). The results being the same as those reported in
[19], they show that (42) is correct and consistent with the
analysis of [24], chapter 10, and [25], chapter 21. They also
show that the IV estimates are near optimal when Z ≈ Xnf .

When the constraints are biding, the PC-IDIM-IV estimates
are biased and there is little interest in calculating the covari-
ance matrix.

H. Overly restrictive constraints

The case of overly restrictive constraints is now discussed.
By overly restrictive constraints it is understood that β lies
outside of the accessible space of solutions. β being unique
because the problem is linear to β, it is impossible that β̂CIV

converges to another local minimal, [32], [37]. In this case,
it is evident that β̂CIV is biased. Two outcomes are possible:
the problem is unfeasible or the algorithm converges.

If the problem is unfeasible, the constraints cannot be
satisfied, the algorithm cannot compute a valid κ with (38)
and is aborted. There is no β̂CIV and users must rework
constraints or the IDM.

If the algorithm succeeds in converging despite overly
restrictive constraints, it means it succeeded in computing a
valid κ with (38). Since we have emphasized that β̂CIV is a
consistent estimate of β if and only if µ̂ → 0, it is, therefore,
enough to run the PC-IDIM-IV algorithm and check that
µ̂ → 0 holds. It is also possible to compute the norm of the
gradient of the IV method given by gIV = ZT

(
y −Xβ̂CIV

)
which must be null, i.e., less than 10−8 in practice, see [32].
If E

(
β̂CIV

)
̸= β, it is evident that gIV ̸= 0. However, this

is a criterion and not a formal proof.
Overly restrictive constraints may occur when using lower

and upper bounds in (27). The statistical analysis presented in
the previous subsection enlightened why we must not use them
while identifying β. Indeed, if the constraints are binding, then



the constrained parameters are fixed to their boundary values
so that (40) becomes, [25] chapter 21,

β̂CIV =

[
d(

ZT
UXU

)−1
ZT

U (y −XCd)

]
, (44)

where d ∈ Rp is the vector of lower or upper bounds. By
relating β̂CIV and β̂IV , one finally obtains

β̂CIV =

[
β̂
C

CIV

β̂
U

CIV

]
=

[
d

β̂
U

IV +
(
ZT

UXU

)−1
ZT

UXC

(
β̂
C

IV − d
)] .

(45)
We evidently have β̂

U

CIV ̸= β̂
U

IV unless the the columns of
XC are orthogonal to ZU or β̂

C

CIV = d, which is unlikely
to occur. We sketch a short justification of (45) in appendix
VI-D.

I. PC-IDIM-IV algorithm

This subsection summarizes the PC-IDIM-IV algorithm
illustrated in Fig. 1.

iteration 0: Collect q and τ , compute q̂, ˆ̇q, ˆ̈q, then con-
struct y and X

(
q̂, ˆ̇q, ˆ̈q

)
. Initialize the PC-IDIM-IV algorithm

with the computer-aided-design (CAD) values of β.
iteration it: Construct Z by simulating the DDM and

β̂
(k−1)

CIV , the PC-IDIM-IV estimates calculated at the previous
iteration. Then, compute β̂

(k)

CIV by minimizing f0(β) defined
by (28) subject to the constraints given by (27). Run this
iterative algorithm until convergence, i.e.,

|β̂
(k)

CIV (i)− β̂
(k−1)

CIV (i)|

|β̂
(k)

CIV (i)|
< tolβ , (46)

where β̂
(k)

CIV (i) is the i-th component of β̂
(k)

CIV ; and tolβ is a
user-defined threshold.

final iteration: Consider β̂CIV , and compute the covariance
matrix of the PC-IDIM-IV estimates with (42).

PC-IDIM-IV consists of two nested iterative algorithms:
the outer one which focuses on the convergence of the PC-
IDIM-IV estimates, equation (46); and the inner one that
accounts for the physical constraints solved by a Gauss-
Newton algorithm, equations (37). Experimental results will
show that this approach is not very time-consuming.

IV. EXPERIMENTAL VALIDATION

A. Robotic manipulator, exciting trajectories and data acqui-
sition

The TX40 robot has a serial structure with six rotational
joints and is characterized by a coupling between the joints 5
and 6, see [12]. It is controlled by a cascade controller, which
consists of a P control of the inner velocity loop and a P
control of the outer position loop. The bandwidth of the first
(resp. last) three position closed loops is 10Hz (resp. 20 Hz).

For the experimental validation of the PC-IDIM-IV method
and the comparison with the other procedures, the references
qr, q̇r, q̈r consist of smoothed bang-bang trajectories. They
provide a condition number of 200 for X, which is good to
avoid numerical issues, [50]. All the data are stored with a

Fig. 1. Principle of the PC-IDIM-IV method

sampling rate fm = 5kHz. To validate the estimates, we have
carried out cross-validations with three fifth-order polynomials
passing through points different from those of the trajectories
used for identification. The cross-validation data are stored
with a different sampling rate given by f cv

m = 1kHz.
We investigate five scenarios: one with actual data, a second

one with downgraded data, the third one with overly restrictive
constraints, a fourth one with an error in Cj(s), and the last
one with an IDM error. Data are stored with a sampling rate
fm = 5kHz. We filter data for all scenarios and methods
according to the process described in [10].

Finally, all the simulations are executed on a laptop
equipped with an Intel Core i5-10400H processor, 16.0 GB
of RAM (DDR4 SDRAM technology), and a capacity of 500
GB. MATLAB version 2019-B is used.

B. First scenario: actual data
With actual data, IDIM-IV, DIDIM, PC-IDIM-IV, and PC-

DIDIM converge in 5 iterations. For any method, the DDM
simulation for an 8s trajectory and the calculation of the
estimates need 5s. From this, the Gauss-Newton algorithm
needs 13 iterations to converge and takes 3s. So, IDIM-IV
and DIDIM converge in 25 seconds, while PC-IDIM-IV and
PC-DIDIM converge in 40 seconds, which is acceptable.

The results obtained with the direct comparisons are given in
Table I, while the results of the cross-test validations are given
in Table II. We recall that the relative errors are calculated
with relerr = 100 · ||y−Xβ̂||/||y||, where β̂ is the estimate
provided by the method.

The results gathered in Tables I and II show that the
relative errors do not vary significantly. Furthermore, the cross-
validation for the first joint with the first trajectory illustrated
in Fig. 2 shows that the torque reconstructed with the PC-
IDIM-IV estimates fits the actual one. We obtain plots similar
to those of the other methods. Using an IV approach and the
physical constraints do not significantly improve the results
when the actual data, a good model, and appropriate data
filtering are employed. This result is consistent with those
previously published in [10], [12], [19]. In this case, we have
X ≈ Z ≈ Xnf , yielding PC-IDIM-LS, PC-IDIM-IV, and PC-
DIDIM estimates that are close to each other.



TABLE I
RELATIVE ERRORS OBTAINED WITH DIRECT COMPARISONS - ACTUAL

DATA

Joint j IDIM-LS IDIM-IV DIDIM
1 5.2% 5.4% 5.5%
2 5.0% 5.3% 5.3%
3 5.0% 5.1% 5.1%
4 5.6% 5.7% 5.8%
5 7.2% 7.2% 7.2%
6 7.1% 7.5% 7.5%

Joint j PC-IDIM-LS PC-IDIM-IV PC-DIDIM
1 5.2% 5.4% 5.5%
2 5.0% 5.3% 5.3%
3 5.0% 5.1% 5.1%
4 5.6% 5.7% 5.8%
5 7.2% 7.2% 7.2%
6 7.1% 7.5% 7.5%

TABLE II
RELATIVE ERRORS OBTAINED WITH CROSS-VALIDATION - ACTUAL DATA

Traj. IDIM-LS IDIM-IV DIDIM
1 6.1% 6.4% 6.4%
2 6.3% 6.8% 6.8%
3 6.7% 7.0% 7.1%

Traj. PC-IDIM-LS PC-IDIM-IV PC-DIDIM
1 6.1% 6.4% 6.4%
2 6.3% 6.8% 6.8%
3 6.7% 7.0% 7.1%

Interestingly, if we estimate Π with (21), the statistics
presented in [49] accepts the hypothesis Π̂ = Inb

.

C. Second scenario: downgraded data

Now, we downgrade position data from 2e-4 degrees per
count to 2e-2 degrees per count. This can occur when robots
operate in hostile or perturbed environments, [51]. With
downgraded data, PC-IDIM-IV and IDIM-IV converge in 7
iterations, while PC-DIDIM converges in 6 iterations. In this
configuration, the methods converge in less than 1 minute,
which is acceptable.

From the relative errors obtained with direct and cross-
validations gathered in Tables III and IV, we see that the

Fig. 2. Cross-validation, first joint and first trajectory, actual data.

TABLE III
RELATIVE ERRORS OBTAINED WITH DIRECT COMPARISONS -

DOWNGRADED DATA

Joint j IDIM-LS IDIM-IV DIDIM
1 25.3% 6.1% 6.1%
2 24.7% 5.9% 6.0%
3 25.2% 6.0% 6.1%
4 25.8% 5.9% 5.9%
5 27.5% 8.0% 8.0%
6 28.0% 8.1% 8.2%

Joint j PC-IDIM-LS PC-IDIM-IV PC-DIDIM
1 25.3% 6.1% 6.1%
2 24.7% 5.9% 6.0%
3 25.2% 6.0% 6.1%
4 25.8% 5.9% 5.9%
5 27.5% 8.0% 8.0%
6 28.0% 8.1% 8.2%

TABLE IV
RELATIVE ERRORS OBTAINED WITH CROSS-VALIDATION - DOWNGRADED

DATA

Traj. IDIM-LS IDIM-IV DIDIM
1 26.4% 7.1% 7.2%
2 26.5% 7.6% 7.6%
3 27.8% 7.9% 8.0%

Traj. PC-IDIM-LS PC-IDIM-IV PC-DIDIM
1 26.4% 7.1% 7.2%
2 26.5% 7.6% 7.6%
3 27.8% 7.9% 8.0%

PC-IDIM-LS estimates are no longer consistent, whereas PC-
IDIM-IV, IDIM, and PC-DIDIM estimates remain consistent.
Indeed, the relative errors are still below 10%, whereas they
are higher than 20% for PC-IDIM-LS. Besides, the torque
reconstruction with the PC-IDIM-IV estimates illustrated in
Fig. 3 with the first joint and the first trajectory shows that
the fitting is excellent despite a noisier signal.

This result is consistent with those exposed in [10], [12],
[19]. When the noise is too high, the bias of the LS estima-
tor is no longer negligible in practice. Adding the physical
constraints does not remove the persisting bias. IDIM-IV, PC-
IDIM-IV, DIDIM, and PC-DIDIM are immune to this correla-
tion because the fundamental relation plimr→∞

(
1
rZ

Tε
)
= 0

holds.

D. Third scenario: overly restrictive constraints and con-
straints given by (19)

We analyze the effects of overly restrictive constraints. To
do so, we impose lower and upper bounds to estimates, i.e.,
we modify (27) by βLj

≤ βj ≤ βUj
, where βLj

and βUj

are the lower and upper bounds of βj , respectively. We tune
the bounds so that β lies outside of the accessible space of
solutions and the problem remains feasible. For instance, if
βj = 1.0, we choose βLj = 0.8 and βUj = 0.9. Actual data
are used. The performances are the same as those we show
in subsection IV-B; PC-IDIM-IV and PC-DIDIM converge in
40 seconds. Interestingly, all the β̂j’s stick to their lower or
upper bounds while µ̂j ̸= 0. This means that the constraints
are binding and so, they are overly restrictive. Besides, by
applying (45), we retrieve the PC-IDIM-IV estimates from
the IDIM-IV estimates. These results support the analysis
presented in the subsections III-F and III-H.



Fig. 3. Cross-validation, first joint, and first trajectory with downgraded data.

We show now that the constraints given by (19) and used
in [14], [15], [17], [19] do not bring additional information
compared to the constraints (27). To do so, we include
β̂CIV as inequality constraints so that the constrained problem
becomes

minimize
1

2
||PZ

(
y −Xfβf

)
||22 ,

subject to hi(βf ) ≥ 0 , for i = 1, · · · , p ,
β
j
≤ βj ≤ βj , for j = 1, · · · , nb ,

(47)

where βj = βIj + KT
j βNI with KT

j is the j-th line of K

defined in (26); β
j
= β̂CIVj

− 3 · σ̂j and βj = β̂CIVj
+ 3 · σ̂j

where σ̂j =

√
Σ̂CIV (j, j) is the estimated standard deviation

of β̂CIVj . Equation (47) shows we search a constrained
estimate β̂f so that β̂ = [Inb

K] β̂f lies within the +/ − 3σ̂

bandwidth centered in β̂CIV . Note that in [14] and [17],
the authors used equality constraints to check the physical
feasibility of IDIM-LS estimates and it is not correct. Indeed,
we know that estimates are stochastic and not deterministic
quantities. It is, therefore, unlikely that an estimate fits exactly
a deterministic value. It would have been correct to treat β̂IV

as a stochastic constraint as done in [20]–[22], [25], [27].
The problem (47) is feasible since PC-IDIM-IV and PC-

DIDIM converge in 5 iterations. Let β̂DCIV the estimates
obtained with (47). The DDM simulation needs 5s, the Gauss-
Newton algorithm needs 20 iterations to converge in 5s, and
it follows that PC-IDIM-IV and PC-DIDIM converge in 45
seconds. The increase of the time computing is explained by
the 2·nb inequality constraints we have added. The differences
observed between β̂DCIV and β̂CIV lie within the +/−3 · σ̂j

band and we can write β̂DCIV ≈ β̂CIV according to the
theory of system identification, see, e.g. [37], [40]. This result
proves that the constraints (27) are enough and are equivalent
to (19).

To conclude this part, if we use equality constraints, i.e.,
βj = β̂CIVj

, in (47) instead of inequality constraints, the
problem becomes infeasible. It is an expected outcome since
we have treated an estimate as a deterministic value, whereas

it is not. This is the point the authors have missed in [14] and
[17].

E. Fourth scenario: error in the controller
We introduce errors located in Cj(s) to evaluate the ro-

bustness of PC-IDIM-IV against modeling errors. As in most
cases, industrials do not share it unless with formal agree-
ments; we must identify it. We downgrade the gains of the
simulated control so that the bandwidth of the first (resp. last)
three joints is 5Hz (resp. 10Hz). Loosely speaking, we divide
the bandwidth of the position closed loops by two.

With such errors, PC-IDIM-IV, IDIM-IV, and PC-DIDIM
converge in 5 iterations, whereas DIDIM fails to converge.
Again, for an 8s trajectory, the simulation of the DDM takes
5s. IDIM-IV takes 25 seconds for convergence. The GN
algorithm converges in 13 iterations in 3s. So, PC-IDIM-IV
and PC-DIDIM converge in less than 1 minute. Such errors do
not affect the running time of algorithms. The relative errors
gathered in Table V and Table VI show that IDIM-IV and
PC-IDIM-IV perform well despite errors in Cj(s) while PC-
DIDIM succeeds in converging with, however, high relative
errors.

We can explain the result as follows. One has (qs, q̇s, q̈s) ̸=
(q, q̇, q̈) yielding Z ̸= Xnf at the last iteration of IDIM-IV
and DIDIM. Besides, this gives Π̂ ̸= Inb

. However, Z being
constructed with simulated data only, the IDM being assumed
error-free, Z is not correlated with ε. Then E

(
ZTε

)
= 0

holds.
We have β̂IV = β +

(
ZTX

)−1
ZTε,

yielding plimr→∞

(
β̂IV

)
= β +

plimr→∞
(
1
rZ

TX
)−1

plimr→∞
(
1
rZ

Tε
)
= β.

Concerning the DIDIM estimates, one has β̂DIDIM =(
ZTZ

)−1 (
ZTX

)
β +

(
ZTZ

)−1
ZTε. With X = ZΠ̂ +

V, it yields E
(
ZTX

)
= E

(
ZTZΠ̂

)
. This gives

plimr→∞
(
ZTX/r

)
= plimr→∞

(
ZTZ/r

)
plimr→∞Π̂ =

plimr→∞
(
ZTZ/r

)
Π. Then this inserted into β̂DIDIM and

with E
(
ZTε

)
= 0, we get plimr→∞

(
β̂DIDIM

)
= Πβ +

plimr→∞
(
1
rZ

TZ
)−1

plimr→∞
(
1
rZ

Tε
)
= Πβ.

By extension, we obtain the same conclusion with the PC-
IDIM-IV and PC-DIDIM methods by inspection of (30). So, if
errors are located in Cj(s) only, the IDIM-IV estimates remain
consistent, whereas the DIDIM estimates do not.

Interestingly, if β̂DIDIM is replaced by Π̂−1β̂DIDIM , then
both DIDIM and PC-DIDIM converge and provide the same
estimates as those of IDIM-IV and PC-IDIM-IV, respectively.

Compared with the relative errors given in Tables I and
II, those of Tables V and VI are slightly greater; the cross-
validation with the first joint and the first trajectory we have
plotted in Fig. 4 confirms that. It comes out that the IDIM-
IV and PC-IDIM-IV estimates are no longer optimal since
Z ̸= Xnf , and this is consistent with the theory developed in
Section III-G.

F. Fifth scenario: error in the IDM
To conclude this study, we propose to run the IDIM-

IV, PC-IDIM-IV, DIDIM, and PC-DIDIM methods with the



TABLE V
RELATIVE ERRORS OBTAINED WITH DIRECT VALIDATIONS - ERROR IN

Cj(s)

Joint j IDIM-IV PC-IDIM-IV PC-DIDIM
1 6.1% 5.9% 32.9%
2 6.3% 5.8% 33.5%
3 5.9% 5.5% 31.9%
4 6.4% 6.2% 32.7%
5 7.9% 7.6% 34.4%
6 8.1% 7.9% 35.0%

TABLE VI
RELATIVE ERRORS OBTAINED WITH CROSS-VALIDATION - ERROR IN

Cj(s)

Traj. IDIM-IV PC-IDIM-IV PC-DIDIM
1 7.1% 6.8% 45.7%
2 7.7% 7.2% 46.0%
3 8.1% 7.5% 45.1%

standard linear friction model (2) while inserting the low-
velocity trajectories exhibiting a Stribeck effect of [52]. The
IDM is, therefore, misspecified. All the methods have the
same convergence performances as those obtained with the
first scenario. Regarding the relative errors, they increase to
12 % because of the misspecified friction model. However,
the estimates of the inertial parameters do not vary. We can
explain this result as follows.

The IDM is underspecified because some variables are
omitted in (8), see [40] chapter 3. We rewrite (8) as follows,
see [37], [40],

y = XINβIN +XOMβOM + εclpt , (48)

where XIN ∈ R(r×nin) (resp. XOM ∈ R(r×nom)) is the
included (resp. omitted) observation matrix corresponding to
βIN ∈ Rnin (resp. βOM ∈ Rnom ), the vector of included
(resp. omitted) parameters; εclpt ∈ Rr is the vector of
errors corresponding to the complete regression. We assume
that XOM is orthogonal to the columns of XIN yielding
XT

OMXIN = 0, and so E
(
XT

OMXIN

)
= 0.

Let us assume that the effects encompassed by XOMβOM

occur at low frequencies, such as friction. Then, Cj(s) rejects

Fig. 4. Cross-validation, first joint, and first trajectory with error in Cj(s).

them like any low-frequency disturbance, and (qs, q̇s, q̈s) ≈
(q, q̇, q̈) still holds, see [10], [12]. It follows that both the
IDIM-IV and DIDIM estimates of βIN are consistent since
we have E

(
ZT

INεclpt
)
= 0. This result is still valid even

in the nonlinear case, i.e., when XOMβOM is substituted by
fOM (βOM ) ∈ Rr. Indeed, assuming that fOM (βOM ) occur
at low frequencies, Cj(s) rejects them, giving (qs, q̇s, q̈s) ≈
(q, q̇, q̈) and so E

(
ZT

INεcplt
)
= 0.

It comes out that we obtained the same result with
the PC-IDIM-IV and PC-DIDIM methods. Indeed, under
these circumstances, we get (qs, q̇s, q̈s) ≈ (q, q̇, q̈) giving
E
(
ZT

INεclpt
)

= 0 and µ̂ → 0 since the constraints are
satisfied. These are the conditions to get consistent PC-IDIM-
IV and PC-DIDIM estimates. It is a unique case where we
can choose PC-IDIM-IV and PC-DIDIM indifferently.

This result is crucial because it explains why separable
approaches are suitable for nonlinear friction identification,
provided that friction is not load-dependent. In such a case,
separable methods are unsuitable since friction can be consid-
ered dynamic, and we must run more sophisticated identifica-
tion methods. This explains the good results presented in [7],
[36], [53].

V. CONCLUSION

In this paper, we have presented a constrained instrumental
variable method for industrial robot identification, called PC-
IDIM-IV, Physically Consistent Inverse Dynamic Identifica-
tion Model with Instrumental Variable, and validated it on the
6-DOF industrial robot TX40.

This method validates the direct and inverse dynamic mod-
els and consists of two nested iterative algorithms: the outer
one which is the usual IV method, and the inner one which
solves the physical constraints with the Gauss-Newton algo-
rithm. In the theoretical analysis, we analyzed the consistency
of PC-IDIM-IV estimates and the effect of constraints. The
experimental results showed that PC-IDIM-IV is consistent
when the inverse dynamical model is error-free, and/or when
there is an error in the controller, and is less sensitive to
modeling errors than other approaches, provided the problem
remains feasible. Besides, they showed that the constraints we
have proposed are not overly restrictive and PC-IDIM-IV is
not time-consuming: 60 dynamic parameters are identified in
less than one minute. This result offers some good perspectives
for batching online identification.

Future works concern batching online applications of the
PC-IDIM-IV to identify the TX40 and KUKA LBR iiwa 14
R820 robots.

VI. APPENDICES

A. Comments on the data filtering

The works published in Automatic Control mostly use (7)
by assuming that εmj

= Hj(z
−1)ej , where εmj

is the joint j
error, Hj(z

−1) is a stable discrete filter with z−1 as the shift
operator, and ej a white noise whose variance is σ2

j . Then,
we identify Hj(z

−1) with standard procedures as described
in [11], [13], [28] to get Ĥj(z

−1).



Let Xmj
, Zmj

and ymj
resulting from the sampling of

IDMj(q̂, ˆ̇q, ˆ̈q), IDMj(qS , q̇S , q̈S), and τj , respectively. With
Xf , Zf , and yf resulting from the vertical stacking of the
Xf

j ’s, Zf
j ’s and yf

j ’s, respectively, with Xf
j = Ĥ−1

j (z−1)Xmj
,

Zf
j = Ĥ−1

j (z−1)Zmj , and yf
j = Ĥ−1

j (z−1)ymj , we substitute
X, Z and y by Xf , Zf and yf , respectively, in (28). However,
[54] shows that this process does not improve the parallel
decimation process. Consequently, we suggest running the
filtering procedure described in [43] and recalled in Section
II-C.

B. Proof of rank
(
Π̂
)
= nb implies rank (Π) = nb

We have Π̂ =
(
ZTZ

)−1
ZTX, since rank(Z) = nb,

one has rank
(
ZTZ

)
= nb and so ZTZ ≻ 0. Because

rank
(
ZTX

)
= nb by assumption, rank

(
Π̂
)

= nb

follows. Assuming plimr→∞
(
1
rZ

TZ
)

converges to a de-
terministic and finite matrix with rank nb ( likewise for
plimr→∞

(
1
rZ

TX
)
), and since E

(
ZTV

)
= 0, it follows

plimr→∞

(
Π̂
)
= plimr→∞

(
1
rZ

TZ
)−1

plimr→∞
(
1
rZ

TX
)
=

Π, with rank (Π) = nb.
Note that the existence of plimr→∞

(
Π̂
)

implies the exis-

tence of plimr→∞
(
1
rQZX

)
= plimr→∞

(
1
r X̂

TX
)

.

C. Proof of the 2SLS estimates reduce to the IV estimates
when nz = nb

We have β̂2SLS =
(
X̂TX

)−1

X̂Ty, β̂2SLS =(
XTZ

(
ZTZ

)−1
ZTX

)−1 (
XTZ

(
ZTZ

)−1
ZT
)
y,

β̂2SLS =
(
ZTX

)−1
ZTZ

(
XTZT

)−1
XTZ

(
ZTZ

)−1
ZTy,

β̂2SLS =
(
ZTX

)−1
ZTZ

(
ZTZ

)−1
ZTy, β̂2SLS =(

ZTX
)−1

ZTy, β̂2SLS = β̂IV , because rank
(
ZTX

)
= nb

by assumption.

D. Justification of the relation between the unconstrained and
constrained IV estimates

First, we can write

y = XCβ
C +XUβ

U + ε , (49)

then with βC = d, one gets

β̂
U

CIV =
(
ZT

UXU

)−1
ZT

U (y −XCd) . (50)

With the unconstrained IV estimates, one has

y = XCβ̂
C

IV +XU β̂
U

IV + ε̂IV , (51)

where ε̂IV ∈ Rr is the IV residuals. Since β̂
C

IV and β̂
U

IV

are consistent estimates of βC and βU , ε̂IV is a consistent
estimate of ε, [55]. Besides, ε̂IV is orthogonal to the columns
of ZU by geometrical construction, [37], chapter 1. One finally
obtains

β̂
U

CIV = β̂
U

IV +
(
ZT

UXU

)−1
ZT

UXC

(
β̂
C

IV − d
)
. (52)
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